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Abstract: Because they are safe and easy to use, collaborative robots are revolutionizing many sectors,
including industry, medicine, and agriculture. Controlling their dynamics, movements, and postures
are key points in this evolution. Inverse kinematics is then crucial for robot motion planning. In 6R
serial robots, achieving a desired pose is possible with different joint combinations. In this paper, our
focus lies in studying forward and, mainly, inverse kinematics of the FANUC CRX-10iA cobot, a 6R
cobotic arm with a non-spherical wrist. Its specific structural parameters implies that no analytical
solutions exist except for some particular situations. FANUC does not provide the complete set
of inverse kinematic solutions, even when 16 solutions are possible, only 8 of them are provided
in Roboguide software. Furthermore, the existing literature on joints-to-workspace mapping for
CRX cobots is currently very limited. It either lacks or provides partial or inconsistent inverse
kinematics analysis. We present and detail a novel fully geometric method for numerically solving
inverse kinematics meeting the requirement of high precision and a fast response. This approach
provides both the exact number of inverse kinematics solutions and the sets of joint angles even
for singular configuration. Its effectiveness was verified through simulations using the Roboguide
Software and experimentation on the actual CRX-10iA cobot. Several examples (8, 12, or 16 inverse
kinematic solutions) have enabled us to validate and prove the robustness and reliability of this
geometric approach.

Keywords: cobots; inverse kinematics; FANUC CRX-10iA; 6R manipulators; non-spherical wrist;
geometric; pose; posture; aspects

1. Introduction

From industrial manufacturing to the medical field, robotics is nowadays being used
in all the important sectors of life and society. The use of robots in the medical field is
becoming increasingly prevalent, revolutionizing operating rooms around the world [1,2].
Over the past decade, there has been a notable emergence of collaborative robots (cobots) [3].
Consequently, cobots are being utilized more frequently to assist or even conduct delicate
surgeries, offering the potential for faster, more precise, and less risky interventions [4].

Robotics manufacturers offer for instance promising cobotic modalities for many
medical applications. The UR3 from Universal Robots, a 6R cobot, was used for a tele-
robotic ultrasound solution for remote diagnostic echography [5]. In [6], authors used
another 6R cobot, the TX2 60 from Stäubli company, for the comanipulation of an ultrasound
probe. Furthermore, a FANUC cobot, the CRX-10iA, was used in [7] to present a study
regarding the design and the experimental setup of a cobotic system for targeted drug
delivery in the inner ear, where a dedicated magnetic probe [8] had to be controlled in
position and orientation, as computed based on MRI pre-operative images [9].

To perform these different tasks and more, the knowledge of the robot’s kinematics is
most often required. Due to the interesting but complex nature of robots control, several
approaches to the research of kinematic models (both Forward and Inverse) have been
taken. The most challenging task for most cases is still Inverse Kinematics (IK) computing.
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While classical methods such as those of Pieper [10] or Paul [11] can be applied to
compute Inverse Kinematic solutions for Stäubli or, respectively, UR cobots mentioned
above, they cannot be applied to the CRX series because of their kinematic architecture.
Indeed, since 1968, Pieper [10] showed that a literal IK model can be defined for 6R robots
with a spherical wrist. Up to eight solutions can be computed. In 1981, Paul [11] proposed
an approach for solving IK of certain 6R robots, with a non-spherical wrist, that consists of
successively multiplying the two sides of the Forward Kinematic (FK) equations by transfor-
mation matrices and thus isolate the joint values one after another. In [12], authors used this
approach for solving the IK of the UR5 cobot: a 6 DoF mechanism with a non-spherical wrist,
where J2, J3 and J4 axes are parallel. This robot, and all of the UR series, have four or eight
inverse kinematic solutions, depending on the desired pose in the workspace.

