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A B S T R A C T

The enthalpy of mixing in the liquid phase is a thermodynamic property reflecting interactions between elements 
that is key to predict phase transformations. Widely used models exist to predict it, but they have never been 
systematically evaluated. To address this, we collect a large amount of enthalpy of mixing data in binary liquids 
from a review of about 1000 thermodynamic evaluations. This allows us to clarify the prediction accuracy of 
Miedema’s model which is state-of-the-art. We show that more accurate predictions can be obtained from a 
machine learning model based on LightGBM, and we provide them in 2415 binary systems. The data we collect 
also allows us to evaluate another empirical model to predict the excess heat capacity that we apply to 2211 
binary liquids. We then extend the data collection to ternary metallic liquids and find that, when mixing is 
exothermic, extrapolations from the binary systems by Muggianu’s model systematically lead to slight over-
estimations of roughly 10 % close to the equimolar composition. Therefore, our LightGBM model can provide 
reasonable estimates for ternary alloys and, by extension, for multicomponent alloys. Our findings extracted from 
rich datasets can be used to feed thermodynamic, empirical and machine learning models for material devel-
opment. Our data, predictions, and code to generate machine learning descriptors from thermodynamic prop-
erties are all made available.

1. Introduction

The enthalpy of mixing provides basic information on the nature, 
attractive or repulsive, of the interactions between elements in solutions. 
Therefore, it provides important information for understanding 
chemical-related issues in materials, such as the glass-forming ability of 
metallic glasses [1]. Moreover, it is an essential property for predicting 
phase transformations in materials. Generally, deep eutectics, solid so-
lutions and compounds are found in systems where mixing in the liquid 
phase is exothermic, e.g., Au-Sn [2], whereas miscibility gaps form in 
those where mixing is endothermic, e.g., Ag-Ni [3]. The enthalpy of 
mixing in the liquid phase is used to determine the stability of liquids by 
thermodynamic calculations using the Calphad technique [4], which is 

important for the processing and design of a large variety of alloys [5]. 
In addition, several empirical rules for alloy design are based on this 
property [6–8]. Besides, the thermodynamic properties of mixing in the 
liquid phase are important features for machine learning (ML) models to 
predict phase equilibria such as binary liquidus [5], ternary isothermal 
sections [9], or phase formation in high-entropy alloys [10–12].

At present, the most reliable way [13] to estimate the enthalpy of 
mixing in the liquid phase is to use the semi-empirical model established 
by Miedema et al. in 1980 [14]. It is remarkable that no better model has 
been developed since then. Miedema’s model is widely used in ML 
models for predicting phase equilibria [5,10–12], and sometimes used in 
Calphad models in systems where experimental data is not available [15,
16]. However, since it has never been systematically evaluated, the 

* Corresponding author.
** Corresponding author. Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

E-mail addresses: Guillaume.DEFFRENNES@cnrs.fr (G. Deffrennes), TAMURA.Ryo@nims.go.jp (R. Tamura). 

Contents lists available at ScienceDirect

Calphad

journal homepage: www.elsevier.com/locate/calphad

https://doi.org/10.1016/j.calphad.2024.102745
Received 17 June 2024; Received in revised form 7 September 2024; Accepted 7 September 2024  

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 87 (2024) 102745 

Available online 25 September 2024 
0364-5916/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://data.mendeley.com/datasets/6wt6t9kswt
https://data.mendeley.com/datasets/6wt6t9kswt
https://data.mendeley.com/datasets/6wt6t9kswt
mailto:Guillaume.DEFFRENNES@cnrs.fr
mailto:TAMURA.Ryo@nims.go.jp
www.sciencedirect.com/science/journal/03645916
https://www.elsevier.com/locate/calphad
https://doi.org/10.1016/j.calphad.2024.102745
https://doi.org/10.1016/j.calphad.2024.102745
http://creativecommons.org/licenses/by/4.0/


accuracy that can be expected from it is not well known, except for bi-
nary systems of magnesium [17].

In multicomponent liquids, data are scare. Therefore, in ML [5,
10–12], empirical [6–8] and high-throughput [18,19] approaches, their 
enthalpy of mixing is extrapolated from the binary systems. This can be 
done by different geometric models [20], but the most widely used is the 
one proposed by Muggianu et al. [21] because of its simplicity. Again, 
the accuracy of this extrapolation has never been systematically studied.

In recent studies [18,19], the enthalpy of mixing in solid solutions 
was studied through high-throughput density functional theory calcu-
lations. It was approximated in binary systems from a single calculation 
performed at the equimolar composition. The underlying assumption is 
that the enthalpy of mixing is symmetrical with respect to composition 
and reaches its extremum at the equimolar composition. This introduces 
an error of unknown magnitude.

