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Compensators Design using Laguerre Polynomials Applied to a Real
Steer-by-Wire System of Autonomous Vehicle

Alejandro Arceo, Rodrigo Gutierrez-Garza, Jorge de J. Lozoya-Santos, Mauricio A. Ramirez-Moreno,
Luis C. Felix-Herran, Olivier Sename, and Juan C. Tudon-Martinez∗

Abstract— This paper provides two main contributions to the
field of control systems design. Firstly, an algorithm is proposed
for computing digital compensators aimed at stabilizing a
specific class of linear time-invariant discrete-time systems.
The method leverages pole placement to devise a control
system that uses a digital compensator within a closed-loop
configuration. The poles crucial to this design are determined
as roots of sequences of Schur polynomials, constructed via
a linear combination of Laguerre polynomials orthogonal to
a modified version of the classical Laguerre measure. This
design yields an infinite family of compensators capable of
stabilizing strictly proper plants by manipulating parameters
within the coefficients of orthogonal polynomials. Secondly,
the effectiveness of this approach is demonstrated through
configuring a compensator for a real Steer-by-Wire platform
using an industrial and embedded vehicle control unit with the
CAN communication protocol. Additionally, experimental tests
show improved performance compared to traditional tuning for
PID controllers. The Error-to-Signal Ratio index is reduced by
the novel algorithm by up to 35.5% and 65.6% in contrast with
the PID controller against DLC and Fishhook procedures.

I. INTRODUCTION

Every year, road traffic accidents are a prominent cause of
death, claiming millions of lives due to factors such as reck-
less driving and speeding. The 2023 Global Status Report
on Road Safety indicates a marginal decrease in the yearly
count of road traffic fatalities, now standing at 1.19 million
[1]. However, many countries persist in designing mobility
systems primarily for vehicles rather than prioritizing the
safety and accessibility of vulnerable road users.

An alternative is to transform vehicle control by substitut-
ing traditional mechanical links with electronic or electrome-
chanical systems, i.e., to implement Drive-By-Wire (DBW)
technology [2]. These systems encompass elements such as
Electronic Throttle Control, Steer-By-Wire (SBW), Brake-
by-Wire, and Shift-by-Wire. DBW offers several benefits,
including reduced complexity, customizable inputs, greater
flexibility in interior design, reduced noise, and improved
safety features. However, the adoption of this technology
results in an increase in energy consumption due to the
incorporation of additional actuators.
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As SBW systems evolve, advanced control strategies
are becoming increasingly necessary. Linear and nonlinear
control methods are tailored to handle the complex dy-
namics inherent in SBW devices, whereas adaptive control
techniques enable real-time adjustments to varying driving
conditions and uncertainties. For example, nonlinear model
predictive control can assess model uncertainty for robust
stability analysis [3]. Moreover, nonlinear adaptive sliding
mode approaches offer adaptive sliding gains, reducing the
need for precise uncertainty limits and minimizing computa-
tional complexity [4]. Furthermore, neural networks stream-
line computational processes in fuzzy logic, and adaptive
controllers effectively address the nonlinear dynamics of
SBW systems [5]. One of the most important issues to be
accomplished in the controller design task is the feasibility of
being implemented in a real-time embedded control system.

In this sense, Vehicle Control Units (VCUs) are crucial
components of modern electric and electronic systems, func-
tioning as the central nervous system for automotive elec-
tronic control. The VCU is an embedded system, i.e. a com-
pact computing device designed for specific tasks and power-
dedicated functions within larger mechanical or electronic
systems in the vehicle. VCU coordinates various functions,
including engine management, transmission control, braking
systems, steering assistance, and climate control. Therefore,
these devices are used for vehicle safety and reliability where
their primary objective is to mitigate possible accidents by
avoiding collisions with obstacles, whereas optimizing the
vehicle’s overall performance [6].

