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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• A novel computational tool is devised to
track and quantify cell wall
deconstruction.

• Enzymatic hydrolysis mainly impacts
wall volume rather than accessible sur-
face area.

• Pre-hydrolysis compactness measures
correlate with volumetric deconstruc-
tion rate.

• Enzymatic activity tunes the compact-
ness and volumetric deconstruction
correlation.

• Volumetric cell wall deconstruction rate
correlates with cellulose conversion
rate.
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A B S T R A C T

Understanding lignocellulosic biomass resistance to enzymatic deconstruction is crucial for its sustainable con-
version into bioproducts. Despite scientific advances, quantitative morphological analysis of plant deconstruction
at cell and tissue scales remains under-explored. In this study, an original pipeline is devised, involving four-
dimensional (space + time) fluorescence confocal imaging, and a novel computational tool, to track and
quantify deconstruction at cell and tissue scales. By applying this pipeline to poplar wood, dynamics of cellular
parameters was computed and cellulose conversion during enzymatic deconstruction was measured. Results
showed that enzymatic deconstruction predominantly impacts cell wall volume rather than surface area.
Additionally, a negative correlation was observed between pre-hydrolysis compactness measures and volumetric
cell wall deconstruction rate, whose strength was modulated by enzymatic activity. Results also revealed a strong
positive correlation between average volumetric cell wall deconstruction rate and cellulose conversion rate.
These findings link key deconstruction parameters across nano and micro scales.

1. Introduction

The convergence of environmental and economic imperatives due to
climate change, increasing global energy demands and unstable oil

prices highlights the critical need for a transition from fossil resources
towards alternative energy and material sources. Transformation of
lignocellulosic biomass into bioproducts offers a renewable eco-friendly
carbon–neutral alternative to conventional petroleum derived products
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to achieve sustainable development and to ensure the well-being of
future generations (Sheldon, 2014; Ashokkumar et al., 2022; Zhang
et al., 2023a; Wang et al., 2024). Therefore, transformation of ligno-
cellulosic biomass can be regarded as a critical component of a sus-
tainable bioeconomy to meet humanity’s needs while limiting negative
impacts on the environment (Antar et al., 2021). The primary building
blocks of the plant cell wall are cellulose, hemicelluloses, lignin, and
pectins, which are collectively referred to as lignocellulose. Cellulose is
composed of linear chains of D-glucose units linked by β-(1,4) glycosidic
bonds and is the most abundant biopolymer on Earth (Sorek et al.,
2014). Cellulose fibers are enveloped with interweaving hemicelluloses
which constitute a group of heterogeneous polysaccharides made of
pentose and hexose sugars and other small groups. Lignin, an irregular
phenylpropanoid polymer, forms a protective barrier around the poly-
saccharides (Sorek et al., 2014; Qaseem et al., 2021). Pectins, a complex
set of polysaccharides rich in galacturonic acid, contribute to the plant
cell wall’s porosity, cell–cell adhesion, and plant growth and morpho-
genesis (Mohnen, 2008). Although different biotechnological processes
are used for lignocellulose conversion, a general process consists of
pretreatment of lignocellulosic biomass to improve accessibility of cel-
lulose and hemicellulose (Mankar et al., 2021; Haldar and Purkait,
2021) for subsequent enzymatic hydrolysis, called saccharification, to
break down the carbohydrates into simpler sugars (predominantly
glucose) followed by the fermentation of monosaccharides generated by
the saccharification (Binder and Raines, 2010; Khare et al., 2015).
Therefore, enzymatic hydrolysis is a crucial step in the conversion
process. A major challenge to enhance the release of fermentable sugars
during saccharification is to overcome the natural resistance of plant cell
wall to deconstruction, called recalcitrance (Himmel et al., 2007). The
recalcitrance is a major contributor to the high cost of lignocellulosic
biomass derived products. Extensive research has been conducted over
the past decades to better understand the recalcitrance and its under-
lying parameters (McCann and Carpita, 2015). Several recalcitrance
markers like lignin content (Santos et al., 2012), cellulose crystallinity
(Hall et al., 2010), degree of cellulose polymerization (Meng et al.,
2017), and porosity of the cell wall (Herbaut et al., 2018) have been
identified. Strikingly, only markers at nano scale have been investigated
and quantitative morphological analysis of plant cell wall enzymatic
hydrolysis at cell and tissue scales remains under-explored. In the past
decade, methods and techniques such as immunolabeling, cellulose
staining, and fluorescence imaging have been employed to observe
deconstruction of wall polymers and to characterize the dynamics of
enzymatic hydrolysis through time-lapse imaging, providing visual ev-
idence of the changes occurring in cells and tissues during the enzymatic
deconstruction (Li et al., 2018). Additionally, quantum dot-based fluo-
rescent probes have been utilized to label glycan epitopes, enabling in
situ visualization of polysaccharides and lignin distributions in plant cell
walls (Yang et al., 2020). Despite these advances, a notable gap in the
literature exists regarding micro scale quantitative morphological
characteristics contributing to recalcitrance. This lack of understanding
is mainly due to the lack of comprehensive quantification of cell and
tissue scale structural parameters during enzymatic deconstruction.
Acquisition and analysis of time-lapse images during enzymatic hydro-
lysis is particularly challenging, contributing to the deficiency in
understanding.

Several methods have been developed to characterize cellular
growth and division of plant and animal tissues (Fernandez et al., 2010;
Willis et al., 2016; Guignard et al., 2020; Wolf et al., 2021) which can be
seen as the opposite mechanism compared to cell wall deconstruction.
These innovative and inspiring methods combine confocal time-lapse
live imaging and segmentation and tracking. Nevertheless, these
methods are not adapted to address the challenges of plant cell wall
deconstruction investigation at cell and tissue scales. To acquire time-
lapse images of cell wall deconstruction, the cell walls together with
an enzyme cocktail should be imaged at relatively high constant optimal
temperature (typically 50◦C) for enzymatic reaction while keeping the

sample stable and avoiding enzymatic cocktail evaporation during hy-
drolysis for a substantial number of hours. The deconstruction of the cell
wall during hydrolysis compromises the suitability of the pre-existing
segmentation and tracking methods. In the early stages of cell wall
deconstruction, classical methods require time-consuming laborious
manual adjustment of parameters, particularly for large datasets. This
can introduce bias, compromising the accuracy, reliability, and objec-
tivity of the results. As hydrolysis advances and cell walls develop holes
and cracks, possibly culminating in their complete breakdown, these
classical algorithms tend to produce increased segmentation errors.

This study presents an original innovative computational pipeline,
named WallTrack, developed to quantify the evolution of cell and tissue
scale structural parameters during plant cell wall deconstruction. Poplar
is selected as the model plant due to its fast growth rate, ease of in vitro
cultivation and vegetative propagation, and extensive distribution.
Poplar was the first woody plant, the third angiosperm, after Arabidopsis
and rice, to have its relatively small genome sequenced (Meng et al.,
2017; Müller et al., 2013). Dilute acid pretreatment which is a widely
utilized method in industrial processes, is selected for its cost-
effectiveness and high efficiency, especially with hardwoods. Dilute
acid pretreatment solubilizes hemicelluloses, alters lignin structure, and
improves enzyme access to cellulose, thereby enhancing enzymatic hy-
drolysis (de Oliveira Santos et al., 2018). Using this pipeline, dynamics
of key cell wall structural parameters during enzymatic hydrolysis of
poplar wood samples were quantified. Additionally, the extent of cel-
lulose conversion, referring to the transformation of cellulose into oli-
gosaccharides and glucose, during the hydrolysis of the poplar samples
is assessed. The qualifications are then used to study the relationships
among these key structural parameters during deconstruction and to
investigate the potential connections between the nano- and micro-
scales.

