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E C O L O G Y

The genomic potential of photosynthesis in 
piconanoplankton is functionally redundant but 
taxonomically structured at a global scale
Alexandre Schickele1*†, Pavla Debeljak2,3, Sakina-Dorothée Ayata4,5, Lucie Bittner2,5,  
Eric Pelletier6,7, Lionel Guidi1,7‡, Jean-Olivier Irisson1,7‡

Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional di-
versity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplank-
ton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic 
functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging 
the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the 
global ocean. The latter is performed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) and is of-
ten associated with carbon concentration mechanisms in piconanoplankton, major marine unicellular photosyn-
thetic organisms. We show that the genomic potential supporting C4 enzymes and RUBISCO exhibits strong 
functional redundancy and important affinity toward tropical oligotrophic waters. This redundancy is taxonomi-
cally structured by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and high latitudes. These 
findings enhance our understanding of the relationship between functional and taxonomic diversity of microor-
ganisms and environmental drivers of key biogeochemical cycles.

INTRODUCTION
Marine carbon fixation is largely performed by the piconanoplank-
ton, responsible for 30 to 50% of global primary production (1, 2). 
Piconanoplankton encompasses the unicellular eukaryotic marine 
plankton from the lower nano- to pico-size fractions (0.8 to 5 μm; 
also referred to as nano- and picoeukaryotes), including small dia-
toms, dinoflagellates, or prymnesiophytes. We hereafter refer to as 
piconanoplankton, following the Tara Oceans size fractions (sensu 
3). These organisms are among the most diverse and abundant in 
the sunlit layer of the world ocean (3–5). In nutrient-poor areas, 
such as the oligotrophic open ocean, they locally contribute up to 
80% of the phytoplanktonic biomass (6).

Most of the photosynthetic production on Earth relies on the 
ribulose-1,5-bisphosphate carboxylase/oxygenase [RUBISCO; (7)]. 
This enzyme is also responsible for photorespiration (Fig.  1). The 
latter is an energetically costly and metabolically inefficient pathway 
that consumes O2 to produce CO2 (8). However, RUBISCO does 
not clearly discriminate between CO2 and O2. RUBISCO emerged 
~2 billion years ago in a period characterized by low oxygen (9). 
Therefore, its carboxylase function is unexpectedly inefficient rela-
tive to its oxygenase function, when considering the contemporary 
CO2:O2 ratio (10). The affinity of the carboxylase function relative to 

the oxygenase function of RUBISCO is referred to as the specificity 
factor (Fig. 1) that is variable across the tree of life, including marine 
phytoplankton (9, 11). To compensate for the relative inefficiency of 
the carboxylase function of RUBISCO, carbon fixation pathways 
evolved ~30 million years ago when atmospheric CO2 levels were 
estimated under 200 parts per million (ppm) (12, 13). This induced 
selective pressure toward higher carbon fixation efficiency and led 
to the emergence of RUBISCO of higher specificity factor and vari-
ous carbon concentration mechanisms (CCMs; i.e., biophysical or 
biochemical mechanisms). The latter aims to compensate for the 
specificity factor of RUBISCO by concentrating CO2 at its active 
site (8).

Among biochemical CCMs, C4 enzymes independently evolved 
across a large variety of marine and terrestrial lineages (8, 14). 
The C4 cycle is performed through three acid decarboxylation types 
(Fig. 1), all leading to an increase of the CO2:O2 ratio at the active 
site of RUBISCO (15): the malate decarboxylase–nicotinamide 
adenine dinucleotide phosphate (MDC-NADP) type, the MDC–
nicotinamide adenine dinucleotide (MDC-NAD) type, and the phos-
phoenolpyruvate carboxykinase (PEPCK) type. The common enzyme 
to all C4 acid decarboxylation types is phosphoenolpyruvate carbox-
ylase (PEPC), fixing CO2 in the cytosol by producing oxaloacetate 
(Fig. 1). In the MDC-NADP type, oxaloacetate is transferred to the 
chloroplast and reduced to malate. The latter is then decarboxylated, 
producing CO2 and pyruvate, which is converted back to phospho-
enolpyruvate (Fig. 1, blue pathway). In the MDC-NAD type, oxalo-
acetate is transferred to the mitochondria and reduced to malate. 
The decarboxylation reaction transfers CO2 to the chloroplast by 
producing pyruvate that is transferred back to the chloroplast to be 
converted to phosphoenolpyruvate (Fig.  1, orange pathway). Last, 
the PEPCK type directly converts the mitochondrial oxaloacetate to 
phosphoenolpyruvate (Fig. 1, black pathway). However, it partially 
performs the MDH-NAD reduction and MDC-NADP decarboxyl-
ation reactions to balance the adenosine 5′-triphosphate (ATP) 
and NADPH budget, leading to common reactions and enzymes 
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between acid decarboxylation types (15). In the terrestrial realm, 
both physiological measurements and stable isotope techniques con-
firmed the presence of C3 photosynthesis across a large range of en-
vironmental conditions, conversely to C4 photosynthesis that is 
adapted to warm, nutrient-poor, and high irradiance conditions (12, 
16). In the marine realm, however, only a few studies explored the 
environmental affinity of C4 photosynthesis regarding terrestrial-
based hypotheses [see, e.g., (13, 14, 17)]. The potential for C4 photo-
synthesis is highly suspected in key piconanoplankton lineages such 
as Mamiellophyceae and Prymnesiophyceae. Currently, subcellular 
evidence for C4 enzymes include (i) MDC-NADP and PEPC in 

Ostreococcus Tauri (18); (ii) MDC-NADP, PEPC, three different 
oxoglutarate-to-malate translocator and pyruvate phosphate diki-
nase (PEPDK) in various Micromonas strains (19); and (iii) PEPC in 
the Prymnesiophyte Emiliania huxleyi [plastid presence and gene 
encoding (20)]. However, because of their small size (i.e., 0.8 to 5 μm) 
and poor representation in culture collections (21), physiological 
measurements and stable isotope analysis are lacking for natural pi-
conanoplankton populations. Therefore, the genomic potential sup-
porting C3, and C4 photosynthesis and its associated biogeography 
and functioning remains scarcely documented (13, 14, 16).

