
HAL Id: hal-04735022
https://hal.science/hal-04735022v1

Preprint submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Expressing general constitutive models in FEniCSx
using external operators and algorithmic automatic

differentiation
Andrey Latyshev, Jérémy Bleyer, Corrado Maurini, Jack S Hale

To cite this version:
Andrey Latyshev, Jérémy Bleyer, Corrado Maurini, Jack S Hale. Expressing general constitutive
models in FEniCSx using external operators and algorithmic automatic differentiation. 2024. �hal-
04735022�

https://hal.science/hal-04735022v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Expressing general constitutive models in FEniCSx
using external operators and algorithmic automatic
differentiation

Andrey Latyshev
1,2

, Jérémy Bleyer
3
, Corrado Maurini

2
, and Jack S. Hale

1

1 Institute of Computational Engineering, Department of Engineering, Faculty of Science, Technology and Medicine,
Université du Luxembourg, Luxembourg
2 Institut Jean Le Rond d’Alembert, Sorbonne Université, UMR CNRS 7190, France
3 Laboratoire Navier, École des Ponts ParisTech, Université Gustave Eiffel, UMR CNRS 8205, France

Many problems in solid mechanics involve general and non-trivial constitutive models that are difficult to
express in variational form. Consequently, it can be challenging to express these problems in automated
finite element solvers, such as the FEniCS Project, that use domain-specific languages specifically designed
for writing variational forms. In this article, we describe a methodology and software framework for
FEniCSx / DOLFINx that enables the expression of constitutive models in nearly any general programming
language. We demonstrate our approach on two solid mechanics problems; the first is a simple von
Mises elastoplastic model with isotropic hardening implemented with Numba, and the second a more
complex Mohr-Coulomb elastoplastic model with apex smoothing implemented with JAX. In the latter
case we show that by leveraging JAX’s algorithmic automatic differentiation transformations we can
avoid error-prone manual differentiation of the terms necessary to resolve the constitutive model. We
show extensive numerical results, including Taylor remainder testing, that verify the correctness of our
implementation. The software framework and fully documented examples are available as supplementary
material under the LGPLv3 or later license.

Keywords constitutive models, automated finite element solvers, algorithmic automatic differentiation, external
operators, FEniCSx, JAX, Numba

1 Introduction

The finite element method (FEM) has proven itself as a robust numerical method for solving
partial differential equations (PDEs) arising from problems in solid mechanics (Bucalem et al.
2011). In the past fifteen years, automated finite element solvers, such as FEniCS(x) (M. Alnæs
et al. 2015; Baratta et al. 2023), FreeFEM++ (Hecht 2012) and Firedrake (Ham et al. 2023), have
introduced high-level domain-specific languages (DSLs) specifically designed for writing finite
element variational forms of PDEs, e.g. the Unified Form Language (UFL) (M. S. Alnæs et al. 2014).
Through a sequence of analysis and code transformation steps (Kirby and Logg 2006; Logg et al.
2012; Homolya et al. 2018), automated finite element solvers can automatically translate the DSL
specification of a particular problem into a high-performance finite element solver.

In the field of solid mechanics, a wide variety of constitutive models are used to predict the
behaviour of materials in response to mechanical loads. As a non-exhaustive list of examples, we
mention elasto-plastic (Simo et al. 1998), hyper-elastic (Ogden 1997), poro-elastic (Coussy 2004;
Wang et al. 2012) and visco-elastic (Ferry 1980) material behaviours, for which constitutive
models can be derived from a variety of phenomenological (Tschoegl 2012), statistical (Buche et al.
2020), thermodynamic (Rajagopal et al. 2000), and more recently, data-centric justifications (Fuhg
et al. 2024).

However, a significant number of widely used constitutive models either cannot be easily
expressed in variational form, or, even if expression in variational form is possible, the practical
resolution of the constitutive law on a computer is more easily expressed as an algorithm
implemented in a computationally universal programming language. Consequently, domain
specific languages such as UFL, while ideal expressing concepts within the domain of finite
elements and variational forms, are often not rich enough to express the algorithms associated

1

https://orcid.org/0009-0002-7512-0413
https://orcid.org/0000-0001-8212-9921
https://orcid.org/0000-0003-1092-4461
https://orcid.org/0000-0001-7216-861X

Latyshev et al. Expressing general constitutive models in FEniCSx

with the wide range of constitutive models in use today. Typical examples of such constitutive
models that cannot be, or are not ideally, expressible in UFL include plasticity models, e.g. (Simo
et al. 1998), multiscale models, e.g. (Feyel 2003) and modern data-centric models, e.g. (Stainier
et al. 2019; Masi et al. 2021; Thakolkaran et al. 2022; Zlatić et al. 2024; Ulloa et al. 2024), with
the latter being of particular interest due to their increased popularity in the computational
mechanics community in recent years.

Plasticity models are often resolved via algorithms such as the well-known predictor-corrector
scheme which involves the application of a Newton-type method at the local level (Simo et al.
1998). Multiscale constitutive models are frequently resolved by executing another numerical
algorithm, e.g. a molecular dynamics simulation (Saether et al. 2009), or another finite element
code (Feyel 2003), to represent the material behaviour at a lower scale. Data-centric methods
often include complex model structures, e.g. neural networks (Linka et al. 2023; Zhang et al.
2022), for which high-quality libraries exist for their concise expression, training on data and
execution (Martín Abadi et al. 2015; Frostig et al. 2018). Although diverse, none of these methods
can be naturally, or are best, expressed in DSLs for variational forms such as UFL.

1.1 Methods for incorporating constitutive models

A number of methods have been proposed to incorporate general constitutive models into
automated finite element solvers such as DOLFINx. One method is to write programmatic
interfaces from the finite element solver to frameworks specifically designed for implementing
non-standard constitutive models such as MFront (Helfer, Michel, Proix, Salvo, et al. 2015).
Although this approach does not require any changes to the existing functionality of UFL, it
requires significant effort to develop interfaces between the finite element solver and the interface
provided by each constitutive modelling package. Furthermore, programmatic approaches often
feel ad hoc as they do not integrate with the abstractions and automatic differentiation tools
provided by UFL to write the variational part of the problem.

A more recent approach, and one that forms the basis for this work, is the introduction of the
external operator extension to UFL (Bouziani et al. 2021). The external operator is a symbolic
UFL object that represents a general mapping between finite element quantities in a variational
form; for a formal definition, see (Bouziani et al. 2021, Definition 1). The action of the operator
itself can then be concretely defined externally, using ‘any’ programming language. In essence,
the external operator concept creates a bridge between the language of variational forms and
the broader possibilities provided by general programming languages. Another key feature
of external operators is that they can be symbolically differentiated by UFL, producing new
symbolic external operators representing the action of the derivative of the original operator -
this opens up numerous possibilities for using programming languages that support algorithmic
automatic differentiation (AD) to automatically create the necessary derivatives.

1.2 Automatic differentiation in constitutive modelling

In solid mechanics the resolution of a constitutive model often requires the evaluation of
derivatives of complex expressions, for example, the derivative of the stress field, so-called
consistent tangent moduli. Due to the complexity of these expressions, their by-hand derivation
and subsequent translation into programming code is often a source of errors. Because of this,
different approaches can be used to automate and/or approximate the differentiation process, e.g.
finite differences (FD), complex-step (CS) (J. N. Lyness et al. 1967; J. Lyness 1968), symbolic
differentiation (SD) and algorithmic automatic differentiation (AD) (Griewank et al. 2008).

We remark that UFL implements Gâteaux differentiation of variational forms, including
external operators, and the output of this is another UFL variational form. Hence UFL’s
differentiation can be considered a type of symbolic differentiation (SD) (M. S. Alnæs et al. 2014,
p.32).

In this work, we focus on leveraging algorithmic automatic differentiation for the concise
expression of constitutive models and their derivatives. AD is a set of techniques for evaluating
derivatives of quantities defined by general computer programs (Griewank et al. 2008). Compared
with other differentiation techniques like FD and SD, AD does not suffer from truncation or
round-off errors, does not lead to expressions swell and can be applied to general classes of

2

Latyshev et al. Expressing general constitutive models in FEniCSx

programs involving control flow statements such as loops and if statements. Together, these
desirable properties allow the application of AD to a wide range of constitutive models including
the ones that cannot be expressed through closed-form symbolic expressions (Brothers et al. 2014;
Tanaka et al. 2016; Dummer et al. 2024).

AD techniques have already been applied successfully to constitutive modelling in solid
mechanics. For instance, Rothe et al. (2015) used AD to define finite strain hyperelasticity, finite
strain elasto-visco-plasticity and fully coupled small strain thermo-visco-plasticity, while Vigliotti
et al. (2021) considered a similar hyperelastic constitutive model, but for a problem with complex
constraints. Seidl et al. (2022) and Q. Chen et al. (2014) focused on AD application to finite strain
elasto-plasticity, where the former additionally considered the hyperelasto-plastic model within
the large deformation framework (Q. Chen et al. 2014). Dummer et al. (2024) also addressed the
hyperelasto-plastic model. Blühdorn et al. (2022) leveraged AD techniques within the constitutive
laws of generalized standard materials (GSM) specifically using an elasto-visco-plastic model as a
case study. Lindsay et al. (2021) examined the role of AD in complex multiphysics simulations,
such as laser melt pools, phase-field modelling with neural network-generated free energies, and
simulations of metallic nuclear fuel.

Across these works the value of AD tools for implementing constitutive models is evident.
A key benefit is that AD eliminates the need for manual derivation of tangent operators and
stiffness matrices, which significantly reduces the potential for human error and speeds up
development time, without sacrificing accuracy (Rothe et al. 2015; Lindsay et al. 2021). Another
side benefit of some commonly used AD tools is that they can emit code that is well-suited
for parallel computation on Graphics Processing Units (GPUs) and Tensor Processing Units
(TPUs) (Blühdorn et al. 2022). In summary, AD has proven to be a useful tool in implementing
constitutive models, enhancing both computational efficiency and the accuracy of derivative
quantities while minimizing much of the manual effort usually required.

1.3 Existing software

Because of the benefits outlined above, it is natural that there are already contributions that
integrate AD techniques into software for solving PDEs. One of the pioneers is the AceFEM
library (Korelc and Wriggers 2016) which is based on the commercial software system Mathematica.
AceFEM is equipped with the automatic code generation package AceGEN (Korelc 1997; Korelc
and Wriggers 2016), where AD is used to reduce the need for manual linearization of nonlinear
models. The derivatives obtained through AD are then employed to automatically generate
efficient code for the finite element residual vector and stiffness matrix. Similarly, a recent
work (Lindsay et al. 2021) has enhanced the MOOSE multiphysics library by using AD to compute
the global finite element Jacobian matrix. The software package JAX-FEM (Xue et al. 2023) takes
the use of AD further by applying JAX (Frostig et al. 2018) to the entire finite element solution
algorithm, allowing for ‘end-to-end’ differentiation of the finite element solver.

In addition to AD-based software, various other projects have enabled the use of complex
constitutive models by extending the functionality of existing FEM packages. For example,
the fenics-solid-mechanics project (Ølgaard et al. 2017) was specifically designed to solve
Drucker-Prager and von Mises plasticity problems from the C++ interface to DOLFIN. The
convex-plasticity project (Latyshev and Bleyer 2022) uses the CVXPY package (Diamond et al.
2016) to solve plasticity problems in a convex optimization framework within FEniCSx. However,
these projects are limited in scope, as they require each constitutive model to be explicitly adapted
to the finite element solver.

Another approach to implementing constitutive models in finite element environments is to
develop specialized interfaces. This idea has been realized in software such as MGIS (Helfer,
Bleyer, et al. 2020) and dolfinx_materials (Bleyer 2024a). MGIS provides an interface that is used
by MFront to define complex constitutive laws, generate code and provide this code to other finite
element solvers, e.g. within the legacy version of the FEniCS library. Similarly, dolfinx_materials
allows for the definition of sophisticated material behaviours that cannot be expressed using
standard UFL operators. It does so by leveraging AD from the JAX package (Frostig et al. 2018)
and utilizing the convex optimization framework from CVXPY (Diamond et al. 2016) to define
constitutive models. However, both MFront and dolfinx_materials require users to adapt their

3

Latyshev et al. Expressing general constitutive models in FEniCSx

constitutive models to the specific interfaces provided by these libraries. Furthermore, they
necessitate the development of additional interfaces to be compatible with other finite element
environments.