In the framework of stochastic processes, a method for
identifying continuous-time Wiener models is introduced,
employing a Laguerre expansion to describe linear dynamics
and approximating static nonlinearity with an inverse polyno-
mial function [7]. Moving into the PID domain, a computer-
oriented algebraic approach is proposed for designing digital
PID controllers, utilizing discrete Orthogonal Polynomials
(OPs) [8]. In the transition to signal processing, the use of
discrete functions based on Laguerre polynomials is advo-
cated for the design of the controller on constrained servo
turntables [9]. In electric systems, Laguerre polynomial-
based control techniques are devised to regulate single-phase
grids connected to voltage source converters [10] and to
design a centralised linear model predictive controller [11].
Laguerre polynomials, along with other orthogonal polyno-
mials, have been utilized in neural operators across various
machine learning applications, as mentioned in [12], [13]. In
the field of medicine, an adaptive backstepping controller is



engineered for multi-input, multi-output cancer immunother-
apy systems, focusing on the approximation property of
Laguerre polynomials [14]. Shifting the focus to automotive
applications, an adaptive functional-link-based neural fuzzy
control system is developed, employing orthogonal Hermite
polynomial-based nonlinear combinations to approximate an
ideal complementary Sliding-Mode Controller (SMC) [15].
On the basis of a state-of-the-art review and to the best of the
authors’ knowledge, the latter is the only work concerning
the utilization of OPs in automotive applications.

However, certain kinds of OPs, particularly Laguerre
polynomials, can be used to explicitly compute families
of Hurwitz polynomials [16]. Taking into account that the
weakness of the pole placement technique lies precisely in
the location of the poles of the control system, the initial
focus of this work is to construct a new family of Schur
polynomials that is used to solve the problem of assigning
poles and stabilizing a specific class of Linear Time-Invariant
(LTI) discrete-time plants. The presented methodology incor-
porates parameters into the coefficients of the compensators
that can be manipulated to improve the performance of linear
control systems, which is applied to a real-world platform.
In this context, the contributions to this paper are:

• Development of a new algorithm for computing digital
compensators to stabilize a class of LTI discrete-time
systems. This method employs pole placement within
a closed-loop configuration, utilizing Schur polynomi-
als derived from Hurwitz polynomials. These Hurwitz
polynomials are constructed as a linear combination
of Laguerre polynomials, which are orthogonal with
respect to a modified Laguerre measure.

• Formulation of a design approach to generate an infinite
family of compensators capable of stabilizing strictly
proper plants. This is achieved by manipulating the pa-
rameters within the coefficients of the OPs considered.

• Implementation of the proposed method through the
practical scenario of configuring a compensator for a
real SBW platform using an industrial and embedded
VCU via the CAN communication protocol. The effi-
cacy of the approach is demonstrated by comparing its
performance with a traditional tuning method of a PID
controller, showing superior results.

The manuscript is structured as follows. Section II pro-
vides an overview of the role of a VCU in the automotive
industry and the framework of the experimental setup. The
implementation of the technique is described in Section III.
Theoretical and experimental results are presented in Sec-
tions IV and V. Finally, the main discussion and conclusions
can be found in Sections VI and VII, respectively.

II. EXPERIMENTAL PLATFORM

This section provides an overview of the VCU’s charac-
teristics and communication setup, including the compilation
and flashing process using designated software. In addition, it
outlines the experimental platform comprising a SBW system
and its subsystems tailored for steering.

A. Ecotron® Software and Hardware

Ecotron® specializes in the development of controllers
for electric and autonomous vehicles, offering three key
software components: EcoCoder, an auto-code generation
library integrated with MATLAB®/Simulink; EcoFlash, for
flashing VCU executable files generated in EcoCoder; and
EcoCal, a calibration tool for managing batteries or motors.

The VCU EV2106B01 features a microprocessor with 121
pins and 3 Controller Area Network (CAN) bus channels, op-
erating within a voltage range of 9 to 16 V. Communication
between the VCU and computer involves using a Peak CAN
cable. The control code is compiled within Simulink using
the EcoCoder library. This process yields two files: a “.mot”
file for flashing using EcoFlash via CAN and a “.a2l” file for
accessing program variables in real-time using EcoCal, with
the possibility of reading, deploying, and exporting data.

B. SBW Platform

The experimental platform is composed of a SBW system
as shown in Fig. 1. This type of systems is used in vehicles
for allowing the steering system to be mechanically separated
from the steering wheel. Its main application is to use it
in autonomous vehicles, since the steering system is also
capable of autonomously driving the vehicle using only
electrical signals instead of needing a mechanical input.