High-throughput ab initio approaches are currently not available to 
study the enthalpy of mixing of liquids. ML approaches represent an 
unexplored alternative. In a recent study, an ensemble of graph neural 
networks was developed to predict the zeroth-order parameter of the 
Redlich-Kister expansion used in Calphad models to describe the 
enthalpy of mixing in the liquid phase [22]. This study is based on a 
dataset of 524 Calphad models of different binary systems for which it 
was not checked whether the parameters are well constrained by 
experimental measurements. For solid solutions, a model was trained on 
data from density functional theory calculations to predict the enthalpy 
of mixing in the body-centered cubic phase for Fe-Cr-based alloys [23]. 
A neural network was developed to reproduce the enthalpy of mixing in 
binary and ternary face-centered cubic solutions obtained from a Cal-
phad commercial database for high entropy alloys [24].

In this work, the enthalpy of mixing in the liquid phase is system-
atically studied using large datasets collected from a review of about 
1000 thermodynamic Calphad assessments. First, we evaluate Miede-
ma’s model, and we develop a machine learning model that performs 
better. Second, we evaluate the performance of Witusiewicz and Som-
mer’s empirical model [25] for predicting the temperature dependance 
of the enthalpy of mixing, i.e., the excess heat capacity. Third, we 
evaluate how accurately the enthalpy of mixing of ternary metallic 
liquids can be extrapolated from their binary subsystems by Muggianu’s 
model. An overview of this work is presented in Fig. 1.

2. Methods

2.1. Datasets

About 1000 Calphad-type thermodynamic evaluations of binary 
systems were reviewed, and enthalpy of mixing data were collected in 
375 binary systems from Refs. ] [] [[2,3,26–335] in composition do-
mains where the models are supported by experimental measurements 
with steps of 1 at%. 94 % of these data are supported by direct calori-
metric measurements. The remaining 6 % are supported by activity or 
chemical potential data at different temperatures separated by at least 
350 K (the contribution from the configurational entropy is then more 
than 2 kJ/mol), or data on both the liquidus and the thermodynamic 
properties of the solid phases involved. Calphad model parameters were 
retrieved from various sources: mainly NIMS CPDDB [336] and com-
pilations by the authors, but also TDBDB [337], NUCLEA [132], and 
publications. When the liquid phase was described using a substitutional 
solution model, the enthalpy of mixing was calculated directly from the 
Redlich-Kister coefficients. For cases involving an associate or ionic 
model, the Pandat software [338] was used. When the enthalpy of 
mixing is temperature dependent, it is calculated at the 
composition-weighted average melting point of the elements.

Excess heat capacity data were obtained from measurements of the 
enthalpy of mixing at different temperatures that were digitized from 
figures found in publications. Data were collected in 43 binary systems 
for which it was found that a clear and consistent trend emerged from 
the experimental data. They were collected from Refs. [2,26–60,
339–344] at the composition where the enthalpy of mixing is at its 
maximum in absolute value, or at the closest composition where 
experimental data are available.

Data on ternary liquids were collected from Refs. [26–29,61–68, 
345–383] in which a substitutional solution model is proposed based on 
experimental data covering a large part of a ternary system.

2.2. Miedema’s model and descriptors

Miedema’s theory is presented in detail elsewhere [14,384,385]. The 
equations of the model and the origin of the parameters used in this 
work are given in the appendix.

58 descriptors are obtained from composition-weighted mean and 

Fig. 1. Overview of this work on the prediction of the enthalpy of mixing in the liquid. RK stands for Redlich-Kister. Our datasets and predictions are made available 
as detailed in “Data availability.”
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average deviation of the properties of the pure elements. They are listed 
in Table S1. The melting and thermodynamic properties of the pure el-
ements are obtained from the SGTE unary database [386] in its 5.0 
version, and other properties are calculated from magpie [387] using 
matminer [388].

2.3. Machine learning methods

Three algorithms are used: LightGBM [389], a gradient boosting 
decision tree, Gaussian process (GP) implemented using PHYSBO [390], 
and artificial neural network (ANN) with two to three hidden layers 
comprising 10 to 1200 nodes implemented using TensorFlow [391]. For 
LightGBM and ANN, the target variable is the error of Miedema’s model 
from which the enthalpy of mixing is recalculated, and for GP it is the 
enthalpy of mixing directly and Miedema’s model is used as a descriptor, 
since this leads to better results.