2. Materials and methods

2.1. Sample preparation and compositional analysis

Poplar stem wood (Populus nigra x deltoides) was sectioned into
fragments measuring 0.4 cm in width, 2 cm in length, and 0.2 cm in
thickness using a razor blade. These poplar fragments were subsequently
pretreated with 2% dilute sulfuric acid at 170◦C for 20 min, following
the protocol outlined in (Zoghlami et al., 2019). Transverse sections of
xylem from both native and pretreated poplar fragments were then
prepared as 40 μm thick slices using a sliding microtome (Stemi 1000,
Zeiss, Germany).

For compositional analysis, the samples were ground into particles
with a size of 80 μm. The analysis of moisture, ash, lignin, and carbo-
hydrate content in both native and pretreated poplar samples was con-
ducted following the methodology outlined in (Herbaut et al., 2018) (see
supplementary material).

2.2. Enzymatic saccharification

Enzymatic hydrolysis experiments on poplar sections were con-
ducted using Cellic CTec2®(Novozymes A/S Bagsværd, Danemark), a
commercial enzyme cocktail, chosen for its high hydrolysis efficiency,
with a cellulase activity of 195 IU/mL. The reaction mixtures (60 μL of
acetate buffer with 0.02% of sodium azide) with the poplar sections
were pre-incubated for 30 min at 50◦C. The enzymatic hydrolysis was
then initiated by adding the enzyme cocktail and followed for 24 h (hrs)
at 50◦C.

For validation, enzymatic hydrolysis was conducted in two different
systems without stirring, replicating the hydrolysis conditions found
between a microscope slide and cover slip:
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• in the same sealed frame as that used for four-dimensional (space and
time), 4D, acquisition under the microscope, installed in a custom-
ized incubation chamber;

• mini reactors made of embedded capsules of 6 mm diameter with
snap-on integral caps made from polypropylene, highly-resistant to
high temperature.

After 24 h of enzymatic hydrolysis, the reaction mixture was
analyzed and the concentration of glucose released from enzymatic
hydrolysis in the supernatant was determined using a high-performance
anionic exchange chromatography (HPAEC-PAD, Dionex) to calculate
the cellulose conversion from the pretreated poplar, as previously
described (Herbaut et al., 2018). All experiments and analysis were
carried out as triplicates.

2.3. Customized incubation chamber for imaging plant cell wall during
enzymatic hydrolysis

40 μm-thick cross sections prepared from both native and pretreated
poplar samples were incubated in 0.05 M acetate buffer at pH 5 for 30
min prior to mounting in the same medium on a microscope slide
covered with a coverslip (0.17 mm thickness) separated by a spacer
(Gene frame ®65 μL, Thermo Scientific) to provide a 65 μL sealed
chamber containing 60 μL enzyme-buffer solution to avoid the evapo-
ration during the enzymatic hydrolysis. The samples were fixed to the
cover slide using a temperature resistant adhesive to avoid the move-
ment of the samples in the reaction mixtures. A stable temperature of
50◦C was maintained using an incubator adapted for microscopy (H301-
Mini-OKOLab, Italy) to optimize enzymatic activity.

2.4. Fluorescence confocal time-lapse acquisition protocol

To acquire time-lapse confocal images, a laser scanning microscope
(Leica TCS SP8, Germany) equipped with 63× oil-immersion objective
(numerical aperture = 1.4) was used and z-stacks (with 0.3μm z-step) of
both native and pretreated poplar samples were acquired at scan speed
of 400 hertz with a resolution of 256 × 256 pixels. A 405 nm laser (4%
intensity) was used for imaging cell wall sample autofluorescence by
detecting fluorescence emission on the 415–700 nm range using the HyD
detector in counting mode. The confocal z-stacks of native and pre-
treated poplar were taken every 30 min for the first four hours and every
one hour until 24 h. The time interval, image resolution and microscope
parameters were optimized to avoid sample photo-bleaching. The
optimal microscope parameter values were determined as a compromise
between suitable acquisition quality for subsequent segmentation and
reduced laser exposure.

2.5. Segmentation and tracking

To investigate the cell wall deconstruction at cell and tissue scales, a
segmentation and tracking pipeline called WallTrack is devised. Wall-
Track addresses the challenges associated with autofluorescence in-
tensity reduction generated by the enzymatic deconstruction by initially
segmenting the pre-hydrolysis image, at a stage where cell walls are
intact and the boundaries between adjacent cells are distinct. This initial
segmentation is then propagated over time to compute the segmentation
of images acquired during hydrolysis. Thereby, WallTrack provides an
automated high throughput 4D imaging pipeline devised to segment and
track lignocellulose deconstruction at cell wall resolution leading to a
detailed tissue-wide virtual representation of plant cell wall decon-
struction. More precisely, let {It0 ,…, Itn} denote the set of time-lapse
three-dimensional (3D) confocal acquisitions (z-stacks) acquired dur-
ing the enzymatic deconstruction of poplar samples, where Iti represents
the i-th 3D confocal image acquired at time ti for 0⩽i⩽n, and Itn denotes
the final acquisition at time tn, with tn = 24 hrs in this study. It0 is
referred to as the image before hydrolysis or pre-hydrolysis image in the

Results and discussion section. The z-stacks contained empty slices and
some noise in their top and bottom sections, with the poplar sample
imaged in the middle section. Special care was taken to align the sample
surface normal as closely as possible to the Z direction to avoid tilted
subsequent acquisitions. To identify the imaged poplar sample within
It0 , WallTrack first calculates the average signal intensity per voxel
(volumetric pixel) for each slice. The imaged sample is then isolated by
excluding the top and bottom slices whose average signal intensity per
voxel is less than or equal to a manually defined threshold of 8. For
segmenting the pre-hydrolysis image, WallTrack applies a 3D watershed
algorithm (Willis et al., 2016), spatially constrained to the middle sec-
tion of the pre-hydrolysis z-stack containing the imaged sample,
following denoising with both a Gaussian filter and an alternative-
sequential filter (ASF). The watershed seeds are computed using the h-
minima operator by identifying local minima regions (Willis et al.,
2016). WallTrack computes the cell wall segmentation of It0 , denoted by
St0 , using thresholding, as follows:

St0 (i, j, k) =
{
1 if It0 (i, j, k) < τ
Wt0 (i, j, k) else ,

where Wt0 is the watershed segmentation, and i, j, k ∈ N, i⩽M, j⩽N, k⩽K,
M,N,K are X-Y resolution, and number of image slices of It0 respectively.
τ is a global threshold value selected manually and 1 is the background
label in the segmented image. To segment the z-stacks during enzymatic
hydrolysis, (i.e. Iti , t0 < ti⩽tn), WallTrack first computes the affine
transformation that linearly registered It0 onto Iti using block matching
algorithm (Ourselin et al., 2000). WallTrack uses the affine trans-
formation to initialize the block matching algorithm to compute the
non-linear transformation Tt0←ti to register It0 onto Iti , Fig. 1.A. This non-
linear transformation, Tt0←ti , is then applied to the initial watershed
segmentation to get Wti = Wt0 ∘Tt0←ti , Fig. 1.B. Thresholding is subse-
quently applied to determine the segmentation of the cell wall of Iti
denoted by Sti :

Sti (i, j, k) =
{
1 if Iti (i, j, k) < τ
Wti (i, j, k) else ,

Fig. 1. Propagation strategy used in the segmentation and tracking pipeline to
segment images during deconstruction. (A) The nonlinear transformations
which register the image acquired prior to hydrolysis onto the images acquired
during deconstruction are computed. (B) The propagation strategy used to
compute the segmentation of the images acquired during hydrolysis involves
the application of the computed transformation to the segmentation of the pre-
hydolysis image.
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where i, j, k ∈ N, i⩽M, j⩽N, k⩽K,M,N,K are X-Y resolution, and number
of image slices of Iti respectively (see supplementary material).