The platform has three main subsystems. The first sub-
system consists of the Ecotron® EV2106B01 VCU, which
will perform all the control operations. The VCU, along with
a PWM to analogous and relay modules, is able to control
the second subsystem, i.e., the velocity driver module for
the motor. Lastly, the third subsystem is composed of the
steering column with a JTEKT JJ001 12VDC motor and a
precision potentiometer for detecting the steering angle.

III. MATHEMATICAL PRELIMINARIES

A LTI discrete-time system is a mathematical representa-
tion of various phenomena, characterized by a linear and
time-invariant difference equation, which refers to events
occurring at specific time intervals, unlike the continuous-
time domain. In discrete-time control, a transfer function

Fig. 1. Experimental closed-loop steer-by-wire system.



representing the physical phenomena (or plant) is given by

P(z) = N(z)

D(z)
, (1)

where N(z) =
∑n

k=0 nk z
k and D(z) =

∑d
k=0 dk z

k are
polynomials with real coefficients. P(z) is said to be a
proper and a strictly proper plant of invariant degree d if
0 ⩽ n ⩽ d and 0 ⩽ n < d, respectively. In both cases, it is
required dd ̸= 0. Furthermore, the output signal of closed-
loop control system of P(z) associated with the controller
C(z), and denoted by Y(z), is defined by

Y(z) = C(z)P(z)
1 + C(z)P(z)

X (z), (2)

where C(z) and X (z), the input signal, are rational functions
of two polynomials with real coefficients.

A. Pole Placement Methodology

Pole Placement is a control strategy used in the design of
control systems. It involves placing the poles of the closed-
loop transfer function in specific locations in the complex
plane to achieve desired performance characteristics like
stability, dynamic response, and damping [17]. In particu-
lar, Y(z)/X (z) is asymptotically stable if its denominator
polynomial has roots within the unit circle, which is known
as a Schur polynomial [18].

Taking into account (2), suppose P(z) is a strictly proper
plant as in (1) of invariant degree d ⩾ 1 such that N(z)
and D(z) are polynomials with real coefficients of degrees
n and d, respectively, having no common roots. For m ⩾ 0,
a proper compensator is represented by

C(z) = B(z)

A(z)
, (3)

where A(z) =
∑m

k=0 ak z
k and B(z) =

∑m
k=0 bk z

k are
polynomials with real coefficients. So (2) becomes

Y(z) = B(z)N(z)

A(z)D(z) +B(z)N(z)
X (z). (4)

If S(z) =
∑d+m

k=0 sk z
k denotes a Schur polynomial of degree

d +m with m ⩾ d − 1 and real coefficients, then the pole
placement technique aims to find the coefficients of A(z)
and B(z) such that

S(z) = A(z)D(z) +B(z)N(z) (5)

by solving the following linear equation (see [17, Th. 9.2])(
a0 b0 · · · am bm

)
=

(
s0 s1 · · · sm+d

)
M†

d

(6)
with

Md =



d0 d1 · · · dd 0 · · · 0
n0 n1 · · · nd 0 · · · 0
0 d0 · · · dd−1 dd · · · 0
0 n0 · · · nd−1 nd · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 d0 · · · dd
0 0 · · · 0 n0 · · · nd


,

where, for any matrix M of any dimension, M† =
MT (M MT )−1 is the right Moore–Penrose pseudo-inverse
of M , which always exists if and only if the rows of M are
linearly independent. Here, MT is the transpose of M .

Notice that the existence of M†
d is guaranteed by d > n

and P(z) is a reduced polynomial fraction with invariant
degree. Moreover, if the matrix M is square, the linear
independence of its rows implies that M is an invertible
matrix, and M−1 = M†.

B. Relation between Stable and Orthogonal Polynomials

Once the conditions of existence for the solution of (5) are
given, the remainder of this Section will be devoted to pro-
viding some class of Schur polynomials. It is noteworthy that
this approach aims to incorporate parameters (associated with
the desired closed-loop performance) into the coefficients of
Schur polynomials that are constructed using OPs associated
with modified classical measures.