Recent global expeditions focusing on surface plankton sampling, 
together with advances in metagenomic sequencing, provided unique 
data to address the genomic potential and biogeography-related gaps 
[see, e.g., (22–25)]. In this context, metagenomics data are of growing 
interest to explore the hidden taxonomic and functional diversity po-
tentially related to carbon fixation in piconanoplankton [see, e.g., (26, 
27)]. For example, genome-resolved metagenomics (28) based on the 
Tara Oceans eukaryotic metagenome led to the reconstruction of 
~800 metagenome-assembled genomes [MAGs; (29)]. The latter 
are defined as genome-based taxonomic units, functionally and 
taxonomically annotated, and quantified by their associated genome-
wide metagenomic reads. Therefore, MAGs offer the unique oppor-
tunity to study the genomic potential supporting carbon fixation 
and its biogeography, through both a functional and a taxonom-
ic prism.

Habitat modeling is a popular niche theory–based tool to esti-
mate species’ biogeography according to the environmental condi-
tions in which they are observed (30). Marine organisms are known 
for their important sensitivity to their surrounding environmental 
conditions, influencing growth, reproduction, and metabolic effi-
ciency across all life stages (31). Thus, habitat modeling has been 
widely used to project the past, present, and future biogeography 
across various marine organisms, from zooplankton to fishes and 
marine mammals [see, e.g., (32)]. However, omics-based habitat 
modeling is still an emerging field to explore functional and taxo-
nomic biogeography associated with unicellular planktonic organ-
isms (33–35). Building on the abovementioned properties associated 
with MAGs, habitat modeling is transferable to genomic potential, 
thus exploring the quantitative response of the associated taxonom-
ic and functional gene annotations to environmental conditions.

Here, complementing recent studies focusing on prokaryote or 
eukaryote-environment relationships (26, 33, 34), we provide an 
original, machine learning–based, comprehensive, and reproduc-
ible framework to derive the biogeography of the genomic potential 
related to metabolic functions, from metagenomic-based relative 
abundances data. Using multivariate boosted tree regressors [MBTRs; 
(36)], we simultaneously project the biogeography of selected ge-
nomic functional annotations while accounting both for their inter-
actions and environmental responses. We applied this framework to 
metagenome-based protein functional clusters (PFCs; hereafter re-
ferred to as “clusters”) linked to RUBISCO and C4 enzymes only, in 
marine piconanoplankton. Compared to a more traditional ap-
proach (i.e., searching reads in a functional database using sequence 
similarity), our methodology combining MAGs and PFCs offers 
several advantages. The quantitative signal resulting from a MAG 
is (i) standardized by the genome length and (ii) corresponds to 
a taxonomic identity. Combined with PFCs, (iii) it also includes 
the fraction of signal corresponding to not yet annotated genes. 
Thus, this approach offers a more robust quantitative framework than 

Fig. 1. Diagrammatic representation of the main enzymes and metabolites 
participating in the C4 carbon concentration mechanisms, C3 Calvin cycle, and 
photorespiration. Note that subcellular compartment and secondary metabolites 
are not represented. Enzyme names follow the Kyoto Encyclopedia of Genes and 
Genomes terminology. The three main currently described acid decarboxylation 
types are represented in blue [malate decarboxylase–nicotinamide adenine di-
nucleotide phosphate (MDC-NADP)], orange [MDC–nicotinamide adenine dinu-
cleotide (MDC-NAD)], and black [phosphoenolpyruvate carboxykinase (PEPCK)], 
respectively.
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traditional approaches, representative of eukaryotic plankton diver-
sity in open oceans [39.1 billion reads recruited, ~97% identity, 
~25 giga–base pair (Gbp) (29)] and transferable to a variety of func-
tions or enzymes of interest using the already computed PFC network. 
Last, habitat modeling provides an interesting tool to estimate the 
response and co-dominance patterns of C4 enzymes and RUBISCO 
to environmental conditions representative of the global ocean, con-
versely to estimates from the samples only, which might be driven 
by sampling and associated environmental biases.

RESULTS
C4 CCM enzymes across sampled stations
From the Tara Oceans eukaryotic MAGs, ~1.2 million clusters were 
built, for which 349 are related to RUBISCO or C4 enzymes within 
the 0.8- to 5-μm size fraction (fig. S1 and table S1). This dataset cor-
responds to 817 unique genes, with a median observed presence 
across 45 sampled stations per cluster. To avoid considering en-
zymes related to other metabolic functions, we selected those related 
to RUBISCO or C4 enzymes only, corresponding to 240 clusters 
(fig.  S1A), distributed across the world ocean; except the western 
Pacific and, to a lesser extent, Southern Ocean (Fig. 2). The succes-
sive cluster selection criteria (i.e., clusters exclusive to RUBISCO or 
C4 enzymes, minimum presence at 10 sampling stations) did not 
present notable effects on the distribution of clusters across number 
of reads, number of genes, and taxonomic classes (fig. S2). In con-
trast, we observed a loss of signal for the MDCs (-NAD and -NADP) 
between functionally exclusive and nonexclusive clusters, highlight-
ing an important fraction of sequence homologs for these enzymes 
(fig. S2).

