
HAL Id: hal-04735193
https://hal.science/hal-04735193v1

Submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arkitekt: streaming analysis and real-time workflows for
microscopy

Johannes Roos, Stéphane Bancelin, Tom Delaire, Alexander Wilhelmi, Florian
Levet, Maren Engelhardt, Virgile Viasnoff, Rémi Galland, U. Valentin Nägerl,

Jean-Baptiste Sibarita

To cite this version:
Johannes Roos, Stéphane Bancelin, Tom Delaire, Alexander Wilhelmi, Florian Levet, et al.. Arkitekt:
streaming analysis and real-time workflows for microscopy. Nature Methods, 2024, 21 (10), pp.1884-
1894. �10.1038/s41592-024-02404-5�. �hal-04735193�

https://hal.science/hal-04735193v1
https://hal.archives-ouvertes.fr

Nature Methods | Volume 21 | October 2024 | 1884–1894 1884

nature methods

Article https://doi.org/10.1038/s41592-024-02404-5

Arkitekt: streaming analysis and real-time
workflows for microscopy

Johannes Roos1, Stéphane Bancelin1, Tom Delaire1, Alexander Wilhelmi    2,
Florian Levet1,3, Maren Engelhardt2,4, Virgile Viasnoff    5, Rémi Galland    1,
U. Valentin Nägerl    1 & Jean-Baptiste Sibarita    1 

Quantitative microscopy workflows have evolved dramatically
over the past years, progressively becoming more complex with
the emergence of deep learning. Long-standing challenges such as
three-dimensional segmentation of complex microscopy data can
finally be addressed, and new imaging modalities are breaking records
in both resolution and acquisition speed, generating gigabytes if
not terabytes of data per day. With this shift in bioimage workflows
comes an increasing need for efficient orchestration and data
management, necessitating multitool interoperability and the ability
to span dedicated computing resources. However, existing solutions are
still limited in their flexibility and scalability and are usually restricted to
offline analysis. Here we introduce Arkitekt, an open-source middleman
between users and bioimage apps that enables complex quantitative
microscopy workflows in real time. It allows the orchestration of popular
bioimage software locally or remotely in a reliable and efficient manner.
It includes visualization and analysis modules, but also mechanisms
to execute source code and pilot acquisition software, making ‘smart
microscopy’ a reality.

Over the past 30 years, cellular microscopy has seen a complete trans-
formation, passing from analog microscopy in the 1990s to the fully
automatized, quantitative and ‘intelligent’ modalities of today1. We are
now able to monitor live biological samples ranging from single cells
to entire organisms, resolving their structural details with resolution
down to the nanoscale. Progress in optics, electronics and computer
technology paved the way for this, and the advent of deep learning
tools is ringing in a new era in bioimage analysis2,3.

In today’s expanding and diversifying bioimage ecosystem, the
acquisition and analysis software MicroManager4,5 and ImageJ/FiJi6,7
have remained gold standards for open-source image analysis. They
come with a user-friendly graphical user interface (GUI) and can be
customized and support new methods via an extensive plugin system.

Both tools are under active development and see improvements in
each new version.

Yet new, often Python-based, bioimage software such as Napari8
and CellProfiler9 have seen rapid adoption, in part because they
can outperform ImageJ in certain advanced image processing and
visualization tasks. Napari is tailored to efficiently work with data
in external memory, enabling the visualization of large datasets
(> terabyte) in three dimensions (3D), while CellProfiler offers reliable
segmentation and analysis plugins for batch analysis. Both solutions
integrate a plugin system, but even though the number of available
analysis modules and plugins is rapidly growing, a lot of functionality
of ImageJ/FiJi, especially legacy analysis scripts, is not available for
these solutions.

Received: 12 October 2023

Accepted: 1 August 2024

Published online: 18 September 2024

 Check for updates

1Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS, Bordeaux, France. 2Frankfurt Institute for Advanced Studies,
Frankfurt, Germany. 3Bordeaux Imaging Center, University of Bordeaux, CNRS, INSERM, Bordeaux, France. 4Institute of Anatomy and Cell Biology,
Medical Faculty, Johannes Kepler University, Linz, Austria. 5Mechanobiology Institute, National University of Singapore, Singapore, Singapore.

 e-mail: jean-baptiste.sibarita@u-bordeaux.fr

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02404-5
http://orcid.org/0000-0002-4766-5128
http://orcid.org/0000-0003-3949-2244
http://orcid.org/0000-0001-7117-3281
http://orcid.org/0000-0001-6831-9008
http://orcid.org/0000-0002-9920-7700
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02404-5&domain=pdf
mailto:jean-baptiste.sibarita@u-bordeaux.fr

Nature Methods | Volume 21 | October 2024 | 1884–1894 1885

Article https://doi.org/10.1038/s41592-024-02404-5

experiment, depending on the imaging content. This allows for the
optimization of both acquisition speed and data flow, reducing, for
instance, the exposure of the sample to potentially toxic light. Sev-
eral dedicated applications of smart microscopy were recently
published1,15,16, illustrating how event-driven acquisitions can greatly
facilitate monitoring biological processes. However, all these applica-
tions were developed on dedicated microscopy and analysis systems
only maintainable by expert users, calling for a solution that can make
smart microscopy more accessible.

In parallel, as automated and high-throughput microscopy
becomes more widespread, real-time analytical workflows, provid-
ing live quantifications and data quality assessment during ongoing
experiments, become a necessity to ensure that fragile experimental
conditions are well maintained. The capability to remotely visualize
them, together with the data, would be beneficial but is unfortunately
currently not easily achievable.

Existing solutions are not very user friendly and hardly allow non-
experts to design, run and monitor more involved analytical pipelines.
In this context, graphical programming tools, as seen in LabView and
the recent work of JIPipe17, can vastly help nonexpert users design work-
flows in an intuitive manner without a single line of code. Unfortunately,
both JIPipe and Labview are restricted to their own ecosystems and do
not allow for workflows spanning multiple software.

Here, we introduce Arkitekt, a solution specifically developed to
fill these gaps. Arkitekt offers nonexperts and developers alike a flexible
platform to create sophisticated interactive and feedback bioimage
workflows from popular acquisition, visualization and analysis tools.

Design and implementation
An early design decision for Arkitekt was to ‘not reinvent the wheel’
and utilize the features of the myriad of bioimage analysis tools that
already exist. Therefore, Arkitekt was built as a backbone that allows to
integrate these tools seamlessly into workflows, offloading computa-
tion to them and the hardware they were designed to run on.

Arkitekt acts as a middleman between the users and the bio-
image applications (the apps) and utilizes network connections to
connect them irrespective of their physical location. Arkitekt and
its interface then represents an abstraction layer for the user to both
schedule work on the apps and retrieve and store their data. Arkitekt
operates therefore as a central app (the server) that can be installed
on any computer, inside the laboratory or on cloud infrastructure,
and that advertises itself on the network. The bioimage apps can
then seamlessly connect and in turn advertise their functionality to
Arkitekt (for example, display an image, deconvolve or segment it and
so on) (Fig. 1a). Arkitekt will save a record of all connected apps and
their functionalities (the nodes) and can play the role as the central
storage for all the data and metadata, including images (raw and
processed) as well as quantitative data and annotations (ROIs, labels
and tables) (Fig. 1b). In addition, through its graphical or program-
matic interface, Arkitekt enables the user to call these nodes directly
and to orchestrate them altogether by drag-and-drop manipulation
(the workflow) (Fig. 1c).

Additionally, many interesting new methods need to be manually
run through command line interfaces or necessitate complex devel-
opmental and hardware setups. For example, the prolific field of deep
learning still requires manual script writing for training and predictive
analysis and access to large computing power that is typically not avail-
able on a regular desktop computer.

In this flourishing software and hardware environment, tool
users unfortunately often have to face interoperability issues and
thus need to laboriously bridge various analytical software through
programmatic patchwork. This prevents many nonexpert users from
taking advantage of the most appropriate methods for their bioimage
workflows.

These technical limitations not only hinder the impact of these
methods in biology but also do not meet FAIR data principles (findabil-
ity, acessibility, interoperability and reusability), as complex workflows
are hard to reproduce10. Additionally, as modern microscopy allows the
acquisition of large amounts of multidimensional data, the question
of data provenance, that is, knowing when and how a process affected
the original data, becomes more and more important.

To facilitate the orchestration of diverse bioimage tools, research-
ers are adopting general workflow manager solutions such as Next-
flow11 or Galaxy12. These tools allow the creation of highly automated
pipelines of data transformation, where multiple tools can be linked
together to create a workflow that can run in a reproducible manner on
dedicated hardware such as computer clusters. However, they usually
can only be deployed in scenarios where the system and its workflows
are maintained by experts. Crucially, these systems also lack essential
features for modern bioimage analysis, such as dedicated data types
for multidimensional image data or support for GUI applications to
enable interactive workflows (for example, to mark regions of interests
(ROIs) or adjust thresholds).