As well as Schur polynomials play a pivotal role in
characterizing the stability of discrete-time linear systems,
Hurwitz polynomials characterise the stability of continuous-
time linear systems. Generally, both families are called stable
polynomials. As a consequence, determining the roots of
polynomials holds crucial importance in various applications
in control theory [19].

On the other hand, OPs are a special class of polynomials
that satisfy a particular orthogonality condition on the real
line R. Suppose ω(s) is a positive weight function defined on
an interval I of R. A sequence {Pn(s)}n⩾0 of polynomials
such that Pn(s) has real coefficients and degree n is the
sequence of OPs on R associated with ω(s) if for m ⩾ 0,
there exists Km > 0 such that (see [20])∫

I

Pm(s)Pn(s)ω(s) ds = Km δm,n, n ⩾ 0.

It is well-known that any Schur polynomial is an OP on the
unit circle, and vice versa [21]. However, it is not evident
that any Hurwitz polynomial can be decomposed into two
OPs on R of consecutive degree [22].

A fundamental challenge in control system design is
devising a compensator to improve the performance of a
closed-loop system. This process entails identifying the roots
of the characteristic polynomial within a specific part of the
stability region [23]. Since

S(z) = (z − 1)q H

(
z + 1

z − 1

)
(7)

is a Schur polynomial provided that H(·) is a Hurwitz poly-
nomial with degree q ⩾ 1 [24], it is possible construct stable
polynomials using OPs. Specifically, we will be dealing with
linear combinations of modified Laguerre polynomials due
to the dynamic of their roots with respect to parameters can
be explicitly described by [23, Eq. (10)]. Furthermore, this
family of OPs has been utilized to propose a stabilization
method for interval plants with uncertain time-delay, showing
improvements in the performance of the controlled system
[25, Algo. 1]. Following the notation of [16], the modified



Laguerre polynomials, {Lα,t
n (s)}n⩾0, are orthogonal with

respect to ω(s, t) = sα e−s/t when α > −1 and t > 0.
Notice that ω(s, 1) is the classical Laguerre weight.

The algebraic and analytic properties of OP have been
extensively examined in the literature due to their relevance
in various fields, including approximation theory, signal
processing, quantum mechanics, and stochastic processes,
among others. For a comprehensive exploration of the gen-
eral properties of OP on R, refer to [26].

IV. COMPENSATORS DESIGN BASED ON LAGUERRE
POLYNOMIALS

This section presents the proposed method for stabilizing
LTI discrete-time systems by utilizing modified Laguerre
polynomials. The goal is to create compensators that en-
sure stability in closed-loop configurations. The proposed
approach capitalizes on the robust stability of stable polyno-
mials derived from these techniques across various parameter
values. This, alongside pole placement technique, forms the
basis for the results presented in this work.

Given d ⩾ 1 and a strictly proper plant P(z) as in (1),
where N(z) and D(z) are polynomials with no common
roots, (4) implies that the characteristic polynomial of the
closed-loop control system is

S(z) = A(z)D(z) +B(z)N(z).

In the remainder of this section, (7) is used to construct S(z)
using linear combinations of modified Laguerre polynomials
in order to present the obtained results.

For n ⩾ 1, ξ ⩾ 0, α > −1, t > 0, λ1 > 0, and
λ2, λ3, λ4 ∈ R, set

ℓα,tn (s;λ1, λ2) = λ1L
α,t
n (s) + λ2L

α,t
n−1(s).

If λ1λ4 − λ3λ2 ̸= 0, then the roots of ℓα,tn (s;λ1, λ2)
and ℓα,tn (s;λ3, λ4) are real, simple, and interlaced. By the
Hermite-Biehler theorem,

H2n(s;λ) = (−1)nℓα,tn (−(s+ ξ)2;λ1, λ2) + (−1)n−1×
sgn[λ3] (s+ ξ) ℓα,tn (−(s+ ξ)2; 0, λ4) (8)

and

H2n+1(s;λ) = (−1)nℓα,tn (−(s+ ξ)2;λ1, λ2) + (−1)n×
sgn[λ3] (s+ ξ) ℓα,tn (−(s+ ξ)2;λ3, λ4) (9)

are Hurwitz polynomials of degree 2n and 2n + 1, respec-
tively, for all values of λ1, λ2, λ3, and λ4 that satisfy certain
inequalities (see [23]). Here, λ = (λ1, λ2, λ3, λ4, ξ, α, t, )
and sgn[x] denotes the sign function of the real number x.
Notice that ξ is simply a leftward shift of the respective roots.