For CRX cobots series, the 6R cobotic arm has a non-spherical wrist with perpendicular
axes of J2 and J3. Thus, analytical IK solutions cannot be provided and are only available
for some special cases. In this case, IK solutions can be computed, based on algebraic or
geometric approaches, using numerical procedures [13–16].

For over 30 years, researchers have dealt with inverse kinematics problems. In [17,18],
authors has addressed the inverse kinematics problem of 6 DoF manipulators and proposed a
simplification process to analytically solve inverse kinematic equations if all adjoining joint
axes are parallel or orthogonal. However, no analytical solution of the inverse kinematics
applicable to arbitrary structures is available. They have presented, in [19], an iterative in-
verse kinematic approach based on the Newton–Raphson method that can be applied to
manipulators requiring a numerical technique. This approach led them to discover that
a 6 DoF manipulator is able to reach an end-effector pose (position and orientation) in
16 different configurations. It was also shown in [20,21], by an algebraic approach, pro-
posed by Raghavan and Roth, that inverse kinematics solutions can be determined by
a 16th degree univariate polynomial, which means up to 16 IK solutions, for 6R serial
manipulators, can be computed. However, these general approaches suffer from numerical
inaccuracies in several configurations. Therefore, researchers have been studying possible
improvements and generalization of these approaches ever since [22–27].

Solving IK of CRX cobots series of FANUC remains challenging. Their architecture
leads to 16 IK solutions. In fact, the degrees of characteristic polynomials depend on
the structural design parameters of 6 DoF robotic arms (adjacent parallel, perpendicular,
or intersecting axes) [28]. Different approaches have been shown to solve this issue. A
differential control was used in [7] to solve IK positioning of a CRX cobot. This approach
presents some inherent limitations. Indeed, finding an efficient initial pose for convergence
while avoiding singularities during motion are still factors that affect or limit its appli-
cability. In [29], authors present an iterative approach that bypasses the use of Jacobian
and rotational matrices, it is based on several iterations through each joint, starting with
the last joint (end-effector position) and connecting it to the first one. This method does
not consider the end-effector orientation; moreover, it can be stuck in a local optimum
leading to it being unable to find a global optimum. Kucuk et al. proposed in [30] a
numerical algorithm where the idea is to chose a random initial value for the first joint
in order to reduce the IK problem to 1 DoF and then compute analytically the rest of the
joint parameters. These approaches provide a valid IK solution but without mapping all
possible IK solutions which prevents changing aspects to find a better configuration for the
same probe position and orientation.

In more recent works, an algebraic approach was used in [31,32] to determine IK
solutions of the CRX-10iA/L, a particular cobot of the CRX series. The used methods
involve solving a 16th degree univariate polynomial, which is constructed from a set of
six constraint equations representing mechanism loop closures, along with the parameteri-
zation of a set of unknown variables. The authors in [31] state considering the vector of
unknown variables characterizing the position of the frame attached to the fourth robot
body makes the resolution possible. In [32], authors show precisely that the 16th degree
closure polynomial they obtained can be factorized in two identical 8th degree polynomials,
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which provides a significant simplification for zero determination. In these studies, authors
have dealt with the IK problem of 6R with non-spherical wrist arms, more particularly
CRX cobots; however, no attention has been given to the accuracy and efficiency of the
provided IK solutions which can be an issue for exact manipulations. For instance, in [31],
the 16 given solutions of the CRX Inverse Kinematics are not completely valid on the real
cobot and present pose accuracy issues. Furthermore, in [32], an issue with the third joint
values can be pointed out, distorting 8 pose configurations out of 16. Moreover, due to
the simplicity of the chosen example, where J6 is vertical, an explicit inverse kinematics
solution exists, thus reducing the algebraic solution interest, which is not the case for any
desired pose.