Consequently, more targeted approaches have recently been
developed. Building on the same containerization technology
employed in a variety of general workflow managers, BioImageIT13
provides a user-friendly graphical desktop application that allows
running analysis scripts locally in sandboxed environments and the
creation of batch workflows, including deep learning, C/C++ code,
Python or Java scripts. ImJoy14, a progressive web application originally
developed to simplify nonexpert access to deep learning algorithms,
allows image processing and analysis software such as ImageJ to be run
in the browser, bridging remote execution on dedicated hardware in
the cloud with local plugins that can be written in various languages.

While these tools are paving the way to facilitating workflow crea-
tion from existing bioimage ecosystem components, they remain lim-
ited in several important aspects (Table 1 and Supplementary Table 1).
Both tools are tailored to enable linear batch workflows, where data get
transformed sequentially in an analytical pipeline after the acquisition.
Consequently, they are usually not compatible with the emerging
context of nonlinear or feedback workflows, often referred to as ‘smart
microscopy’.

In smart microscopy, automatic bioimage pipelines can trigger
or modulate acquisition and signal processing during the ongoing

Table 1 | Overview of the main differences between existing solutions and Arkitekt

Workflow
design

Application type Data management Virtualization Concurrency Multicomputer
setup

Data
exploration

JIPipe Node based Java application File based None Thread-based parellelism No Yes (through
tables)

Imjoy Linear Progressive web app File based WASM in browser Asynchronous worker queues Yes No

BioimageIT Linear Python-based
desktop app

File based Container Sequential execution No No

Arkitekt Node based Web server Database and
object storage

Container Asynchronous worker queues Yes Yes

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | October 2024 | 1884–1894 1886

Article https://doi.org/10.1038/s41592-024-02404-5

 Universal workflows

c

b

a

Relational data exploration

Universal middleman

Nodes Data

Code
Notebooks

Apps

Devices

Dataset

Metrics

Cell count
1,066 Comments

Workflows spanning one or multiple
bioimage apps

Easy exploration and sharing of
bioimage data

Programmatic access

Secure programming
interfaces

Acquire 2D

Move stage

Acquire
Calculate mean

Segment cellsDenoise

Acquire

Acquire

Deep learning

Deconvolve

Segment

Web apps

Device control Processing Live feedback Analysis Data management

Desktop applicationsServer applications

Mark ROIs
Mark ROIs

Project

Convert file

Analyze particles

Show
Show

Show

Inject liquid

Robotics

Microscopes

Inject liquid

ThresholdMark ROIsShow

Segment Project Denoise

Analyze particlesCalculate mean

Documented repository Relational data

TablesImages

Segment

Project

Calculate mean

Area diameter

54
73
24
89
54

34
44
78
103
34

Acquire 2D

Show

Fig. 1 | The core design of Arkitekt platform, serving as a middleman for
real-time microscopy experiments and streaming analysis workflows.
a, Arkitekt allows the interaction with various tools in different categories:
devices, bioimage apps and custom code. These tools connect to Arkitekt
platform (central a) and advertise their functionality as nodes. Nodes are abstract
descriptions of the tool functionalities, including which bioimage data they can
work with (for example, taking an image as an input and a ROI as an output).
b, Arkitekt stands as the data hub for connected apps and makes their
functionality accessible and inspectable for every app in the laboratory through
remote calls. Arkitekt takes care of the communications and orchestration
of all apps from data acquisition to postprocessing analysis, organizing and
maintaining the data and metadata in a relational data graph. c, Arkitekt also

provides an abstraction layer for users and applications alike to interface with
the connected apps and data, both visually and programmatically. Workflows of
connected functionality can be created through drag and drop. All of the data can
be visualized directly in the web interface, while exploring associated metadata,
or sent to one of the apps directly. Programmatic access is facilitated by easy-
to-learn client libraries that require no advanced configuration and facilitate
the easy inclusion and dispersion of new custom functionality as plugins. Logo
credits: Fiji, © 2007 Free Software Foundation, Inc.; Napari, reproduced under a
Creative Commons license CC0 1.0; Stardist, © 2018–2024, Uwe Schmidt, Martin
Weigert; Imswitch, © 2007 Free Software Foundation, Inc.; Jupyter, reproduced
under a Creative Commons license CC0 1.0; OME, OpenMicroscopy.org.

http://www.nature.com/naturemethods
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

Nature Methods | Volume 21 | October 2024 | 1884–1894 1887

Article https://doi.org/10.1038/s41592-024-02404-5

Core design concepts
Arkitekt has been designed around four core concepts (Fig. 1):

•	 Apps represent software that can connect to the Arkitekt frame-
work, and whose functionalities can be integrated and executed
in workflows. Apps can be stand-alone software such as Fiji,
Napari or MicroManager, but also Python scripts, Jupyter Note-
books, websites, containerized apps (powered by Docker) and
network-connected devices controlling hardware and robotics
(the Internet of Things) (Fig. 1a). These apps negotiate access
rights with the platform and when being used are systematically
authenticated on a user and application basis, protecting users’
data from potentially harmful external apps (for example, running
in the cloud). Once authenticated, apps can advertise their func-
tionalities through implementing nodes, which are then available
to be used in workflows.

•	 Nodes represent a conceptual bioimage task, for example, ‘Show
an image’, ‘Acquire’, ‘Denoise’, ‘Threshold’, ‘Segment nuclei’ and
so on. They are defined through their data inputs and outputs,
specific for each task, as well as by a description of this task (Figs. 1b
and 2 and Supplementary Fig. 3). Apps themselves provide an
implementation of this specific task. As multiple apps may provide
the same functionality, they can potentially implement the same
node. For example, both ImageJ and Napari can display images
and mark ROIs. When performing analysis tasks, users can choose
either to use one specific app (Supplementary Video 9), or to dis-
tribute the tasks amongst multiple apps in parallel (Fig. 3). Nodes
can be orchestrated and combined in a user-friendly graphical
manner to create workflows.

•	 Workflows are graphical pipelines composed of nodes that
orchestrate bioimage tasks (Figs. 1c and 2). They can be linear
(for example, Acquire → Deconvolve → Segment → Display), but also
conditionally diverge (for example, 2D Acquire → Analyze → Filter
if Condition = True → 3D Acquire) and loop back. Workflows can be
used to both orchestrate local functionality within an application,
serving a similar purpose to an ImageJ Macro, or to orchestrate
multiple apps together in overarching data pipelines.

When designing workflows, the user connects nodes and their
respective inputs and outputs, manipulating and transforming
the stream of data (Supplementary Video 1). This stream of data
is conceptually central to Arkitekt workflows and allows data
to be transformed in real time directly after creation. Arkitekt’s
interface not only guides users in correctly combining the nodes
but also provides reactive ‘helper nodes’ that allow to deal with the
unexpected pitfalls of real-time analysis (that is, to buffer or delay
incoming data to accommodate a later processing).

•	 Structures. Arkitekt also takes care of storing and distributing
analysis data among the apps through the concept of structures,
which represent the inputs and outputs of nodes. Structures
describe primitive data types, such as numbers and strings, but
also dedicated bioimage data and metadata such as images and
ROIs as well as comments or deep learning models. They can be
read from and created on the platform, and are accessible from
all apps through Arkitekt’s application programming interface
(API) and open data protocols (see ‘Data management’ section).

Once designed, users can deploy workflows through the web
interface from anywhere. During the deployment, workflows get
associated with a scheduling app that will take charge of the task
orchestration during execution. Once deployed, a workflow becomes
conceptually just another node that can be easily integrated in other
workflows (Fig. 4).

When executing a workflow, Arkitekt automatically schedules
the tasks to execute on the connected apps, using worker-based
parallelism to speed up the analysis when needed. The progress of

an ongoing workflow run can be monitored in real time on the same
web interface by the user, visualizing all data transformations during
execution (Supplementary Video 2). Arkitekt also keeps track of all
events in the workflow and can provide the user with a ‘replay’ of the
events in chronological order, enabling to debug an entire workflow
and its data from start to end. As this information is associated with
the created data, Arkitekt can ensure full data provenance at every
workflow step.

By relying on apps, nodes and structures, workflows become
universal, reproducible and implementation agnostic (Supplemen-
tary Fig. 1). Workflows can be shared between laboratories with dif-
ferent hardware and software (for example, the same workflow can
work for a laboratory that uses MicroManager, Imswitch18 or Meta-
Morph as microscope control software). As workflows are automati-
cally versioned, they can be run on newer and older versions of the
software if the implementation of the nodes (inputs, outputs and
procedures) has not changed. Conversely, workflow runs keep a com-
plete record of which implementation was used and establish a track
record of data alteration that can be exported and inspected outside of
the platform.

Core technology
Real-time performance. Arkitekt is designed to meet the demands
of modern microscopy in data size and analysis speed. By default,
workflow tasks are scheduled with low latency (100 ms range) via
websocket-powered network connections from the Arkitekt server,
and data are stored and retrieved from the central storage on demand.
However, if network speed presents an issue or if there is no need to go
through the network, workflows spanning in-app nodes (that is, con-
secutive nodes running inside the same app) can entirely run locally
and manipulate data in memory.

Data management. Arkitekt takes care of the microscopy data flow
through a central storage solution (Mikro), which can be hosted either
locally (on a folder on the server) or remotely (that is, in the cloud). It
allows for managing and discovering relationships within the raw data
and metadata and is built on top of a relational database (PostgreSQL)
for metadata and an open-source S3 Storage (MinIO) for binary data
storage (Supplementary Fig. 2).