The non-linear transformation Tt0←ti allowing to register and
resample It0 in the frame of Iti allows also to compute the 4D voxel
resolution map of cell wall deconstruction where It0 ∘Tt0←ti and Iti , for
t0 < ti⩽tn, are combined. This ensures that It0 is accurately aligned with
Iti , thereby facilitating a direct comparison between the two images
generating a voxel resolution deconstruction map, Fig. 2.

WallTrack presents significant advantages in achieving precise seg-
mentation and minimizing the segmentation errors. Segmentation of the
images during hydrolysis involves a single computation of a non-linear
transformation to register the floating image (pre-hydrolysis image)
and the reference image (the image during hydrolysis). Consequently,
the segmentation is derived using a single resampling through the
application of the transformation to the segmentation of the pre-
hydrolysis image. This minimalist but efficient propagation strategy
method avoids the complexities and potential inaccuracies associated
with the composition of multiple transformations or the successive
application of transformations, thus enhancing overall segmentation
precision. However, the accuracy of WallTrack’s segmentation during
hydrolysis is dependent on the precision of the initial pre-hydrolysis
image segmentation. Any errors in the segmentation of the pre-
hydrolysis image could propagate through to subsequent images,
emphasizing the importance of meticulous initial segmentation. Key to
this initial accuracy are the parameters chosen for the denoising algo-
rithms, the Gaussian filter and alternative-sequential filter (ASF), as well
as the h-minima operator used to determine watershed seeds. Once these
parameters are set for the initial pre-hydrolysis image, no additional
adjustments are required for segmenting subsequent images in the same
time-lapse sequence or any other images in different time-lapse datasets
given the consistency of the microscope parameters across all time-lapse
imaging.

To compute cell wall volume, voxel counting method was used
where the number of voxels having the same label were computed and

was multiplied by the voxel volume which was approximately 0.155 μm3

due to the imaging resolution. The cells at the margins of the images
together with small cell segments (whose volumes are typically smaller
than 400 μm3) which comprises the precision of quantification because
of the movement of the sample during acquisition are discarded from the
analysis. To compute cell wall surface area triangular meshes of cell wall
surfaces were generated using the marching cubes algorithm from the
Visualization Toolkit (VTK). To compute cell surface area triangular
meshes were generated from watershed segmentations. The accessible
surface area, ASA, was computed as ASA = (Aw + Al − Ac)/2, where Aw,

Al, and Ac are cell wall surface area, lumen surface area, and cell surface
area respectively. To compute average cell wall volumetric decon-
struction rates, the average values of median values of cell wall volu-
metric deconstruction rates of each time-lapse were computed.
WallTrack is implemented in Python 3 language using Numpy and Scipy
packages.

3. Results and discussion

3.1. Automated segmentation and tracking of cell wall deconstruction

To assess the effectiveness of the dilute acid pretreatment method on
the selected model biomass, poplar wood, the chemical compositions of
both untreated and pretreated samples were analyzed. The chemical
composition of the plant cell wall is important for the yield and rate of
enzymatic hydrolysis. The analysis indicated a reduction in the fraction
of hemicelluloses by approximately 3.2-fold due to the pretreatment (see
supplementary material), in line with previous results (Zoghlami et al.,
2019). Using plant cell wall natural autofluorescence (Donaldson and
Radotic, 2013), time-lapse confocal images of poplar wood samples
pretreated with dilute acid during enzymatic hydrolysis were collected
following the protocol developed in (Zoghlami et al., 2020). Confocal
images were acquired every thirty minutes for the first 4 h, followed by

Fig. 2. 4D imaging of cell wall deconstruction during enzymatic hydrolysis using lignin autofluorescence. (A) Confocal time-lapse images of poplar wood sample
were acquired every 30 min for the first 4 h followed by acquisitions every hour during enzymatic hydrolysis for the next 20 h (every 6 h is shown) with enzymatic
activity of 20 FPU/ g glucan. (B) 4D voxel (voxel is a 3D pixel) resolution map of cell wall deconstruction (color code: red: deconstructed voxels, cyan: remaining
voxels). The area delineated by the dotted rectangle represents the region that remained untracked due to sample displacement occurring throughout the imaging
process. (C) Distributions of cell wall autofluorescence intensity before and after 24 h of enzymatic hydrolysis which show a significant reduction in autofluorescence
intensity values (Anova, p-value < 0.005). The central lines of the box plot are the median values, and the white squares represent the average values. Image
acquisition times are indicated below each image, followed by ’h’ for hours.
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hourly acquisitions for the next 20 h (Fig. 2.A). After acquiring these
time-lapse confocal images, an original automated high-throughput 4D
image segmentation and tracking pipeline, named WallTrack, was
developed to quantitatively characterize cell wall deconstruction.
WallTrack simultaneously accomplishes two tasks: i) It computes a 4D
voxel (voxel indicates a 3D pixel) resolution map of cell wall decon-
struction, despite the movement of the sample during imaging (Fig. 2.B),
and allows for precise quantification of autofluorescence intensity
before and after hydrolysis (Fig. 2.C). ii) It segments individual cell walls
and tracks their evolution during enzymatic hydrolysis. WallTrack is
devised to address the challenge of cell wall autofluorescence intensity
loss during enzymatic hydrolysis, which renders classical segmentation
methods unsuitable. Due to the deconstruction of the cell wall, holes and
cracks appear in the early hours of enzymatic hydrolysis, potentially
leading to the complete disintegration of cell wall segments between
neighboring cells. This results in increased segmentation errors such as
the fusion of neighboring cells (under-segmentation) or the division of
an individual cell wall into multiple smaller, unnecessary segments
(over-segmentation) when using classical segmentation methods
(Fernandez et al., 2010; Willis et al., 2016). Furthermore, enzymatic
deconstruction causes separation between the compoundmiddle lamella
and the secondary cell wall (Zoghlami et al., 2019), a process driven by
the solubilization and breakdown of cell wall components that act as
adhesives between layers (Ling et al., 2016). This separation can also
lead to over-segmentation errors, where a cell is erroneously divided
into two parts. Applying classical methods to datasets with low decon-
struction (in early acquisitions with low enzymatic activity) where only
cell wall thickness is reduced, requires manual adjustment of the
denoising and segmentation algorithms’ parameters to segment each
acquisition in the time-lapse datasets. This manual tuning is time-
consuming and impractical for large datasets, as each individual
acquisition must be checked for segmentation errors. Alterations in
parameter values can impact quantifications and therefore can intro-
duce bias, lead to compromised accuracy and reliability, and thereby
reduce objectivity. WallTrack addresses these significant limitations by
propagating the 3D segmentation of the image before hydrolysis to

compute the segmentation of images acquired during hydrolysis. This
strategy of propagating spatial information over time, first used on
living organisms (Amat et al., 2014), allows the identification of indi-
vidual deconstructed cell walls using their earlier state, where the cell
walls are intact and the cell boundaries between neighboring cells are
clearly marked (i.e. before enzymatic deconstruction). WallTrack first
computes the cell wall resolution segmentation of the acquired confocal
image before hydrolysis using watershed algorithm and threshdoling
(Fig. 3.A). Subsequently, WallTrack registers the acquired confocal
image before hydrolysis with the subsequent confocal images to
compute the transformations (Fig. 1.A). The transformations are then
applied to the pre-hydrolysis cell segmentation obtained using water-
shed algorithm to compute cell segmentations of hydrolysis phase
confocal acquisitions (Fig. 1.B, and (see supplementary material)).
Finally, the cell wall segmentations are computed using thresholding
(Fig. 3.B). By employing this approach, WallTrack automatically gen-
erates 3D segmentation of individual cell walls at each time point with
unique cell wall identifiers, which remain consistent over time, thereby
enabling tracking and analysis of the cell walls during deconstruction.