First, feature selection is performed based on a 5-fold group cross- 
validation (CV), with data for a binary system forming a group that 
cannot be split between the training and validation sets. For LightGBM 
and ANN, a preliminary hyperparameter tuning is performed using 
Optuna [392]. For LightGBM, recursive feature elimination is per-
formed: starting from all 58 descriptors, the least important feature is 
dropped. This is repeated until only two features remain. For ANN and 
GP, sequential feature selection is performed: starting from a 
single-descriptor model, descriptors are tested one by one, and the one 
that leads to the model with the smaller RMSE is selected. This is 
repeated until a model based on all 58 or 59 descriptors is obtained for 
ANN or GP, respectively. This method requires a relatively high 
computation time, which is why feature selection was carried out as a 
first step on the whole dataset. The set of features that minimizes the 
RMSE is selected.

Second, a nested CV is performed as schematized in Fig. S3 of 
Ref. [5]. The advantage of this approach is that model performance is 
evaluated over the entire dataset. For LightGBM and ANN, a 5-fold 
group CV is performed in the inner loop to determine the best hyper-
parameters using Optuna [392]. A 12-fold group CV is performed in the 
outer loop to evaluate model performance.

2.4. Redlich-Kister substitutional solution model

For each binary system, the enthalpy of mixing is calculated at every 
at% from the value predicted by Miedema’s model and the error on this 
value predicted by machine learning. Then, it is fitted by a Redlich- 
Kister polynomial: 

Hliq
mix = xAxB

∑

v
vaA,B(xA − xB)

v (1) 

with Hliq
mix the enthalpy of mixing in the A-B binary liquid phase, xA and 

xB the atomic fraction of A and B, and vaA,B the parameter of order v. 
Starting from the order 0, additional parameters are iteratively added up 
to the order 3 if the RMSE between the predicted and the fitted enthalpy 
of mixing is higher than 0.5 kJ/mol. In systems where the maximum 
absolute value of the enthalpy of mixing is predicted to be less than 10 
kJ/mol, no more than two parameters of order 0 and 1 are used to avoid 
overfitting.

In a multicomponent liquid composed of n elements, the binary 
contributions to the enthalpy of mixing can be calculated using Mug-
gianu’s model [21] by summing Eq. (1) over all binaries without 
weighting compositions: 

bin
Hliq

mix =
∑n− 1

i=1

∑n

j=i+1
xixj

∑

v
vaφ

i,j
(
xi − xj

)v (2) 

The excess heat capacity predicted by Witusiewicz and Sommer’s 
model [25] using our LightGBM/RK model, melting points from the 
SGTE unary database [386], a temperature set to the 

composition-weighted average melting point of the elements, and 
boiling points from magpie [387] as inputs is fitted and can be extrap-
olated using the same formalism as Eqs. (1) and (2).

3. Results

3.1. Prediction of the enthalpy of mixing in binary liquid phases

Reliable enthalpy of mixing data were collected in 375 binary liquids 
after a review of about 1000 systems. Data coverage is shown per binary 
system in Fig. 2, and per element in Fig. S1. In general, our dataset 
covers many binary systems of base alloy elements such as Al or Mg, low 
melting point metals such as Ga or Sn, and between elements of groups 
10 to 14. In contrast, our dataset contains little information, if any, on 
binaries of refractory elements such as C or W, and of elements of groups 
3 to 6 besides with elements of groups 8 to 14.

First, the performance of the Miedema model was evaluated on our 
dataset. The relation between the observed and predicted values is 
shown in Fig. 3, and a mean absolute error (MAE) of 4.2 kJ/mol is ob-
tained. In systems where the enthalpy of mixing is exothermic, it 
generally gives values that are not sufficiently negative.

Next, we developed an ML model based on LightGBM to predict the 
enthalpy of mixing. It is based on 30 descriptors selected from the 58 
descriptors considered in this work to obtain a better accuracy (Fig. S3). 
Its performance is evaluated on the entire dataset using a nested cross- 
validation approach, and the results are shown in Fig. 3. The values 
predicted by the LightGBM model are slightly noisy (Fig. S2) and fitting 
by a Redlich-Kister (RK) polynomial smooth them out without any sig-
nificant impact on performance. The combination of the LightGBM and 
RK models is referred to as LightGBM/RK. The MAE of this model is of 
3.0 kJ/mol in systems for which no data is included in the training set, 
which is better than that obtained with Miedema’s model, while training 
data are reproduced closely with a training MAE of 0.4 kJ/mol for the 
final LightGBM/RK model. The mean absolute percentage error (MAPE) 
is an intuitive metric, but it is only meaningful for large values that are 
not close to zero. It is evaluated on data greater than 10 kJ/mol in ab-
solute value from 199 binary systems. An error of 22 % is obtained with 
our LightGBM/RK model in systems where it has seen no data, compared 
with 34 % for Miedema’s model. The LightGBM/RK model performs 
slightly better than the artificial neural network (ANN) and gaussian 
process (GP) models (Table 1). The MAE of the LightGBM/RK model is 
shown per element in Fig. S1. Predictions are relatively inaccurate for 
group 16 elements. However, the LightGBM/RK model still tends to 
outperform Miedema’s model: its MAE over the 21 binaries of Te in the 
dataset is of 6.4 kJ/mol compared to 10.4 kJ/mol for Miedema’s model. 
Excluding group 16 elements, the MAE of the LightGBM/RK model de-
creases to 2.6 kJ/mol.