1.4 Contributions

This article describes two main contributions. Firstly, we describe a methodology and software
framework that extends the open source library DOLFINx to support the recently introduced
symbolic external operator in UFL (Bouziani et al. 2021). In turn, this provides DOLFINx/FEniCSx
users with an interface that allows the definition of general constitutive models via a wide variety
of programming languages. As a didactic example, we show the implementation of von Mises with
isotropic hardening (Bonnet et al. 2014) using Numba, a high-performance Python compiler (Lam
et al. 2015). Building on this software framework, our second main contribution is to explore
the use of programming languages with algorithmic automatic differentiation capabilities for
expressing constitutive models. To demonstrate this we implement a complex Mohr-Coulomb
elastoplastic model with apex smoothing (Abbo et al. 1995) that has previously been implemented
using MFront (Helfer, Michel, Proix, Salvo, et al. 2015). By leveraging JAX (Frostig et al. 2018), a
Python library for high-performance array computations with composable transformations for
automatic differentiation, we completely avoid both the manual expression and implementation
of the necessary derivatives. The resulting implementation of the complete Mohr-Coulomb finite
element solver in DOLFINx is remarkably compact and its correctness is verified via a Taylor
remainder test and against an existing solution from the literature.

The software framework is openly available as supplementary material (Latyshev and Hale
2024) and includes further fully documented examples. We also note that an earlier version of
this work on implementing external operators in DOLFINx by the same authors was published in
conference proceedings (Latyshev, Bleyer, et al. 2024).

Outline An outline of this article is as follows. In Section 2 we introduce the general plasticity
problem which serves as a model problem, and discuss some of the difficulties with implementation
in the FEniCSx environment. In Section 3 we introduce the design and API of our framework
extending DOLFINx. Then, in Section 4 we show two applications of the framework to von Mises
and Mohr-Coulomb plasticity, with the latter leveraging the automatic differentiation features of
JAX, before closing with some conclusions and remarks in Section 5.

2 General formulation of a plasticity problem

In this section, we introduce a general formulation of plasticity as a model problem. We assume
the reader is relatively familiar with the basic concepts of plasticity theory and the return-mapping
algorithm; for a full treatment of plasticity, we refer the reader to the classic references (Simo
et al. 1998; Bonnet et al. 2014). We then describe the challenges of implementing this class of
models in FEniCSx, motivating the extension that we describe in the following section.

Although we cover only one type of constitutive model in this paper - small strain elastoplas-
ticity - it is rich enough to demonstrate the current limitations of automated finite element
environments, e.g. FEniCSx, and the advantages of our proposed methodology. The same
workflow can be applied to other types of general constitutive models such as those discussed in
the introduction and conclusion.

2.1 Notation

Let 𝜀 (𝒖) = 1
2 (∇𝒖 + ∇𝒖𝑇) be the small strain tensor of the displacement field 𝒖 in Cartesian

coordinate system 𝒙 = (𝑥,𝑦, 𝑧). Throughout the article we utilise Mandel notation (Mandel 1965)
for the stress 𝜎 and strain 𝜀 rank-two symmetric tensors to represent them as vectors 𝝈 and 𝜺
respectively as follows in a three-dimensional case

𝝈 = (𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑧𝑧,
√

2𝜎𝑥𝑦,
√

2𝜎𝑥𝑧,
√

2𝜎𝑦𝑧)𝑇 , (1)
𝜺 = (𝜀𝑥𝑥 , 𝜀𝑦𝑦, 𝜀𝑧𝑧,

√
2𝜀𝑥𝑦,

√
2𝜀𝑥𝑧,

√
2𝜀𝑦𝑧)𝑇 . (2)

4

Latyshev et al. Expressing general constitutive models in FEniCSx

The factor
√

2 is added to the shear components in Equations (1) and (2) to make the following
inner products consistent

𝜎 : 𝜀 = 𝝈 · 𝜺, 𝑒 : 𝑒 = 𝒆 · 𝒆, 𝑠 : 𝑠 = 𝒔 · 𝒔, (3)

where 𝒆 and 𝒔 are the Mandel vectors of respectively deviatoric parts of the strain and stress
tensors 𝑒 = dev 𝜀 and 𝑠 = dev𝜎 .

2.2 Model problem

In order to define the model problem, we make several standard assumptions from plasticity
theory. First of all, we assume that the total strains are additively decomposed onto elastic 𝜺𝑒
and plastic 𝜺𝑝 parts: 𝜺 = 𝜺𝑒 + 𝜺𝑝 . Then, by introducing the loading parameter 𝑡 , the quasi-static
evolution of Hooke’s law for stress and strain has the following form

¤𝝈 = 𝑪 · ¤𝜺𝑒 = 𝑪 · (¤𝜺 − ¤𝜺𝑝), (4)

where 𝑪 is the stiffness matrix and the dot above a symbol denotes a derivative with respect to
the loading parameter 𝑡 .

With 𝑓 being the yield function and 𝑝 representing an ensemble of internal variables, the
plastic flow is governed by the yield criterion

𝑓 (𝝈 , 𝑝) ≤ 0, (5)

and the flow rule, connecting the plastic strain rate with the gradient of the plastic potential 𝑔

¤𝜺𝑝 = ¤𝜆 𝜕𝑔(𝝈 , 𝑝)
𝜕𝝈

, (6)

where ¤𝜆 > 0 is the plastic multiplier (Simo et al. 1998). If 𝑔 ≠ 𝑓 in the Equation (6), then we
consider a general case of the non-associative plastic flow rule, otherwise, we refer to this
equation as the associative one.

In this work, we limit ourselves to the case of isotropic hardening with a scalar internal
variable ¤𝑝 :=

√︃
2
3 ¤𝒆𝑝 · ¤𝒆𝑝 representing cumulative plastic strain. Thus, the hardening law has the

following form

¤𝑝 = − ¤𝜆𝑞(𝝈 , 𝑝), (7)

where 𝑞 is a hardening function.
Throughout the loading of solid, the elastic deformations occur at those points, where the

stress field strictly satisfies the Yield criterion (5), whereas the plastic flow starts only on the yield
surface

𝑓 (𝝈 , 𝑝) = 0. (8)

In short, the loading/unloading conditions can be written as follows (Simo et al. 1998)

¤𝜆 ≥ 0, 𝑓 (𝝈 , 𝑝) ≤ 0, ¤𝜆 · 𝑓 (𝝈 , 𝑝) = 0. (9)

By applying the backward Euler scheme to Equations (4), (6) and (7) for the plastic regime at
a certain point of the solid, we obtain the following constitutive equations

𝒓𝝈 (𝝈𝑛+1,Δ𝜆) := 𝝈𝑛+1 − 𝝈𝑛 − 𝑪 ·
(
Δ𝜺 − Δ𝜆

𝜕𝑔

𝜕𝜎
(𝝈𝑛+1, 𝑝𝑛+1)

)
= 0, (10)

𝑟 𝑓 (𝝈𝑛+1) := 𝑓 (𝝈𝑛+1, 𝑝𝑛+1) = 0, (11)

where Δ is associated with increments of a quantity between the next loading step 𝑛 + 1 and the
current loading step 𝑛. This notation is applied to all quantities of interest throughout the text,
wherever it is necessary. We note that due to the case of isotropic hardening, the internal variable
𝑝𝑛+1 is excluded as it can be expressed through Δ𝜆 from Equation (7).

5

Latyshev et al. Expressing general constitutive models in FEniCSx

For the elastic regime, we consider a trivial system of equations

𝝈𝑛+1 = 𝝈𝑛 + 𝑪 · Δ𝜺, (12)
Δ𝜆 = 0. (13)

By introducing the residual vector 𝒓 := [𝒓𝑇𝝈 , 𝑟 𝑓]𝑇 and the vector of unknowns𝒚 := [𝝈𝑇
𝑛+1,Δ𝜆]𝑇 ,

the Constitutive equations (10) and Equation (11) can be re-written as a nonlinear problem

𝒓 (𝒚) = 0. (14)

which is solved at those points of the solid, where the Yield surface (8) is reached. From now on,
we reference to Equation (14) as the local problem.

In order to solve Local problem (14), the Newton method is commonly used, which requires a
consistent linearization of the residual 𝒓

𝒋(𝒚) = d𝒓 (𝒚)
d𝒚 , (15)

where we call the matrix 𝒋 the local Jacobian and the associated Newton method the local Newton
method.

At this point, we have all the necessary ingredients to formulate the global problem. Let Ω
be a domain representing a solid body, which is loaded by an external force on a part of its
boundary 𝜕Ω𝑁 with outward facing normal 𝒏, and𝑉 be a space of admissible displacements. The
equilibrium state of the solid body is described by the following variational problem: find the
displacement field 𝒖 ∈ 𝑉 such that the following weak residual equation is satisfied

𝐹 (𝒖; 𝒗) =
∫
Ω

𝝈 (𝜺 (𝒖)) · 𝜺 (𝒗) d𝒙 − 𝐹ext(𝒗) = 0, ∀𝒗 ∈ 𝑉 , (16)

together with the Yield criterion (5). The linear functional 𝐹ext in Equation (16) represents
the external loading from e.g. a Neumann boundary condition or gravitational body force
(see Section 4). By using the semicolon symbol among arguments of the semi-linear form
𝐹 = 𝐹 (𝒖; 𝒗), we separate the argument 𝒖, with respect to which the form may be nonlinear, from
the argument 𝒗, with respect to which 𝐹 is linear.

The stress-strain relation 𝝈 (𝜺 (𝒖)) is a nonlinear function, which can implicitly depend
on the history of loading and a set of internal variable(s). In this regard, we apply another
Newton method to solve nonlinear Equation (16), which, similar to the local problem, requires
the linearization of the residual. For this matter, we introduce the tangent operator 𝑪 tang(𝜺 (𝒖))
or tangent moduli, the derivative of the stress tensor

𝑪 tang(𝜺 (𝒖)) = d𝝈 (𝜺 (𝒖))
d𝜺 , (17)

which is used to define the Gâteaux derivative of the form 𝐹 in the direction 𝒖̂ ∈ 𝑉

𝐽 (𝒖; 𝒖̂, 𝒗) =
∫
Ω

(
𝑪 tang(𝜺 (𝒖)) · 𝜺 (𝒖̂)

) · 𝜺 (𝒗) d𝒙 . (18)

We reference to this Gâteaux derivative 𝐽 as the global Jacobian and to the Newton method, where
𝐽 is used in the role of a consistent linearization of the residual 𝐹 , as a global Newton method.

To satisfy Yield criterion (5) the return-mapping procedure is commonly used (Simo et al.
1998). The procedure consists in iterating over stress-strain states through a predictor-corrector
scheme until the equilibrium of Constitutive equations (14) is reached, which is achieved by
applying the local Newton method. The result of the return-mapping procedure is the evaluated
values of the stress 𝝈 (𝜺 (𝒖)) at a given point satisfying Equation (5).

Summarizing, the model problem consists of Global problem (16) with Constraint (5) and
Local problem (14). On each loading step, we solve Equation (16) by applying the global Newton
method. At each iteration of the global Newton method, we satisfy Equation (5) by applying the

6

Latyshev et al. Expressing general constitutive models in FEniCSx

return-mapping procedure, which involves solving Equation (14) through the local Newton
method. Thus, the implementation of the model problem includes two nested Newton methods,
which oblige us to compute the Local Jacobian (15) and Global Jacobian (18).

Before continuing we make some specific remarks about implementing general plasticity
models in the current version of DOLFINx. To be able to evaluate the values of the operator
𝝈 (𝜺 (𝒖)) and assemble the form 𝐹 from Global problem (16) in DOLFINx, we have to solve Local
problem (14) which requires an implementation of the return-mapping procedure. The return-
mapping procedure is an iterative algorithm that involves a sequence of computations where
each step depends on the previous one. It is most natural to express this type of recursion within
either a procedural (common) or functional (less common) programming paradigm, rather by a
closed-form mathematical formula in UFL. The same argument applies to the tangent operator
𝑪 tang(𝜺 (𝒖)). This leads us to the conclusion that the stress operator 𝝈 (𝜺 (𝒖)) is best implemented
‘externally’ to UFL. However, because of this externally defined behaviour, UFL cannot be aware
of the external operators derivative, and so we cannot apply UFL’s SD tools to the form 𝐹 to
derive the Jacobian 𝐽 containing 𝑪 tang(𝜺 (𝒖)). As we will see in the next section, the proposed
framework elegantly deals with these difficulties, by allowing the predictor-corrector algorithm to
govern the behavior of the stress operator, while also enabling the stress operator to be naturally
expressed within the variational setting and differentiated using UFL.

3 Extension of the external operator concept to DOLFINx

This section discusses the new data-centric design of DOLFINx (Baratta et al. 2023) and the
automatic code generation feature of FFCx (Kirby and Logg 2006; Logg et al. 2012). We then
describe how our framework exploits these concepts as well as external operators to extend the
functionality of DOLFINx to cover a wider range of constitutive modelling possibilities.

Data-centric design of DOLFINx One of the new developments of the DOLFINx library is the
data-centric design (Baratta et al. 2023), where data such as values of a finite element function at
finite element degrees of freedom, or quadrature points, are directly available in the form of
array-like data structures (e.g. the ndarray object of the NumPy package). This data-centric
design gives the external operators straightforward access to solver data for manipulation via
external programming languages that support the same array-like data structures (e.g. Numba,
JAX, PyTorch, MFront, etc).