Traversing the complex relationships between images and ele-
ments, such as ROIs and higher-order features (for example, cell mor-
phology parameters), is facilitated by a web interface. Advanced users
can rely on standards such as structured query language (SQL) to
explore the data, or can use the GraphQL API, which allows central and
type-safe programmatic access to the relationship graph.

Arkitekt’s data management is adapted to deal with gigabyte
to terabyte datasets. Binary storage is based on the Zarr format, an
efficient open-source lossless compressed format allowing for con-
current, distributed access to large multidimensional microscopy
data. The data layer also allows real-time updates (through websocket
subscriptions), which enables both data monitoring and Google
Docs-like collaboration features such as real-time shared annota-
tions (Supplementary Video 3). Once the specifications of the open
microscopy environment next generation file format (OME-NGFF)19
file format has matured, Arkitekt will support on-the-fly conversion
to OME-Zarr files.

Arkitekt’s data management is entirely opt in, and apps can imple-
ment nodes that process data from other popular bioimage data
management solutions such as OMERO20. When enabling a dedicated
optional Arkitekt service, data from OMERO can be directly managed
in the desktop and web interface, and used and tracked in workflows.
It should be noted, however, that due to the design of OMERO, lazy
loading and fast and low-latency access to data are not feasible, and
Mikro currently remains the data backbone for most apps developed
for Arkitekt.

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | October 2024 | 1884–1894 1888

Article https://doi.org/10.1038/s41592-024-02404-5

Noisy image stackc

b

a

Cropped
stack

Circularity min 1
SizeMin: 0

SizeMax: null
Size is physical: false
Include holes: false

Denoised
stack

Projected
image

Thresholded
image

Noise model:
pretrained

CARE

Max ISP
Denoise

Crop ROI

Analyze
particles

Computer

Otsu
Threshold

Stream ROIs

Analyzed
particles

Merged particle tables

Output

ID Area Diameter
1 54 34
1 73 44
1 78 34
2 89 103
2 54 34

Area Diameter
54 34
73 44
78 34
89 103
54 34

54 34
73 44
78 34
89 103
54 34

3 32 13
3 23 45

Output
Input Table

(Table) Table

TableTableImage

ImageImage
Image

ImageImage ROIROI

Image

Image

Image

Image
Merge to new table

Bu�er
complete

Show tableAnalyze particles
Otsu threshold

Maximum
intensity

projection

Crop
ROI

Mark ROIs

Denoise

Show
table DiameterArea

Fig. 2 | Arkitekt as a broker in interactive analysis workflows on a single
computer. a, On invocation, this workflow will send the input image stack to a
connected Napari instance, and ask the user to mark ROIs. These ROIs are then
cropped, denoised via the CARE denoising deep-learning algorithm, maximum
intensity projected (Max ISP) and thresholded via Otsu’s method inside a
virtualized Python plugin inside the Arkitekt Instance. The thresholded image is
then send to FiJi instance, which will run the ‘analyze particle’ plugin, and finally
display the result table inside the Napari instance (Supplementary Video 2).
b, A one-to-one representation of the analysis workflow as constructed on the

Arkitekt web UI. The initial given image is manipulated to a stream of ROIs that
pass through the processing pipeline (yellow nodes). Each analyzed table is both
sent to Napari and buffered, so that on ROIs marking termination, all tables are
merged to one big data table. c, The automatically built data graph: as Arkitekt
keeps track of the workflow steps, exploration of the data post hoc is facilitated
through link navigation and can be easily queried programmatically through its
type-safe API or directly through SQL queries of its database. Logo credits: Fiji,
© 2007 Free Software Foundation, Inc.; Napari, reproduced under a Creative
Commons license CC0 1.0; Docker, © 2013–2021 Docker, Inc.

http://www.nature.com/naturemethods
https://creativecommons.org/publicdomain/zero/1.0/

Nature Methods | Volume 21 | October 2024 | 1884–1894 1889

Article https://doi.org/10.1038/s41592-024-02404-5

Flexible and powerful. Arkitekt was designed from its conception
with the challenge to be user friendly for both end users and develop-
ers. Mouse and keyboard interactions facilitate data navigation and
access to user options such as laboratory-wide search of functionality
and data, as well as the creation of workflows (Supplementary Video 1).

Arkitekt ensures accessibility for non-programmers with little or
no knowledge of programming. It comes with a drag-and-drop web
interface that allows nonexpert users to create workflows by wiring
nodes together. Arkitekt fully supports popular interactive applica-
tions such as Napari and its ability to load terabyte datasets directly

Position from OMERO: true
Position tolerance: 40 µm

b

a

c d

Replace: true Model: Stardist_1
Parellization: ordered

Acquisition

t0 t1

t0s0 t0s1 t0s2 t0s3

t0s0

t0s0

t0s1

t0s1 t1s1

t0s2 t1s2

t0s2 t0s3

t0s3 t1s0 t1s3

t1s0

t1s0 t1s1 t1s2 t1s3

C
om

m
on

Si
ng

le
 P

C

Pa
ra

lle
liz

ed

Cell metrics

Cell metrics

Segmentation

Segmentation

Preprocessing

Input

Stream files

Convert to images

Stream
files

Convert
TIFF

Scale

a a

Segment Show

Measure
max

Measure
max

User 2User 1

Acquisition
computer 1

Remote
server 2

4,567

Cell count

8,380
Max intensity

Max ISP

Seg @ PC3

Seg @ PC2

Seg @ PC1

Measure max

Each
Table

Dataset File
File (Image)

Image Image

Scale down
Image Image

Segment cells

Show on Napari

Image Image

Image Metric

Measure max
Image

Image

Metric

Gucker

Output
Metric

907
Cell count

1,066
Cell count

1,132
Cell count

1,066
Cell count

Fig. 3 | Arkitekt facilitates parallelizable workflows on multiple computers. a,
In this streaming analysis workflow, live acquired light-sheet TIFF image stacks of
liver organoids are pushed to the Arkitekt server, which converts both data and
its OME metadata into elements in its relational data graph (recontextualizing
position data in one unified ‘stage’ context representing the physical microscope
stage). The converted 3D image stacks are then scaled down and segmented in
round-robin parallelization on three connected computers (PC1, PC2 and PC3,
each running the segmentation app (Seg)). The resulting segmentation is then
measured for cell count and shown on a remote Napari instance for inspection.
b, The ‘stream files’ nodes establish the initial data stream by watching a
predefined microscopy folder. Each raw image file gets combined with a

position and time context (every workflow ‘run’ will be put into a new ‘stage’)
and converted. Workflow paths then split to both project and scale down the
image in parallel. Here, the segmentation node was instructed to parallelize on
three connected apps. c, The data can be explored on the web interface with live
updates of the defined metric plotted in graphs, to enable easy monitoring of
the data. d, A waterfall representation of the time (t, experimental timepoint)
execution of the workflow. While the per item processing time does not change
in the parallelized examples, the backpressure is alleviated by putting data items
in separate queues. Every node is parallelizable by adding more connected apps.
Logo credits: Napari, reproduced under a Creative Commons license CC0 1.0;
Stardist, © 2018–2024, Uwe Schmidt, Martin Weigert; OME, OpenMicroscopy.org.

http://www.nature.com/naturemethods
https://creativecommons.org/publicdomain/zero/1.0/

Nature Methods | Volume 21 | October 2024 | 1884–1894 1890

Article https://doi.org/10.1038/s41592-024-02404-5

from the central server (plugin available through the Napari hub), as
well as ImageJ and its ecosystem (through MikroJ app). Users can use
their pre-existing installations and do not need specific configurations.

Arkitekt also provides a comprehensive plugin system that allows
the discovery and one-click installation of containerized applications
from GitHub repositories. These plugin apps can then be run sand-
boxed (with fine-grained access rights to data) on the Arkitekt server
or on a dedicated computing resource such as a graphics processing
unit (GPU) server, without the need for a complex developmental setup.

Powerful environment for developers. Arkitekt is extensible with
different programming languages by adapting an ‘API first’ approach,
exposing its functionality in a comprehensive GraphQL API. We chose
GraphQL over representational state transfer (REST) to guarantee
end-to-end type-safety and easy querying of complex relational data
as well for its ability to provide an interactive API documentation right
from the developer documentation. Additionally, Arkitekt comes with
tested and documented software development kits (SDK) for both
Python and Typescript. In practice, enabling a Python script as an app
on the platform takes usually just a line of code (a decorator). The SDK
will then inspect function parameters and documentation to enable it
as a node (Supplementary Fig. 3). Through this process, Arkitekt can
be used to generate a GUI for Python and Typescript scripts without
necessitating a complex setup and the steep learning curve of GUI
development, akin to popular tools such as MagicGUI (Supplemen-
tary Video 4). Since Arkitekt is built around open web protocols and a
comprehensive API, it is easy to also bridge its functionalities to other
programming languages.

Extensible and complementary. Arkitekt aims to be a platform for
distributed concurrency and does not aim to replace dedicated distrib-
uted computing platforms such as SLURM or Dask that excel at paral-
lelization. Conversely, it intends to integrate and complement them by
providing more unified API and user interfaces. Thus, an experimental
plugin Kluster allows users to visually create and provide (Dask) clusters
to apps that can in turn schedule and distribute tasks on the cluster.