There are 120 binary systems in our dataset for which the extremum 
in the enthalpy of mixing is well-defined in the sense that it is greater 
than 5 kJ/mol in absolute value and that experimental data are available 
over the whole compositional range. In these systems, the composition 
of the extremum differs from the equimolar composition by 8.6 at% in 
average, and by up to 30 at%. Miedema’s model generally fails to ac-
count for an asymmetry with respect to composition (Fig. 4), with an 
MAE on the composition of the extremum of 7.4 at% on these 120 sys-
tems. While our ML model show some potential to correct this (Fig. 4), 
this MAE is only reduced to 6.7 at% on these systems when they are not 
included in the training set.

The enthalpy of mixing is then predicted in all the 2415 binary 
systems generated by 70 elements using our LightGBM/RK model. The 
extremum value obtained in each system is shown in Fig. 5. The 
enthalpy of mixing is predicted from the LightGBM/RK model to be most 
exothermic in binary systems between an element of groups 2 to 4 with 
an element of groups 9 to 16. For instance, extremum values of − 150 kJ/ 
mol are predicted in carbon - rare earths systems. It is most endothermic 
in binary systems between an alkali metal and an element of groups 3 to 
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8. Mg and Be tend to behave more like Au and Zn, which are their 
neighbors in an ordering by Mendeleev number, than other alkaline- 
earth metals. In binary systems between two elements of the same 
group, the enthalpy of mixing tends to be small and no larger than 30 kJ/ 
mol in absolute value.

3.2. Temperature dependence of the enthalpy of mixing in the liquid phase

The excess heat capacity is the temperature derivative of the 
enthalpy of mixing. It can be predicted from Witusiewicz and Sommer’s 
empirical model [25] whose MAE on experimental data from 77 binary 
systems is of 3.7 J/K/mol (Fig. 6a). It takes the enthalpy of mixing as 

input, and using our LightGBM/RK model predictions can be made with 
greater accuracy than using Miedema’s model, especially in systems 
included in its training set (Fig. 6b). The results obtained this way in 
2016 binary systems suggests that the excess heat capacity and the 
enthalpy of mixing are strongly correlated (Fig. 6c). As discussed in 
Ref. [393], they are in most cases of opposite signs, which means that 
temperature brings liquids closer to ideality. However, experimental 
evidence is lacking in systems where mixing is endothermic, such as 
Ag-Pb where measurements suggest an exception to this rule [28]. In 90 
% of the binary systems, the extremum value of the enthalpy of mixing is 
predicted to decrease by 3.5–9.7 % in absolute value over 100 K 
(Fig. 6c).

Fig. 2. Overview of our dataset on the enthalpy of mixing in binary liquid phases. For each of the 375 binary systems included, symbol size corresponds to the span of 
compositions over which reliable data have been found, and symbol color to the extremum value of the enthalpy of mixing. Symbols are black when the extremum is 
not well-defined.
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3.3. Extrapolation from the binary systems in ternary metallic liquids

In multicomponent liquids, the main contribution to the enthalpy of 
mixing comes from the binary contributions. The extent of higher-order 
contributions has never been studied systematically. To address this, we 
collected experimental data on 52 ternary metallic liquids close to the 
equimolar composition. We find that the enthalpy of mixing extrapo-
lated from the binary systems by Muggianu’s model [21] is reasonable, 
with an MAE of 1.6 kJ/mol. In liquids where mixing is exothermic, the 
extrapolations are systematically too negative (Fig. 7). The over-
estimation is of the order of 10 % (Fig. S5). In liquids where mixing is 
endothermic, more data is necessary to draw conclusions.