Standardized distribution of the genomic potential related 
to C4 photosynthesis
Here, we present projections for each C4 enzyme and the RUBISCO.  
First, we rescaled the cluster-level projections (i.e., model outputs; 
fig. S1D) between 0 and 1 (i.e., distribution patterns; fig. S3). Then, 
we aggregated these patterns at the enzyme level according to their 
respective functional annotation. We therefore alleviated the prop-
agation of the observed dominance of a given cluster to the aggre-
gated enzyme-level patterns. The resulting enzyme-level projections 

are referred to as standardized patterns. For each enzyme, it rep-
resents a prediction of the genomic potential according to the environ-
mental conditions at each geographical location and independently of 
any taxonomic dominance.

Because most C4 enzymes are involved in several acid decarbox-
ylation types, we cannot directly infer their corresponding distribu-
tion. However, MDC-NAD, MDC-NADP, and PEPCK are considered 
representative of their respective acid decarboxylation types. We pre-
dicted similar standardized patterns (Fig. 3) for all acid decarboxyl-
ation types and RUBISCO. The standardized patterns of all C4 
enzymes presented medium to high pairwise Pearson’s correlation 
(0.5 to 0.9), except MDC-NAD and aspartate aminotransferase(s) 
(also called glutamic-oxaloacetic transaminase, GOT; Fig. 1) which 
are weakly correlated (0.3). We predicted a medium-to-high genom-
ic potential (between 0.6 and 0.8) for most C4 enzymes in temperate 
and tropical oligotrophic conditions (between 50°N and 40°S, ex-
cluding major upwelling areas; Fig. 3). The abovementioned pre-
dictions are associated with a coefficient of variation (CV) below 
30% (Fig. 3A). The genomic potential of both PEPDK and MDC-
NAD, however, presents lower values (between 0.3 and 0.4) in tropi-
cal oligotrophic gyres and in the pacific equatorial upwelling for 
PEPDK. Furthermore, we predicted areas of high genomic potential 
(>0.8) restricted to temperate areas such as the North and South 
Atlantic (~50°N and 40°S) and the North Pacific (~45°N) for RUBISCO 
and PEPCK, in comparison with other C4 enzymes. These patterns 
suggest a higher affinity of the genomic potential of C4 enzymes for 
the temperate and tropical oligotrophic conditions in comparison to 
RUBISCO. Furthermore, we predicted low-to-moderate potential 
(between 0 and 0.4) in high latitudes (i.e., above polar circles) for all 
standardized patterns (Fig.  3A). Predictions in such latitudes also 
present important calibration and projection-related variability, with 
coefficients of variations ranging from 30 to 100% (e.g., for the 
MDH-NADP and PEPCK). Therefore, our genomic potential pre-
dictions remain inconclusive in high latitudes, which are also subject 
to lower sampling coverage.

The environmental variables’ importance in the trained model 
(fig. S4) highlighted the predominant roles of dissolved oxygen con-
centration (contributing to 34% of the explained variance) and the 
yearly variability (i.e., inter-month SD) in salinity (29%) and, to a 
lesser extent, of oxygen saturation, chlorophyll a concentration, and 
temperature. Furthermore, we revealed a strong affinity (i.e., maxi-
mum potential) of most standardized patterns (fig. S5) for tropical, 
oligotrophic conditions (e.g., temperature between 15° and 30°C; 
phosphate concentration below 0.5 μmol/kg). However, we predicted 
different responses to the variability in chlorophyll a concentration 
and euphotic zone depth across enzymes (fig. S5). Last, we high-
lighted no taxonomic dominance across the world oceans, accord-
ing to the taxonomic composition associated with each cluster, 
suggesting a worldwide functional redundancy in the genomic po-
tential supporting C4 enzymes in piconanoplankton (fig. S6).

Weighted distribution of the genomic potential related to 
C4 photosynthesis
Here, we present projections for each C4 enzyme and the RUBISCO.  
First, we rescaled the cluster-level projections (i.e., model outputs; 
fig. S1D) by their observed metagenomic read abundance (i.e., 
weighted distribution patterns; fig. S3). Then, we aggregated these 
patterns at the enzyme level according to their respective functional 
annotation. We therefore propagate the observed dominance of a 

Fig. 2. Location of the Tara Oceans sampling stations. Stations are represented 
as black dots. The annual mean sea surface temperature from the World Ocean 
Atlas (56) is represented in the background. The dashed line corresponds to the 
equator. The dotted lines correspond to the 30°N and 60°N and 30°S and 60°S paral-
lel, respectively.
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given cluster (i.e., and associated taxa) to the aggregated enzyme-
level patterns. The resulting enzyme-level projections are referred 
to as weighted patterns. For each enzyme, it represents the corre-
sponding genomic potential (i.e., relative to the other considered 
enzymes), according to the environmental conditions at each geo-
graphical location.