As a straightforward consequence,
Proposition 1: For n ⩾ 1, ξ ⩾ 0, α > −1, t > 0, and

λ1 > 0,

S2n(z) = (z − 1)2n H2n

(
z + 1

z − 1
;λ

)
(10)

is a Schur polynomial of degree 2n if and only if λ3 = 0,
λ4 ̸= 0, and

λ2 < −λ1
Lα,t
n (ξ)

Lα,t
n−1(ξ)

.

Also,

S2n+1(z) = (z − 1)2n+1 H2n+1

(
z + 1

z − 1
;λ

)
(11)

is a Schur polynomial of degree 2n+ 1 if and only if λ2 <
−λ1L

α,t
n (ξ)/Lα,t

n−1(ξ),
• λ3 > 0, and

λ4 < min

{
λ3λ2

λ1
,−λ3

Lα,t
n (ξ)

Lα,t
n−1(ξ)

}
,

or
• λ3 < 0, and

λ4 < max

{
λ3λ2

λ1
,−λ3

Lα,t
n (ξ)

Lα,t
n−1(ξ)

}
.

Proof: Since the Möbius function s = (z+1)/(z− 1)
is a conformal mapping between the open unit disk and the
open left half-plane, that (10) and (11) are Schur polynomials
follows from [27, Propositions 6 and 7].

Then, the next formulation is established:
Theorem 1: Consider (2) and assume that P(z) is a

strictly proper plant with invariant degree d as in (1) such
that N(z) and D(z) are polynomials with real coefficients
having no common roots. For m ⩾ d−1, C(z) as in (3) sta-
bilizes to P(z) in closed-loop if A(z)D(z) +B(z)N(z) =
Sd+m(z), where Sd+m(z) is computed using Proposition 1.
The coefficients of A(z) and B(z) are computed using (6).

Proof: From Proposition 1, Sd+m(z) is a Schur poly-
nomial. Thus, there exist two real polynomials, say A(z) and
B(z), with degree m and almost degree m, respectively, such
that Sd+m(z) = A(z)D(z)+B(z)N(z), or equivalently, (6)
is satisfied. Taking C(z) = B(z)/A(z), the proof is complete.

The principal significance of Theorem 1 is to explicitly
compute C(z) that stabilizes any given strictly proper plant.
However, the coefficients of A(z) and B(z) also inherit
the parameters of the coefficients of the OPs involved in
the construction of Schur polynomials. Thus, the following
methodology computes a family of proper compensators that
stabilizes in closed-loop to P(z). Suppose P(z) is a strictly
proper plant as in (1) of invariant degree d ⩾ 1 such that
N(z) and D(z) are real polynomials of degrees n and d,
respectively, having no common roots. Then,

Algorithm 1: Proper compensator design for strictly
proper plants via Prop. 1.
Input: Strictly proper plant P(z) as in (1) of invariant

degree d ⩾ 1 with N(z) and D(z) with no common
roots; sampling period T > 0; number of iterations I0.

Output: C(z).
Initialisation:

1: Choose m ∈ N such that m ⩾ d− 1.



2: Compute S(z) = 1
h (z−1)

d+m Hd+m

(
(z+1)/(z−1);λ

)
using Proposition 1, h being the leading coefficient of
(z − 1)d+m Hd+m

(
(z + 1)/(z − 1);λ

)
.

3: λ5 ← ξ, λ6 ← α, and λ7 ← t.
4: Assign values to all uncertain parameters involved in

the coefficients of S(z) according to Proposition 1,
except for λk1

, λk2
, . . . , λkp

, where k1, k2, . . . , kp ∈
{1, 2, . . . , 7} and 1 ⩽ p ⩽ 7.