4. Discussion

We developed an ML model to predict the enthalpy of mixing in 
binary liquid phases. It is significantly more reliable than Miedema’s 
model [14]. The prediction results obtained in all the 2415 binary sys-
tems generated by 70 elements are fitted by a substitutional solution 
model whose parameters are provided. From these parameters, the main 
contribution to the enthalpy of mixing can be easily calculated in 
multicomponent liquids using Eq. (2) or the open-access notebook 
linked in the Data availability section. In ML models for alloys, the 
enthalpy of mixing in the liquid phase is an important descriptor not 
only for predicting phase equilibria [5,9–12], but also properties of the 
alloys such as the Young’s modulus [394] or the Vickers hardness [395]. 
Our ML model is used as an input to Witusiewicz and Sommer’s model 
[25] to predict the excess heat capacity in 2016 binary liquids. Data on 
the excess heat capacity are scarce, so in thermodynamic evaluations it 
is common practice to set it to zero and to adjust the excess entropy to 
model the temperature dependence of the Gibbs energy. Instead, relying 
on the reasonable excess heat capacity estimates provided here should in 
most cases lead to a better description of the entropy and of the in-
teractions at high temperature. Therefore, our predictions can be used as 
an input to thermodynamic, empirical and ML models for the develop-
ment of a variety of materials.

We took a data-driven approach to evaluate different sources of error 
in estimation of the enthalpy of mixing in binary and multicomponent 
liquids: model error to predict its binary contributions, neglecting its 
temperature dependance, and neglecting its ternary contributions. The 
same type of approach should be applied to solid solutions, but similar 
deviations may be expected. The uncertainty from measurements or 
calculations is difficult to evaluate systematically and is not discussed. 
Our findings can be summarized as follows. First, the enthalpy of mixing 
predicted by Miedema’s model in binary liquids where mixing is 
exothermic is in most cases not sufficiently negative. This is not the case 
with our LightGBM/RK model for which an MAE of 3.0 kJ/mol, or an 
MAPE of 22 %, can be expected in systems not included in its training 
set. However, its accuracy in predicting the composition of the 
extremum remains limited in systems for which no data is included in 
the training set, with an MAE of 6.7 at% obtained over 120 binaries. 
Second, neglecting the temperature dependence of the enthalpy of 
mixing can lead to an error of roughly 5 % per 100 K on the extremum 
value (Fig. 6c). Third, in metallic liquids where mixing is exothermic, 
close to ternary equimolar compositions, the enthalpy of mixing 
extrapolated from the binary systems by Muggianu’s model is system-
atically overestimated, i.e., too negative, by roughly 10 %. The same is 
observed for the faced-centered cubic phase of the Co-Cr-Fe-Mn-Ni 
system [396], which strengthens this observation and suggests that it 

Fig. 3. Scatter plots showing the performance on data from 375 binaries of Miedema’s model [14] and of our ML model (in test) after fitting by a Redlich-Kister 
substitutional solution model. The diagonal line represents perfect agreement.

Table 1 
Performance metrics obtained on data from 375 binary systems for different 
models for predicting the enthalpy of mixing in binary liquids. RMSE stands for 
root mean squared error.

Model MAE (kJ/mol) RMSE (kJ/mol)

Miedema’s model 4.2 7.5
LightGBM/RK (on test) 3.0 4.9
ANN (on test) 3.2 5.2
GP (on test) 3.3 5.1

Fig. 4. Performance of Miedema’s model and our ML model (on test) for pre-
dicting the composition of the extremum n data from 120 binaries for which the 
extremum is well-defined. Linear regression lines are plotted to guide the eye.
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may also holds for solid solutions. It is concluded that none of these 
errors is negligible, but when estimating the enthalpy of mixing of 
complex concentrated alloy, the prediction of its binary contributions 
remains the most important source of error.

The quality of our results depends on that of our datasets. They were 
obtained from Calphad assessments whose reliability was critically 
evaluated on a case-by-case basis. The advantages of this approach were 
discussed in Ref. [5]. It enabled us to collect an unprecedently large 
amount of data supported by direct and indirect measurements. Our 

dataset on the enthalpy of mixing in binary liquids is centered on metals 
(Fig. 2). The LightGBM/RK model performs relatively poorly on group 
16 elements. On test, this can be explained by the fact they tend to form 
complex liquids with strong short-range ordering that are underrepre-
sented in the dataset. Their enthalpy of mixing has a characteristic 
V-shape, but an enthalpy with a U-shape is predicted as in metallic 
liquids (Fig. S2). On training, the problem comes from the use of a 
substitutional solution model (Eq. (1)) that is not well suited for these 
liquids. In immiscible systems where the enthalpy of mixing is 

Fig. 5. Extremum value of the enthalpy of mixing in the liquid phase predicted using the LightGBM/RK model over all the 2415 binary systems generated by 
70 elements.
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endothermic, measurements are difficult [3], and the model is only 
supported by a limited number of data all below 20 kJ/mol (Fig. 3). Our 
data on the enthalpy of mixing in binary liquids are within or close to 
experimental uncertainty. However, our data on the ternary contribu-
tions to the enthalpy of mixing are less reliable because they depend on 
the choice made regarding binary contributions. For example, in the 
Ag-Ga-Sn system, the maximum ternary contributions can vary from 
+4.8 to +2 kJ/mol on the basis of the same experimental data but a 
different description of the Ag-Ga binary [360,397]. Besides, data on the 
excess heat capacity are also less reliable since they are derived from two 
experimental data at different temperatures.