Installation and scaling. Arkitekt is primarily built to be hosted on
computers that have fast low-latency network access to its connected
apps. It is therefore preferably installed on site, handling most tasks
on the local network. Only one computer with administrator rights
is needed for the installation of Arkitekt. Any additional workstation
does not require administrator rights, as long as it can access the server
computer via network. To ensure an easy installation and updating pro-
cess of the platform in local scenarios, Arkitekt comes with a graphical
administration tool. However, as Arkitekt is based on secure web stand-
ards and uses cloud-native technologies, it can be readily connected to
the wider internet and accessed from anywhere. It is fully adapted to be
hosted on an institute level, with one server able to support hundreds of
users and teams, each with their own data. The Arkitekt documentation
comes with a few common examples illustrating different strategies for
its deployment from testing environments to a laboratory-wide system.

Extensive documentation can be found at https://arkitekt.live/.

Results
We illustrated Arkitekt’s core strengths and wide applicability through
three common bioimage analysis scenarios. First, a classic offline inter-
active analysis, where already acquired data are analyzed by three dif-
ferent software (FiJi7, CARE21 and Napari8) on a single computer (Fig. 2).
Second, a more advanced streaming analysis workflow, where acquired
data (MetaMorph) are live monitored, processed and analyzed using dif-
ferent software (Stardist22, Napari8 and an OMERO-based file reader23).
Here, the software are located on five different computers connected
on a local network, one for acquisition, one for remote monitoring and
three for parallel distributed computing (Fig. 3). Third, a closed-loop
experiment, where real-time analytical output computed using
two different software (Stardist22 and the Arkitekt standard library
plugin (stdlib)) is looped back to the ongoing microscopy experiment
(MicroManager4,5) to perform specific actions (Fig. 4). All three work-
flows are described below and are available online to be used as tem-
plates (https://arkitekt.live/docs/showcases).

Single computer interactive analysis workflow
In this modern offline analysis workflow, we show how Arkitekt allows to
combine different bioimage processing, analysis and visualization func-
tionalities, including a deep-learning restoration algorithm (CARE)21,
all on a single computer. We demonstrate that tasks from different
popular software platforms, here Fiji7, containerized Python scripts
and Napari8, can be combined in the same workflow (Fig. 2). We also
illustrate how to use the interactive capabilities of the GUI apps during
the workflow execution to manually define ROIs.

In this example, a noisy fluorescence image stack (Tribolium21)
was visualized in Napari and a user was prompted to mark ROIs. Inter-
actively and in parallel, marked ROIs were cropped from the original
image and denoised through the CARE21 algorithm, binarized using
Otsu auto-thresholding7 and analyzed through the particle analyzer
in Fiji7. Finally, the resulting quantifications returned from the parti-
cle analyzer were visualized back to the user in Napari and on the web
interface for inspection (Supplementary Video 2).

This workflow illustrates how Arkitekt allows aggregating func-
tionalities from several popular software, passing the data and meta-
data from one platform to another via a GUI. Importantly, this workflow
not only substantially relieves the user burden of having to use three
different software one after the other, but it also avoids the potential
pitfalls of data management. Indeed, Arkitekt keeps track of the rela-
tionship between original images, marked ROIs, cropped images and
filtered analysis of the cropped images, as well as all associated quanti-
fications. This relationship and provenance graph can then be explored
on the Arkitekt frontend or exported for further statistical analysis.

In this use case, Arkitekt and the connecting bioimage apps Napari
and FiJi were installed on the same machine. CARE was installed on the
Arkitekt server as a plugin following its one-click installation from a
GitHub repository and run within the Arkitekt setup through Docker
virtualization. Setting up this workflow only required the additional
installation of both the Arkitekt Napari plugin (through the Napari
plugin manager) and the FiJi wrapper app (MikroJ, available as a GUI
installable).

Fig. 4 | Arkitekt enables smart microscopy experiment. a, In a closed-
loop workflow, a large FOV (2 × 2 mm2) is acquired in an overarching
multidimensional acquisition workflow with positions previously set
interactively in MicroManager. Each acquired image is then offloaded to an
Arkitekt instance running on a GPU-powered machine, that segments images
using Stardist deep-learning segmentation and marks ROIs around clusters
based on DBSCAN clustering analysis. Each ROI is then transformed back into
stage coordinates, and necessary camera dimensions are calculated to fit the
acquire cluster with a 40× objective. Once all the detected clusters are acquired
at 40× magnification, the next multidimensional acquisition position (pos)
is acquired. b, A subworkflow, marked with a yellow star, integrated into a

larger multidimensional acquisition type workflow that loops over all active
microscope positions every 20 min. Helper nodes are employed to add a dynamic
tolerance and to synchronize separate data streams in time (buffering, zip).
c, Cluster tracking thanks to the stored position saved in the metadata. As the
camera is always centered on the center of mass of each detected cell cluster,
clusters can be easily monitored through time without any specific tracking
routine by lasso selecting a detected cluster position on the stage view in the
web interface. These selections can then be easily monitored as a timeseries in
Napari. Logo credits: Napari, reproduced under a Creative Commons license
CC0 1.0; Stardist, © 2018–2024, Uwe Schmidt, Martin Weigert; Docker,
© 2013–2021 Docker, Inc.

http://www.nature.com/naturemethods
https://arkitekt.live/
https://arkitekt.live/docs/showcases
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

Nature Methods | Volume 21 | October 2024 | 1884–1894 1891

Article https://doi.org/10.1038/s41592-024-02404-5

2,560 µm × 2,560 µm

a

b

c

Acquire
2D

Acquire
3D

Mark clusters

Acquire
3D

ROI to
Pos

ROI to
Pos

Segment

Next
position

y

x

t

56 µm × 56 µm
× 20 µm

Acquisition computer Remote server

655 µm × 655 µm

56 µm × 56 µm
× 20 µm

Input

Acquire 2D

Position

Input
Get position Acquire clusters

Position
[Position] Position [Image]

Position Image

ROI to position

Add

Cluster tracking

Zip

ROI to dimensions Adds tolerance
value for a slightly
bigger sensor size

Z-step: 1 µm
Z-steps: 40

Objective: 40×

ROI

ROI Width
Height

Position Position Image
Sensor x
Sensor y

Segment cells
Mark clusters

Image Image

Acquire 3D Bu�er
complete

Image (ROI)

Objective: 20×

Model:
EPS:

Min size:
50
4

Fluo2

Each

Output

(Image)

Output

[Image]
Loop

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | October 2024 | 1884–1894 1892

Article https://doi.org/10.1038/s41592-024-02404-5

Live monitoring and streaming analysis
Biological systems can be highly reactive, and closely monitoring them
during long-run acquisitions is necessary for ensuring a stable environ-
ment in an ongoing experiment. This can range from just checking that
the acquisition is running properly (for example, no loss of focus),
to monitoring the evolution of live biological samples (for example,
premature cell death). Classically, images are batch processed once the
acquisition is complete, leaving no chance for real-time analysis and
feedback. In this second workflow, we illustrate how Arkitekt enables
to display real-time feedback on the running acquisition.

Here, we used Arkitekt to perform real-time quantitative moni-
toring of single objective selective plane illumination microscopy
(soSPIM)24,25 3D microscopy data using the popular StarDist26
deep-learning segmentation algorithm (Fig. 3). A user-defined direc-
tory located on the microscope’s computer was monitored for new
data, and all the analysis steps were performed remotely in parallel
with the acquisition, minimizing the risks of slowing the acquisition
down or causing its crash.

As the deep learning-based segmentation can be highly time
consuming, they were run in parallel, distributed on three different
computers. Visualization of both the 3D acquisition and the results
were performed in Napari8 on a remote and mobile computer, as well
as through the web interface, where results (here the number of nuclei
and the average volume) were plotted on a live dashboard (Supple-
mentary Video 5).

Practically, multidimensional acquisition (3D, 20 positions, 30
time points every 20 min) of 3D cell cultures composed of HEP-G2 cells
were acquired automatically using the soSPIM technology24,25 and Meta-
Morph software. The 3D stacks were automatically saved to a folder,
which was selected in the File Watcher app (Gucker), enabling the
‘Stream Files’ node in the Arkitekt workflow (Fig. 3a). Each time a new
3D stack was saved in this folder, it was uploaded to the remote central
server hosting Arkitekt and converted to Arkitekt’s distributed image
format, integrating the OMERO metadata into the database. Images
were then visualized by 3D maximum intensity projection, and the
maximum intensity was computed as a quality metric and displayed.
Simultaneously, incoming images were downscaled according to the
metadata to match the pixel size that the Stardist26 deep-learning model
was trained on. The segmentation was then distributed among the
Arkitekt server and two additional remote workstations, reducing the
processing time and alleviating the bottleneck of Stardist segmentation
(Fig. 3a,b). Segmentations were then piped directly back to a mobile
Napari instance, providing immediate feedback to any remote com-
puter for user inspection (Fig. 3a). As the acquisition proceeded, the
past and current progress of the workflow could be monitored remotely
and live on the web interface (Supplementary Video 6). The ability
to parallelize the Stardist segmentation on three remote computers
allowed the analysis to be performed in real time with the acquisition.
A waterfall diagram representation allows to visually monitor the time
evolution of the workflow (Fig. 3d and Supplementary Video 5).