3.2. Cell scale impact of enzymatic deconstruction predominantly
manifests as a reduction in cell wall volume rather than a reduction in cell
wall accessible surface area

To investigate the spatio-temporal cell and tissue scale structural
changes during enzymatic deconstruction, an adjacency graph repre-
senting the tissular organization and structure was first computed from
the segmented 4D images generated by WallTrack. In the adjacency
graph, vertices represent the cells and edges represent cell walls or
shared boundaries between neighboring cells (Fig. 4.A). The degrees of
the vertices in the adjacency graph were then computed, indicating the
number of neighboring cells for each cell, or the number of distinct cell
walls that are shared with adjacent cells (Koutrouli et al., 2020; Bilgin
et al., 2007). For an individual cell, the number of cell neighbors is
equivalent to the number of cell junctions which exhibit a unique
composition compared to other parts of the cell wall, typically having a

Fig. 3. 4D segmentation and tracking of cell walls during enzymatic hydrolysis. (A) Segmentation of the image before hydrolysis. (A.1) Confocal acquisition before
enzymatic hydrolysis (A.2) Cell resolution segmentation of the image before enzymatic hydrolysis obtained using watershed algorithm with auto seeding. The
background is marked by a semi-transparent white color. (A.3) Cell wall segmentation obtained using thresholding. (A.4) Background removal. The cells and cell
walls are colored randomly to facilitate the visual distinction of neighboring cells. (B) Cell wall segmentation and tracking of the confocal time-lapse images shown in
(Fig. 2.A). The cell wall segmentation is obtained after thresholding of propagated cell segmentations. (every 6 h is shown: C.1 – 5 correspond to the images shown in
(Fig. 2.A.1 – 5)). Cell walls are colored accord.ing to lineages.
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higher lignin content (Zhao et al., 2012a; Agarwal, 2006). After deter-
mining the adjacency graph, attention was focused on the cell wall
volume and cell wall surface area as two key indicators of size at cell
scale. This focus was prompted by visual observations of individual cells
during hydrolysis, which highlighted changes in cell volumes and cell
wall surface areas (Fig. 3.B.1 – B.5 and Fig. 4.C & D). Thus, the indi-
vidual cell wall volumes were computed using the segmented time-lapse
images. A significant reduction of the cell wall volume after 24 h of
hydrolysis was observed for all time-lapse datasets collected in the
presence of enzymes (Anova test, p-value < 0.005) (Fig. 4.B.1 & E). The
total surface area of the cell walls were then computed (Fig. 4.B.2 & E).
The surface area directly influences the enzyme-substrate interactions
since enzymes require adequate access to their target substrates within
the complex lignin-embedded polysaccharide matrices (Thompson
et al., 1992).

A general reduction in the total surface area was observed, however,
a conclusive statistically significant difference between the surface area
before and after 24 h of enzymatic deconstruction was not found. The
accessible surface area (ASA) was then computed by taking into account
the wall surface regions which are directly in contact with enzymes and
discarding the cell walls shared by neighboring cells. The cell wall
accessible surface area can be seen as a cell scale counterpart to the

accessible surface area of the cell wall polysaccharide matrix (the higher
accessible cell wall surface, the higher accessibility to polysaccharides)
and is one of the most important parameters affecting the plant cell wall
enzymatic deconstruction yield and rate (Meng and Ragauskas, 2014;
Meng et al., 2015). Similar to the total surface area, a reduction was
observed in the accessible surface area which was not statistically
conclusive (Fig. 4.B.3 & E). The cell wall volume representing the 3D
space occupied by the lignocellulosic constituents of the cell, and its
evolution during enzymatic deconstruction were consequently chosen as
the size metric providing a quantifiable cell scale indicator to charac-
terize the enzymatic deconstruction of the cell wall.

3.3. Three dimensional cell wall compactness measures prior to hydrolysis
are correlated with volumetric cell wall deconstruction rate whose strength
is modulated by the enzymatic activity

Building upon the quantification of cell wall volume and cell wall
surface area, further investigation was conducted on the cell and tissue
scales parameters to study whether they can be informative about the
enzymatic deconstruction at cell and tissue scales. More precisely, the
study investigated whether the pre-hydrolysis cell and tissue scale pa-
rameters (i.e. parameters measured prior to enzymatic deconstruction)

Fig. 4. Quantification of cell and tissue scale parameters during enzymatic hydrolysis. (A) Extraction of adjacency graph from segmented images. Cell adjacency
graph represents the tissue’s structure and its intercellular connections by a graph computed from the segmented image (A.1). Cells are represented as nodes
(vertices), and shared cell walls are represented by edges between neighboring cells (A.2) in the adjacency graph. (B) Cell and tissue scale parameter quantification
before and after hydrolysis (B.1) Cell wall volume distribution before and after 24 h of hydrolysis. We can observe a statistically significant shift to the left of the
distribution of cell wall volumes after hydrolysis (Anova test, p-value < 0.005, N = 184) (B.2) Distributions of cell wall surface areas of individual cells before and
after 24 h of hydrolysis (N = 184). (B.3) Distributions of accessible cell wall surface areas before and after 24 h of hydrolysis (N = 184). (C) Randomly selected cell
walls before hydrolysis with their unique identifiers (labels) shown in the row directly below. (D) The selected cell walls during hydrolysis which exhibit changes due
to enzymatic hydrolysis (E) Cell wall volume, surface area, and accessible surface area before and after hydrolysis for the selected cells shown in C and D.
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can potentially serve as predictive markers for volumetric cell wall
deconstruction rate. The numbers of individual cells analyzed before
hydrolysis were 185, 177, 205, and 202 for datasets collected with
enzymatic activity of 0 FPU/ g glucan, 5 FPU/ g glucan, 10 FPU/ g
glucan, and 20 FPU/ g glucan, respectively. The total number of cells in
the time-lapse datasets analyzed were 5180, 4956, 5740, and 5656 for
datasets collected with enzymatic activity of 0 FPU/ g glucan, 5 FPU/ g
glucan, 10 FPU/ g glucan, and 20 FPU/ g glucan, respectively. The
volumetric cell wall deconstruction rate after 24 h of enzymatic hy-
drolysis, denoted hereafter by D24h, is defined as
D24h = (V0h

w − V24h
w )/(V0h

w × 24), where V0h
w and V24h

w are cell wall vol-
umes before and after 24 h of enzymatic deconstruction respectively.
The Pearson correlation was first computed between cell wall volume
before hydrolysis, V0h