Model training time may be reduced without significantly decreasing 
performance by selecting a composition step higher than 1 at%. Model 
performance will be more sensitive to step size in systems where the 
enthalpy of mixing has a V-shape than a U-shape. Model training speed 
and interpretability can also be improved by using less features. Our 
LightGBM model is based on a set of 30 features to maximize accuracy, 
but comparable performance can be achieved with sets of 20–58 features 
(Fig. S3). A Pearson’s correlation analysis between these 30 features and 
the error of Miedema’s model as well as the enthalpy of mixing is shown 
in Fig. S4. There is a positive correlation between the enthalpy of mixing 
and the error of Miedema’s model because it generally gives values that 

not sufficiently negative (Fig. 3). Our features derived from the ther-
modynamic properties of the elements before and after melting are 
important for predicting the enthalpy of mixing in the liquid and to 
correct Miedema’s model (Table S1), particularly for our LightGBM 
model for which they represent 7 of the 10 most important features 
(Fig. S4). In a future work, we plan to develop a more interpretable 
model with better performance based on an improved dataset.

Data availability

Our datasets on the excess heat capacity and on the enthalpy of 
mixing in ternary liquids are shared as supplementary materials. Our 
dataset on the enthalpy of mixing in binary liquids is shared in an open 
access data repository [398]. The parameters of our LightGBM/RK 
model obtained in the 2415 binary systems generated by 70 elements are 
shared as supplementary materials and in the same data repository. The 
binary contributions to the enthalpy of mixing in the liquid phase can be 
calculated in J/mol from these using Eqs. (1) and (2). The parameters to 
calculate the excess heat capacity in J/mol/K in 2211 binary liquids 
generated by 67 elements based on Witusiewicz and Sommer’s model 
[25] are shared as supplementary materials. Descriptors for machine 
learning studies of alloys can be easily generated from our models and 
from the thermodynamic properties of pure elements using the 
open-access notebook at https://colab.research.google.com/drive/ 
1XRqgvP11JuU8pxHqlpkZQChAJ5tvLdVW.
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Fig. 6. Performances over data on 77 binary liquids of Witusiewicz and Sommer’s model [25] using (a) experimental and (b) experimental or predicted values for the 
input enthalpy of mixing. (c) Relationship between the excess heat capacity and the enthalpy of mixing over 2016 binary liquids generated by 64 elements of groups 1 
to 15 at the composition where the enthalpy of mixing reaches its extremum. Excess heat capacity predictions for As, C and P are abnormal due to their boiling points 
being lower than their melting points and are not plotted. Percentile regression lines are obtained from absolute values.

Fig. 7. Scatter plot showing the enthalpy of mixing extrapolated from the bi-
nary systems by Muggianu’s model [21] against experimental data on 52 
ternary near-equimolar metallic liquids.
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Data availability

Our data, predictions, and code to generate machine learning de-
scriptors from thermodynamic properties are all made available as 
detailed in “Data availability.”

Dataset on the enthalpy of mixing in binary liquids (Original data)
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.calphad.2024.102745.

Appendix. Prediction of the enthalpy of mixing in the liquid phase using Miedema’s model

The enthalpy of mixing in a binary A-B liquid is predicted by Miedema’s model by following steps S1 to S5: 

cs
B =

xBV2/3
B

xAV2/3
A + xBV2/3

B

(S1) 

with xB, VB and cs
B the molar fraction, molar volume, and surface fraction of B. 

(
V2/3

A

)

alloy
=V

2
3
A
(
1+ aAcs

B(φA − φB)
)

(S2) 

with aA a parameter for A, φB the so-called work function of B, and 
(

V2/3
A

)

alloy 
the molar volume of A accounting for changes upon alloying. 

(
cs

B
)

alloy =

xB

(
V2/3

B

)

alloy

xA

(
V2/3

A

)

alloy
+ xB

(
V2/3

B

)

alloy

(S3) 

with 
(
cs

B
)

alloy the surface fraction of B corrected as recommended in Ref. [399]. 