Smart microscopy
Where live streaming analysis still deals with a unidirectional data
flow away from the microscope, ‘smart microscopy’ allows analytical
insights to be fed back to the microscope to adjust or optimize acquisi-
tion parameters. To illustrate Arkitekt relevance for smart microscopy,
we created an illustrative example of a closed-loop analysis workflow,
involving multidimensional acquisition and analytical feedback loop
from a deep-learning-based quantitative analysis readout (Fig. 4). By
offloading the analysis, the microscope software could remain dedi-
cated to providing acquisition functionality only, establishing a clear
separation of concern.

In this workflow, the user interactively sets up within the Micro-
Manager4,5 acquisition software a four-by-four view grid over live
cancerous fluorescent cells placed under an inverted microscope,

with a 20× objective, providing an acquisition field of view (FOV) of
2.4 × 2.4 mm2 (Fig. 4a). When the workflow started, two-dimensional
(2D) images of the recorded stage positions were acquired in time-lapse
mode, every 30 min for 24 h (768 images). For every acquired
image, nuclei were automatically segmented through the StarDist26
deep-learning algorithm running within the Arkitekt remote server.
Then, a DBSCAN27 clustering plugin, also running within Arkitekt,
allowed to identify cell clusters, here defined as groups of five or more
aggregated cells. Establishing real-time feedback, when one or more
cell clusters were detected, the stage coordinates corresponding
to their centroids were sent back to MicroManager. The 3D stacks
(25 optical sections) of ROIs tailored to the dimensions of each of
these clusters were then collected at higher magnification (40×),
which could be sent on demand for visual inspection to a connected
Napari instance. After all the clusters were acquired at high magni-
fication in 3D, the microscope returned to the 20× magnification to
continue the large FOV 2D time-lapse acquisition.

Through this adaptive strategy, we were able to reduce the
data load of the experiment from 2.5 TB (if the same field of view
was acquired at 40× magnification in 3D) to 50 GB. In total, 21,186
nuclei were segmented, from which 2,027 clusters were identified and
acquired in 3D. The acquisition time dropped from 29 min per time
point to 7.30 min.

This exemplary workflow illustrates Arkitekt’s ability to provide a
no-code smart microscopy platform, utilizing modular building blocks
(Fig. 4b). It is also possible to use the entire, or part of the workflow to
create a node that can be used in a bigger workflow (Fig. 4b). Further-
more, Arkitekt offers the possibility for the user to navigate through
the acquired data using the graphical database during or after the
acquisition (Fig. 4c). This workflow also demonstrates Arkitekt’s capac-
ity to integrate computational methods, which are not available in the
acquisition software, into the decision loop.

Finally, based on the strength of Arkitekt’s reactive programming
paradigm, it is possible to take full control over the acquisition process,
orchestrating and synchronizing timed events without relying on any
higher-level features of the microscopy platform such as multidimen-
sional acquisition tools.

Discussion
We introduce the Arkitekt software platform as an open-source solu-
tion to address the mounting challenges of modern bioimage analysis
workflows. Through three simple examples, we demonstrated Arkitekt’s
capability to combine multiple bioimage apps and scripts interac-
tively, providing real-time distributed analysis in a multidimensional
microscopy framework, and its applicability as a scheduler for smart
microscopy. As compared with the young body of literature, Arkitekt
stands out in terms of its interoperability via a computational and data
backbone that seamlessly connects multiple bioimage apps and script,
tailored to the scientist’s specific needs. It also provides a unique set of
features dedicated to the orchestration of these tools interactively and
in real time, allowing advanced data flow and facilitating interactive
analysis. These features are enabled through a set of abstractions that
allow nonexperts to design parallelizable and universal workflows visu-
ally, without having to worry about the underlying hardware. In accord-
ance with the principles of FAIR28, it employs strategies to address the
needs of modern and secure scientific data and metadata manage-
ment, providing the user with the ability to explore their data graph
programmatically and in usable interfaces. Arkitekt platform is fully
operational and comes with a packaged set of supporting libraries and
an emerging interactive online documentation (https://arkitekt.live/).

However, given its nature as an early built framework, some fea-
tures are still in experimental status and require a few iterations of
user and developer feedback cycles to achieve maturity. This includes
more dedicated client libraries for its open web APIs in other pro-
gramming languages, which are currently only developed for Python

http://www.nature.com/naturemethods
https://arkitekt.live/

Nature Methods | Volume 21 | October 2024 | 1884–1894 1893

Article https://doi.org/10.1038/s41592-024-02404-5

and JavaScript/Typescript. Especially, first-class support for the Java
ecosystem could help in transitioning more bioimage scripts beyond
ImageJ into the platform.

Designed for orchestrating tasks on multiple desktop worksta-
tions, Arkitekt’s apps and nodes are well placed to handle the orches-
tration of tasks on high-performance computing (HPC) resources.
Here, an Arkitekt app could be imagined that would run (node) tasks
not locally in memory but instead submit them via a HPC job scheduler
such as SLURM that could on-demand allocate resources. End users
could then rely on the same mechanisms for task assignment and
visually build reactive workflows spanning HPC resources and desktop
bioimage apps.

Arkitekt design emphasizes separation of concern, and the
vast part of its developed ecosystem could readily extend to other
modalities or experimental settings. One potential application
could be the world of behavioral experiments that share a similar
need for closed-loop experiments. Feeding analytical insights of
the animal’s behavior back into the ongoing experiment would open
new avenues for reactive monitoring of neuronal activities during
behavior-dependent stimulation. A broad software arsenal in this
space, such as Bonsai29 and more recently Autopilot30, have already
shown the merit of applying reactive and distributed workflows,
and can also integrate deep-learning algorithms, such as shown
in DeepLabCut31. Joining efforts in finding a unifiable solution to
both worlds could spark new experimental ideas, such as combining
behavior-driven (for example, through pose estimation) and neu-
ronal event-driven (for example, through in vivo calcium imaging)
closed-loop experiments.

Recent discourse highlights the potential benefits of integrating
intelligent agents more closely within microscopes to enable sophis-
ticated interactions via language32. However, despite their advanced
capabilities, these models are not yet adept at understanding complex
multilayer systems programming, as employed in microscope con-
trol software, but excel at integrating with high-level interfaces, such
as NumPy or Pandas, and when automating routine tasks. Arkitekt
nodes, with their well-documented interfaces, could serve as a crucial
interaction layer for large language models to interface with hardware,
providing an orthogonal additional way of automation to workflows
and enabling ‘conversational microscopy’.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02404-5.

References
1.	 Mahecic, D. et al. Event-driven acquisition for content-enriched

microscopy. Nat. Methods 19, 1262–1267 (2022).
2.	 Belthangady, C. & Royer, L. A. Applications, promises, and

pitfalls of deep learning for fluorescence image reconstruction.
Nat. Methods 16, 1215–1225 (2019).

3.	 Moen, E. et al. Deep learning for cellular image analysis.
Nat. Methods 16, 1233–1246 (2019).

4.	 Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N.
Computer control of microscopes using MicroManager.
Curr. Protoc. Mol. Biol. 14, 14.20 (2010).

5.	 Edelstein, A. D. et al. Advanced methods of microscope
control using muManager software. J. Biol. Methods 1, e10
(2014).

6.	 Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of
scientific image data. BMC Bioinformatics 18, 529 (2017).

7.	 Schindelin, J. et al. Fiji: an open-source platform for
biological-image analysis. Nat. Methods 9, 676–682 (2012).

8.	 Sofroniew, N. et al. Napari: a multi-dimensional image viewer
for Python. Zenodo https://doi.org/10.5281/zenodo.3555620
(2022).

9.	 Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility
and usability. BMC Bioinformatics 22, 433 (2021).

10.	 Sheffield, N. C. et al. From biomedical cloud platforms to
microservices: next steps in FAIR data and analysis. Sci. Data 9,
553 (2022).

11.	 Di Tommaso, P. et al. Nextflow enables reproducible
computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

12.	 Galaxy, C. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2022 update. Nucleic Acids
Res. 50, W345–W351 (2022).

13.	 Prigent, S. et al. BioImageIT: open-source framework for
integration of image data management with analysis. Nat.
Methods 19, 1328–1330 (2022).

14.	 Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer,
C. ImJoy: an open-source computational platform for the deep
learning era. Nat. Methods 16, 1199–1200 (2019).

15.	 Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. Event-triggered
STED imaging. Nat. Methods 19, 1268–1275 (2022).

16.	 Beghin, A. et al. Localization-based super-resolution imaging
meets high-content screening. Nat. Methods 14, 1184–1190
(2017).

17.	 Gerst, R., Cseresnyes, Z. & Figge, M. T. JIPipe: visual batch
processing for ImageJ. Nat. Methods 20, 168–169 (2023).

18.	 Casas Moreno, X., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I.
ImSwitch: generalizing microscope control in Python. J. Open
Source Softw. https://doi.org/10.21105/joss.03394 (2021).