5: Solve (6) to obtain the coefficients of A(z) and B(z) as
functions of λk1

, . . . , λkp
, and set C(z) = B(z)/A(z).

6: for 0 ⩽ n ⩽ I0 and some values for λk1
, . . . , λkp

, do
7: simulate y[n] = Z−1

(
Y(z)

)
for λk1

, . . . , λkp
, where

Y(z) as in (4), X (z) is the unit step function, and
Z−1

(
·
)

denotes the inverse Z-transform.
8: end for
9: return C(z) for the selected values of λk1

, . . . , λkp
.

V. IDENTIFICATION AND CONTROL

In this section, Algorithm 1, developed in this study,
is used to control the discrete-time steering angular po-
sition, denoted as p[n] = Z−1

(
P(z)

)
and measured in

degrees, of the JTEKT JJ001 12VDC motor shown in Fig.
1. Consequently, the objectives are to compute and apply
the computed compensator to P(z), with initial condition
p[0] = 0. By conducting simulations and experiments on the
SBW platform depicted in Fig. 1, the validity of the proposed
methodology through the design and implementation of a
digital compensator is confirmed.

A. Simulation Results

In order to obtain the discrete transfer function of the
12VDC motor, P(z), raw data is collected from an open-
loop configuration by direct excitation of the system and
obtaining the transient response from one steady state of
angular velocity to another by the variation of the PWM
signal delivered to the motor, avoiding sensor saturation.
The data collection was done using EcoCAL with a sample
time of 0.02 s. The process involves interpreting the open-
loop system code and flashing procedure in Simulink and
EcoFlash and this sampling interval guarantees the accurate
representation of the system’s dynamics by using a 1:10
ratio to the rise time [28]. After collecting the data, it is
exported to a “.csv” file and filtered to remove noise. Using
the System Identification Toolbox from MATLAB® with the
filtered data, the following model was obtained

P(z) ≈ 0.0369 z − 0.03615

z2 − 1.99292 z + 0.99293
,

which is a strictly proper plant and exhibits a fit to estimated
data of 95.26%. Hence, Fig. 2 depicts the comparison
between the model output based on input data and the
actual output behavior of p[n]. The experimental system was
identified as non-linear. Hence, for simplicity purposes, the
model has lesser adjustment to the real dataset at certain
operative conditions, such as higher speed.
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Fig. 2. Comparison between the linear model with the real acquired data.

In Step 1 of Algorithm 1, m = 1 is selected for simplicity
since d = 2. Step 2 now gives

S(z) =
1

h
(z − 1)3 H3

(
(z + 1)/(z − 1);λ

)
with

h = λ1

(
(α+ 1)t+ (ξ + 1)2

)
− λ2

+ (ξ + 1)sgn[λ3]
(
λ3

(
(α+ 1)t+ (ξ + 1)2

)
− λ4

)
and

H3(s;λ) = |λ3|s3 +
(
3|λ3|ξ + |λ1|

)
s2 +

(
(α+ 1)|λ3|t

+ 3|λ3|ξ2 + 2|λ1|ξ − λ4sgn[λ3]
)
s+ |λ3|ξ3

+ |λ1|ξ2 + (α+ 1)|λ3|ξt− ξλ4sgn[λ3]− λ2

+ (α+ 1)|λ1|t.

Following Steps 3, 4, and 5, we obtain, for λ5 = ξ ⩾ 0,

A(z) = z − 1.01λ3
5 − 5.43841λ2

5 + 864.201λ5 − 78631.7
1
2h

and

B(z) =
0.08027λ3

5 − 80.3048λ2
5 + 23824.6λ5 − 766313
1
2h

z

− 0.08017λ3
5 − 80.2166λ2

5 + 23816λ5 − 776734
1
2h

,

with λ1 = 1, λ2 = 100000, λ3 = 2, λ4 = 10, λ6 = 1, λ7 =
1/20, and h = 2ξ3+7ξ2− 9ξ

5 −
1000067

10 . Next, the simulated
unit-step responses are shown in Fig. 3 when 50 ⩽ λ5 ⩽ 120
with a step size of 14 and T = 0.02 s. Finally, if λ5 = 50,