w , and D24h, for the datasets collected in the absence
(0 Filter Paper Units (FPU)/ g glucan) and in the presence of enzymes
with three different enzyme loadings of 5, 10, and 20 FPU/g glucan
(Fig. 5.A.1 – 4). This range of enzymatic activities was selected to
represent varying levels and to examine their effects on cell wall
deconstruction.A very weak positive correlation was observed for
datasets collected with the highest enzymatic activity value (20 FPU/ g
glucan), and a very weak negative correlation for the datasets collected
in the absence of enzymes, with no significant correlations for datasets
collected with other enzymatic activities (5 and 10 FPU/ g glucan). The
Pearson correlation was then computed between the number of cell
neighbors and D24h. A weak negative correlation was observed

exclusively for the datasets collected with enzymatic activity value of 20
FPU/ g glucan. To investigate the relationship between surface area and
volumetric cell wall deconstruction rate, the Pearson correlations were
then computed between D24h and the total cell wall surface area and cell
wall accessible surface area before deconstruction. Weak positive cor-
relations were identified for the highest enzymatic activity values (10
and 20 FPU/ g glucan) for both pre-hydrolysis total cell wall surface area
and accessible cell wall surface area, with higher correlation coefficients
for pre-hydrolysis accessible surface area compared to the coefficients
computed for pre-hydrolysis total surface area. To sum up, the correla-
tions between initial cell wall volume, number of adjacent cells, cell wall
surface area, and accessible cell wall surface area were not conclusively
correlated with volumetric cell wall deconstruction rate. Consequently,
the focus was redirected to investigate the relationship between the
compactness of the cell wall before hydrolysis, quantified as a ratio of
cell wall volume to cell wall surface area, and its volumetric decon-
struction. The cell wall compactness at level of polymers’ matrix is
essentially connected to the density and arrangement of polymers
(mainly cellulose, hemicelluloses, and lignin) within the cell wall
structure. Consequently, compactness is linked to the restricted enzy-
matic accessibility to polysaccharide fibers due to the tight packing of
the wall components (Meng et al., 2017). Therefore, the cell wall
Compactness Index (CI), a dimensionless parameter which is the ratio of
volume over the total surface area raised to the power of three-halves,
was first computed (Fig. 5.C). The definition of CI implies that if two

Fig. 5. Correlation coefficient values between cell and tissue scale parameters prior to enzymatic deconstruction and volumetric cell wall deconstruction rate. (A.1)
Pearson correlation coefficient values between volumetric cell wall deconstruction rate after 24 h of enzymatic hydrolysis and initial cell and tissue scale parameters
in the absence of enzymes. (A.2 – 4) Pearson correlation coefficient values between volumetric cell wall deconstruction rate after 24 h of enzymatic hydrolysis and
pre-hydrolysis cell and tissue scale parameters in the presence of enzymes with enzymatic activity of 5, 10, and 20 FPU/ g glucan respectively. (B.1) Correlation
matrix showing correlation coefficients between volumetric cell wall deconstruction rate during enzymatic hydrolysis for 24 h and initial cell and tissue scale pa-
rameters in the absence of enzymes (0 FPU/ g glucan). (B.2 – 4) Correlation matrix showing correlation coefficients between volumetric cell wall deconstruction rate
during enzymatic hydrolysis for 24 h and pre-hydrolysis cell and tissue scale parameters in the presence of enzymes for enzymatic activities of 5, 10, and 20 FPU/ g
glucan respectively. (C) Table of notations and formulas for cell and tissue scales parameters. Accessible Surface Area denotes the accessible cell wall surface area. (-)
denotes negative correlations and statistical significance of correlation coefficients are marked with * and ** for p-value < 0.05 and p-value < 0.005 respectively.
Numbers of individual cells before hydrolysis are 185, 177, 205, and 202 for datasets collected with enzymatic activity of 0 FPU/ g glucan, 5 FPU/ g glucan, 10 FPU/
g glucan, and 20 FPU/ g glucan respectively. Total number of cells in the time-lapse datasets analyzed in B.1 – B.4 are 5180, 4956, 5740, and 5656 for datasets
collected with enzymatic activity of 0 FPU/ g glucan, 5 FPU/ g glucan, 10 FPU/ g glucan, and 20 FPU/ g glucan respectively.
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cell walls have the same volume, the one with a smaller surface area is
more compact. Significant negative correlations were identified be-
tween CI and D24h in datasets collected in the presence and absence of
enzymes (Fig. 5.A.1 – 4). The Accessible Compactness Index (ACI) was
then computed where the accessible cell wall surface area is used rather
than the total surface area to determine the cell wall compactness
(Fig. 5.C). Significant negative correlations were found between ACI and
D24h in the presence and absence of enzymes with higher correlation
coefficients compared to those obtained between CI and D24h. Building
on this result, the approach was further refined by incorporating the
number of cell neighbors into the compactness calculation, resulting in a
parameter that is called Compactness Neighbor Index and denoted as
CNI. This integration aimed to account for the potential influence of
surrounding cells on the deconstruction process, hypothesizing that the
local cellular environment might play a role in determining the sus-
ceptibility of the cell wall to enzymatic deconstruction. The rationale
behind this was that the number of neighboring cells could be indicative
of the compactness at the tissue scale, providing insights into how
closely packed cells within a tissue can affect enzymatic access and ef-
ficiency. CNIwas computed by multiplying ACI by the square root of the
number of neighboring cells. Remarkably, the inclusion of the number of
cell neighbors into the compactness metric yielded even more pro-
nounced results. A higher correlation was observed between CNI and
volumetric cell wall deconstruction rate compared to ACI alone (Fig. 5.
A.1 – 4). This enhanced correlation indicates that CNI appears to be a
more reliable predictor of volumetric cell wall deconstruction rate and
underlines the importance of the intercellular context in which enzy-
matic deconstruction occurs. Furthermore, the comparison of correla-
tion coefficients of different parameters computed for the data collected
in the absence of enzymes and in the presence of enzymes with different
activities revealed that the strength of correlations is modulated by the
level of enzymatic activity such that the strength of the correlation co-
efficients increased with higher enzymatic activity. The difference be-
tween the correlation coefficients between the control datasets and the
datasets collected with enzymatic activity of 5 FPU/ g glucan was not
significant. The Pearsoncorrelation was then computed between cell
wall volume, cell wall surface area, number of neighbors, ASA,CI,ACI,
CNI prior to deconstruction and volumetric cell wall deconstruction rate
during hydrolysis, i.e. Dt = (V0h

w − Vt
w)/(V

0h
w × t), 0h < t⩽24h where V0h

w
and Vt

w are cell wall volumes before and after t h of enzymatic decon-
struction respectively (Fig. 5.B.1 – 4). The results revealed the same
statistical trends with no conclusive correlations between Dt and the pre-
hydrolysis cell wall volume, number of cell neighbors, cell wall surface
area, and accessible cell wall surface area. Significant negative corre-
lations between pre-hydrolysis compactness parameters (i.e. CI, ACI,
and CNI) and volumetric cell wall deconstruction rate were consistently
observed across different time intervals within the 1 to 24 h range of
enzymatic deconstruction. The higher enzyme activities consistently led
to stronger correlations for Dt , 1 < t⩽24 hrs. This consistency across
various time points underscores the robustness of the cell scale
compactness metrics, CI,ACI, and CNI, in capturing key structural de-
terminants of cell wall deconstruction over the course of enzymatic
activity.