Hinter(A in B)=

(
V2/3

A

)

alloy

(
− P(φA − φB)

2
+ Q

(
n1/3

wsA − n1/3
wsB

)2
+ 0.73RARB

)

1
2

(

1
n1/3

wsA
+ 1

n1/3
wsB

) (S4) 

Hinter(A in B) is the interfacial enthalpy of solving 1 mol of A in B obtained for the liquid phase. P is a parameter equal to 14.2, 12.35 or 10.7 [385] for 
alloys of two transition metals, a transition metal with a non-transition metal, and two non-transition metals, respectively. F ig. 33 of Ref. [14] details 
which elements are considered transition metals and which are not. nwsA is the averaged electron density at the boundary of the Wigner-Seitz cell of A. 
R is another parameter, and 0.73 is a reducing factor used for the liquid phase. The ratio of Q over P equals 9.4.

The enthalpy of mixing in the A-B liquid, Hmix, is finally obtained in step 5: 

Hmix = cAcs
BHinter(A in B) (S5) 

For elements of group 1 to 15, parameter values are taken from matminer [388] and checked against Refs. [14,384]. The R parameter for Ag is 
corrected from 0.3 to 0.15, and the a parameter for Eu and Yb are corrected from 0.1 to 0.07, which is the recommended value for trivalent metals 
[14]. For elements of group 16, parameter values are taken from Ref. [400]. The model is not straightforward to use. We have verified for a few 
systems that the values obtained in this work were the same as those obtained in Ref. [399]. Significantly different results can be obtained with other 
calculators proposed in the literature due to errors in parameters or possibly equations.
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[246] J. Gröbner, R. Wenzel, G.G. Fischer, R. Schmid-Fetzer, Thermodynamic 
calculation of the binary systems M-Ga and investigation of ternary M-Ga-N phase 
equilibria (M=Ni, Co, Pd, Cr), JPE 20 (1999) 615–625, https://doi.org/10.1361/ 
105497199770340608.

[247] K. Xu, S. Liu, F. Zhang, Y. Du, Z. Jin, Thermodynamic calculations of the Au–Sc 
and Fe–Sc systems, Calphad 54 (2016) 158–164, https://doi.org/10.1016/j. 
calphad.2016.07.002.

[248] B.-J. Lee, B. Sundman, S.I. Kim, K.-G. Chin, Thermodynamic calculations on the 
stability of Cu2S in low carbon steels, ISIJ Int 47 (2007) 163–171, https://doi. 
org/10.2355/isijinternational.47.163.

[249] W. Gierlotka, J. Łapsa, K. Fitzner, Thermodynamic description of the Ag-Pb-Te 
ternary system, J. Phase Equilib. Diffus. 31 (2010) 509–517, https://doi.org/ 
10.1007/s11669-010-9791-8.

[250] Z. Du, C. Guo, C. Li, W. Zhang, Thermodynamic description of the Al-Mo and Al- 
Fe-Mo systems, J. Phase Equilib. Diffus. 30 (2009) 487–501, https://doi.org/ 
10.1007/s11669-009-9564-4.

[251] F.G. Meng, H.S. Liu, L.B. Liu, Z.P. Jin, Thermodynamic description of the 
Au–Si–Sn system, Journal of Alloys and Compounds 431 (2007) 292–297, 
https://doi.org/10.1016/j.jallcom.2006.05.066.

[252] M. Idbenali, C. Servant, M. Feddaoui, Thermodynamic description of the Ce-Ga 
binary system, J. Phase Equilib. Diffus. 34 (2013) 467–473, https://doi.org/ 
10.1007/s11669-013-0261-y.

[253] J. Miettinen, Thermodynamic description of the Cu–Mn–Zn system in the copper- 
rich corner, Calphad 28 (2004) 313–320, https://doi.org/10.1016/j. 
calphad.2004.09.003.

[254] K. Xu, L. Chen, K. Chang, P. Wan, M. Li, Z. Deng, F. Huang, Q. Huang, 
Thermodynamic description of the Dy–Si–C system in silicon carbide ceramics, 
Calphad 68 (2020) 101738, https://doi.org/10.1016/j.calphad.2020.101738.

[255] M. Idbenali, C. Servant, Thermodynamic description of the Gallium-Lanthanum 
binary system, in: XXXVII JEEP – 37th Conference on Phase Equilibria, EDP 
Sciences, Saint-Avold, France, 2011 00008, https://doi.org/10.1051/jeep/ 
201100008.

[256] S. Kardellass, C. Servant, N. Selhaoui, Thermodynamic description of the Ni–Yb 
and Ni–Eu binary systems, J Therm Anal Calorim 125 (2016) 255–269, https:// 
doi.org/10.1007/s10973-016-5380-3.

[257] M. Idbenali, C. Servant, N. Selhaoui, L. Bouirden, Thermodynamic description of 
the Pb–Yb binary system, Calphad 33 (2009) 570–575, https://doi.org/10.1016/ 
j.calphad.2009.05.001.