19.	 Moore, J. et al. OME-NGFF: a next-generation file format for
expanding bioimaging data-access strategies. Nat. Methods 18,
1496–1498 (2021).

20.	 Allan, C. et al. OMERO: flexible, model-driven data management
for experimental biology. Nat. Methods 9, 245–253 (2012).

21.	 Weigert, M. et al. Content-aware image restoration: pushing the
limits of fluorescence microscopy. Nat. Methods 15, 1090–1097
(2018).

22.	 Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. AnchorCell
detection with star-convex polygons. In Medical Image
Computing and Computer Assisted Intervention MICCAI
265–273 (2018).

23.	 Besson, S. et al. Bringing open data to whole slide imaging.
Digit Pathol. 2019, 3–10 (2019).

24.	 Galland, R. et al. 3D high- and super-resolution imaging using
single-objective SPIM. Nat. Methods 12, 641–644 (2015).

25.	 Beghin, A. et al. Automated high-speed 3D imaging of organoid
cultures with multi-scale phenotypic quantification. Nat. Methods
19, 881–892 (2022).

26.	 von Chamier, L. et al. Democratising deep learning for
microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276
(2021).

27.	 Ester, M., Kriegel, H., Sander, J. & Xu, X. Proc. 2nd International
Conference on Knowledge Discovery and Data Mining 226–231
(1996).

28.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific
data management and stewardship. Sci. Data 3, 160018 (2016).

29.	 Lopes, G. et al. Bonsai: an event-based framework for processing
and controlling data streams. Front. Neuroinform. 9, 7 (2015).

30.	 Saunders, J. L. & Wehr, M. Mice can learn phonetic categories.
J. Acoust. Soc. Am. 145, 1168 (2019).

31.	 Mathis, A. et al. DeepLabCut: markerless pose estimation of
user-defined body parts with deep learning. Nat. Neurosci. 21,
1281–1289 (2018).

32.	 Carpenter, A. E., Cimini, B. A. & Eliceiri, K. W. Smart microscopes
of the future. Nat. Methods 20, 962–964 (2023).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02404-5
https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.21105/joss.03394

Nature Methods | Volume 21 | October 2024 | 1884–1894 1894

Article https://doi.org/10.1038/s41592-024-02404-5

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author

self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and
applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02404-5

Methods
Design principles
Arkitekt is designed as a modular server platform that encapsulates
various (micro-)services to separate the concerns of the platform and
can be distributed separately and stand alone. Core components are
as follows: Lok, the authentication and authorization backend and
configuration service; Rekuest, the task scheduler that manages task
assignment to connected apps; Fluss, the workflow design service; and
Port, a service that allows for the management of virtualized plugin
apps in Docker containers. Mikro is the only service of the Arkitekt
platform that focuses specifically on the management of microscopy
data and metadata. Supplementary Fig. 1 provides an overview of their
purpose and interplay for a simple workflow example.

Through Konstruktor, Arkitekt’s installer, the user can decide
which services to install and how to manage database access, as well as
whether to install other popular open-source services such as OMERO20.

Arkitekt follows an API first design, which leads to a unified, ver-
sioned and documented programming interface based on common
web protocols such as GraphQL, S3 and websockets. Every software
that connects to Arkitekt connects to this same API (even its own web
interface). With this unified API, a contract is provided between con-
necting apps and the Arkitekt backend. Given that every software pro-
ject respects this contract, they can develop completely independently,
yielding smaller maintainable software pieces.

As Arkitekt can be deployed to run anywhere from one computer
to being self-hosted on an institute server and even in the cloud, the
platform ensures adequate security and protection of the data from
third parties. Built around OpenID and Oauth2, Arkitekt allows for
fine-grained permission and access policies on both the user and appli-
cation level.

Implementation details
Tech stack. In its current version, Arkitekt services are primarily
built with Python and TypeScript/JavaScript, using Django on the
backend and React on the frontend. Both technologies were chosen
for their maturity, general popularity and availability of documenta-
tion, to make the onboarding of new developers as easy as possible.
Performance-critical parts of Arkitekt (such as task scheduling) inter-
face with other open-source software solutions such as RabbitMQ and
Redis. These two solutions were chosen because of their low-latency
task assignment and ease of maintenance (as opposed to distributed
message brokers such as Apache Kafka). Arkitekt supports a variety
of SQL databases, but by default comes with PostgreSQL. For binary
data storage (for example, images or big data tables), Arkitekt uses the
S3 standard, which in its default configuration is backed by MinIO, an
open-source self-hosted S3 alternative. All Arkitekt services are run-
ning as containerized web applications (see Supplementary Fig. 1 for
the description of services interplay).

Performance. Arkitekt is built around Zarr (for image data) and Apache
Parquet (for tabular data) to enable fast and lazy loaded data access for
datasets spanning from megabytes to terabytes. Arkitekt provides only
little abstraction (no web server roundtrip) around these technologies
and securely wraps them for performant access. Tools such as Napari can
take advantage of this tech stack to completely virtualize image loading.

Task scheduling. Arkitekt can distribute analysis workflows and tasks
through either a distributed or a local execution. In the distributed
environment, Arkitekt uses an asynchronous message queue (with
RabbitMQ by default) to schedule work on apps, allowing for con-
current execution of assigned tasks. Optimizing for low-latency task
scheduling, Arkitekt does never send binary data to the app directly,
but passes references to datasets that can then be loaded lazily from the
central server. Data that are not needed does not need to be loaded. All
tasks are cancellable through programmatic and graphical interfaces,

enabling the termination of complex workflows, acquisitions or train-
ing sessions. Errors are propagated and inspected for the assigning app
or user, and automatic retries in case of failure are available. Logs of the
task execution can be inspected on the web interface. For local execu-
tion, apps (only Python apps supported at this point) can become their
own scheduler which enables zero-latency local assignment of tasks,
only resorting to network calls when functionality is not locally present.

Client libraries. Any software and programming language can interact
with Arkitekt through its web API. For Python and TypeScript (react
based), we provide a comprehensive client that enables users to interact
with Arkitekt through native function calls or expose part of their soft-
ware as a node on Arkitekt by simply adding a decorator. The Python
library fully supports Jupyter notebooks, and GUI applications and
comes with a set of example apps that illustrate the ease of integra-
tion. The library can also be used to package and deploy Python apps
as Docker containers and make them installable with one click on any
Arkitekt instance. Both client SDKs (and their dependencies) are typed,
tested and documented online.

Workflow methods
Workflow I. Installation. Docker Desktop V20.04 was installed on a
desktop computer (Windows 10, Nvidia GPU 2080Ti, Intel i9 com-
puter processing unit (CPU), 1 TB solid state drive (SSD)). The Arkitekt
installer (Konstruktor) was download from its GitHub Repository
(https://github.com/arkitektio/konstruktor) and started. The platform
was installed following its guided installer, choosing a single user
setup. The Arkitekt service was started and Konstruktor instructed to
advertise the Arkitekt installation on the network.

Workflow specific installation. After installation, both the biofor-
mats reader-based OMERO conversion plugin (https://github.com/
arkitektio-apps/omero) and the standard processing plugin (https://
github.com/arkitektio-apps/stdlib), as well as the CARE plugin (https://
github.com/arkitektio-apps/kare) and the remote workflow schedul-
ing plugin Reaktor (https://github.com/arkitektio-apps/reaktor) were
installed via the ‘Plugin Pane’ from their respective GitHub repositories
and started as virtualized internal containers managed by the platform.
The MikroJ app was downloaded from its repository (https://github.
com/arkitektio-apps/mikroj), installed and configured to point to a
previously installed instance of Fiji/ImageJ5. Napari6 4.17 was installed
on the system and the Mikro-Napari plugin installed through the inter-
active code terminal inside the Napari environment, via a subprocess
call (necessary step as the plugin was not yet available on the Napari
plugin hub page). All apps were connected and the user authenticated
with the platform.

Data preparation. The original CARE dataset Tribolium21 was down-
loaded from its data repository (https://publications.mpi-cbg.de/
publications-sites/7207/) and unzipped. A new dataset was created
through the Orkestrator user interface (UI), and the images contained
in the dataset were uploaded through drag and drop. To convert the
uploaded raw image data (TIFF files) to the distributed Zarr-based for-
mat on the mikro server, a conversion node ‘Convert File’ was searched
and reserved on the web UI, directly linking it to the OMERO Conversion
plugin. All image files in the dataset were selected using multiselect and
converted through drop drown and Convert File (Batch) assignment.

Model preparation. The converted images of the original dataset were
inspected through the Arkitekt web interface, and three corresponding
images of low and high signal-to-noise ratio were associated by drag-
ging one over the other, labeling them as ‘ground-truth’ in same context
(‘CARE training set’) inside the pop-over Relate Dialog. The CARE app
providing the node train CARE model was reserved and run directly
from the drop-down menu of the newly created context, specifying

http://www.nature.com/naturemethods
https://github.com/arkitektio/konstruktor
https://github.com/arkitektio-apps/omero
https://github.com/arkitektio-apps/omero
https://github.com/arkitektio-apps/stdlib
https://github.com/arkitektio-apps/stdlib
https://github.com/arkitektio-apps/kare
https://github.com/arkitektio-apps/kare
https://github.com/arkitektio-apps/reaktor
https://github.com/arkitektio-apps/mikroj
https://github.com/arkitektio-apps/mikroj
https://publications.mpi-cbg.de/publications-sites/7207/
https://publications.mpi-cbg.de/publications-sites/7207/

Nature Methods

Article https://doi.org/10.1038/s41592-024-02404-5

the ‘ground-truth’ relation as the training relation. The progress of
the training was inspected on the web UI (Supplementary Video 8).