We predicted contrasting weighted patterns between the RUBISCO 
and the acid decarboxylation types (Fig. 4A). The weighted pattern 
of RUBISCO presented maximum potential in temperate areas 
(Fig. 4B). We predicted low-to-moderate potential (<0.3) and mod-
erate (~30%) uncertainty in high latitudes for the weighted patterns 
of PEPC, MDCs, MDHs, and transferases (i.e., GOT and alanine 

A

B

Fig. 3. Standardized distributions of the genomic potential. Standardized patterns corresponding to the relative genomic potential supporting C4 enzymes and RUBISCO. 
(A) Synthetic diagram of the metabolic pathway and corresponding projections. (B) Inter-projections Pearson’s spatial correlation index. The three main currently described acid 
decarboxylation types are represented in blue (MDC-NADP), orange (MDC-NAD), and black (PEPCK), respectively. Involved metabolic components and enzymes are indicated on the 
diagram by squares and circles, respectively. The two-dimensional (2D) color scale represents the standardized genomic potential for the target enzyme as the hue value (y axis) and 
the associated coefficient of variation as the saturation (i.e., uncertainty in % of the mean; x axis). An orange-to-red hue corresponds to a region where environmental conditions 
yield a high proportion (>0.6) of the target genes in the model. A low saturation level corresponds to an important variance among the underlying cluster-level projections. The 
dashed line on the projections corresponds to the equator. The dotted lines on the projections correspond to the 30°N and 60°N and 30°S and 60°S parallel, respectively.
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A

B

Fig. 4. Weighted distributions of the genomic potential. Weighted patterns corresponding to the relative genomic potential supporting C4 enzymes and RUBISCO, 
rescaled by the corresponding observed relative metagenomic reads abundance. (A) Synthetic diagram of the metabolic pathway and corresponding projections. 
(B) Inter-projections Pearson’s spatial correlation index. The three main currently described acid decarboxylation types are represented in blue (MDC-NADP), orange 
(MDC-NAD), and black (PEPCK), respectively. Involved metabolic components and enzymes are indicated on the diagram by squares and circles, respectively. The 2D 
color scale represents the weighted genomic potential for the target enzyme as the hue value (y axis) and the associated coefficient of variation as the saturation (i.e., 
uncertainty in % of the mean; x axis). An orange-to-red hue corresponds to a region where environmental conditions yield a high proportion (>0.6) of the target genes in 
the model. A low saturation level corresponds to an important variance among the underlying cluster-level projections. The dashed line on the projections corresponds 
to the equator. The dotted lines on the projections correspond to the 30°N and 60°N and 30°S and 60°S parallel, respectively.
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transaminase; GPT-GGAT; Fig. 4A). These patterns also presented 
moderate-to-high potential (between 0.5 and 1) in tropical areas, with 
some discrepancies. We show a Pearson’s correlation index above 0.5 be-
tween the abovementioned enzymes and above 0.7 for GOT and MDHs 
(Fig. 4B). The latter presented an important potential in oligotrophic re-
gions (e.g., Pacific gyres), suggesting functional redundancy in the ge-
nomic potential from oxaloacetate to malate (Fig. 4A). In contrast, we 
predicted a high potential (>0.7) in eutrophic Pacific waters for the 
weighted patterns of MDCs (Pearson’s correlation above 0.7; Fig. 4A). 
Overall, we show high confidence in the areas associated with high ge-
nomic potential, with CVs lower than 30% among all trained algorithms 
and 100 bootstrap projections. The abovementioned weighted responses 
to environmental variables are like the ones highlighted in the previous 
section, characterized by higher potential in warm, low seasonality, and 
generally oligotrophic water bodies (figs. S7 and S8).

Conversely, we predicted moderate to high-intensity values in 
oligotrophic tropical areas, but in the Southern Ocean (>0.5; Fig. 4) 
for the weighted pattern of PEPCK (i.e., a different acid decarboxyl-
ation type). The latter was preferentially distributed along water 
bodies characterized by (i) high seasonality of the chlorophyll a con-
centration and the depth of the euphotic zone, (ii) high concentra-
tions of oxygen (presenting the highest explanatory power in the 
model training; fig. S4) and nutrients (e.g., phosphates and nitrates), 
and (iii) average temperatures below 8°C (fig. S7).

Last, weighted patterns associated with high latitudes (e.g., cor-
related with the one of PEPCK) were composed at 28% of Prymne-
siophyceae and 50% of Mamiellophyceae (Shannon index of 1.5), 
based on the taxonomic composition of each cluster. Mamiellophy-
ceae also composed 40% of the patterns with a clear temperate affin-
ity (e.g., correlated with the one of RUBISCO; fig. S8). In contrast, a 
larger diversity of taxonomic classes, with a Shannon index of 2.1, 
was obtained for patterns associated with equatorial latitudes.

DISCUSSION
Genomic potential for C4 CCM in piconanoplankton
By selecting clusters annotated by C4 enzymes or RUBISCO only, we 
considered a fraction of the available metagenomic information 
(i.e., ~67% of all the clusters related to C4 enzymes or RUBISCO). In 
addition, genes related to other metabolic pathways may have re-
sponses to environmental variables different from genes related to 
C4 enzymes, potentially including bias in their corresponding clus-
ters’ projection. Therefore, selecting a reduced set of clusters allevi-
ates the risk of metabolic noise in the environmental responses, 
limited to the effect of C4 enzymes potentially involved in other 
pathways (e.g., GPT-GGAT transporter).

Our study focused on piconanoplankton, the photosynthetic 
fraction of which is generally dominated by the Prymnesiophyceae, 
Bacillariophyceae, Dinophyceae, and Mamiellophyceae lineages in 
the open ocean (3, 21). The latter is a major clade of the polyphyletic 
Prasinophyceae assemblage (37). The potential for C4 photosynthesis 
has been suggested for several families, including Bacillariophyceae 
by combining C4 enzyme inhibition and photosynthetic efficiency 
monitoring [e.g., PEPDK (38), PEPC, and PEPCK (39)]. Evidence for 
genes encoding all C4 enzymes exists in Micromonas and Ostreococcus, 
both belonging to the Mamiellophyceae (37, 40). A plastid PEPC en-
zyme was recently found in E. huxleyi (38), a Prymnesiophyte abun-
dant in temperate and polar regions (41). However, to our knowledge, 
no study provided univocal evidence for C4 CCM usage in natural 

populations for the smallest fraction of piconanoplankton, contrast-
ing with recent findings supporting C4 CCM usage by marine dia-
toms (14). Stable isotope measurements would be necessary to fully 
understand C4 photosynthesis in piconanoplankton, but they are dif-
ficult to apply at the species level in natural, uncultured, plankton 
communities [see, e.g., (16, 17)]. Alternatively, recent literature sug-
gests the need for further studies on deep chlorophyll a maxima and 
various transporters (e.g., bicarbonate transporters), some of which 
are associated with or specific to C4 metabolism, to better under-
stand C4 CCM in natural populations (14, 15).