Automatic code generation of FFCx Another important development used in this work is
the automatic code generation feature of the FEniCSx Form Compiler (FFCx) (Kirby and Logg
2006; Logg et al. 2012) for UFL Expressions. For more details, see (Baratta et al. 2023). In the
context of this study, FFCx is used to generate code that allows DOLFINx to evaluate the values
of the strain tensor 𝜺 (𝒖) at the quadrature points of the mesh. This can then be passed as data to
user-defined Python callables that define the action of the external operator as discussed in the
previous paragraph.

3.1 The extension

Leveraging the aforementioned features of DOLFINx and FFCx as well as the concept of external
operators (Bouziani et al. 2021), we implement a framework that extends DOLFINx allowing for
the expression of a large class of constitutive models. In our implementation of the external
operator concept there is no direct interaction between the DOLFINx finite element assemblers
and external operators - in contrast with the Firedrake implementation (Ham et al. 2023). Instead,
we replace symbolic UFL ExternalOperator objects prior to assembly of the finite element
form with assembled DOLFINx Function objects containing the evaluation of the external
operators. As the DOLFINx assembler already works with forms containing the Function

objects this approach required no changes upstream in the DOLFINx project and is therefore
also compatible with third-party custom assemblers. Thus, according to our contribution, an
external operator combines properties of both the symbolic UFL’s ExternalOperator and its
data-oriented counterpart the DOLFINx’s Function , which results in the introduction of the
new class FEMExternalOperator inheriting ExternalOperator .

7

Latyshev et al. Expressing general constitutive models in FEniCSx

External soware

UFL DOLFINx

External code

JAX, Numba, etc.

Assembler

Forms

evaluate_external_operators

evaluate_operands

NumPy

NumPy

FEMExternalOperator replace_external_operators

New forms

Operands

External operators

Figure 1: The diagram summarizes the workflow of implementing a solid mechanics constitutive model
within the framework. The stress field 𝝈 (𝜺 (𝒖)) and its derivative 𝑪 tang (𝜺 (𝒖)) are wrapped with the
FEMExternalOperator objects, which depend on the UFL-expression of the strain field 𝜺 (𝒖) and some

external code. Once the forms containing FEMExternalOperator objects are defined, they can be
replaced with their representatives from the DOLFINx environment, the Function objects 𝝈 and 𝑪 tang.
The values of the UFL-expression of 𝜺 (𝒖) are computed at Gauss points via the evaluate_operands

function using FFCx generated code and stored in an ndarray . The values of the external operators
and their derivatives are then evaluated at the Gauss points via the evaluate_external_operators

function and stored in ndarray . In the final step, the standard DOLFINx assembler is used to assemble
the forms with the Function objects containing 𝝈 and 𝑪 tang.

FEMExternalOperator has two principal features. The first is that the FEMExternalOperator

inherits the symbolic functionality of the UFL ExternalOperator so that we can also apply the
UFL’s SD capabilities to the forms containing the FEMExternalOperator objects. The second
feature allows the evaluation of the FEMExternalOperator at interpolation points of a finite
element space in contrast to the ExternalOperator object resulting in computed values being
stored in a Function object through ndarray . The evaluation is defined by the user through
Python callables (functions) that specify how an external operator (e.g. stress) acts on its operands
(e.g. strains).

The data-centric design of DOLFINx enables the efficient transfer of data to and from the
user-defined functions evaluating the external operators (e.g. 𝝈 (𝜺 (𝑢))) & 𝑪 tang(𝜺 (𝑢))), UFL
expressions of their operands (e.g. 𝜺 (𝑢)), and the DOLFINx environment through standard NumPy
arrays. The framework evaluates the values of operands using code automatically generated by
FFCx, stores the result in an ndarray and passes this data to the user-defined callables. This
design allows a wide range of Python and non-Python languages and frameworks to be used for
implementing the external operators. In practice, almost all modern programming languages and
frameworks can be passed, without copy, the contiguous array-like data underlying a Python
ndarray , and there is increasing standardisation efforts around in-memory formats for sharing

multi-dimensional strided array data such as DLPack (DMLC 2024).

Workflow After describing every component of our framework, let us summarize the workflow
in Figures 1 and 2. Figure 1 schematically visualizes the process of the main steps of the workflow.
Figure 2 provides a “minimal” code example of the framework application to a solid mechanics
problem. However, it covers only the main steps of the workflow and gives only a general idea of
how the framework can be used – more detailed examples of the framework application to
specific plasticity problems can be found in Section 4 and supplementary material (Latyshev and
Hale 2024).

Remark — Memory The FEMExternalOperator class efficiently manages memory allocation
and data transfer, optimizing the interaction between FEniCSx and user-defined external operators
by pre-allocating memory and minimizing unnecessary data duplication. To store the values of an
external operator in its Function representative prior to assembly, the FEMExternalOperator

class allocates the memory for both the Function object and the function space, to which
the former belongs. This memory allocation happens each time a FEMExternalOperator

object is created, e.g. when the UFL’s AD tools propagate through a form containing the
FEMExternalOperator objects. On the other hand, the data transfer between FEniCSx and the

8

Latyshev et al. Expressing general constitutive models in FEniCSx

1 def sigma_external(
2 derivatives: Tuple[int, ...]
3) -> Callable[[np.ndarray], np.ndarray]:
4 if derivatives == (0,):
5 return sigma_impl # user-defined function (external code is inside)
6 elif derivatives == (1,):
7 return C_tang_impl # user-defined function (external code is inside)
8 else:
9 return NotImplementedError

10

11 # Define the output function space of the external operator
12 S = fem.functionspace(mesh, quadrature_element)
13

14 sigma = FEMExternalOperator(
15 epsilon(u), # operand: UFL Expression of strains
16 function_space=S, # Output function space
17 external_function=sigma_external # Python callable
18)
19

20 # Define the form `F` and its Jacobian `J`
21 F = ufl.inner(sigma, epsilon(v)) * dx - F_ext(v)
22 # UFL's SD creates a new `FEMExternalOperator` wrapping the
23 # derivative of `sigma` aka `C_tang`
24 J = ufl.derivative(F, u, u_hat)
25 J_expanded = ufl.algorithms.expand_derivatives(J)
26

27 # Create new forms with `FEMExternalOperator` replaced with `Function` objects
28 # appropriately sized to hold the result of evaluating the external operator
29 F_replaced, F_external_operators = replace_external_operators(F)
30 J_replaced, J_external_operators = replace_external_operators(J_expanded)
31

32 # Define final forms to assemble
33 F_form = fem.form(F_replaced)
34 J_form = fem.form(J_replaced)
35

36 # Loop implementing iterative solution algorithm.
37 # e.g. Newton method, fixed-point iteration etc.
38 for _ in range(0, 10):
39 # Evaluate values of `epsilon(u)`
40 evaluated_operands = evaluate_operands(F_external_operators)
41 # Evaluate and update values of `sigma` via 'sigma_impl'
42 evaluate_external_operators(J_external_operators, evaluated_operands)
43 # Evaluate and update values of `C_tang` via 'C_tang_impl'
44 evaluate_external_operators(F_external_operators, evaluated_operands)
45

46 # Assemble Jacobian into matrix
47 A_matrix = fem.assemble_matrix(J_form)
48 # Assemble residual into vector
49 b_vector = fem.assemble_vector(F_form)

Figure 2: Minimal and abbreviated code example of the framework applied to a non-specific solid mechanics
problem. It shows how the main features of the framework (class FEMExternalOperator and functions
replace_external_operators , evaluate_operands , evaluate_external_operators) are used

to define the problem.

9

Latyshev et al. Expressing general constitutive models in FEniCSx

user’s function does not involve extra memory allocation. The transfer is performed by copying
the values of one NumPy array and storing the external operators evaluations into another
NumPy array attached to the Function representative. As the Function object is allocated in
advance, the framework just updates the values of Function .

Remark — Performance and scaling For non-trivial constitutive models the runtime of
the user’s implementation of the external operator usually dominates the runtime of the other
aspects of evaluating an external operator. As discussed previously, the data transfer between
DOLFINx and the user implemented external operator is performed by copying the values from
one ndarray to another. Time spent on such a copy is only a small fraction with respect to the
time taken to execute the user’s implementation of the operator. Notwithstanding this argument,
to reach the highest level of performance we recommend user’s implementing external operators
using just-in-time (JIT) compilation features available in libraries like Numba and JAX, or in a
compiled language. Furthermore, it is important to note that even in more complex scenarios
where the constitutive model is defined by hundreds of internal state variables, e.g. in crystal
plasticity (Méric et al. 1991), the evaluation of external operators takes only a small portion of the
time taken for the entire finite element algorithm. Although the constitutive update involves
solving a system of hundreds of nonlinear equations, this process can usually be performed
locally and independently of constitutive updates at other Gauss points. Consequently, the
evaluation of external operators, which encapsulates the constitutive update, is an embarrassingly
parallel task, unlike, for example, the solution of the resulting finite element linear systems.

4 Application of the framework to plasticity problems

In order to show how our framework can be used to define constitutive models via external
packages, we solve two plasticity problems. The first one is based on a von Mises model with
isotropic hardening, which is defined via the package Numba. The second one is the plasticity
problem with the non-associative plastic law of the Mohr-Coulomb yield criterion with apex
smoothing, where the JAX package is applied. The detailed implementation of these problems
can be found in the tutorials provided as supplementary material (Latyshev and Hale 2024).

4.1 Von Mises plasticity

The simplicity of von Mises plasticity mode with linear isotropic hardening in the case of isotropic
elasticity makes it popular within solid mechanics community as we can derive all the quantities
of interest analytically, which happens rarely in real applications. Thus, the von Mises plasticity is
an obvious choice of a "Hello, world" example to demonstrate the main aspects of our framework.

Here we apply the Numba package to define all the quantities of interest of the von Mises
model following the previous implementations of the authors within FEniCSx in the standard
setting (Bleyer 2024b, plasticity.py) and in conic optimization one (Latyshev and Bleyer 2022,
convex_plasticity.ipynb). The results will be compared against the implementation based on a
pure UFL formulation of the same problem (Latyshev and Hale 2024, von_mises_ufl.py), which
is possible as the von Mises stress vector 𝝈 and the tangent moduli 𝑪 tang may be expressed
explicitly via UFL.

Problem formulation

In the first example, we consider a cylinder expansion problem in the plane strain case. The
domain Ω is represented by the first quarter of the hollow cylinder with inner 𝑅𝑖 and outer 𝑅𝑜
radii, where symmetry conditions are set on the left and bottom sides and pressure is applied to
the inner boundary 𝜕Ωinner. The behaviour of cylinder material is defined by the von Mises yield
criterion with linear isotropic hardening law for the associative plastic flow

𝑓 (𝝈 , 𝑝) = 𝜎eq(𝝈) − 𝜎0 − 𝐻𝑝 ≤ 0, (19)

where 𝜎eq(𝝈) =
√︃

3
2𝒔 · 𝒔 is an equivalent stress, 𝜎0 is a uniaxial strength and 𝐻 =

𝐸𝐸𝑡
𝐸−𝐸𝑡 is an

isotropic hardening modulus, which depends on the Young 𝐸 and the tangent elastic moduli
𝐸𝑡 . Thus, we solve the Weak formulation (16) of the cylinder expansion problem with the

10

Latyshev et al. Expressing general constitutive models in FEniCSx

Constraint (19) and the linear functional 𝐹ext(𝒗) representing the external force defined as

𝐹ext(𝒗) = 𝑞
∫

𝜕Ωinner

𝒏 · 𝒗 d𝒙, (20)

where the parameter 𝑞 is progressively increased up to a value slightly larger than the analytical
collapse load of perfect plasticity

𝑞lim =
2√
3
𝜎0 log 𝑅𝑜

𝑅𝑖
. (21)

Implementation

We treat the stress vector 𝝈 as an external operator acting on the strain vector 𝜺 (𝒖) and represent
it through a FEMExternalOperator object. By implementation of this external operator, we
mean the implementation of the return-mapping procedure analytically. We evaluate the values
of the stress vector 𝝈 and its derivative 𝑪 tang via the Numba package, which typically produces
highly optimized machine code with runtime performance at the level of traditional compiled
languages.

In the Figure 3 we show the implementation of the return_mapping function that returns
the values of the consistent tangent moduli 𝑪𝑛+1

tang, the stress tensor 𝝈𝑛+1, and the increment of
cumulative plastic strain Δ𝑝 in the ndarray -format. On the input, it receives ndarray objects
representing the values of the current increment of the strain tensor 𝜺 (Δ𝒖) and values of the
history variables: the stress state 𝝈𝑛 and the internal variable 𝑝𝑛 from the previous loading step.
In the scope of the return_mapping function, we use only standard Python operations and
NumPy functions compatible with Numba. Thus, the definition of our external operator does not
depend on the FEniCSx environment and consequently is not limited by its capabilities.

In terms of performance, we use Numba’s JIT compilation decorated @njit to compile the
function return_mapping at run-time.