The motivation of this paper is thus dealing with these limits by approaching 6R
manipulator IK solutions with high accuracy and effectiveness. A new inverse kinematic
algorithm for the CRX-10iA cobot is presented. The proposed method is based on a
geometric approach and shows to be useful for solving IK problems with high precision
and efficiency. The various steps are detailed in the following, aiming to simplify the
implementation process for readers interested in utilizing this method for CRX IK control.
Specific examples are provided to validate the effectiveness of the proposed method, both
through simulation on Roboguide Software and experimentation with the actual cobot.

2. Materials and Methods
2.1. FANUC CRX Cobot

The FANUC CRX-10iA is a 6 Degrees of Freedom (DoF) cobot with a 6R serial archi-
tecture (Figure 1). Its compact design and high reliability (the constructor gives a position
repeatability of 0.05 mm) allows for the easy integration into any work area making it
very popular in industry and robotics research. As a collaborative robot, it is intended for
applications that include human interaction. It offers then all the safety guarantees (speeds,
forces) required for this purpose. In fact, its sleek design, devoid of sharp edges, and
illuminated indicators are all tailored for safe interaction and collaboration with humans.

The kinematics architecture of this cobot closely resemble those of classic 6R serial
manipulators, in particular the original FANUC series. However, the main difference lies
in the fact that the directions of J2, J3, and J4 are not parallel, which is now combined
with the fact that the wrist is not spherical. These two simultaneous features considerably
complicate the resolution of inverse kinematics.

As of today, the FANUC CRX cobot series consists of five cobots. They may vary in
size, but they all share the same kinematic architecture. This implies that the geometric
approach developed in this paper can be implemented in all CRX cobots.

2.2. Analysis of the 16 IK Solutions Proposed in [31]

As explained earlier, the specific architecture of the CRX cobot makes the resolution
of its inverse kinematics challenging. Recently, authors in [31] have dealt with the inverse
kinematics of this particular cobot. Authors proposed an algebraic numerical IK solu-
tions for the CRX-10iA/L cobot. They provided a numerical example illustrating, with a
particular focus on the following posture [Car#4], 16 IK solutions.

A robot configuration in the joint space, also called a posture, is then denoted as [Car#i]
(in reference to the first author L. Carbonari).

[Car#4] = [+ 78, + 131, + 24, + 42, −60, −10]T (in degrees).
Then, in this paper, authors presented 15 additional postures, intended to achieve the

same pose (the tool position and orientation in the task space).
For the following, this notation is considered for these 16 postures [Car#i], i ∈ [1, 16].
Interested in the need for inverse kinematics, we studied article [31] to apply its

method. We thoroughly analyzed the example proposed by the authors, which illustrates a
pose with 16 IK solutions, as shown in Table 1.
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Table 1. The joint values [Ji] for the 16 IK solutions proposed in [31] to reach the same pose. The
right columns indicate an eventual equality (=) between postures, then accuracy in mm between the
desired and the obtained TCP position, and finally if a solution is valid (Yes or Not).