Complementing these experimental approaches, we use a data-
driven approach to shed more light on the environmental drivers of 
C4 genes in marine piconanoplankton. However, MAGs integrate 
chloroplast and mitochondrial genes corresponding to C4 enzymes 
but do not distinguish their origin (29) nor provide information on 
the subcellular location of the corresponding enzymes (13, 42). 
Therefore, the patterns presented here must be interpreted as the 
potential for the (co-)presence of those pathways in the genome. 
They should now be complemented by culture-based studies, locat-
ing enzymes within cells and/or performing carbon isotope discrim-
ination to confirm C4 CCM presence, expression, and its coexistence 
with C3 photosynthesis in piconanoplankton lineages (16). The present 
study could be used to locate regions where such mechanisms are most 
likely to occur.

Environment-driven genomic potential
The modeled distribution patterns revealed that the genomic poten-
tial for C4 photosynthesis is more associated with tropical oligotro-
phic and annually stratified waters. Conversely, the proportion of 
reads related to RUBISCO (i.e., considered a representative of all 
photosynthetic pathways, due to its central role in C3, C4, and CAM 
photosynthesis) is higher in temperate regions (Fig. 3A). The fact 
that terrestrial C4 plants (8) and the genomic potential for C4 CCM 
in piconanoplankton display similar latitudinal distribution, around 
the tropics, does not imply that the environmental drivers of those 
distributions are the same. In terrestrial plants, C4 CCMs are consid-
ered an adaptation to drought and are, for example, also associated 
with a specific leaf structure that reduces their water consumption 
(8). Drought is of course not an evolutionary driver for marine pi-
conanoplankton. Alternatively, they present an important surface 
area:volume ratio [i.e., small cells or presence of a vacuole (43, 44)] 
leading to a high nutrient absorption yield, which is adapted to oligo-
trophic waters, common in the tropical ocean.

In addition to environmental conditions, the biogeography of 
the genomic potential supporting C4 CCM may also relate to ir-
radiance levels, largely controlling ATP generation, necessary for 
the decarboxylation reaction (43). C4 CCM requires additional 
ATP generation to increase the RUBISCO efficiency in compari-
son to classical C3 photosynthesis without affecting the energy 
available for the latter (43, 45). In contrast, an excess of ATP may 
lead to photoinhibition, thus lower carbon fixation efficiency (38, 
46). Therefore, it has been suggested that C4 photosynthesis is 
particularly adapted to dissipate excess energy in the cell in high 
irradiance areas such as tropical oceans (14, 38). Our weighted 
patterns highlighted differences between PEPCK and MDCs 
(Fig. 4). The latter requires two extra ATPs compared to the C3 
carbon fixation to complete the pathway. In a logical way, the 
PEPCK acid decarboxylation type, which only requires one extra 
ATP and thus is supposed to be more efficient in low irradiance 
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environments (45), showed here the highest genomic potential in 
polar or subpolar regions.

Functional and ecological implications
We highlighted functional redundancy among C4 genes in oligotro-
phic tropical waters (fig.  S6). This contrasts with high latitudes, 
where only a few taxa dominate (fig. S8) (4, 47). We highlighted a 
biogeographical differentiation between the weighted pattern of 
RUBISCO—i.e., the baseline photosynthetic enzyme—and those of 
C4 enzymes. In the period ranging from 30 million to 20,000 years 
ago, the average atmospheric CO2 concentration markedly reduced 
from ~1000 ppm to less than 200 ppm. This long-term atmospheric 
CO2 concentration trend induced a lower concentration of dissolved 
inorganic carbon in the surface ocean waters (8). This led to a selec-
tive pressure toward efficient photosynthetic metabolism, like C4 
CCMs (12) or, to a lesser extent, RUBISCO of higher carboxylation 
affinity [e.g., type II in Dinoflagellates (13)]. While the evolution of 
C4 CCMs in marine organisms is not yet fully understood, 48 inde-
pendent evolutions of C4 CCMs were identified in the genome of 
terrestrial plants [e.g., grasses and caryophyllales (8)], suggesting a 
higher genomic potential for C4 CCMs in taxonomically diverse ar-
eas (12). The abovementioned functional redundancy in the genom-
ic potential for C4 CCM in taxonomically rich tropical waters may 
relate to coevolution between taxonomic diversification and its as-
sociated functions (i.e., neutral theory). However, the functional di-
versity among C4 acid decarboxylation types may also reflect—or be 
amplified by—a selection process, as it may present a selective ad-
vantage. Moreover, the dominance of Mamiellophyceae (i.e., relative 
to other piconanoplankton associated with RUBISCO or C4 en-
zymes) in the temperate and polar latitudes (associated with the pat-
terns of RUBISCO and PEPCK; fig.  S8) is concordant with the 
literature (48). Although cosmopolitan, several Mamiellophyceae 
species have been shown as important in both the Arctic and Antarctic 
[see, e.g., (49–51)]. Likewise, the cosmopolitan Prymnesiophyceae 
has been identified as dominant in high latitudes (associated with 
the pattern of PEPCK; fig. S8), including in the Southern Ocean (41) 
and associated with Mamiellophyceae (i.e., Prasinophyceae) in the 
North Atlantic (52, 53). The literature therefore validates their pre-
dicted biogeography. We identified key environmental predictors 
shaping the biogeography and (co-)dominance patterns of the ge-
nomic potential supporting C4 enzymes and RUBISCO in marine 
piconanoplankton. Such results open perspectives for exploring the 
relationship between functional and taxonomic diversity in the 
oceans, complementing already diverse approaches and data types, 
and for a better understanding of the environmental drivers of key 
biogeochemical cycles in the current and future climatic context.