[258] Z. Long, F. Yin, Y. Liu, J. Wang, H. Liu, Z. Jin, Thermodynamic description of the 
Ru-(Si,Ge)-Sn ternary systems, J. Phase Equilib. Diffus. 33 (2012) 97–105, 
https://doi.org/10.1007/s11669-012-0002-7.

[259] K. Xu, H. Zou, K. Chang, Z. Deng, X. Zhou, Y. Huang, L. Chen, F. Huang, Q. Huang, 
Thermodynamic description of the sintering aid system in silicon carbide 
ceramics with the addition of yttrium, Journal of the European Ceramic Society 
39 (2019) 4510–4519, https://doi.org/10.1016/j.jeurceramsoc.2019.07.012.

[260] W. Gierlotka, Thermodynamic description of the Te-Tl binary system using the 
associate solution model, Journal of Elec Materi 39 (2010) 1319–1325, https:// 
doi.org/10.1007/s11664-010-1248-7.

[261] S. Huang, Y. Liu, Y. Chen, Z. Kang, Thermodynamic descriptions and phase 
diagrams for Pb-S and Bi-S binary systems, Journal of Elec Materi 43 (2014) 
1237–1243, https://doi.org/10.1007/s11664-014-3004-x.

[262] Y. Liu, J. Xu, Z. Kang, J. Wang, Thermodynamic descriptions and phase diagrams 
for Sb–Na and Sb–K binary systems, Thermochimica Acta 569 (2013) 119–126, 
https://doi.org/10.1016/j.tca.2013.07.009.

[263] Y. Liu, L. Zhang, D. Yu, Thermodynamic descriptions for the Cd-Te, Pb-Te, Cd-Pb 
and Cd-Pb-Te systems, Journal of Elec Materi 38 (2009) 2033–2045, https://doi. 
org/10.1007/s11664-009-0875-3.

[264] Y. Liu, D. Liang, L. Zhang, Thermodynamic descriptions for the Sn-Te and Pb-Sn- 
Te systems, Journal of Elec Materi 39 (2010) 246–257, https://doi.org/10.1007/ 
s11664-009-0985-y.

[265] W. Yi, J. Gao, Y. Tang, L. Zhang, Thermodynamic descriptions of ternary Al–Si–Sr 
system supported by key experiments, Calphad 68 (2020) 101732, https://doi. 
org/10.1016/j.calphad.2019.101732.

[266] P.-Y. Chevalier, Thermodynamic evaluation of the Bi-Ge system, Thermochimica 
Acta 132 (1988) 111–116, https://doi.org/10.1016/0040-6031(88)87100-4.

[267] D. Boa, B.K. Dongui, I. Ansara, Thermodynamic evaluation of the Co-In system, 
Calphad 25 (2001) 645–650, https://doi.org/10.1016/S0364-5916(02)00014-7.

[268] X.J. Liu, P. Yu, C.P. Wang, K. Ishida, Thermodynamic evaluation of the Co–Sc and 
Fe–Sc systems, Journal of Alloys and Compounds 466 (2008) 169–175, https:// 
doi.org/10.1016/j.jallcom.2007.11.069.

[269] W. Zhuang, Z.-Y. Qiao, S. Wei, J. Shen, Thermodynamic evaluation of the Cu-R 
(R: Ce, Pr, Nd, Sm) binary systems, JPE 17 (1996) 508–521, https://doi.org/ 
10.1007/BF02665998.

[270] M. Idbenali, C. Servant, Thermodynamic evaluation of the Ga–Y system, J Therm 
Anal Calorim 112 (2013) 245–253, https://doi.org/10.1007/s10973-012-2861-x.

[271] K. Achgar, N. Selhaoui, A. Iddaoudi, R. Tamim, H. Azza, L. Bouirden, 
Thermodynamic evaluation of the germanium-lutetium and dysprosium- 
germanium binary systems, Calphad 62 (2018) 18–29, https://doi.org/10.1016/j. 
calphad.2018.05.001.

[272] Y. Feutelais, B. Legendre, S.G. Fries, Thermodynamic evaluation of the system 
germanium — tin, Calphad 20 (1996) 109–123, https://doi.org/10.1016/0364- 
5916(96)00018-1.

[273] P.-Y. Chevalier, Thermodynamic evalution of the Ag-Si system, Thermochimica 
Acta 130 (1988) 33–41, https://doi.org/10.1016/0040-6031(88)87048-5.

[274] C. Bergman, R. Chastel, R. Castanet, Thermodynamic investigation on the si-ge 
binary system by calorimetry and knudsen cell mass spectrometry, JPE 13 (1992) 
113–118, https://doi.org/10.1007/BF02667471.

[275] H.Q. Dong, X.M. Tao, T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, 
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