J1 J2 J3 J4 J5 J6 = Dist. Val

Car#1 −30.30 33.99 136.01 143.27 −48.79 77.61 - 10 N

Car#2 149.69 146.00 43.98 −36.72 −48.79 77.61 - 10 N

Car#3 −101.99 48.99 155.99 −138.00 −59.99 −9.99 - 0.1 Y

Car#4 78.00 131.00 24.00 42.00 −60.00 −10.00 - – Y

Car#5 39.90 28.21 161.19 −75.16 116.22 −90.34 - 0.08 Y

Car#6 −140.09 151.78 18.80 104.83 116.22 −90.34 - 0.08 Y

Car#7 −93.98 47.62 154.56 −144.11 −55.12 −2.97 - 0.04 Y

Car#8 86.01 132.37 25.43 35.88 −55.12 −2.97 - 0.12 Y

Car#9 −93.98 47.62 154.56 −144.11 −55.12 −2.97 Car#7 0.04 N

Car#10 86.01 132.37 25.43 35.88 −55.12 −2.97 Car#8 0.12 N

Car#11 −93.98 47.62 154.56 −144.11 −55.12 −2.97 Car#7 0.04 N

Car#12 86.01 132.37 25.43 35.88 −55.12 −2.97 Car#8 0.12 Y

Car#13 −29.41 33.90 135.67 142.25 −49.24 78.79 - 10.3 N

Car#14 150.58 146.09 44.32 −37.74 −49.24 78.79 - 10.3 N

Car#15 114.69 42.07 151.46 − 23.88 170.53 10.81 - 0.03 Y

Car#16 −65.30 137.92 28.53 156.11 170.53 10.81 - 0.04 Y

In our assessment, this example actually provides only 8 IK solutions.
In fact, after this analysis, we noticed the following:

• Four of the sixteen proposed solutions are not recognized as distinct because they are
already included in the table (see column “=” of Table 1):
[ Car#9] and [Car#11] are identical to [Car#7], (same joint parameters), and
[Car#10] and [Car#12] are identical to [Car#8].
So, [Car#9] to [Car#12] of the article are not distinct solutions.

• Four other solutions are not considered as valid because they fail to yield a relevant
outcome in achieving the desired pose (see column “Dist” of Table 1). The distance
“Dist” between two poses is defined as the Euclidean distance between the Tool Center
Points (TCPs) of the two poses under consideration.
This concerns [Car#1], [Car#2], [Car#13], and [Car#14]. For example, the distance
between the pose given by posture [Car#13] and [Car#4] is 10.3 mm. Thus, these
solutions present an accuracy issue and are not considered as valid.

Since our aim was to find a method of solving the IK, one of the first examples we will
try to solve, after describing the method, is that of article [31]. These solutions (8 in fact
and not 16) are given later on.

2.3. Accuracy Analysis of the 8 Valid Solutions Proposed in [31]

On another hand, the accuracy of the provided IK solutions (the joints values) is of
10−2 deg. As a consequence, the global accuracy of the valid achieved positions (with a
robot arm span of 1.4 m) can reach 0.12 mm (see column “Dist” of Table 1 for [Car#8]).

As 0.1 mm of accuracy can be unsatisfactory for certain applications requiring ex-
tremely precise positioning, this means that we need to find the joint solutions to at least
10−3 deg resolution rather than 10−2 deg.
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2.4. Specifications for a Robust and Accurate IK

This analysis highlights the necessity for a robust and precise IK solution.
It should allow us to determine the following: (i) the exact number of solutions, and

(ii) providing joint values with satisfactory accuracy (10−3 deg is an optimum), especially
considering that FANUC robots operate with precision up to 10−3 (deg and mm).

Figure 1. FANUC CRX-10iA cobot and its homologous in Roboguide software. This configuration
corresponds to an end-effector pose, with 16 accessible solutions within the joint limitations.

2.5. FANUC CRX10-iA Forward Kinematics

A posture for a 6 DoF serial robot is a configuration of its joint parameters defined by
the vector:

[J] = [J1, J2, J3, J4, J5, J6]T .

For a given posture [J], the corresponding pose, obtained by the FK model is as follows:

P = FK(J) = [X, Y, Z, W, P, R]T ,

with (X, Y, Z) the coordinates of the end-effector center (or Tool Center Point), and (W, P, R)
the three rotation angles with Cardan’s approach to characterize the end-effector orientation.
These three angles are, respectively, measured along the three axes z, y, and x of the robot
reference frame R0.

2.5.1. Denavit–Hartenberg Modified Formalism and DHm Parameters

The formalism we used for modeling our robots is inspired from the modified Denavit-
Hartenberg approach [33], proposed in 1986 by Khalil and Kleinfinger, denoted as DHm,
and inspired from Denavit and Hartenberg, [34] in 1955. The four elementary movements
from frame Ri−1 to Ri and the four associated DHm parameters are as follows (see Figure 2).

• Rotation of an angle αi−1 around Xi−1;
• Translation of ai−1 along Xi−1;
• Rotation of an angle θi around Zi;
• Translation of ri along Zi.