MATERIALS AND METHODS
Experimental design
Genomic and environmental data
We studied the biogeography of the genomic potential related to C4 
enzymes through the prism of MAGs (29) retrieved from the Tara 
Oceans expedition (2009–2013). Briefly, 280 billion reads from 798 
metagenomes, corresponding to the surface and deep chlorophyll 
maximum layer of 210 stations from the Pacific, Atlantic, Indian, 
Southern, and Arctic Oceans, as well as the Mediterranean and Red 
Seas (Fig. 2), encompassing eukaryote-enriched plankton size frac-
tions ranging from 0.8 μm to 2 mm, were used as inputs for 11 

metagenomic coassemblies (6 to 38 billion reads per coassembly) 
using geographically bounded samples. We thus created a culture-
independent, nonredundant (average nucleotide identity <98%) 
genomic database for eukaryotic plankton in the sunlit ocean con-
sisting of 683 MAGs and 30 single-cell genomes, all containing 
more than 10 million nucleotides for a total size of 25.2 Gbp and 
encoding for 10,207,450 genes. Then, a sequence similarity network 
(SSN) was built out using the 683 manually curated MAGs following 
a similar methodology to the one developed in (33). A pairwise 
comparison was computed between each protein sequence. The re-
sulting alignment was then filtered, removing self-hits and pairs 
showing less than 80% of sequence identity and coverage. Resulting 
PFCs [as in (33)] were built, hereafter referred to as clusters. A func-
tional annotation was added to the sequences, and the functional 
homogeneity was checked in each cluster (54, 55).

For each of the 130 selected Tara Oceans metagenomic surface 
samples, we retrieved a set of monthly, global scale, environmental 
climatologies (56–58) encompassing the 2005 to 2017 period, at a 
spatial resolution of 1° × 1° (table S2). The latter corresponds to the 
available climatology encompassing the sampling period (2009–
2013), where we considered temporal environmental variations 
negligible in comparison to spatial environmental gradients. They 
correspond to a restricted set of factors characterizing the water 
body (e.g., oligotrophic and eutrophic) and related to C4 photosyn-
thesis, for which we calculated the yearly average and yearly SD (i.e., 
a proxy of seasonal variations).
Protein functional cluster selection and preprocessing
We first selected a reduced set of clusters, within the 0.8- to 5-μm 
size fraction, for which 100% of the Kyoto Encyclopedia of Genes 
and Genomes orthology (59) annotated protein members were re-
lated to C4 enzymes or RUBISCO (fig. S1 and table S1). To avoid 
model overparameterization and because rare clusters were as-
sumed as not influencing the large-scale patterns investigated in this 
study, we only considered clusters that were present in a minimum 
of 10 Tara Oceans stations. The corresponding dataset contained 
240 clusters, associated with 234 MAGs. The latter presented an av-
erage completeness estimate of 57% (data S1). In comparison, the 
average completeness estimate across all MAGs from Delmont et al. 
(29) yields 37%. As a supplementary quality check, we estimated a 
minimum horizontal coverage (i.e., the number of bases of a MAG 
covered with a certain depth) of 68% for each of the 234 MAGs (data 
S1). Last, we assessed the quality of our MAGs using the Bench-
marking Universal Single-Copy Orthologs (BUSCO) protocol (60). 
The latter is a set of conserved single-copy genes present in most 
eukaryotic and prokaryotic genomes. It is used to assess both the 
completeness and quality of genomic data by comparing the pres-
ence of conserved single-copy genes across genomes (i.e., the per-
centage of mapped BUSCO genes in each MAG). It therefore 
complements technical metrics such as contiguity measures and is 
largely applicable across datasets (60). We show that our MAGs are 
associated with an average BUSCO completeness of 55.7% (data S1). 
We therefore consider these MAGs of sufficient quality for identify-
ing C4 genes across our samples. To reduce the number of response 
variables (clusters; PFCs) to a reasonable amount for multivariate 
modeling, with respect to the limited number of stations, we per-
formed an Escoufier dimensional reduction (61). The latter itera-
tively selects the clusters whose pattern across stations minimizes 
the residual variance of the dataset. Here, we selected 50 clusters 
that represent more than 95% of the 240 clusters variance to be 
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included in the multivariate algorithm. To alleviate the effect of gene 
length and sequencing effort variability between samples on the 
number of reads, we normalized the metagenomic reads by the 
length of the corresponding gene coding part and the total number 
of reads per station (i.e., including reads of all non-considered clus-
ters), respectively. Because the total genomic material present at 
each sampling station is unknown (i.e., non-exhaustive sampling 
and sequencing effort), the absolute number of reads is not compa-
rable among stations. To compare the abundance between selected 
clusters at different sampling stations, we transformed the dataset to 
relative abundance (fig. S1).
Multivariate boosted tree regressors
General principle. Recently, growing interest in interactions between 
response variables led to the development of multivariate machine 
learning algorithms, such as MBTRs (36). The latter is particularly 
adapted to a small sample size as the interactions between response 
variables are considered supplementary information to calibrate the 
model. Here, we use MBTR to model the relationship between clima-
tologies and metagenomic relative abundance (i.e., summed at 1 for 
each station; fig. S1). To best reproduce the response of metagenomic 
reads (i.e., response variable) to the corresponding environmental 
variables (i.e., explanatory variable), the model sequentially fits deci-
sion trees (i.e., boosting rounds) using gradient descent to minimize 
a specific loss function. At each boosting round, the algorithm fits a 
decision tree on the residuals of the previous boosting round and 
computes a tree loss (i.e., a measure of deviation between observed 
and predicted response variable values). Decision trees are constructed 
using the hessian of the loss function (i.e., second-order tensor of 
its partial derivatives) to minimize the loss gradient. Therefore, the 
information learned by the nth tree is passed to the n+1th tree at a 
user-defined learning rate (fig. S1). The ensemble of sequentially fitted 
decision trees is considered in the model until the minimum loss is 
reached. Last, one important feature of MBTR is the conservation of 
the initial correlation structure between the response variables [see 
methods in (36)].