C(z) =
2.79789z − 2.67078

z − 0.922767
. (12)

B. Experimental Results

1) Scenarios: During the experimentation, two main test
configurations were performed, the Double Line Change
(DLC) and a Fishhook procedure. The first one, defined
by ISO 3888-2 as a maneuver, allows to test a vehicle’s
performance in avoiding obstacles. The Fishhook procedure
is used for vehicle stability testing given rapid angle changes
on the steering wheel of a vehicle. Using Carsim®, the
desired angular position is obtained by importing the steering
wheel angle dataset reported from a simulated test. Both



maneuvers datasets are obtained using a B-class Hatchback
vehicle. Next, the controller receives as set-point signal the
calculated steering wheel angle and executes it on the real
SBW system, emulating on the real-platform the same track
as on Carsim® (see Fig. 4). The velocity settings examined
in the tests include speeds of 45 km/h, 55 km/h, 65 km/h,
75 km/h, and 85 km/h for DLC, and 80 km/h for Fishhook.
All experiments are based on a sample time of 0.02 s.

2) Data Use: The CAN settings within the EcoFlash
program are as follows. A Peak CAN device is utilized for
communication between the PC and the VCU, operating at
a baud rate of 500 kbps and employing the CCP protocol.

3) Results Analysis: The experimental performance con-
trol, the error, and the control signal measured in volts (V)
for the angular steering position in a DLC test are shown in
Fig. 5. When a sudden change occurs, the error deviates from
zero, indicating a shift in the controlled angular position from
the desired position. Consequently, the compensator responds
by amplifying the voltage supplied to the motor in an attempt
to compensate for this change.

Analogously, Fig. 6 illustrates the experimental perfor-
mance control, error, and control signal for the y[n] during
the Fishhook procedure. Also, any abrupt changes lead to the
error straying from zero, indicating a deviation in the con-
trolled angular position from the desired one. Subsequently,
the compensator reacts by increasing the voltage supplied to
the motor to counteract this alteration.

In order to obtain the efficacy of the compensator, the
Error-to-Signal Ratio (ESR) is computed as described by
[29]. This metric ranges between 0 and 1, where 0 indicates
a “trivial” model capable only of predicting average output
values, while 1 signifies a “perfect” model that accurately
predicts exact output values. Since a displacement between
the desired and controlled position of the steering wheel due
to the delay in actuation is noticeable even when the path
appears to be correct, two different ESR calculations are
performed. The first uses the raw data obtained directly from
the VCU, and the Adjusted ESR (AESR) uses an adjusted
data set that eliminates the delay and juxtaposes both signals.
The calculation of these indexes is shown on Table I, where
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Fig. 3. The simulated unit-step response of y[n] for some values of λ5.

Fig. 4. Simulink block diagram of the closed-loop control system.
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Fig. 5. Control systems performance for a DLC test at 55 km/h: a) behavior
of the proposed control system compared to the PID, b) error signal in both
control systems, c) control signal considering the proposed compensator.
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Fig. 6. Control systems performance for a Fishhook test at 80 km/h: a)
behavior of the proposed control system compared to the PID, b) error
signal in both control systems, c) control signal considering the proposed
compensator.



the AESR index provides a better perspective of the increased
value of the ESR metric for higher speed configurations.

TABLE I
EXPERIMENTAL ERROR-TO-SIGNAL RATING

Test Configuration Proposed controller PID controller
ESR AESR ESR AESR

DLC

45 km/h 0.05191 0.005775 0.17450 0.17363
55 km/h 0.08255 0.007756 0.23268 0.22528
65 km/h 0.11402 0.011714 0.51347 0.50554
75 km/h 0.26760 0.025041 0.78608 0.73924
85 km/h 0.47875 0.098925 0.41330 0.36490

Fishhook 80 km/h 0.31746 0.081935 0.48390 0.46544

Finally, Figs. 7 and 8 show a comparison between the
control performances when the delay is reduced in the DLC
and Fishhook tests, respectively.