3.4. Average volumetric cell wall deconstruction rate is strongly
correlated with cellulose conversion rate

To validate the reproducibility of the hydrolysis conditions in the
mini-reactors, hydrolysis yields of poplar samples were determined in
both the mini reactors and the sealed frames (identical as that used for
4D imaging). Indeed, the sealed frames cannot be used routinely for
cellulose conversion analysis since they need to be broken to recover the
reaction medium to quantify monosaccharides released. For this vali-
dation test, an enzymatic loading of 10 FPU/g of glucan and a final time
point of 24 h were chosen as standard conditions. Results showed that

hydrolysis yields were highly similar: 12.0% ± 0.2% and 11.2% ± 0.3
for the mini-reactor and the sealed frame, respectively. This shows that
the mini reactor system can be a reliable proxy for replicating the
enzymatic hydrolysis environment of sealed frames. In order to eluci-
date the connection and interplay between parameters at the polymer
and cell scales, cellulose conversion in poplar sections could confidently
be followed within mini-reactors over a 24-h period and the cellulose
conversion with three enzyme loadings of 5, 10, and 20 FPU/ g glucan
was determined. The measurements indicated a marked increase in
cellulose conversion during the initial 4 h, followed by a more gradual
rise in the subsequent 20 h, suggesting a slowdown in the enzymatic
process (see supplementary material). It was also observed that higher
enzyme loading levels corresponded to increased rates of cellulose
conversion. In contrast, experiments conducted in the absence of en-
zymes yielded significantly lower cellulose conversion rates. These re-
sults were in line with the expected outcomes and previous research (Ju
et al., 2013; Hodge et al., 2008).

Consequently, a quantitative relationship between the cellulose
conversion and the volumetric cell wall deconstruction was sought. For
this purpose, a regression analysis was performed which revealed robust
linear relationships with strong Pearson correlation coefficients ranging
from 0.979 to 0.998 and highly significant p-values (< 0.0001) between
the cellulose conversion rate and the average volumetric cell wall
deconstruction rate during hydrolysis for all enzymatic activities. These
results, illustrated in Fig. 6, underscore a quantifiable linear relationship
that bridges nano-scale cellulose conversion with micro-scale cell and
tissue scales cell wall deconstruction. Moreover, this result demonstrates
that the volumetric deconstruction of cell walls is a relevant indicator of
the deconstruction of the plant cell wall into glucose. This aspect is
particularly crucial in the context of the saccharification process, where
the efficiency of converting plant biomass into simple sugars is of
paramount importance.

3.5. Bridging scales: Cross-scale insights, key implications, and
application perspectives

One of the key achievements of this study is the development of the
WallTrack pipeline, which facilitates the automated, high-throughput,
quantitative analysis of cell and tissue-scale dynamics in cell wall
deconstruction. WallTrack addresses the challenges associated with the
reduction in the cell wall autofluorescence intensity due to the change in
lignin environment and the physical instability of the sample occurring
during enzymatic hydrolysis. WallTrack also enhances the precision and
reliability of the segmentation through automation, reducing human
error and bias. WallTrack generates a detailed tissue-wide virtual rep-
resentation of enzymatic deconstruction, representing a significant step
towards creating a digital twin of lignocellulose deconstruction. This
digital twin will integrate the 4D virtual tissue provided by WallTrack,
serving as an accurate digital representation and mapping of its real-
world counterpart (Tao et al., 2022). By incorporating spatio-temporal
computational models of enzymatic deconstruction, this digital twin
can simulate in vitro experiments, and therefore can serve as a powerful
decision support tool for optimizing the enzymatic deconstruction of
plant cell walls.

The findings shed light on the relationship between pre-hydrolysis
3D cell wall architecture and its susceptibility to enzymatic decon-
struction. A significant negative correlation was identified between cell
wall compactness and volumetric deconstruction rate, with the strength
of the correlation modulated by the level of enzymatic activity. This
indicates that cell wall compactness, as a parameter combining cell wall
volume and cell surface area, is a more reliable indicator of volumetric
cell wall deconstruction rate compared to the cell wall volume and cell
wall surface area taken alone. A more compact cell wall can be more
resistant to pretreatment and enzymatic deconstruction because the
tight packing of cellulose, hemicelluloses, and lignin makes it more
difficult for enzymes to access and break down these polymers
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(Zoghlami et al., 2019). The negative correlation of the number of cell
neighbors with volumetric cell wall deconstruction rate, particularly at
high enzymatic activities, aligns with the fact that a higher number of
cell neighbors implies a higher number of lignin-concentrated recalci-
trant cell junctions (Zhao et al., 2012a; Zhao et al., 2012b; Agarwal,
2006) supporting the inverse relationship between the number of
neighbors and volumetric cell wall deconstruction rate. Consequently,
the integration of the number of neighbors and cell wall compactness,
CNI parameter, led to stronger correlations regardless of level of enzy-
matic activity. This provides a single dimensionless parameter inte-
grating both cell scale (compactness) and tissue scale parameter
(number of neighbors) as an indicator of volumetric cell wall decon-
struction rate. The use of the square root transformation suggests that
while the presence of neighboring cells impacts deconstruction, this
impact does not increase linearly with their number and the impact of
each additional neighbor becomes progressively smaller, underscoring a
non-linear relationship. Dimensionless parameters are highly relevant
because they allow comparison of results across different time-lapse
datasets which can have different sizes and dimensions and facilitate
the scaling of computational results to real-world, full-scale applica-
tions, ensuring that derived insights are applicable across various sizes
and conditions.

Moreover, a more intricate relationship between cell wall compact-
ness measures and volumetric cell wall deconstruction rate was identi-
fied, where the strength of the correlation is modulated by the level of
enzymatic activity and a higher level of enzymatic activity corresponds
to an increased correlation coefficient. This shows that the level of
enzymatic activity clarifies and enhances the relationship between key
parameters. Thus, in comprehensive predictive analysis of tissue scale
cell wall deconstruction, the consideration of level of enzymatic activity
is critical.

Importantly, the results revealed a strong and compelling correlation
between average volumetric cell wall deconstruction rate and cellulose
conversion rate. This finding indicates a measurable, linear connection
that links the molecular-level transformation of cellulose to changes at
the cell scale in cell wall volume. Moreover, this outcome underscores
that the volumetric deconstruction of cell walls is a relevant indicator of
the deconstruction of the plant cell wall into glucose. This aspect is
particularly crucial in the context of the saccharification process, where
the efficiency of converting plant biomass into simple sugars is of

paramount importance. This quantitative relationship illustrates the
potential, the relevance and the importance of studying enzymatic
deconstruction at cell and tissue scales and advantageously completes
previous studies aiming at deciphering the mode of action of enzymes,
particularly cellulases at the nanoscale, with the limitation that only
model cellulose was used (Bubner et al., 2012; Igarashi et al., 2011).