Validation

As can be seen from the Figure 4, our results agree with the pure UFL implementation (Latyshev
and Hale 2024, von_mises_ufl.py) of the von Mises model.

0.000 0.005 0.010 0.015 0.020
Displacement of inner boundary DG at ('8 , 0) [mm]

0.0

0.2

0.4

0.6

0.8

1.0

A
pp

lie
d

pr
es

su
re
@
/@

lim
[-]

pure UFL
dol�nx-external-operator (Numba)

Figure 4: Displacement of the inner boundary of the cylinder 𝑢𝑥 (𝑅𝑖 , 0) with respect to the applied pressure
in the von Mises model with isotropic hardening implemented via two methods. The plastic deformations
are reached at the pressure 𝑞lim equal to the analytical collapse load for perfect plasticity.

4.2 Mohr—Coulomb plasticity

We implement the non-associative plasticity model of Mohr-Coulomb with apex-smoothing and
solve a soil slope stability problem. We use the JAX package to define constitutive relations

11

Latyshev et al. Expressing general constitutive models in FEniCSx

1 @numba.njit
2 def return_mapping(deps_: np.ndarray, sigma_n_: np.ndarray, p_: np.ndarray):
3 """Performs the return-mapping procedure."""
4 num_cells = deps_.shape[0]
5

6 C_tang_ = np.empty((num_cells, num_quadrature_points, 4, 4),
7 dtype=sigma_n_.dtype)
8 sigma_ = np.empty_like(sigma_n_)
9 dp_ = np.empty_like(p_)

10

11 def _kernel(deps_local, sigmxa_n_local, p_local):
12 """Performs the return-mapping procedure locally at a Gauss point."""
13 sigma_elastic = sigma_n_local + C_elas @ deps_local
14 s = deviatoric @ sigma_elastic
15 sigma_eq = np.sqrt(3.0 / 2.0 * np.dot(s, s))
16

17 f_elastic = sigma_eq - sigma_0 - H * p_local
18 f_elastic_plus = (f_elastic + np.sqrt(f_elastic**2)) / 2.0
19

20 dp = f_elastic_plus / (3 * mu + H)
21

22 n_elas = s / sigma_eq * f_elastic_plus / f_elastic
23 beta = 3 * mu * dp / sigma_eq
24

25 sigma = sigma_elastic - beta * s
26

27 n_elas_matrix = np.outer(n_elas, n_elas)
28

29 C_tang = C_elas - 3 * mu * (3 * mu / (3 * mu + H) - beta) *
30 n_elas_matrix - 2 * mu * beta * deviatoric
31

32 return C_tang, sigma, dp
33

34 for i in range(0, num_cells):
35 for j in range(0, num_quadrature_points):
36 C_tang_[i,j], sigma_[i,j], dp_[i,j] = _kernel(deps_[i,j],
37 sigma_n_[i,j], p_[i,j])
38

39 return C_tang_, sigma_, dp_

Figure 3: The implementation of the return-mapping procedure of the von Mises plasticity using Numba.
The function return_mapping receives NumPy arrays of values of the strain tensor 𝜺 (Δ𝒖) and such
variables conserving the previous loading history as the stress tensor 𝝈𝑛 , and the cumulative plastic strain
𝑝𝑛 from the previous loading step, evaluated in all Gauss points. The return-mapping procedure itself
is implemented for one Gauss point in the function _kernel , which then will be called in the loops
through Gauss points and cells. The function return_mapping returns the values of the consistent
tangent moduli 𝑪𝑛+1

tang, the stress tensor 𝝈𝑛+1, and the increment of cumulative plastic strain Δ𝑝 as a
global flatten ndarray -s. These values will be used to update external operators and the variables
of the loading history. Note that num_quadrature_points is statically defined outside the scope of
return_mapping - this gives Numba/LLVM the opportunity to unroll the loop over quadrature points.

12

Latyshev et al. Expressing general constitutive models in FEniCSx

including the differentiation of certain terms. This example demonstrates how AD techniques
may be used to define complex constitutive models without significant by-hand differentiation.

The slope stability problem is based on the limit analysis within a semi-definite programming
framework (Bleyer 2022, limit_analysis_3D_SDP.ipynb), where the plasticity model was replaced
by the one defined through the Mohr-Coulomb yield surface with apex smoothing (Abbo et al.
1995).

Problem formulation

We solve a soil slope stability problem of a domain Ω represented by a rectangle [0, 𝐿] × [0, 𝐻]
under plane strain assumptions. For this problem the homogeneous Dirichlet boundary conditions
for the displacement field 𝒖 = 0 on the right side 𝑥 = 𝐿 and the bottom 𝑦 = 0. The loading
consists of a gravitational body force 𝒒 = [0,−𝛾]𝑇 with 𝛾 being the soil self-weight

𝐹ext(𝒗) =
∫
Ω

𝒒 · 𝒗 d𝒙 . (22)

We progressively increase the soil self-weight 𝛾 until a plateau on the loading-displacement curve
is reached.

The constitutive model of the soil is described by a non-associative plasticity law without
hardening that is defined by the Mohr-Coulomb yield surface 𝑓 and the plastic potential 𝑔. Both
quantities may be expressed through the following function ℎ

ℎ(𝝈 , 𝛼) = 𝐼1(𝝈)
3 sin𝛼 +

√︃
𝐽2(𝝈)𝐾2(𝜃, 𝛼) + 𝑎2(𝛼) sin2 𝛼 − 𝑐 cos𝛼, (23)

𝑓 (𝝈) = ℎ(𝝈 , 𝜙), (24)
𝑔(𝝈) = ℎ(𝝈 ,𝜓), (25)

where 𝑐 is a cohesion, 𝜙 ,𝜓 and 𝜃 are friction, dilatancy and Lode angles respectively, 𝐼1(𝝈) = tr𝝈
is the first invariant of the stress field and 𝐽2(𝝈) = 1

2𝒔 · 𝒔 is the second invariant of the deviatoric
part of the stress. The explicit expressions of other terms of the function ℎ together with the exact
values of model parameters can be found in Appendix A.2. In summary, we solve Problem (16),
with Constraint (24) and Linear functional (22).

Implementation

Similarly to the von Mises example we define the external operator 𝝈 and its derivative 𝑪 tang
through the implementation of the return-mapping procedure. However in the case of Mohr-
Coulomb, this procedure is not trivial, compared to the von Mises case, and must be implemented
numerically. In practice, we must solve System of constitutive equations (14) through the
consistent linearisation of Jacobian (15) for the local Newton method.

For the correct implementation of the return-mapping procedure in this example, we need to
take derivatives of certain terms. We distinguish three levels of the differentiation: the level of
definition of the local residual 𝒓 from Constitutive equations (14), the local level and the global
level. The first level is linked to the derivative of Plastic potential (25), d𝑔 (𝝈)

d𝝈 , which defines one
of the Constitutive equations (14). At the local level, we need to compute the local Jacobian
𝒋(𝒚) = d𝒓 (𝒚)

d𝒚 , the derivative of the local residual 𝒓 with respect to its argument. Finally, at the
global level, we pass a derivative through the entire return-mapping procedure with respect to
the strain tensor 𝜺 or, in other words, we compute the tangent matrix 𝑪 tang(𝜺 (𝒖)) = d𝝈 (𝜺 (𝒖))

d𝜺 , the
derivative of the external operator 𝝈 , which is needed for the global jacobian 𝐽 of Variational
form (16). The correct computation of all the three derivatives: d𝑔 (𝝈)

d𝝈 , d𝒓 (𝒚)
d𝒚 and d𝝈 (𝜺 (𝒖))

d𝜺 , is
crucial for the correct implementation of the Mohr-Coulomb model. In our implementation we
apply AD techniques from the JAX package to compute the derivatives exactly at each level at a
certain point (e.g. at a Gauss point).

At the level of the residual 𝒓 , the derivation of the plastic potential 𝑔(𝝈) is straightforward.
Once we define a function evaluating the values of 𝑔 for a given stress field, it is sufficient to
call the JAX’s AD jacfwd function which creates a new function dgdsigma that computes the
value of the plastic potential derivative locally at a given Gauss point:

13

Latyshev et al. Expressing general constitutive models in FEniCSx

1 def g(sigma_local):
2 return h(sigma_local, psi)
3

4 dgdsigma = jax.jacfwd(g)

where psi is the constant dilatancy angle.
At the local level, deriving the jacobian 𝒋(𝒚) = d𝒓 (𝒚)

d𝒚 is more complex than the differentiation
of the plastic potential due to the presence of several mathematical equations and conditionals.
Despite this, by implementing a function computing the residual 𝒓 , the application of the JAX’s
AD is still straightforward as can be seen in the following code-snippet:

1 def r(y_local, deps_local, sigma_n_local):
2 sigma_local = y_local[:stress_dim]
3 dlambda_local = y_local[-1]
4

5 res_g = r_g(sigma_local, dlambda_local, deps_local, sigma_n_local)
6 res_f = r_f(sigma_local, dlambda_local, deps_local, sigma_n_local)
7

8 res = jnp.c_["0,1,-1", res_g, res_f] # concatenates an array and a scalar
9 return res

10

11 drdy = jax.jacfwd(r)

Subsequently, the obtained function drdy will be used in the local Newton method to compute
the local Jacobian (see the code-snippet below).

At the global level, the computation of the derivative d𝝈 (𝜺 (𝒖))
d𝜺 does not look trivial. Indeed,

in contrast to the plastic potential 𝑔 and the local residual 𝒓 , the stress operator 𝝈 is defined
via the iterative solver, on which the return-mapping procedure is based. This implies passing
the derivative through the entire solver in order to get the value of d𝝈 (𝜺 (𝒖))

d𝜺 . Regardless of
this difficulty, the automatic differentiation techniques are able to compute the derivative of
such a numerical algorithm. For instance, JAX can calculate the derivative of the function
return_mapping (see Figure 5) automatically in spite of the presence of the while_loop . This

results in a new program dsigma_ddeps (see Figure 5) that computes the values of the tangent
moduli 𝑪 tang exactly at a Gauss point, so there is no need for a supplementary computation of the
stress tensor.

Although we obtained functions to compute all three derivatives required to define the
Mohr-Coulomb model, these functions are still constructed to be called for a single Gauss
point, whereas we need to evaluate them on the entire quadrature space. In this regard, the
JAX’s vectorization technique vmap serves as a convenient tool to extrapolate them to the level
of the entire functional space. In particular, we vectorize the function dsigma_ddeps to get
dsigma_ddeps_vec that computes the values of the tangent moduli 𝑪 tang and the stress field 𝝈

at all Gauss points of the functional space simultaneously:

1 dsigma_ddeps_vec = jax.jit(jax.vmap(dsigma_ddeps, in_axes=(0, 0)))

where similar to the Numba package, we compile the final vectorized function by using the JAX’s
function jit .

Finally, we define the external operator 𝝈 and its derivative 𝑪 tang via a single function
C_tang_impl :

1 def C_tang_impl(deps: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
2 deps_ = deps.reshape((-1, 4))
3 sigma_n_ = sigma_n.x.array.reshape((-1, 4))
4

5 (C_tang_global, state) = dsigma_ddeps_vec(deps_, sigma_n_)
6

7 return C_tang_global.reshape(-1), sigma_global.reshape(-1)

which can then be attached to the definition of the UFL external operator.

14

Latyshev et al. Expressing general constitutive models in FEniCSx

1 def return_mapping(deps_local: np.ndarray, sigma_n_local: np.ndarray):
2 niter = 0
3

4 dlambda = ZERO_SCALAR
5 sigma_local = sigma_n_local
6 y_local = jnp.concatenate([sigma_local, dlambda])
7

8 res = r(y_local, deps_local, sigma_n_local)
9 norm_res0 = jnp.linalg.norm(res)

10

11 def cond_fun(state):
12 norm_res, niter, _ = state
13 return jnp.logical_and(norm_res / norm_res0 > tol, niter < Nitermax)
14

15 def body_fun(state):
16 norm_res, niter, history = state
17

18 y_local, deps_local, sigma_n_local, res = history
19

20 j = drdy(y_local, deps_local, sigma_n_local)
21 j_inv_vp = jnp.linalg.solve(j, -res)
22 y_local = y_local + j_inv_vp
23

24 res = r(y_local, deps_local, sigma_n_local)
25 norm_res = jnp.linalg.norm(res)
26 history = y_local, deps_local, sigma_n_local, res
27

28 niter += 1
29

30 return (norm_res, niter, history)
31

32 history = (y_local, deps_local, sigma_n_local, res)
33

34 norm_res, niter_total, y_local = jax.lax.while_loop(cond_fun, body_fun,
35 (norm_res0, niter, history))
36

37 sigma_local = y_local[0][:stress_dim]
38 dlambda = y_local[0][-1]
39 sigma_elas_local = C_elas @ deps_local
40 yielding = f(sigma_n_local + sigma_elas_local)
41

42 return sigma_local, (sigma_local, niter_total, yielding, norm_res, dlambda)
43

44 dsigma_ddeps = jax.jacfwd(return_mapping, has_aux=True)

Figure 5: The implementation of the return-mapping procedure of the Mohr-Coulomb plasticity with
apex smoothing via JAX package. The function return_mapping receives NumPy arrays of values of
the strains 𝜺 (Δ𝒖) and the stresses 𝝈𝑛 evaluated at a given Gauss point. The return-mapping procedure is
implemented via the Newton method wrapped by the JAX’s while_loop . It returns a tuple of the new
stress field values at a given Gauss point and another tuple containing the same values of the stress
field plus some auxiliary data related to the Newton method. Then we apply the JAX’s AD jacfwd to
compute the derivative of the function return_mapping with respect to its first input. This results in
the creation of a new function dsigma_ddeps that returns both the stress field and its derivative at a
given Gauss point.