Workflow design. The workflow, as described below, was designed on
the Arkitekt design pane, exported and deployed through the web
interface on the Reaktor scheduling app, specifying Tribolium Analysis
as the new node title.

Workflow run. The deployed workflow ‘Tribolium Analysis’ node was
reserved through the web interface. MikroJ and Napari were started as
the state changes of the workflow were observed on the web interface.
The workflow was then started on the web interface, by right clicking
on a low signal-to-noise ratio image in the dataset and selecting the
Tribolium Analysis assignment. During execution, ROIs were subse-
quentially marked on the opened ROI layer in Napari, intentionally
selecting perceived areas of varying cell density and the loop backed
results table inspected in Napari.

Workflow II
Installation. Docker Desktop V20.04 was installed on a desktop
computer (Ubuntu 22.04, Nvidia GPU 2080Ti, Intel i9, 1 TB SSD). The
Arkitekt installer (Konstruktor) was download from its GitHub reposi-
tory (https://github.com/arkitektio/konstruktor) and started. The
platform was installed following its guided installer, choosing a single
user setup with Docker virtualization. The Arkitekt service was started,
and Konstruktor instructed to advertise the Arkitekt installation on the
network. The Tailscale virtual private network client was installed on
the same machine, added to a shared private virtual network according
to their documentation.

Sample preparation. JeWell preparation. JeWell, which are culturing
devices with truncated pyramidal shape structure enabling soSPIM
imaging, were fabricated and passivated to prevent cell adhesion as
thoroughly described in Beghin et al.25. JeWells with a square top open-
ing of 120 µm and a height of 100 µm were used for this experiment.

Spheroid culture. HEP-G2 cells stably expressing H2B–eGFP fusion pro-
tein were maintained in Dulbecco’s modified Eagle medium (DMEM)
(11965092, Invitrogen) supplemented with 10% fetal bovine serum
(FBS) (10082147, Invitrogen), 1% GlutaMAX (35050061, Invitrogen),
1% penicillin–streptomycin (15070063, Invitrogen) and 1% sodium
pyruvate (11360070, Invitrogen) at 37 °C and 5% CO2. After being trypsi-
nized, the cells were suspended in complete DMEM supplemented with
20% FBS, 1% GlutaMAX, 1% penicillin–streptomycin and 1% sodium
pyruvate. The cell suspension was adjusted to 0.5 × 106 cells ml−1 and
200 µl of cell suspension was poured onto the JeWell plate for 10 min
to allow for the cells to fall within the JeWells with approximately 80
cells per JeWell. Excess of cells were then removed by gently washing the
plate with complete culture medium. After the wash, 2 ml of complete
DMEM was added to the plate and the cells were cultured for 3 days at
37 °C and 5% CO2, allowing them to form spheroids of approximately
150 µm in diameter.

Fixation and labeling. On the third day, the plate was rinsed two
times with sterile PBS, and the 3D cell cultures were fixed for 20 min
in 4% paraformaldehyde (28906, Thermo Fisher Scientific) at room
temperature. The 3D cultures were then permeabilized for 30 min
in 1% Triton-X-100 (T9284, Sigma-Aldrich) solution in sterile PBS at
room temperature, followed by 24 h of incubation in blocking buffer
(2% bovine serum albumin (37525, Thermo Fisher Scientific) and 1%
Triton-X-100 in sterile PBS) at 4 °C on an orbital shaker. Samples were
then incubated with 0.5 μg ml−1 4,6-diamidino-2-phenylindole (62248,
Thermo Fisher Scientific) at 4 °C for 24 h on an orbital shaker followed
by three rinsing steps with blocking buffer and three rinsing steps with
sterile PBS before being stored at 4 °C until imaging.

Acquisition preparation. The fixed samples were mounted under a
Nikon Ti2 inverted microscope (Eclipse Ti2 series, Nikon), equipped
with a 60× objective (water immersion (WI) 1.27 numerical aperture
(NA), Nikon). The microscope, the motorized stages and the multidi-
mensional acquisition process were controlled by MetaMorph software
(Molecular Devices). Dedicated home-made plugins were integrated
into MetaMorph to allow for the control of the soSPIM beam steering
unit and sample illumination. They also allowed to precisely reposition
each JeWell in the camera field of view, ensuring optimal 3D multiposi-
tion soSPIM as previously described24,25. MetaMorph was configured
to run a multi-time point (30 time points every 20 min), multiposition
(20 positions) 3D acquisition (60 z-steps, 1 µm step size) of the samples.
The multi-time point acquisition was chosen to simulate a time-lapse
experiment on live samples while allowing for the assessment of the
reproducibility of the analytical pipeline. MetaMorph was instructed
to put the resulting TIFF image stacks into a specific folder on the
acquisition computer.

Workflow specific installation. After installation, the OMERO
conversion plugin (https://github.com/arkitektio-apps/omero), the
Standard Processing plugin (https://github.com/arkitektio-apps/
stdlib), the Stardist segmentation plugin (https://github.com/
arkitektio-apps/segmentor) and the remote workflow scheduling
plugin Reaktor (https://github.com/arkitektio-apps/reaktor) were
installed via the ‘Plugin Pane’ from their respective GitHub reposi-
tories and started as virtualized internal containers managed by
the platform. Gucker, the Arkitekt enabled file watcher app, was
installed through its installer (https://github.com/arkitektio-apps/
gucker) on the microscope computer (Windows 10, Intel-i5) and
pointed to the output directory of MetaMorph. Gucker was con-
nected to Arkitekt through its GUI and authenticated with the
platform.

Napari was installed on a portable desktop computer (MacBook
Air M2, 2023) and the Mikro-Napari plugin installed as described in the
previous workflow. The Notebook was configured to share the same
private virtual network as the desktop and microscope computer
utilizing Tailscale.

Docker Desktop was installed on two additional GPU-powered
computers (both Windows 10, i7 Nvidia GPU 2080TI, 500 GB SSD) and
two instances of the Stardist app were run through the terminal call of
‘docker run --t jhnnsrs/segmentor arkitekt run easy’, which downloaded
and started the plugin, the Fakts connection link in the terminal was
followed and the app was authorized on the platform.

Data preparation. A previously trained Stardist3D model25 was zipped
and uploaded through drag and drop on Arkitekt’s web interface.

Workflow preparation. The workflow was created through the work-
flow interface, setting the uploaded ‘Stardist soSPIM’ model as default
for the Stardist prediction node. The ‘convert OMERO node’ was given
a position tolerance of 40 µm to merge motion-corrected positions
together. The workflow was deployed and reserved.

Workflow run. The workflow was run, specifying a newly created data-
set as the input. The MetaMorph acquisition was started on the micro-
scope computer. During the acquisition, the workflow was monitored
both on the Arkitekt web dashboard, back on the acquisition computer,
as well as through inspecting the streamed segmentations on Napari,
from the remote laptop. Napari was occasionally switched on and off,
and moved to different networks, under assessment of the workflow
still running.

Workflow III
Docker Desktop V20.04 was installed on a desktop computer (Ubuntu
22.04, Nvidia GPU 2080Ti, Intel i9, 1 TB SSD). The Arkitekt installer

http://www.nature.com/naturemethods
https://github.com/arkitektio/konstruktor
https://github.com/arkitektio-apps/omero
https://github.com/arkitektio-apps/std
https://github.com/arkitektio-apps/std
https://github.com/arkitektio-apps/segmentor
https://github.com/arkitektio-apps/segmentor
https://github.com/arkitektio-apps/reaktor
https://github.com/arkitektio-apps/gucker
https://github.com/arkitektio-apps/gucker

Nature Methods

Article https://doi.org/10.1038/s41592-024-02404-5

Konstruktor was download from its GitHub repository (https://
github.com/arkitektio/konstruktor) and started. The platform was
installed following its guided installer, choosing a single user setup
with Docker virtualization. The Arkitekt service was started, and
Konstruktor instructed to advertise the Arkitekt installation on the
network.

Workflow specific installation. After installation, the Standard Pro-
cessing plugin (https://github.com/arkitektio-apps/stdlib), the Stardist
segmentation plugin (https://github.com/arkitektio-apps/segmentor)
and the remote workflow scheduling plugin Reaktor (https://github.
com/arkitektio-apps/reaktor) were installed via the ‘Plugin Pane’
from their respective GitHub repositories and started as virtualized
internal containers managed by the platform. Mikro-Manager was
installed on the microscope computer through the installer hosted
on https://github.com/arkitektio-apps/mikro-manager and pointed
to a previously installed instance of MicroManager5 (nightly version
of 30.06.2023) (https://download.micro-manager.org/nightly/2.0/
Windows/MMSetup_64bit_2.0.1_20230630.exe). All apps were con-
nected and authenticated with the platform.