The identified correlations are supported by recent work on nano-
scale cellulose digestion, which highlighted the role of amorphous cel-
lulose regions as critical breakpoints for initiating and completing cel-
lulose nanofibers saccharification and found that nanofibrils with more
amorphous regions lead to enhanced enzymatic saccharification and
higher sugar yields (Zhang et al., 2023c; Zhang et al., 2023b; Ai et al.,
2024). These insights align with the observed negative correlation be-
tween pre-hydrolysis compactness measures and volumetric cell wall
deconstruction: more compact cell walls likely have fewer accessible
amorphous regions, making them more resistant to enzymatic hydro-
lysis, thus limiting enzyme action. Additionally, these results on the role
of the amorphous regions in driving efficient hydrolysis support the
positive correlation between cell wall volumetric deconstruction and
cellulose conversion: the greater volumetric cell wall deconstruction
exposes more amorphous regions, facilitating more efficient enzymatic
conversion which directly supports the observed positive correlation.
Furthermore, the findings of this study align with the impact of pre-
treatment on poplar wood. The significant reduction in hemicellulose
and disruption of the compact cell wall structure after pretreatment
expose more amorphous cellulose regions, increasing their accessibility
to enzymes. This enhanced accessibility further supports the observed
strong positive correlation. These insights into the role of amorphous
cellulose regions, combined with findings of this study, provide a deeper
mechanistic understanding of how nano-scale cellulose properties in-
fluence deconstruction dynamics at both the cell and tissue scales.

Even though this study is specific to pretreated poplar wood sections,
it represents first evidence of a quantitative link between nano- and
micro-scale markers on real biomass samples. Extending and trans-
posing these observations to biorefinery cm-scale biomass fragments
seems plausible given that these objects can be assimilated as a large
stack of microsections, where only diffusion of enzymes (which in-
fluences only their kinetics) is modified. But the composition and or-
ganization of cell wall polymers are identical in both kinds of samples so
the deconstruction mechanisms are highly similar. The conclusions thus

Fig. 6. Average volumetric cell wall deconstruction rates versus cellulose conversion rates. The dashed lines represent the linear regression and the shaded areas
represent the confidence intervals. The data points are shown with different colors (0 FPU/g glucan - blue, 5 FPU/g glucan - orange, 10 FPU/g glucan - green, 20
FPU/g glucan - red). The legend provides the Pearson correlation coefficients (r) and p-values for each enzymatic activity level, demonstrating a strong positive
correlation in all cases.
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remain fully relevant and transferable at the industrial scale, given that
diffusion of enzymes can be modeled. Also, it is important to note that
this study is the first example of time-lapse hydrolysis performed on
deconstructed 3D samples rather than on two-dimensional samples,
which is a dramatic methodological advancement in focusing on real-life
samples. Further research is essential to evaluate the generality of cell-
scale markers across different biomass types and pretreatment
methods combinations to assess the consistency of the markers.
Extending this research in this direction is critical for developing a more
comprehensive understanding of lignocellulose deconstruction across
various feedstocks and pretreatment conditions. Since the enzymatic
hydrolysis is a critical step in the conversion of plant cell wall into bio-
based products, the finding of this significant robust relationship paves
the way to better understand the saccharification. Indeed, synergy and
interplay between hydrolases and oxidases such as LPMOs acting on
lignocellulose is still under debate considering optimal partnering
(Sørlie et al., 2023) while spatial localization of LPMO action at the
cellular scale has been rarely investigated (Chabbert et al., 2017).
Overall, the established strategy in this study should contribute to open
and develop new paths for addressing these fundamental enzymatic
questions.

4. Conclusions

Conversion of lignocellulosic biomass into bioproducts offers a
promising solution for developing bioeconomy. In this study, an inno-
vative computational pipeline is devised to better understand cell wall
deconstruction at under-investigated cell and tissue scales. The pipeline
was employed to analyze poplar wood sections hydrolysis, revealing a
correlation between pre-hydrolysis cell wall compactness and volu-
metric cell wall deconstruction rate. Furthermore, a strong positive
correlation was observed between the average volumetric deconstruc-
tion rate and the cellulose conversion rate, thus establishing a link be-
tween key parameters and bridging the gap between nano and micro
scales.
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Ando, T., Samejima, M., 2011. Traffic jams reduce hydrolytic efficiency of cellulase
on cellulose surface. Science 333, 1279–1282. https://doi.org/10.1126/
science.1208386.

Ju, X., Engelhard, M., Zhang, X., 2013. An advanced understanding of the specific effects
of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic
biomass. Bioresour. Technol. 132, 137–145. https://doi.org/10.1016/j.
biortech.2013.01.049.

Khare, S.K., Pandey, A., Larroche, C., 2015. Current perspectives in enzymatic
saccharification of lignocellulosic biomass. Biochem. Eng. J. 102, 38–44. https://doi.
org/10.1016/j.bej.2015.02.033.

Koutrouli, M., Karatzas, E., Paez-Espino, D., Pavlopoulos, G.A., 2020. A guide to conquer
the biological network era using graph theory. Front. Bioeng. Biotechnol. 8, 34.
https://doi.org/10.3389/fbioe.2020.00034.

Ling, Z., Ji, Z., Ding, D., Cao, J., Xu, F., 2016. Microstructural and topochemical
characterization of thermally modified poplar (populus cathayaha) cell wall. BioRes.
11, 786–799. https://doi.org/10.15376/biores.11.1.786-799.

Mankar, A.R., Pandey, A., Modak, A., Pant, K., 2021. Pretreatment of lignocellulosic
biomass: A review on recent advances. Bioresour. Technol. 334, 125235. https://doi.
org/10.1016/j.biortech.2021.125235.

Y. Refahi et al. Bioresource Technology 414 (2024) 131551 

10 

https://gitlab.com/farelab/teamyr/publications/refahi_et_al_4d
https://gitlab.com/farelab/teamyr/publications/refahi_et_al_4d
https://doi.org/10.1016/j.biortech.2024.131551
https://doi.org/10.1016/j.biortech.2024.131551
https://doi.org/10.1007/s00425-006-0295-z
https://doi.org/10.1016/j.scib.2024.06.013
https://doi.org/10.1016/j.scib.2024.06.013
https://doi.org/10.1038/nmeth.3036
https://doi.org/10.1038/nmeth.3036
https://doi.org/10.1016/j.rser.2020.110691
https://doi.org/10.1016/j.rser.2020.110691
https://doi.org/10.1016/j.biortech.2021.126195
https://doi.org/10.1109/iembs.2007.4353540
https://doi.org/10.1109/iembs.2007.4353540
https://doi.org/10.1073/pnas.0912073107
https://doi.org/10.1073/pnas.0912073107
https://doi.org/10.1074/jbc.M111.257717
https://doi.org/10.1038/s41598-017-17938-2
https://doi.org/10.1111/jmi.12059
https://doi.org/10.1038/nmeth.1472
https://doi.org/10.1038/nmeth.1472
https://doi.org/10.1126/science.aar5663
https://doi.org/10.1016/j.chemosphere.2020.128523
https://doi.org/10.1016/j.chemosphere.2020.128523
https://doi.org/10.1111/j.1742-4658.2010.07585.x
https://doi.org/10.1186/s13068-018-1053-8
https://doi.org/10.1186/s13068-018-1053-8
https://doi.org/10.1126/science.1137016
https://doi.org/10.1126/science.1137016
https://doi.org/10.1016/j.biortech.2008.05.015
https://doi.org/10.1126/science.1208386
https://doi.org/10.1126/science.1208386
https://doi.org/10.1016/j.biortech.2013.01.049
https://doi.org/10.1016/j.biortech.2013.01.049
https://doi.org/10.1016/j.bej.2015.02.033
https://doi.org/10.1016/j.bej.2015.02.033
https://doi.org/10.3389/fbioe.2020.00034
https://doi.org/10.15376/biores.11.1.786-799
https://doi.org/10.1016/j.biortech.2021.125235
https://doi.org/10.1016/j.biortech.2021.125235


McCann, M.C., Carpita, N.C., 2015. Biomass recalcitrance: a multi-scale, multi-factor,
and conversion-specific property. J. Exp. Bot. 66, 4109–4118. https://doi.org/
10.1093/jxb/erv267.