VI. DISCUSSION

The proposed method offers a notable advantage in the
substantial flexibility it provides for selecting the number
of parameters within the components of λ, which directly
impacts the selection of Hd+m(s;λ). Increasing the number
of parameters within the coefficients of Schur polynomi-
als offers enhanced flexibility in positioning their roots, a
favorable trait for designing control systems. Additionally,
this work focused the attention on cases where m is small,
indicating a lower degree for the compensator’s denominator
polynomial, which is good for implementation. Nevertheless,
a disadvantage of this methodology is the challenge of deter-
mining the optimal value for m to meet specific performance
criteria effectively.

The experimental results expose an efficient approach
to the desired output, resulting in ESR values below 0.1
for the adjusted data set. Comparing the performance of
(12) against an ideal PID discrete controller, the proposed
methodology decreases the metric ESR by 29.75%, 35.48%,
22.2%, and 34.04% when a DLC test at 45 km/h, 55
km/h, 65 km/h, and 75 km/h is considered, respectively.
The PID benchmark controller was tuned using the Ziegler-
Nichols method for which the proportional gain and integral
and derivative time constants are 5.4340, 0.8833, and 7.95,
respectively. However, (12) increases this index by 15.84%
when a DLC test is implemented at 85 km/h. On the other
hand, (12) decreases the ESR index by 65.6% when the
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Fig. 7. DLC test at 45 km/h with displacement reduction.
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Fig. 8. Fishhook test at 80 km/h with displacement reduction.

Fishhook procedure is considered. For the PID control, the
obtained ESR and AESR indexes are similar, in contrast with
the proposed compensator. This comparison may be further
appreciated in Fig. 9, clearly demonstrating that the proposed
compensator outperforms the traditional PID controller.

Regarding the complexity of the methodology applied to
the steer-by-wire technology reported in the literature, this
research and [30], both use linear control methods. The
approach based on [31] is Linear Parameter-Varying (LPV),
indicating a method adaptable to changing system param-
eters. Notice that the proposed technique is also flexible
in selecting the compensator to adjust the control system’s
performance despite changes in the plant parameters. The
methodology presented in [32] stands out by proposing an
innovative nonlinear SMC approach, reflecting a higher level
of complexity in terms of implementation since a dual-
motor SBW system is required. More details related to this
conceptual comparison are shown in Table II.

VII. CONCLUSIONS

A novel approach to control system design has been
introduced, particularly focusing on digital compensators
and their application to stabilize LTI discrete-time systems.
Using OP manipulations, a diverse family of compensators
has been generated, showcasing the efficacy of stabilizing
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Fig. 9. Controllers performance comparison: a) ESR indicator, b) AESR
indicator.



TABLE II
CONCEPTUAL COMPARISON

Reference Controller Complexity Test Software Scope & Performance
This proposal Proper compensator Linear DLC MATLAB real-time/Simulink Experimentation and comparison

with an error reduced by 30.4%
Erlien et al. [30] Model predictive controller Linear DLC MATLAB real-time Experimentation without comparison
Li et al. [31] Robust LPV-H∞ Linear SLC CarSim & MATLAB/Simulink Only simulation without comparison
Shi et al. [32] Global-fast-terminal SMC Nonlinear Step CarSim & LabVIEW Experimentation and comparison

with an error reduced by 45.5%
SLC = Single Line Change.

strictly proper plants. Experimental validation on a real
SBW platform with an embedded VCU has confirmed the
effectiveness of the proposed methodology, outperforming a
traditional PID controller tuning technique. This work has
opened avenues for further exploration and application of
digital compensator design using OP in real-world control
systems. In future endeavors, authors will address the robust
stabilization problem concerning LTI discrete-time systems
affected by uncertain time delays (see [25]). On the other
hand, a compelling challenge is to outline the performance
requirements that control systems must satisfy following
Algorithm 1, based on the desired performance embedded
into the coefficients of the compensator.
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theorem to delimit the zeros of a certain class of robustly stable
polynomials,” Mathematics, vol. 11, no. 20, 4244, Oct., 2023.

[25] P. Zamora, A. Arceo, N. Martı́nez, G. Romero, and L. E. Garza,
“Robust stabilization of interval plants with uncertain time-delay using
the value set concept,” Mathematics, vol. 9, no. 4, 429, Feb., 2021.
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