Model training and evaluation. To avoid overfitting, the explanato-
ry and response datasets were split between the training set and the 
test set using a n-fold cross-validation procedure. For each model, n 
algorithms were trained on different n−1-folds, while the remaining 
fold was used for testing only (i.e., computing the loss at each boosting 
round). To minimize the effect of spatial and temporal autocorre-
lation in our data [i.e., leading to overoptimistic model evaluation 
(62)] the n-folds were defined according to the Tara Oceans station 
number. The latter follows a continuous trajectory in space and time, 
resulting in spatially and temporally distant folds [i.e., spatial and 
temporal block splitting, as recommended in (62)]. The resulting n 
algorithms predictions were aggregated in an average response and its 
corresponding CV. The ability of the final model to reproduce the ob-
served clusters’ relative abundance across environmental conditions 
has been measured by the R2 criteria and the root mean square error 
(RMSE; between 0 and 1 according to the distribution pattern scale).

Spatial projections. To better estimate projection uncertainty, our 
spatial projections were constructed using a bootstrap procedure. For 
each 100-bootstrap round, we first resampled the original dataset (i.e., 
train and test response dataset and corresponding explanatory varia-
ble values) with replacement. Then, we refitted an MBTR algorithm 
on the resampled data by using the hyperparameters corresponding 
to the validated model, including the number of boosting rounds 
corresponding to the minimum loss across all n algorithms. Last, the 

refitted MBTR algorithm was used to predict the relative abundance 
of clusters worldwide, using the corresponding climatological values 
at each geographical cell.
From model projections to final outputs
We only modeled the 50 clusters representing 95% of the dataset 
variability. Therefore, we indirectly reconstructed the projections of 
the 190 others by identifying their most representative Escoufier-
selected cluster. To this extent, we performed a correspondence 
analysis based on the observed relative abundance of all clusters. By 
using the dimensions of the correspondence analysis space corre-
sponding to a minimum of 80% variance explained, we calculated 
the Euclidean distance between each nonselected cluster, and its 
nearest neighbor selected by the Escoufier criteria. Because the 50 
Escoufier-selected clusters represented more than 95% of the data-
set variability, we considered that a cluster and its nearest neighbor 
in the correspondence analysis space share the same relative abun-
dance pattern. We then reconstructed the spatial projections of the 
190 clusters not considered in MBTR according to their projected 
nearest Escoufier-selected neighbor. The resulting 240 cluster-level 
projections of the genomic potential were then aggregated at the en-
zyme level according to their functional annotation (see Results; 
fig.  S3). Each projection was standardized between 0 and 1, thus 
considered equally weighted distribution patterns (fig. S3, top). We 
then performed two aggregation methods, leading to a (i) standard-
ized and a (ii) weighted distribution of the genomic potential related 
to C4 photosynthesis. In the former, we performed a simple average 
of all cluster-level projections sharing a similar functional annota-
tion (fig.  S3, left). This resulted in an enzyme-level projection re-
flecting the most common patterns at the cluster level. In other 
words, the highest genomic potential at the enzyme level was locat-
ed where most cluster-level projections present their highest ge-
nomic potential (fig. S3, left). It was independent of any taxonomic 
dominance. In the latter, however, we performed a weighted average 
of all cluster-level projections sharing a similar functional annota-
tion. The weights corresponded to the sum of the observed relative 
abundance of each cluster, across all stations (figs.  S1A and S3, 
right). This resulted in an enzyme-level projection reflecting the 
cluster-level patterns with the highest relative abundance (i.e., dom-
inant patterns). In other words, the highest genomic potential at the 
enzyme level was located where abundant cluster-level projections 
presented their highest genomic potential (fig. S3, left). It propagated 
the associated taxonomic dominance to the enzyme-level patterns.