Sample preparation. Cell culture. HEP-G2 cells stably expressing
H2B–eGFP fusion protein were maintained in DMEM (11965092, Inv-
itrogen) supplemented with 10% FBS (10082147, Invitrogen), 1% Glu-
taMAX (35050061, Invitrogen), 1% penicillin–streptomycin (15070063,
Invitrogen) and 1% sodium pyruvate (11360070, Invitrogen) at 37 °C
and 5% CO2.

Preparation. Cells were seeded at 30,000 cells ml−1 concentration on
18 mm round coverslips the day before the experiment and maintained
under culture medium at 37 °C and 5% CO2. On the experimental day,
the existing medium on the 18 mm round coverslips with the HEP-G2
cells was replaced with a fresh batch of Flourobrite DMEM (A1896701,
Gibco) supplemented with 10% FBS and 1% GlutaMAX. During imaging,
cells were maintained at a constant temperature of 37 °C and CO2 levels
were maintained at 5%.

Microscope preparation. A Nikon Ti2 inverted microscope equipped
with a tailored thermal chamber and CO2 airflow (Life Imaging Ser-
vices GmbH) was used. The MicroManager installation was instructed
to load the corresponding device drivers The separately installed
Mikro-Manager was configured to point to the correct configuration
groups, mapping objectives (20× and 40×) as well as the main stages
(x, yand z) and auto-focus stage.

On the day of the experiment, both 40× (Plan apochromatic (APO)
40×/0.95 NA, Nikon) and 20× (Plan APO 20×/0.5 NA, Nikon) objectives
were installed. Automated pixel size calibrations were performed utiliz-
ing sparse cells on the mounted coverslips as guiding stars, through
the integrated MicroManager plugin. In total, 16 positions (4 × 4)
on the coverslip were selected with the help of the MicroManager
Grid-Position manager to define the 2.5 × 2.5 mm2 FOV to be probed at
20× magnification. When the sample was mounted, offsets of the two
20× and 40× objectives with the Perfect Focus System offset (‘T-PFS
Perfect Focus Unit’, Nikon) were noted to allow precise z-repositioning
when switching objectives.

Workflow preparation. The starred workflow was created on the
Arkitekt web interface. It represents the logic of the acquisition of a
single position and consequent cluster monitoring on this position.
The workflow was deployed on the ‘Reaktor’ scheduling app, naming
the new node ‘Image Clusters on Position’.

A second workflow, now representing the wider multiposition
acquisition was created, utilizing the just-created primary workflow
as a node. the workflow was deployed, setting ‘Stream Multi Position
Clusters’ as the node name.

Workflow run. Mikro-Manager was started, connected and authen-
ticated with the Arkitekt platform. The Mikro-Manager Set Objective
PSF-Offset node was reserved and run two times, setting each objec-
tive’s previously noted offsets. The workflow node stream multi posi-
tion clusters was reserved and started on the Arkitekt web interface,
providing the following parameters as input: stage: newly created
stage; acquire 3D objective: 40×; acquired 2D objective: 20×; epsi-
lon: 100 pixels; minsize: 3; iterations: 24; iterationsleep: 20 min. The
streamed output was monitored on the Arkitekt web interface and on
the Stage Detail Pane, which automatically displayed new positions
and images.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data for the listed workflows is publicly available. The original data
for workflow I is a direct copy of the Tribolium dataset (https://publica-
tions.mpi-cbg.de/publications-sites/7207/). A subset of this dataset
is also made available on the documentation (https://arkitekt.live/
docs/showcases) for demo purposes. An export of the analyzed data
is available via Zenodo at https://doi.org/10.5281/zenodo.10031633
(ref. 33). Due to size restriction, only a limited export of the datasets
for workflow II is available via Zenodo at https://doi.org/10.5281/
zenodo.10031787 (ref. 34). Due to size restriction, only a limited export
of the datasets for workflow III is available via Zenodo at https://doi.
org/10.5281/zenodo.10031807 (ref. 35). The whole dataset is available
on request.

Code availability
All software developed and used in this publication is freely available
for access and use and have been deposited in dedicated GitHub reposi-
tory mentioned alongside the methods, which can be accessed from
https://github.com/arkitektio-apps. All software is licensed under
the MIT License. In addition to the repositories, an online documen-
tation (https://arkitekt.live) is provided to assist users in navigating
and utilizing the dedicated code associated with this publication.
This documentation offers insights into the structure, functions and
applications of the software. Workflows are available as documented
templates with system requirements and documentation on (https://
arkitekt.live/docs/showcases/paper).

References
33.	 Roos, J. Workflow I – Interactive analysis – Three analysed ROIS.

Zenodohttps://doi.org/10.5281/zenodo.10031633 (2023).
34.	 Roos, J. Workflow II – Streaming analysis – Multi-position,

multi timepoint acquisition. Zenodo https://doi.org/10.5281/
zenodo.10031787 (2023).

35.	 Roos, J. Workflow III – Smart Microscopy – Adaptive monitoring
of cell clusters. Zenodo https://doi.org/10.5281/zenodo.10031807
(2023).

Acknowledgements
We acknowledge F. Saltel and N. Allain for their kind gift of a stable
fluorescent cell line. This work was supported by the Ministère de
l’Enseignement Supérieur et de la Recherche (ANR-10-INBS-04
FranceBioImaging, ANR-22-CE42 DEEPHEPATOSCREEN, the
University of Bordeaux’s IdEx Investments for the Future program/GPR
BRAIN_2030). It received support from MBI seed funding to V.V. and
from the Calipso program (NRF2019-THE002-0007 to J.-B.S. and V.V.).
This project received funding from the European Union’s Horizon 2020
research and innovation program under the Marie Skłodowska-Curie
action (grant no. 794492), the Fonds AXA pour la Recherche to S.B.,
the Doctoral School for Health and Life Sciences of the University

http://www.nature.com/naturemethods
https://github.com/arkitektio/konstruktor
https://github.com/arkitektio/konstruktor
https://github.com/arkitektio-apps/stdlib
https://github.com/arkitektio-apps/segmentor
https://github.com/arkitektio-apps/reaktor
https://github.com/arkitektio-apps/reaktor
https://github.com/arkitektio-apps/mikro-manager
https://download.micro-manager.org/nightly/2.0/Windows/MMSetup_64bit_2.0.1_20230630.exe
https://download.micro-manager.org/nightly/2.0/Windows/MMSetup_64bit_2.0.1_20230630.exe
https://publications.mpi-cbg.de/publications-sites/7207/
https://publications.mpi-cbg.de/publications-sites/7207/
https://arkitekt.live/docs/showcases
https://arkitekt.live/docs/showcases
https://doi.org/10.5281/zenodo.10031633
https://doi.org/10.5281/zenodo.10031787
https://doi.org/10.5281/zenodo.10031787
https://doi.org/10.5281/zenodo.10031807
https://doi.org/10.5281/zenodo.10031807
https://github.com/arkitektio-apps
https://arkitekt.live/
https://arkitekt.live/docs/showcases/paper
https://arkitekt.live/docs/showcases/paper
https://doi.org/10.5281/zenodo.10031633
https://doi.org/10.5281/zenodo.10031787
https://doi.org/10.5281/zenodo.10031787
https://doi.org/10.5281/zenodo.10031807

Nature Methods

Article https://doi.org/10.1038/s41592-024-02404-5

of Bordeaux to J.R. and the European Research Council (ERC-SyG
ENSEMBLE) (grant no. 951294) to U.V.N.

Author contributions
J.R. performed the architectural design and implementation
of all relevant code of the platform backend and SDKs. J.-B.S.
supervised this work. R.G. performed the microscopy experiments.
T.D. contributed to the development of the acquisition platform of
workflow 2. F.L. performed the development and implementation of
segmentation plugins and guidance in bioimage focus. V.V., R.G. and
J.-B.S. contributed to the design of the workflows and supervised
the deployment and execution of the platform on different sites.
M.E. contributed to the initial supervision of a precursor to the
platform. S.B. helped in guidance and design input for metadata
models. A.W. performed testing and additional plugin apps
development. U.V.N. provided scientific environment and student
supervision. All the authors contributed to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-024-02404-5.

Correspondence and requests for materials should be addressed to
Jean-Baptiste Sibarita.

Peer review information Nature Methods thanks Peter Bajcsy,
Jean-Karim Hériché and Nico Stuurman for their contribution to the
peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02404-5
http://www.nature.com/reprints

	Arkitekt: streaming analysis and real-time workflows for microscopy

	Design and implementation

	Core design concepts

	Core technology

	Real-time performance
	Data management
	Flexible and powerful
	Powerful environment for developers
	Extensible and complementary
	Installation and scaling

	Results

	Single computer interactive analysis workflow

	Live monitoring and streaming analysis

	Smart microscopy

	Discussion

	Online content

	Fig. 1 The core design of Arkitekt platform, serving as a middleman for real-time microscopy experiments and streaming analysis workflows.
	Fig. 2 Arkitekt as a broker in interactive analysis workflows on a single computer.
	Fig. 3 Arkitekt facilitates parallelizable workflows on multiple computers.
	Fig. 4 Arkitekt enables smart microscopy experiment.
	Table 1 Overview of the main differences between existing solutions and Arkitekt.