15

Latyshev et al. Expressing general constitutive models in FEniCSx

Remark —Mohr-Coulombmodel without AD The aforementioned derivatives are commonly
obtained analytically in numerous applications of not only the Mohr-Coulomb model but other
plasticity models as well. In practice, the analytical expressions of these derivatives are very
complex and so their translation into programming code can create dozens or even hundreds of
lines of code (Helfer, Michel, Proix, Sercombe, et al. 2024, MohrCoulomb.md). As we demonstrated
in the application of JAX, AD can simplify the time spent on by-hand differentiation and
significantly reduce the amount of code needed to implement complex analytical formulas.

Verification

Within the Mohr-Coulomb example, we perform three verification tests. The first checks the
correct tracing of Yield surface (24). The second is the Taylor remainder test verifying that the
Jacobian (18) is a consistent first-order approximation of the Residual (16). The third checks that
our solution of the slope stability problem defined by Equations (16), (22) and (23) matches an
existing result found in the literature.

Yield surface tracing In this part, we verify that the Mohr-Coulomb model is implemented
correctly by visually tracing its yield surface. We generate several stress paths and check whether
they remain within the yield surface after passing through the return_mapping function,
which depends on the derivatives d𝑔 (𝝈)

d𝝈 and d𝒓 (𝒚)
d𝒚 . The yield surface with the stress paths

projected onto the deviatoric plane is shown in Figure 6, where we observe that the yield
surface of Mohr-Coulomb with apex smoothing is reached along different stress paths (colored
lines). Moreover, the obtained yield surface lies along the standard Mohr-Coulomb one without
smoothing (black contour line). These results justify the correct implementation of the plasticity
model and the derivatives dgdsigma and drdx obtained by JAX’s AD.

0°

45°

90°

135°

180°

225°

270°

315°

1

2

3

4

5

6
M

ag
ni

tu
de

of
th

e
st

re
ss

pa
th

de
vi

at
or

,d
[M

Pa
]

Figure 6: Tracing of the Mohr-Coulomb with apex smoothing yield surface. It is obtained by passing
several stress paths projected onto the deviatoric plane (𝜌, 𝜃), where 𝜌 =

√︁
2𝐽2 (𝝈) and 𝜃 is the Lode

angle (see Appendix A.2). Each colour represents one loading step along the stress paths. The circles are
associated with the loading during the elastic phase. Once the loading reaches the elastic limit, the circles
start outlining the yield surface, which in the limit lay along the standard Mohr-Coulomb one without
smoothing (black contour).

Taylor remainder test We perform a Taylor remainder test to verify that the assembled
residual 𝐹 and its Jacobian 𝐽 are consistent zeroth- and first-order approximations of the residual
𝐹 , respectively. To implement the Taylor remainder test and to ensure that the test results are
mesh-independent we apply the Taylor remainder theorem on Banach spaces (Blanchard et al.

16

Latyshev et al. Expressing general constitutive models in FEniCSx

2015, p. 524) to the operator F : 𝑉 → 𝑉 ′ which is linked with the form 𝐹 in the following way

⟨F (𝒖), 𝒗⟩ := 𝐹 (𝒖; 𝒗), (26)

where𝑉 ′ is a dual space of𝑉 , ⟨·, ·⟩ is the𝑉 ′ ×𝑉 duality pairing. Precise details and discussion on
how we implemented the Taylor remainder test using the dual norm can be found in Appendix A.3.
By applying the Taylor remainder theorem on Banach spaces, which perturbs the operator
F in the direction 𝑘 𝜹𝒖 ∈ 𝑉 for 𝑘 > 0, we obtain that the norm of the zeroth- and first-order
Taylor remainders ∥𝑟 0

𝑘
∥𝑉 ′ and ∥𝑟 1

𝑘
∥𝑉 ′ converge at first- and second-order convergence rates in 𝑘 ,

respectively

∥𝑟 0
𝑘 ∥𝑉 ′ := ∥F (𝒖 + 𝑘 𝜹𝒖) − F (𝒖)∥𝑉 ′ −→ 0 at 𝑂 (𝑘), (27)

∥𝑟 1
𝑘 ∥𝑉 ′ := ∥F (𝒖 + 𝑘 𝜹𝒖) − F (𝒖) − (J (𝒖)) (𝑘𝜹𝒖)∥𝑉 ′ −→ 0 at 𝑂 (𝑘2), (28)

with the operator J : 𝑉 → L(𝑉 ,𝑉 ′) representing the Jacobian 𝐽 of the form 𝐹

⟨(J (𝒖)) (𝑘𝜹𝒖), 𝒗⟩ := 𝐽 (𝒖;𝑘𝜹𝒖, 𝒗), (29)

where L(𝑉 ,𝑉 ′) is a space of bounded linear operators from 𝑉 to 𝑉 ′.

10−6 10−5 10−4 10−3 10−2

:

10−13

10−11

10−9

10−7

10−5

10−3

Ta
yl

or
re

m
ai

nd
er

no
rm 1

1

(a) Elastic phase

‖A 0
:
‖+ ′

‖A 1
:
‖+ ′

10−6 10−5 10−4 10−3 10−2

:

10−13

10−11

10−9

10−7

10−5

10−3
Ta

yl
or

re
m

ai
nd

er
no

rm 1
1

1
2

(b) Plastic phase

‖A 0
:
‖+ ′

‖A 1
:
‖+ ′

Figure 7: Taylor remainder test for the form 𝐹 around (a) a solution 𝒖 in the purely elastic phase and (b) a
solution 𝒖 containing a portion of the domain in the plastic phase. For the purely elastic phase (a) the
norm of the zeroth-order Taylor remainder 𝑟 0

𝑘
achieves the first-order convergence rate, whereas the norm

first-order remainder 𝑟 1
𝑘

is computed to the level of machine precision, as the purely elastic problem
can be expressed as a quadratic functional (constant Jacobian). For the plastic phase (b), the norm of
the zeroth-order Taylor remainder 𝑟 0

𝑘
reaches the first-order convergence rate, whereas the norm of

the first-order remainder 𝑟 1
𝑘

achieves the second-order convergence rate. These results imply that the
automatically derived Jacobian is a consistent (correct) first-order approximation of the residual.

The plots in Figure 7 show that the computed first-order and second-order convergence
rates of the Taylor remainders are in agreement with the expectations defined by the Taylor
remainder theory. From this, we can conclude that, together, FEniCSx (UFL, FFCx and DOLFINx)
and JAX produce a consistent (correct) approximation of the assembled finite element residual
and Jacobian for the Mohr-Coulomb model.

Solution of slope stability problem We now demonstrate that our numerical solution of the
slope stability problem matches the results found in the literature. We progressively increase
the second component of the gravitational body force 𝒒 = [0,−𝛾]𝑇 from Equation (22), the soil
self-weight 𝛾 , up to the critical value 𝛾num

lim , when the perfect plasticity plateau is reached on the
loading-displacement curve at the top left corner (0, 𝐻). Then we compare 𝛾num

lim with analytical
𝛾lim found through the formula of the slope stability factor 𝑙lim

𝑙lim = 𝛾lim𝐻/𝑐. (30)

17

Latyshev et al. Expressing general constitutive models in FEniCSx

Equation (30) is derived in the case of the standard Mohr-Coulomb model without smoothing
under plane strain assumptions for associative plastic flow (W. F. Chen et al. 1990). In the case of
the rectangular slope with friction angle 𝜙 equal to 30◦, 𝑙lim = 6.69 (W. F. Chen et al. 1990, p.
368). The values of model parameters used in this numerical test can be found in Table 2 within
Appendix A.2. The loading-displacement curve shown in Figure 8 confirms that the numerically
estimated yield strength limit reached for 𝛾num

lim is close to 𝛾lim.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Displacement of the slope DG at (0, �) [mm]

0

5

10

15

20
So

il
se

lf-
w

ei
gh

tW
[M

Pa
/m

m
3]

W

Wlim

Figure 8: Displacement of the slope 𝑢𝑥 (0, 𝐻) with respect to the soil self-weight 𝛾 in the Mohr-Coulomb
model with apex smoothing for the associative plastic flow 𝜙 = 𝜓 . Reaching the yield strength limit 𝛾num

lim
(the plateau) is associated with losing the stability by the slope. The 𝛾lim is obtained via an analytical
solution using the standard Mohr-Coulomb model without smoothing (W. F. Chen et al. 1990, p. 368).

Additionally, we demonstrate the magnitude of the displacement field at the last loading step
in Figure 9, where the slip of the rectangular slope can be observed on the left side 𝑥 = 0.

0.000000

0.000500

0.001000

0.001500

0.002000

0.002500

0.002928

M
ag

ni
tu

de
of

di
sp

la
ce

m
en

ts
,‖
D
‖ 2

[m
m

]

Figure 9: Slip of the slope for the Mohr-Coulomb problem. The domain is warped by the displacement
field (magnified). The magnitude of the displacement field is shown by the colour and reaches its maximum
at the bottom left corner.

5 Conclusion

In this article, we described the implementation of a software framework that extends the
DOLFINx library and the methodology that explains how to define a wide range of constitutive
models in FEniCSx via this framework. Our framework provides the user with an interface

18

Latyshev et al. Expressing general constitutive models in FEniCSx

that wraps a constitutive model via an external operator (Bouziani et al. 2021). Data is passed
between the external operator and DOLFINx using standard array-like data structures, allowing a
wide range of different programming languages and environments to be used. Together these
developments enable the definition of a general class of constitutive models in FEniCSx. In
particular, the application of the framework is demonstrated with two plasticity problems: the
von Mises model with isotropic hardening (using the Numba package) and the Mohr-Coulomb
model with apex smoothing (using the JAX package).

We then explored the application of algorithmic automatic differentiation (AD) for imple-
menting constitutive models in solid mechanics. In the example of the Mohr-Coulomb model, we
demonstrated that AD significantly reduces the amount of manual differentiation required to
express a general constitutive model.

Although we focused on one constitutive model type (small strain elastoplasticity) imple-
mented using two programming environments (Numba and JAX), the framework serves as a
general interface to expand the capabilities of FEniCSx to different types of constitutive models
implemented in numerous ways. For example, CVXPY could be used to implement and solve
convex plasticity models, PyTorch and TensorFlow to build data-centric neural network-based
constitutive models or an external solver could be called to implement a multi-scale model.
Beyond solid mechanics, the framework could be applied to fluid mechanics problems with
general non-Newtonian constitutive behaviour or complex multi-physics problems such as
magnetorheological elastomers (Mukherjee et al. 2021).

On a broader final note, we hope that the software framework proves itself useful to the
wider community. We are particularly excited about the possibilities that algorithmic automatic
differentiation can open up in mechanics problems involving challenging constitutive models.

Backmatter information

Supplementary material The software framework presented in this article is available at
doi:10.5281/zenodo.10907417. The repository includes von Mises and Mohr-Coulomb plasticity
examples covered in the text as well as further fully documented examples. The Python
scripts plotting the figures in this article from their data are available at the permanent
link doi:10.5281/zenodo.13908686.

Acknowledgements The authors would like to thank Patrick E. Farrell for his valuable
remarks on computing the dual norm in the Taylor remainder test and Jørgen S. Dokken for his
contribution extending the software framework to codimension on mesh entities.

Funding This research was funded in whole, or in part, by the Luxembourg National Research
Fund (FNR), grant reference PRIDE/21/16747448/MATHCODA. For the purpose of open access,
and in fulfilment of the obligations arising from the grant agreement, the author has applied a
Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted
Manuscript version arising from this submission.