Statistical analyses
Metagenomic data construction
The bioinformatic workflow designed to build the MAGs can be 
found in (63) and on the genoscope website: www.genoscope.cns.
fr/tara/. Original metagenomes are available under the European 
Bioinformatics Institute repository with project ID PRJEB402 and 
organized into four major size classes of 0.8 to 5 μm, 3 to 20 μm, 
20 to 180 μm, and 180 to 2000 μm. To estimate the abundance and 
expression of each contig in each sample, cleaned reads (from 
metagenomes and metatranscriptomes) were mapped against the 
eukaryotic MAGs using the bwa tool (version 0.7.4). The following 
parameters were used: bwa aln -l 30 -O 11 -R 1; bwa sample -a 
20000 -n 1 –N; samtools; rmdup. Reads covering at least 80% of 
read length with at least 95% of identity were retained for further 
analysis. In the case of several possible best matches, a random one 
was picked. The first SSN was built out of 683 manually curated 
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MAGs from 10,207,435 eukaryotic proteins. This file was used for 
the creation of a diamond database and a protein blast of the pro-
tein sequences against the database to compute the percentage of 
similarity between every pair of proteins detected in the MAGs. 
Here, we used a maximum e-value of 1 × 10−3 and the sensitive op-
tion adapted to long reads (−e 1e−3  −p 30–sensitive). The align-
ment was then filtered removing all self-hits. Several thresholds for 
the percentage of identity and coverage were tested (75, 80, 85, and 
90%). An SSN (bioinformatic workflow available at https://data.
d4science.net/BN9t) was built with the diamond output using 80% 
identity and 80% coverage threshold to minimize the number of 
singletons while maximizing the functional homogeneity between 
linked proteins. Reproducible analysis and statistical exploration 
are provided in (33, 54, 64). An SSN is made of singletons (vertices 
or sequences without any homology with other sequences) and 
connected components (CCs; i.e., subgraphs composed of at least 
two vertices disconnected from the rest of the network). In our case, 
a CC corresponds to a group of at least two protein sequences that 
are linked together (directly or via neighbors) and that have no link 
with other groups of sequences in the SSN. We assume that the pro-
teins contained in a CC potentially share a similar molecular func-
tion (54, 55, 64, 65). These proteins were functionally annotated 
using eggNOG mapper v2.1.5.
Data selection
Unless specified, all following analyses were performed using R 3.14, 
with the corresponding code and libraries available at https://data.
d4science.net/qa7Z or 10.5281/zenodo.11093527. Starting from sta-
tion no. 66 (i.e., Cape Town), a supplementary size class of 0.8 to 
2000 μm has been implemented in the Tara Oceans cruise, while the 
initial 0.8 to 5 μm was not sampled from stations 155 onward (i.e., 
Arctic stations). Given that smaller organisms are much more abun-
dant than large ones, the majority of organisms sampled with the 
0.8- to 2000-μm filter are piconanoplankton (i.e., corresponding to 
0.8 to 5 μm). We tested this hypothesis by analyzing the composition, 
detection rate, and associated percentage of metagenomic reads 
across clusters associated with RUBISCO or C4 enzymes, between 
0.8 to 5 μm and 0.8 to 2000 μm at their common sampling stations 
(i.e., 66 to 155). The composition of clusters of interest across com-
mon stations presented a significant correlation (Pearson correlation: 
0.89; P value: 0.01) between both size fractions. Moreover, 85.5% of 
the abovementioned clusters detected in the 0.8- to 2000-μm fraction 
were also detected in the 0.8- to 5-μm fraction. The latter represents 
86.3% of the mapped reads in the 0.8- to 2000-μm fraction. The clus-
ters detected in both fractions at common locations present a Pearson 
and Spearman metagenomic read correlation of 94.4 and 87.3%, 
respectively. This supports the inclusion of Arctic data issued from 
the 0.8- to 2000-μm filter. The effect of the different selection criteria 
such as the exclusivity and the minimum number of stations cover-
age is shown in fig. S3 and calculated using Pearson’s chi-square test 
for count data (“chisq.test” function; P < 0.05).
Model training, evaluation, and projections
We fitted one MBTR (Python >3.7.) algorithm per training set and 
hyperparameter combination, under a mean square error loss func-
tion, a learning rate of 5.10−3, and a 10-fold cross-validation proce-
dure. We set the minimum number of observations in terminal leaves 
to 30 and the number of quantiles considered to find the best split to 
10. The model loss is adapted to discriminate between different sets of 
hyperparameters. Thus, we only considered the set of hyperparame-
ters that resulted in the minimum loss across the corresponding 10 

trained MBTR algorithms. However, the loss does not provide infor-
mation on the actual performance of the model in reproducing the 
observed data. Therefore, for each of the 10 trained MBTR algorithms, 
we predicted the relative abundance of the metagenomic reads on the 
environmental values corresponding to each of the 10 test sets. The 10 
corresponding predictions were compared against the truth (i.e., ob-
served values) by means of the R-squared (R2) and RMSE (here be-
tween 0 and 1) to assess model performance on data not seen by the 
MBTR models during the training process. The corresponding model 
evaluation estimated an R2 of 0.33 and an RMSE of 0.05. The conser-
vation of the correlation structure in MBTR was tested by computing 
a Pearson correlation matrix between response variables before and 
after model fitting, followed by a Mantel test (Pearson’s R = 0.748; 
P = 0.01). Last, for the spatial projections, we performed a total of 100 
bootstrap rounds and computed the average and CV between all 
bootstrap projections (fig. S1).
Model outputs
The variable importance in the model training (fig. S4) was calcu-
lated as the number of times an environmental variable was selected 
for a tree split, scaled by the corresponding loss gain. The response 
of the genomic potential for an enzyme to each environmental vari-
able was estimated by partial dependence plots. The latter was de-
fined as the marginal response of the target to a feature over the 
values of all other input features. To estimate the taxonomic compo-
sition associated with each pattern (i.e., standardized, or weighted), we 
constructed the distribution pattern of each MAG using the same mod-
eling framework. We then performed a hierarchical clustering [the 
“ward.D2” method (66)] on MAGs level projections that were then cor-
related to the enzyme’s distributional patterns (Pearson’s R correlation). 
Last, according to each MAG annotation, we computed the taxonomic 
composition corresponding to each cluster of MAG patterns.

Supplementary Materials
This PDF file includes:
Figs. S1 to S8
Tables S1 and S2
Legend for data S1

Other Supplementary Material for this manuscript includes the following:
Data S1
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