Meng, X., Pu, Y., Yoo, C.G., Li, M., Bali, G., Park, D.Y., Gjersing, E., Davis, M.F.,
Muchero, W., Tuskan, G.A., et al., 2017. An in-depth understanding of biomass
recalcitrance using natural poplar variants as the feedstock. ChemSusChem 10,
139–150. https://doi.org/10.1002/cssc.201601303.

Meng, X., Ragauskas, A.J., 2014. Recent advances in understanding the role of cellulose
accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin.
Biotechnol. 27, 150–158. https://doi.org/10.1016/j.copbio.2014.01.014.

Meng, X., Wells, T., Sun, Q., Huang, F., Ragauskas, A., 2015. Insights into the effect of
dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface
area and the overall porosity of populus. Green Chem. 17, 4239–4246. https://doi.
org/10.1039/C5GC00689A.

Mohnen, D., 2008. Pectin structure and biosynthesis. Curr. Opin. Plant. Biol. 11,
266–277. https://doi.org/10.1016/j.pbi.2008.03.006.

Müller, A., Volmer, K., Mishra-Knyrim, M., Polle, A., 2013. Growing poplars for research
with and without mycorrhizas. Front. Plant. Sci. 4, 332. https://doi.org/10.3389/
fpls.2013.00332.

de Oliveira Santos, V.T., Siqueira, G., Milagres, A.M.F., Ferraz, A., 2018. Role of
hemicellulose removal during dilute acid pretreatment on the cellulose accessibility
and enzymatic hydrolysis of compositionally diverse sugarcane hybrids. Ind. Crops.
Prod. 111, 722–730. https://doi.org/10.1016/j.indcrop.2017.11.053.

Ourselin, S., Roche, A., Prima, S., Ayache, N., 2000. Block matching: A general
framework to improve robustness of rigid registration of medical images. In: in:
International Conference on Medical Image Computing And Computer-Assisted
Intervention. Springer, pp. 557–566. https://doi.org/10.1007/978-3-540-40899-4_
57.

Qaseem, M.F., Shaheen, H., Wu, A.M., 2021. Cell wall hemicellulose for sustainable
industrial utilization. Renew. Sustain. Energy. Rev. 144, 110996. https://doi.org/
10.1016/j.rser.2021.110996.

Santos, R.B., Lee, J.M., Jameel, H., Chang, H.M., Lucia, L.A., 2012. Effects of hardwood
structural and chemical characteristics on enzymatic hydrolysis for biofuel
production. Bioresour. Technol. 110, 232–238. https://doi.org/10.1016/j.
biortech.2012.01.085.

Sheldon, R.A., 2014. Green and sustainable manufacture of chemicals from biomass:
state of the art. Green Chem. 16, 950–963. https://doi.org/10.1039/C3GC41935E.

Sorek, N., Yeats, T.H., Szemenyei, H., Youngs, H., Somerville, C.R., 2014. The
implications of lignocellulosic biomass chemical composition for the production of
advanced biofuels. Bioscience 64, 192–201. https://doi.org/10.1093/biosci/bit037.

Sørlie, M., Keller, M.B., Westh, P., 2023. The interplay between lytic polysaccharide
monooxygenases and glycoside hydrolases. Essays. Biochem. 67, 551–559. https://
doi.org/10.1042/ebc20220156.

Tao, F., Xiao, B., Qi, Q., Cheng, J., Ji, P., 2022. Digital twin modeling. J. Manuf. Syst. 64,
372–389. https://doi.org/10.1016/j.jmsy.2022.06.015.

Thompson, D.N., Chen, H.C., Grethlein, H.E., 1992. Comparison of pretreatment methods
on the basis of available surface area. Bioresour. Technol. 39, 155–163. https://doi.
org/10.1016/0960-8524(92)90135-K.

Wang, M., Wang, Y., Liu, J., Yu, H., Liu, P., Yang, Y., Sun, D., Kang, H., Wang, Y.,
Tang, J., et al., 2024. Integration of advanced biotechnology for green carbon. Green
Carbon. https://doi.org/10.1016/j.greenca.2024.02.006.

Willis, L., Refahi, Y., Wightman, R., Landrein, B., Teles, J., Huang, K.C., Meyerowitz, E.
M., Jönsson, H., 2016. Cell size and growth regulation in the arabidopsis thaliana
apical stem cell niche. Proc. Natl. Acad. Sci. U.S.A. 113, E8238–E8246. https://doi.
org/10.1073/pnas.1616768113.

Wolf, S., Wan, Y., McDole, K., 2021. Current approaches to fate mapping and lineage
tracing using image data. Development 148, dev198994. https://doi.org/10.1242/
dev.198994.

Yang, Q., Zhao, W., Liu, J., He, B., Wang, Y., Yang, T., Zhang, G., He, M., Lu, J., Peng, L.,
et al., 2020. Quantum dots are conventionally applicable for wide-profiling of wall
polymer distribution and destruction in diverse cells of rice. Talanta 208, 120452.
https://doi.org/10.1016/j.talanta.2019.120452.

Li, Y., Zhuo, J., Liu, P., Chen, P., Hu, H., Wang, Y., Zhou, S., Tu, Y., Peng, L., Wang, Y.,
2018. Distinct wall polymer deconstruction for high biomass digestibility under
chemical pretreatment in miscanthus and rice. Carbohyd. Polym. 192, 273–281. doi:
10.1016/j.carbpol.2018.03.013.

Zhang, R., Gao, H., Wang, Y., He, B., Lu, J., Zhu, W., Peng, L., Wang, Y., 2023a.
Challenges and perspectives of green-like lignocellulose pretreatments selectable for
low-cost biofuels and high-value bioproduction. Bioresource Technology 369,
128315. doi: 10.1016/j.biortech.2022.128315.

Zhang, R., Hu, Z., Peng, H., Liu, P., Wang, Y., Li, J., Lu, J., Wang, Y., Xia, T., Peng, L.,
2023b. High density cellulose nanofibril assembly leads to upgraded enzymatic and
chemical catalysis of fermentable sugars, cellulose nanocrystals and cellulase
production by precisely engineering cellulose synthase complexes. Green Chem. 25,
1096–1106. https://doi.org/10.1039/D2GC03744K.

Zhang, R., Hu, Z., Wang, Y., Hu, H., Li, F., Li, M., Ragauskas, A., Xia, T., Han, H., Tang, J.,
et al., 2023c. Single-molecular insights into the breakpoint of cellulose nanofibers
assembly during saccharification. Nat. Commun. 14, 1100. https://doi.org/10.1038/
s41467-023-36856-8.

Zhao, X., Zhang, L., Liu, D., 2012a. Biomass recalcitrance. Part I: the chemical
compositions and physical structures affecting the enzymatic hydrolysis of
lignocellulose. Biofuel. Bioprod. Biorefin. 6, 465–482. https://doi.org/10.1002/
bbb.1331.

Zhao, X., Zhang, L., Liu, D., 2012b. Biomass recalcitrance. Part II: Fundamentals of
different pre-treatments to increase the enzymatic digestibility of lignocellulose.
Biofuel. Bioprod. Biorefin. 6, 561–579. https://doi.org/10.1002/bbb.1350.
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