Authors’ contributions AL: Conceptualisation, Formal analysis, Investigation, Methodology,
Software, Validation, Visualisation, Writing - original draft, Writing - review and editing. JB:
Conceptualisation, Methodology, Supervision (Masters thesis of AL), Validation, Writing -
review and editing. CM: Conceptualisation, Supervision (Masters and PhD thesis of AL), Project
administration, Writing - review and editing. JSH: Conceptualisation, Formal analysis, Funding
acquisition, Methodology, Project administration, Software, Supervision (PhD thesis of AL),
Writing - review and editing.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a

19

https://doi.org/10.5281/zenodo.10907417
https://doi.org/10.5281/zenodo.13908687

Latyshev et al. Expressing general constitutive models in FEniCSx

link to the Creative Commons license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a full copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbo, A. and S. Sloan (Feb. 1995). “A Smooth Hyperbolic Approximation to the Mohr-Coulomb
Yield Criterion”. Computers & Structures 54.3, pp. 427–441. doi: 10.1016/0045-7949(94)00339-5

Alnæs, M., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells (Dec. 7, 2015). “The FEniCS Project Version 1.5”. Archive of Numerical
Software 3.100 (100). doi: 10.11588/ans.2015.100.20553

Alnæs, M. S., A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells (Mar. 5, 2014). “Unified
Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential
Equations”. ACM Transactions on Mathematical Software 40.2, 9:1–9:37. doi: 10.1145/2566630

Axler, S. (2020). Measure, Integration & Real Analysis. en. Vol. 282. Graduate Texts in Mathematics.
Springer International Publishing. doi: 10.1007/978-3-030-33143-6

[SW] Baratta, I. A., J. P. Dean, J. S. Dokken, M. Habera, J. S. Hale, C. N. Richardson, M. E. Rognes,
M. W. Scroggs, N. Sime, and G. N. Wells, DOLFINx: The next Generation FEniCS Problem
Solving Environment Dec. 31, 2023. doi: 10.5281/zenodo.10447666, vcs: https://github.com
/FEniCS/dolfinx

Blanchard, P. and E. Brüning (2015). Mathematical Methods in Physics: Distributions, Hilbert Space
Operators, Variational Methods, and Applications in Quantum Physics. Vol. 69. Cham: Springer
International Publishing. 598 pp. doi: 10.1007/978-3-319-14045-2

[SW] Bleyer, J., Fenics_optim – Convex Optimization Interface in FEniCS version 2.0.1, Jan. 10, 2022.
doi: 10.5281/zenodo.5833932, vcs: https://gitlab.enpc.fr/navier-fenics/fenics-optim

[SW] Bleyer, J., Dolfinx_materials: A Python Package for Advanced Material Modelling version v0.3.0,
Oct. 2, 2024. Zenodo. doi: 10.5281/zenodo.13882184, vcs: https://github.com/bleyerj/dolfinx
_materials

[SW] Bleyer, J., Numerical Tours of Computational Mechanics with FEniCSx version v0.2, Sept. 25,
2024. doi: 10.5281/zenodo.13838486, vcs: https://github.com/bleyerj/comet-fenicsx

Blühdorn, J., N. R. Gauger, and M. Kabel (Feb. 1, 2022). “AutoMat: Automatic Differentiation for
Generalized Standard Materials on GPUs”. Computational Mechanics 69.2, pp. 589–613. doi:
10.1007/s00466-021-02105-2

Bonnet, M., A. Frangi, and C. Rey (2014). The Finite Element Method in Solid Mechanics. McGraw-Hill
Education. 352 pp.

Bouziani, N. and D. A. Ham (2021). “Escaping the Abstraction: A Foreign Function Interface for
the Unified Form Language [UFL]”. First Workshop on Differentiable Programming (NeurIPS
2021) (Dec. 13, 2021). doi: 10.48550/arXiv.2111.00945

Brothers, M. D., J. T. Foster, and H. R. Millwater (Sept. 2014). “A Comparison of Different
Methods for Calculating Tangent-Stiffness Matrices in a Massively Parallel Computational
Peridynamics Code”. Computer Methods in Applied Mechanics and Engineering 279, pp. 247–267.
doi: 10.1016/j.cma.2014.06.034

Bucalem, M. L. and K.-J. Bathe (2011). The Mechanics of Solids and Structures - Hierarchical
Modeling and the Finite Element Solution. Red. by K.-J. Bathe. Berlin, Heidelberg: Springer.
doi: 10.1007/978-3-540-26400-2

Buche, M. R. and M. N. Silberstein (July 2020). “Statistical mechanical constitutive theory of
polymer networks: The inextricable links between distribution, behavior, and ensemble”.
Physical Review E 102.1, p. 012501. doi: 10.1103/PhysRevE.102.012501

Chen, Q., J. Ostien, and G. Hansen (2014). “Automatic Differentiation for Numerically Exact
Computation of Tangent Operators in Small-and Large-Deformation Computational In-
elasticity”. Annual Meeting Supplemental Proceedings. TMS 2014 143rd Annual Meeting &

20

https://doi.org/10.1016/0045-7949(94)00339-5
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1145/2566630
https://doi.org/10.1007/978-3-030-33143-6
https://doi.org/10.5281/zenodo.10447666
https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/dolfinx
https://doi.org/10.1007/978-3-319-14045-2
https://doi.org/10.5281/zenodo.5833932
https://gitlab.enpc.fr/navier-fenics/fenics-optim
https://doi.org/10.5281/zenodo.13882184
https://github.com/bleyerj/dolfinx_materials
https://github.com/bleyerj/dolfinx_materials
https://doi.org/10.5281/zenodo.13838486
https://github.com/bleyerj/comet-fenicsx
https://doi.org/10.1007/s00466-021-02105-2
https://doi.org/10.48550/arXiv.2111.00945
https://doi.org/10.1016/j.cma.2014.06.034
https://doi.org/10.1007/978-3-540-26400-2
https://doi.org/10.1103/PhysRevE.102.012501

Latyshev et al. Expressing general constitutive models in FEniCSx

Exhibition Held (San Diego, CA, United States, Feb. 16–20, 2014). John Wiley & Sons, p. 289.
doi: 10.13140/2.1.3862.6246

Chen, W. F. and X. L. Liu (1990). Limit Analysis in Soil Mechanics. Vol. 52. Developments in
Geotechnical Engineering. Elsevier Science. 477 pp.

Coussy, O. (Feb. 13, 2004). Poromechanics. Chichester: John Wiley & Sons. 320 pp. doi: 10.1002/047
0092718

Diamond, S. and S. Boyd (2016). “CVXPY: A Python-Embedded Modeling Language for Convex
Optimization”. Journal of Machine Learning Research 17.83, pp. 1–5

[SW] DMLC, DLPack version 1.0, Sept. 2024. Distributed (Deep) Machine Learning Community
(DMLC). vcs: https://github.com/dmlc/dlpack

Dummer, A., M. Neuner, P. Gamnitzer, and G. Hofstetter (June 2024). “Robust and Efficient Imple-
mentation of Finite Strain Generalized Continuum Models for Material Failure: Analytical,
Numerical, and Automatic Differentiation with Hyper-Dual Numbers”. Computer Methods in
Applied Mechanics and Engineering 426, p. 116987. doi: 10.1016/j.cma.2024.116987

Ferry, J. D. (Sept. 1980). Viscoelastic Properties of Polymers. en. John Wiley & Sons
Feyel, F. (July 18, 2003). “A Multilevel Finite Element Method (FE2) to Describe the Response of

Highly Non-Linear Structures Using Generalized Continua”. Computer Methods in Applied
Mechanics and Engineering 192.28, pp. 3233–3244. doi: 10.1016/S0045-7825(03)00348-7

Frostig, R., M. J. Johnson, and C. Leary (2018). “Compiling Machine Learning Programs via
High-Level Tracing”. Systems for Machine Learning. SysML Conference 2018 (Stanford, CA,
United States, Mar. 31–Apr. 2, 2019). url: https://mlsys.org/Conferences/doc/2018/146.pdf

Fuhg, J. N., G. A. Padmanabha, N. Bouklas, B. Bahmani, W. Sun, N. N. Vlassis, M. Flaschel,
P. Carrara, and L. De Lorenzis (May 2024). A review on data-driven constitutive laws for solids.
doi: 10.48550/arXiv.2405.03658

Griewank, A. and A. Walther (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Philadelphia, PA: Society for Industrial and Applied Mathematics. 438 pp. doi:
10.1137/1.9780898717761

Ham, D. A., P. H. J. Kelly, L. Mitchell, C. Cotter, R. C. Kirby, K. Sagiyama, N. Bouziani, S.
Vorderwuelbecke, T. Gregory, J. Betteridge, D. R. Shapero, R. Nixon-Hill, C. Ward, P. E. Farrell,
P. D. Brubeck, I. Marsden, T. H. Gibson, M. Homolya, T. Sun, A. T. T. McRae, F. Luporini,
A. Gregory, M. Lange, S. W. Funke, F. Rathgeber, G.-T. Bercea, and G. R. Markall (May 2023).
Firedrake User Manual. doi: 10.25561/104839

Hecht, F. (Dec. 1, 2012). “New Development in Freefem++”. Journal of Numerical Mathematics
20.3-4, pp. 251–266. doi: 10.1515/jnum-2012-0013

Helfer, T., J. Bleyer, T. Frondelius, I. Yashchuk, T. Nagel, and D. Naumov (Apr. 23, 2020). “The
‘MFrontGenericInterfaceSupport‘ Project”. Journal of Open Source Software 5.48, p. 2003. doi:
10.21105/joss.02003

Helfer, T., B. Michel, J.-M. Proix, M. Salvo, J. Sercombe, and M. Casella (Sept. 2015). “Introducing
the Open-Source Mfront Code Generator: Application to Mechanical Behaviours and Material
Knowledge Management within the PLEIADES Fuel Element Modelling Platform”. Computers
& Mathematics with Applications 70.5, pp. 994–1023. doi: 10.1016/j.camwa.2015.06.027

[SW] Helfer, T., B. Michel, J.-M. Proix, J. Sercombe, M. Casella, and M. Salvo, TFEL/MFront Project
version 4.2.1, June 2024. vcs: https://github.com/thelfer/tfel

Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (Jan. 2018). “TSFC: A Structure-Preserving
Form Compiler”. SIAM Journal on Scientific Computing 40.3, pp. C401–C428. doi: 10.1137/17
M1130642. arXiv: 1705.03667 [cs]

Kirby, R. C. (Jan. 2010). “From Functional Analysis to Iterative Methods”. SIAM Review 52.2,
pp. 269–293. doi: 10.1137/070706914

Kirby, R. C. and A. Logg (Sept. 1, 2006). “A Compiler for Variational Forms”. ACM Trans. Math.
Softw. 32.3, pp. 417–444. doi: 10.1145/1163641.1163644

Korelc, J. (Nov. 1997). “Automatic Generation of Finite-Element Code by Simultaneous Optimiza-
tion of Expressions”. Theoretical Computer Science 187.1-2, pp. 231–248. doi: 10.1016/S0304-39
75(97)00067-4

Korelc, J. and P. Wriggers (2016). Automation of Finite Element Methods. Cham: Springer Interna-
tional Publishing. 346 pp. doi: 10.1007/978-3-319-39005-5

21

https://doi.org/10.13140/2.1.3862.6246
https://doi.org/10.1002/0470092718
https://doi.org/10.1002/0470092718
https://github.com/dmlc/dlpack
https://doi.org/10.1016/j.cma.2024.116987
https://doi.org/10.1016/S0045-7825(03)00348-7
https://mlsys.org/Conferences/doc/2018/146.pdf
https://doi.org/10.48550/arXiv.2405.03658
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.25561/104839
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.21105/joss.02003
https://doi.org/10.1016/j.camwa.2015.06.027
https://github.com/thelfer/tfel
https://doi.org/10.1137/17M1130642
https://doi.org/10.1137/17M1130642
https://arxiv.org/abs/1705.03667
https://doi.org/10.1137/070706914
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1016/S0304-3975(97)00067-4
https://doi.org/10.1016/S0304-3975(97)00067-4
https://doi.org/10.1007/978-3-319-39005-5

Latyshev et al. Expressing general constitutive models in FEniCSx

Lam, S. K., A. Pitrou, and S. Seibert (2015). “Numba: A LLVM-based Python JIT Compiler”.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (Austin, TX,
USA, Nov. 15–20, 2015). New York, NY, USA: Association for Computing Machinery, pp. 1–6.
doi: 10.1145/2833157.2833162

[SW] Latyshev, A. and J. Bleyer, Convex-Plasticity: Efficient Implementation of Plasticity Problems
Resolution Using Convex Optimization Solvers Incorporated in a Finite Element Code 2022. vcs:
https://github.com/a-latyshev/convex-plasticity

Latyshev, A., J. Bleyer, J. Hale, and C. Maurini (May 2024). “A Framework for Expressing
General Constitutive Models in FEniCSx”. 16ème Colloque National En Calcul de Structures
(May 13–17, 2024). Giens, France: CNRS, CSMA, ENS Paris-Saclay, CentraleSupélec. url:
https://hal.science/hal-04610881

[SW] Latyshev, A. and J. S. Hale, dolfinx-external-operator Oct. 2024. doi: 10.5281/zenodo.10907417,
vcs: https://github.com/a-latyshev/dolfinx-external-operator

Lindsay, A., R. Stogner, D. Gaston, D. Schwen, C. Matthews, W. Jiang, L. K. Aagesen, R. Carlsen,
F. Kong, A. Slaughter, C. Permann, and R. Martineau (July 3, 2021). “Automatic Differentiation
in MetaPhysicL and Its Applications in MOOSE”. Nuclear Technology 207.7, pp. 905–922. doi:
10.1080/00295450.2020.1838877

Linka, K. and E. Kuhl (Jan. 2023). “A new family of Constitutive Artificial Neural Networks
towards automated model discovery”. Computer Methods in Applied Mechanics and Engineering
403, p. 115731. doi: 10.1016/j.cma.2022.115731

Logg, A. and K. Ølgaard (2012). “FFC: The FEniCS Form Compiler”. Automated Solution of
Differential Equations by the Finite Element Method. Vol. 84. Springer. Chap. 11, pp. 223–234

Lyness, J. N. and C. B. Moler (June 1967). “Numerical Differentiation of Analytic Functions”. SIAM
Journal on Numerical Analysis 4.2, pp. 202–210. doi: 10.1137/0704019

Lyness, J. (1968). “Differentiation Formulas for Analytic Functions”. Mathematics of Computation
22.102, pp. 352–362. doi: 10.1090/S0025-5718-1968-0230468-5

Mandel, J. (July 1, 1965). “Generalisation de la theorie de plasticite de W. T. Koiter”. International
Journal of Solids and Structures 1.3, pp. 273–295. doi: 10.1016/0020-7683(65)90034-X

[SW] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems 2015. url:
https://www.tensorflow.org/, vcs: https://github.com/tensorflow/tensorflow

Masi, F., I. Stefanou, P. Vannucci, and V. Maffi-Berthier (Feb. 1, 2021). “Thermodynamics-Based
Artificial Neural Networks for Constitutive Modeling”. Journal of the Mechanics and Physics
of Solids 147, pp. 1–41. doi: 10.1016/j.jmps.2020.104277

Méric, L. and G. Cailletaud (Jan. 1, 1991). “Single Crystal Modeling for Structural Calculations:
Part 2—Finite Element Implementation”. Journal of Engineering Materials and Technology
113.1, pp. 171–182. doi: 10.1115/1.2903375

Mukherjee, D., M. Rambausek, and K. Danas (June 1, 2021). “An Explicit Dissipative Model for
Isotropic Hard Magnetorheological Elastomers”. Journal of the Mechanics and Physics of Solids
151, p. 104361. doi: 10.1016/j.jmps.2021.104361

Ogden, R. W. (1997). Non-linear Elastic Deformations. en. Courier Corporation
[SW] Ølgaard, K. B. and N. W. Garth, FEniCS Solid Mechanics 2017. vcs: https://bitbucket.org/feni

cs-apps/fenics-solid-mechanics/src/master/
Rajagopal, K. R. and A. R. Srinivasa (Jan. 2000). “A thermodynamic frame work for rate type fluid

models”. Journal of Non-Newtonian Fluid Mechanics 88.3, pp. 207–227. doi: 10.1016/S0377-025
7(99)00023-3. (Visited on 10/03/2019)

Riesz, F. (1907). “Sur une espèce de géométrie analytique des systèmes de fonctions sommables”.
FR. Comptes rendus de l’Académie des Sciences 144, pp. 1409–1411. url: https://gallica.bnf.fr/ar
k:/12148/bpt6k3098j

22

https://doi.org/10.1145/2833157.2833162
https://github.com/a-latyshev/convex-plasticity
https://hal.science/hal-04610881
https://doi.org/10.5281/zenodo.10907417
https://github.com/a-latyshev/dolfinx-external-operator
https://doi.org/10.1080/00295450.2020.1838877
https://doi.org/10.1016/j.cma.2022.115731
https://doi.org/10.1137/0704019
https://doi.org/10.1090/S0025-5718-1968-0230468-5
https://doi.org/10.1016/0020-7683(65)90034-X
https://www.tensorflow.org/
https://github.com/tensorflow/tensorflow
https://doi.org/10.1016/j.jmps.2020.104277
https://doi.org/10.1115/1.2903375
https://doi.org/10.1016/j.jmps.2021.104361
https://bitbucket.org/fenics-apps/fenics-solid-mechanics/src/master/
https://bitbucket.org/fenics-apps/fenics-solid-mechanics/src/master/
https://doi.org/10.1016/S0377-0257(99)00023-3
https://doi.org/10.1016/S0377-0257(99)00023-3
https://gallica.bnf.fr/ark:/12148/bpt6k3098j
https://gallica.bnf.fr/ark:/12148/bpt6k3098j

Latyshev et al. Expressing general constitutive models in FEniCSx

Rothe, S. and S. Hartmann (Aug. 2015). “Automatic Differentiation for Stress and Consistent
Tangent Computation”. Archive of Applied Mechanics 85.8, pp. 1103–1125. doi: 10.1007/s00419-
014-0939-6

Saether, E., V. Yamakov, and E. H. Glaessgen (2009). “An embedded statistical method for coupling
molecular dynamics and finite element analyses”. en. International Journal for Numerical
Methods in Engineering 78.11, pp. 1292–1319. doi: 10.1002/nme.2529

Seidl, D. T. and B. N. Granzow (2022). “Calibration of Elastoplastic Constitutive Model Parameters
from Full-Field Data with Automatic Differentiation-Based Sensitivities”. International Journal
for Numerical Methods in Engineering 123.1, pp. 69–100. doi: 10.1002/nme.6843

Simo, J. C. and T. J. R. Hughes (1998). Computational Inelasticity. Vol. 7. New York: Springer-Verlag.
392 pp. doi: 10.1007/b98904

Stainier, L., A. Leygue, and M. Ortiz (Aug. 2019). “Model-Free Data-Driven Methods in Mechanics:
Material Data Identification and Solvers”. Computational Mechanics 64.2, pp. 381–393. doi:
10.1007/s00466-019-01731-1

Tanaka, M., D. Balzani, and J. Schröder (Apr. 1, 2016). “Implementation of Incremental Variational
Formulations Based on the Numerical Calculation of Derivatives Using Hyper Dual Numbers”.
Computer Methods in Applied Mechanics and Engineering 301, pp. 216–241. doi: 10.1016/j.cma
.2015.12.010

Thakolkaran, P., A. Joshi, Y. Zheng, M. Flaschel, L. De Lorenzis, and S. Kumar (Dec. 1, 2022).
“NN-EUCLID: Deep-learning Hyperelasticity without Stress Data”. Journal of the Mechanics
and Physics of Solids 169, pp. 1–29. doi: 10.1016/j.jmps.2022.105076

Tschoegl, N. W. (Dec. 2012). The Phenomenological Theory of Linear Viscoelastic Behavior: An
Introduction. en. Springer Science & Business Media

Ulloa, J., L. Stainier, M. Ortiz, and J. E. Andrade (Sept. 2024). “Data-Driven Micromorphic
Mechanics for Materials with Strain Localization”. Computer Methods in Applied Mechanics
and Engineering 429, p. 117180. doi: 10.1016/j.cma.2024.117180

Vigliotti, A. and F. Auricchio (May 2021). “Automatic Differentiation for Solid Mechanics”. Archives
of Computational Methods in Engineering 28.3, pp. 875–895. doi: 10.1007/s11831-019-09396-y.
arXiv: 2001.07366 [cs, math]

Wang, X. and W. Hong (Aug. 2012). “A visco-poroelastic theory for polymeric gels”. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 468.2148, pp. 3824–3841.
doi: 10.1098/rspa.2012.0385

Xue, T., S. Liao, Z. Gan, C. Park, X. Xie, W. K. Liu, and J. Cao (Oct. 1, 2023). “JAX-FEM: A
Differentiable GPU-accelerated 3D Finite Element Solver for Automatic Inverse Design and
Mechanistic Data Science”. Computer Physics Communications 291.108802. doi: 10.1016/j.cpc.2
023.108802

Zhang, W., D. S. Li, T. Bui-Thanh, and M. S. Sacks (May 2022). “Simulation of the 3D hyperelastic
behavior of ventricular myocardium using a finite-element based neural-network approach”.
Computer Methods in Applied Mechanics and Engineering 394, p. 114871. doi: 10.1016/j.cma.20
22.114871

Zlatić, M., F. Rocha, L. Stainier, and M. Čanađija (Nov. 1, 2024). “Data-Driven Methods for
Computational Mechanics: A Fair Comparison between Neural Networks Based and Model-
Free Approaches”. Computer Methods in Applied Mechanics and Engineering 431, p. 117289.
doi: 10.1016/j.cma.2024.117289

A Appendices

A.1 von Mises plasticity

Table 1 contains the material and geometry parameters of the von Mises plasticity example.

A.2 Mohr-Coulomb with apex smoothing

Here we cover the plasticity model with a non-associated flow rule based on the Mohr-Coulomb
yield criterion with apex smoothing (Abbo et al. 1995) from Section 4.2. The model is defined by

23

https://doi.org/10.1007/s00419-014-0939-6
https://doi.org/10.1007/s00419-014-0939-6
https://doi.org/10.1002/nme.2529
https://doi.org/10.1002/nme.6843
https://doi.org/10.1007/b98904
https://doi.org/10.1007/s00466-019-01731-1
https://doi.org/10.1016/j.cma.2015.12.010
https://doi.org/10.1016/j.cma.2015.12.010
https://doi.org/10.1016/j.jmps.2022.105076
https://doi.org/10.1016/j.cma.2024.117180
https://doi.org/10.1007/s11831-019-09396-y
https://arxiv.org/abs/2001.07366
https://doi.org/10.1098/rspa.2012.0385
https://doi.org/10.1016/j.cpc.2023.108802
https://doi.org/10.1016/j.cpc.2023.108802
https://doi.org/10.1016/j.cma.2022.114871
https://doi.org/10.1016/j.cma.2022.114871
https://doi.org/10.1016/j.cma.2024.117289

Latyshev et al. Expressing general constitutive models in FEniCSx

Symbol Value Units Meaning
𝐸 70·103 MPa Young modulus
𝐸𝑡

𝐸
100 MPa Tangent modulus

𝜈 0.3 - Poisson ratio
𝜎0 250 MPa Yield strength
𝑅𝑒 1.3 mm External radius of the cylinder
𝑅𝑖 1.0 mm Internal radius of the cylinder

Table 1: Material and geometry parameters used in the von Mises plasticity example in Section 4.1.

the yield function 𝑓 and the plastic potential 𝑔 expressed as follows:

ℎ(𝝈 , 𝛼) = 𝐼1(𝝈)
3 sin𝛼 +

√︃
𝐽2(𝝈)𝐾2(𝜃, 𝛼) + 𝑎2(𝛼) sin2 𝛼 − 𝑐 cos𝛼, (31)

𝑓 (𝝈) = ℎ(𝝈 , 𝜙), (32)
𝑔(𝝈) = ℎ(𝝈 ,𝜓), (33)

where 𝜙 and𝜓 are the friction and dilatancy angles respectively, 𝑐 is the cohesion parameter,
𝐼1(𝝈) = tr𝝈 is the first invariant of the stress field, 𝐽2(𝝈) = 1

2𝒔 · 𝒔 is the second invariant of
the deviatoric part of the stress field. In the quantity 𝑎(𝛼) := 𝑎 tan𝜙/tan𝛼 , the tension cut-off
parameter 𝑎 defines how close the hyperbolic approximation is to the Mohr-Coulomb yield
surface without smoothing.

In the Equation (31) the term 𝐾 (𝜃, 𝛼) depends on either friction or dilatancy angle through
the parameter 𝛼 and the Lode angle 𝜃 = 𝜃 (𝝈):

𝜃 (𝝈) = 1
3 arcsin

©­­«
−3

√
3𝐽3(𝝈)

2
√︃
𝐽 3
2 (𝝈)

ª®®¬ ∈ [−𝜋6 ,
𝜋

6], (34)

where 𝐽3 = det 𝒔 is the third invariant of the deviatoric part of the stress field. The term 𝐾 (𝜃, 𝛼)
is defined as follows:

𝐾 (𝜃, 𝛼) =
{

cos𝜃 − 1√
3 sin𝛼 sin𝜃, |𝜃 | < 𝜃𝑇 ,

𝐴(𝛼) + 𝐵(𝛼) sin 3𝜃 +𝐶 (𝛼) sin2 3𝜃, |𝜃 | ≥ 𝜃𝑇 ,
(35)

where 𝜃𝑇 is a transition angle, which “in practice, should not be too near 30◦ to avoid ill-
conditioning ... and the typical value is 25◦” (Abbo et al. 1995, p. 429) and the terms 𝐴, 𝐵 and 𝐶
are defined as follows:

𝐴(𝛼) = − 1√
3

sin𝛼 sign𝜃 sin𝜃𝑇 − 𝐵(𝛼) sign𝜃 sin 3𝜃𝑇 −𝐶 (𝛼) sin2 3𝜃𝑇 + cos𝜃𝑇 , (36)

𝐵(𝛼) = sign𝜃 sin 6𝜃𝑇
(
cos𝜃𝑇 − 1√

3
sin𝛼 sign𝜃 sin𝜃𝑇

)
/18 cos3 3𝜃𝑇

− 6 cos 6𝜃𝑇
(

sign𝜃 sin𝜃𝑇 + 1√
3

sin𝛼 cos𝜃𝑇
)
/18 cos3 3𝜃𝑇 , (37)

𝐶 (𝛼) = − cos 3𝜃𝑇
(
cos𝜃𝑇 − 1√

3
sin𝛼 sign𝜃 sin𝜃𝑇

)
/18 cos3 3𝜃𝑇

− 3 sign𝜃 sin 3𝜃𝑇
(

sign𝜃 sin𝜃𝑇 + 1√
3

sin𝛼 cos𝜃𝑇
)
/18 cos3 3𝜃𝑇 , (38)

sign𝜃 =

{
+1, 𝜃 ≥ 0◦,
−1, 𝜃 < 0◦.

(39)

24

Latyshev et al. Expressing general constitutive models in FEniCSx

The set of all parameters together with their values used for the numerical simulation (cf. Sec-
tion 4.2) is given in the Table 2. The values are based on the limit analysis within semi-definite
programming framework (Bleyer 2022, limit_analysis_3D_SDP.ipynb) and the implementation of
the Mohr-Coulomb model with apex smoothing in MFront (Helfer, Michel, Proix, Sercombe, et al.
2024, MohrCoulomb.md).

Symbol Value Units Meaning
𝐸 6778 MPa Young modulus
𝜈 0.25 - Poisson ratio
𝑐 3.45 MPa Cohesion
𝜙 30 ◦, degree Friction angle
𝜓 30 ◦, degree Dilatancy angle
𝜃𝑇 26 ◦, degree Transition angle
𝑎 0.26𝑐/tan𝜙 MPa Tension cut-off parameter
𝐿 1.2 mm Length of the slope
𝐻 1.0 mm Height of the slope

Table 2: Material and geometry parameters used in the Mohr-Coulomb with apex smoothing plasticity
model (see Section 4.2).

A.3 Taylor remainder test in the dual space

In the main text (Section 4.2) we formulated the Taylor remainder test by establishing the
convergence of the norm of the Taylor remainders 𝑟 0

𝑘
and 𝑟 1

𝑘
(see Equations (27) and (28)) of the

operator F , which links to the variational form 𝐹 through Equation (26). In the next sections, for
practical reasons, we reformulate the Taylor remainder test for the finite subset 𝑉ℎ ⊂ 𝑉 and
explain how we implement it in more detail. Our implementation leads to mesh-independent
norms for the Taylor remainders, which is a direct consequence of explicitly considering the dual
space. This choice is motivated by the work of Kirby (2010) and will be discussed in the final part
of this appendix.

Notation

For simplicity we work with scalar-valued functions 𝑢 : Ω → R – the arguments here extend
trivially to the vector-valued case 𝒖 : Ω → R2 used in the main text. For the vector-valued case
in the main text we use the inverse of the finite element discretisation of the vector-valued
Laplacian for the Riesz map L−1 (see the definition below).

We suppose that the space 𝑉ℎ is spanned by a finite set of basis functions {𝜑𝑖}𝑛𝑖=1 with
𝑛 = dim𝑉ℎ . Then 𝑢ℎ ∈ 𝑉ℎ can be represented as a linear combination of the basis functions

𝑢ℎ =

𝑛∑︁
𝑖=1

𝑢𝑖𝜑𝑖 , (40)

where the coefficients 𝑢𝑖 forms the Euclidean vector u = [𝑢1, . . . , 𝑢𝑛]𝑇 ∈ R𝑛 .
Following the notation of Kirby (2010), we introduce an interpolation operator Iℎ : R𝑛 → 𝑉ℎ

that maps the vector of coefficients u into the function 𝑢ℎ ∈ 𝑉ℎ

Iℎu = 𝑢ℎ . (41)

Similarly, the operator I′
ℎ

: R𝑛 → 𝑉ℎ
′ maps the Euclidean vector f ∈ R𝑛 to the linear functional

𝑓 ∈ 𝑉ℎ ′ where 𝑉ℎ ′ is the dual space to 𝑉ℎ

I′
ℎ f = 𝑓 . (42)

Implementation of the Taylor remainder test

The objective of the Taylor remainder test is to check that the computer implementation of the
form 𝐹 : 𝑉ℎ ×𝑉ℎ → R and its Jacobian 𝐽 : 𝑉ℎ ×𝑉ℎ ×𝑉ℎ → R in the direction 𝑘𝛿𝑢ℎ ∈ 𝑉ℎ with

25

Latyshev et al. Expressing general constitutive models in FEniCSx

𝑘 > 0 are consistent zeroth- and first-order approximations of the form 𝐹 respectively. To this
end, we introduce the operators F : 𝑉ℎ → 𝑉ℎ

′ and J : 𝑉ℎ → L(𝑉ℎ,𝑉ℎ ′), where L(𝑉ℎ,𝑉ℎ ′) is a
space of bounded linear operators from 𝑉ℎ to 𝑉ℎ ′. These operators are linked with the forms 𝐹
and 𝐽 in the following way respectively

⟨F (𝑢ℎ), 𝑣ℎ⟩ := 𝐹 (𝑢ℎ ; 𝑣ℎ), (43)
⟨(J (𝑢ℎ)) (𝑘𝛿𝑢ℎ), 𝑣ℎ⟩ := 𝐽 (𝑢ℎ ;𝑘𝛿𝑢ℎ, 𝑣ℎ), (44)

where, as in the main text, ⟨·, ·⟩ is the 𝑉ℎ ′ × 𝑉ℎ duality pairing and the semicolon is used to
emphasize that the forms are nonlinear in the first argument and linear in the remaining ones.

We assume the functional F is once Fréchet-differentiable allowing for the application of the
Taylor (remainder) theorem on Banach spaces (Blanchard et al. 2015, p. 524). This allows us
to establish the first-order convergence rate in 𝑘 of the dual norm of the zeroth-order Taylor
remainder 𝑟 0

𝑘

∥𝑟 0
𝑘 ∥𝑉ℎ ′ := ∥F (𝑢ℎ + 𝑘 𝛿𝑢ℎ) − F (𝑢ℎ)∥𝑉ℎ ′ −→

𝑘→0
0 at 𝑂 (𝑘), (45)

and the second-order convergence rate in 𝑘 of the dual norm of the first-order Taylor remainder
𝑟 1
𝑘

∥𝑟 1
𝑘 ∥𝑉ℎ ′ := ∥F (𝑢ℎ + 𝑘 𝛿𝑢ℎ) − F (𝑢ℎ) − (J (𝑢ℎ)) (𝑘𝛿𝑢ℎ)∥𝑉ℎ ′ −→

𝑘→0
0 at 𝑂 (𝑘2) . (46)

In practice, to compute the norm in the dual space 𝑉ℎ ′ we apply the Riesz representation
theorem (Riesz 1907; Axler 2020). The theorem states that there is a linear isometric isomorphism
R : 𝑉 ′ → 𝑉 , which associates a linear functional 𝑓 ∈ 𝑉 ′ with a unique element R 𝑓 = 𝑢 ∈ 𝑉
such that

⟨𝑓 , 𝑣⟩ = (𝑢, 𝑣), ∀𝑣 ∈ 𝑉 , (47)

where (·, ·) is a standard inner product in 𝑉 . Moreover, the norms satisfy the equality

∥ 𝑓 ∥𝑉 ′ = ∥𝑢∥𝑉 . (48)

If 𝑉 = {𝑣 ∈ 𝐻 1(Ω) : 𝑣 |Γ = 0}, where the subset Γ ⊂ 𝜕Ω of the boundary of the domain Ω has
positive measure 𝜇 (Γ) > 0 then the Riesz map can be defined through the following weak form
of the Laplace operator (Kirby 2010, p. 273)

⟨𝑓 , 𝑣⟩ = (R 𝑓 , 𝑣) =
∫
Ω

∇(R 𝑓) · ∇𝑣 d𝑥, ∀𝑣 ∈ 𝑉 , (49)

from where, for 𝑉ℎ ⊂ 𝑉 , we obtain that the Riesz map is the matrix L−1 representing the inverse
Laplace operator, which is defined as

L𝑖 𝑗 =
∫
Ω

∇𝜑𝑖 · ∇𝜑 𝑗d𝑥, 𝑖, 𝑗 = 1, . . . , 𝑛. (50)

Thus, if 𝑓 ∈ 𝑉ℎ ′ and f := (I′
ℎ
)−1 𝑓 ∈ R𝑛 then the Riesz representer R 𝑓 = Iℎ (L−1f).

The Riesz representation theorem leads us to the following formula expressing the norm of
the linear functional 𝑓 ∈ 𝑉ℎ ′ from the finite dual space 𝑉ℎ ′ through the Riesz matrix L−1 (Kirby
2010, p. 281)

∥ 𝑓 ∥2
𝑉ℎ

′ = f𝑇L−1f. (51)

Now we introduce the vectors of coefficients r𝑖
𝑘
= I−1

ℎ
𝑟 𝑖
𝑘
∈ R𝑛, 𝑖 ∈ {0, 1} of the Taylor

remainders into Equations (45) and (46)

r0
𝑘 = F(u + 𝑘 𝛿u) − F(u) ∈ R𝑛, (52)
r1
𝑘 = F(u + 𝑘 𝛿u) − F(u) − J(u) · 𝑘𝛿u ∈ R𝑛, (53)

where 𝛿u = I−1
ℎ
𝛿𝑢ℎ , F(·) = (I′

ℎ
)−1F (·) and J(·) = (I′

ℎ
)−1J (·)Iℎ (Kirby 2010, p. 280). Finally,

by combining Equations (51) to (53), we can derive expressions for the norms of the remainders
in the dual space 𝑉ℎ ′

∥𝑟 𝑖𝑘 ∥2
𝑉ℎ

′ = (r𝑖𝑘)𝑇 L−1r𝑖𝑘 , 𝑖 ∈ {0, 1}. (54)

26

Latyshev et al. Expressing general constitutive models in FEniCSx

Summary

The overall implementation of the mesh-independent Taylor remainder test presented in this
work consists of the following steps:

1. Fix the Euclidean vectors u and 𝛿u such that 𝑢ℎ = Iℎu ∈ 𝑉ℎ and 𝛿𝑢ℎ = Iℎ𝛿u ∈ 𝑉ℎ .
2. Compute the Euclidean vector F(u) and the matrix J(u).
3. Compute the matrix L defined in Equation (50).
4. For each 𝑘 > 0:

(a) Compute the vectors r0
𝑘

and r1
𝑘

following Equation (52) and Equation (53).
(b) Solve the linear systems Ly = r𝑖

𝑘
, 𝑖 ∈ {0, 1} (i.e. apply the Riesz map).

(c) Compute the norms of the Taylor remainders as ∥𝑟 𝑖
𝑘
∥2
𝑉ℎ

′ = (r𝑖
𝑘
)𝑇 · y, 𝑖 ∈ {0, 1}.

Dual vs Euclidean norms

The Taylor theorem could be applied directly to the form 𝐹 : 𝑉ℎ ×𝑉ℎ → R or the vector-function
F : R𝑛 → R𝑛 representing the operator F : 𝑉ℎ → 𝑉ℎ

′ but such a choice would lead us to the use
of mesh-dependent Euclidean norms for the correspondent Taylor remainders.

As demonstrated by Kirby (2010), the Riesz map serves as the “simplest” preconditioner
for iterative solvers, providing mesh-independent convergence rates when computed through
dual norms. We apply the same idea to the Taylor remainder test, where the question on the
choice for the norm of Taylor remainders naturally arise. In practice, we often work with the
Euclidean vector F(u), which represents an element from the dual space. Hence, applying the
dual norm to this object through the Riesz matrix results in a mesh-independent object. From this
perspective, considering the operator F within the Taylor remainder test is more convenient as it
inherently encourages the use of dual norms, in contrast to the application of the Taylor theorem
to the form 𝐹 or the vector-function F. Thus, as the work Kirby (2010) demonstrates that when
Euclidean representations encode Hilbert space objects, it is crucial to account for the functional
nature of these representations to achieve mesh-independent estimates.

27

	Expressing general constitutive models in FEniCSx using external operators and algorithmic automatic differentiation
	Abstract
	1 Introduction
	1.1 Methods for incorporating constitutive models
	1.2 Automatic differentiation in constitutive modelling
	1.3 Existing software
	1.4 Contributions

	2 General formulation of a plasticity problem
	2.1 Notation
	2.2 Model problem

	3 Extension of the external operator concept to DOLFINx
	3.1 The extension

	4 Application of the framework to plasticity problems
	4.1 Von Mises plasticity
	4.2 Mohr—Coulomb plasticity

	5 Conclusion
	A Appendices
	A.1 von Mises plasticity
	A.2 Mohr-Coulomb with apex smoothing
	A.3 Taylor remainder test in the dual space