The transformation matrix i−1Ti is then obtain from these four parameters, see
Equation (1).

Table 2 provides all the DHm parameters for the 6 joints of the CRX10-iA cobot.
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Figure 2. The four kinematic transformations between two successive frames Ri−1 and Ri in the
“Denavit–Hartenberg modified” formalism, with the four parameters: αi−1, ai−1, θi, and ri.

i−1Ti =


cθi −sθi 0 ai−1

sθi.cαi−1 cθi.cαi−1 −sαi−1 −ri.sαi−1
sθi.sαi−1 cθi.sαi−1 cαi−1 ri.cαi−1

0 0 0 1

 (1)

Table 2. CRX-10iA DHm parameters: lengths (mm), angles (deg). Ji, the joint values, are expressed
following the same convention as FANUC.

Link L1 L2 L3 L4 L5 L6

ai−1 0 0 540 0 0 0

αi−1 0 −90 +180 −90 +90 −90

θi J1 J2 − 90 J2 + J3 J4 J5 J6

ri 0 0 0 −540 150 −160

We aim to develop a forward kinematic model that is fully compatible with the real
cobot, ensuring that the joint values and pose parameters are identical between the model
and the robot for any achievable configuration.

To respect this, firstly, the Zi axis, as depicted in Figure 3, must be oriented in the
direction of increasing joint values. Secondly, the coupling between J2 and J3 imposed by
FANUC must be considered. This coupling arises because when J2 is manually moved,
J3 moves in the opposite direction, ensuring that the wrist maintains the same orientation
relative to the ground. This peculiarity of FANUC robots is of significant interest to
programmers. As a consequence, there is a term (J2 + J3) present in column L3 of the DHm
Table 2. Although this inclusion may seem unconventional in a DHm table, it accurately
reflects the behavior of FANUC robots.

6Ttool =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (2)

0Ttool = 0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 · 6Ttool (3)

The homogeneous matrix 0Ttool (see Equation (3)) is then used to determine the
position and orientation of the end-effector in the frame R0, as a function of the 6 joint
parameters Ji. Here, we assume that the Tool Center Point (TCP) is located at the center
of the end-effector plate face (resulting in zero values in column 4 of 6Ttool . However, it is
important to note that any TCP coordinate can be considered. We denote Ti,j as the element
of the ith row and jth column of 0Ttool .
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Figure 3. Kinematic diagram of the 6 DoF CRX-10iA cobot.

Determination of the Position Coordinates

The three coordinates X, Y, and Z represent the position of the TCP in the base
frame R0. They are obtained by multiplying the homogeneous matrix 0Ttool by the origin
vector ToolO6, which is the vector of the homogeneous coordinates of the point O6 (in this
case, the TCP). In the tool frame,

ToolO6 = [0, 0, 0, 1]T (4)

Then,
[X, Y, Z, 1]T = 0Ttool · [0, 0, 0, 1]T . (5)

Determination of the Orientation Coordinates

The three parameters W, P, and R represent the Cardan angles, which describe the
tool orientation relative to the base frame R0.
Using the FANUC’s convention (which may differ from other robot manufacturers),

W, for “yaW” angle (also γ in the literature), is measured around the X axis,
P, for “Pitch” angle (also β), is measured around the Y axis, and
R, for “Roll” (also α), is measured around the Z axis.

With this, the overall tool rotation matrix 0Rtool (the top-left 3 × 3 block of 0Ttool) can
be represented as the product of three elementary 3 × 3 rotation matrices corresponding to
the three revolute movements around the x, y, and z axes of R0, respectively, with angles R,
P, and W, as shown in Equation (6).

0Rtool = RZ(R) · RY(P) · RX(W) (6)

Then, the three angles W, P, and R are defined from the rotation matrix 0Rtool ex-
tracted from 0Ttool (obtained using DHm approach and Equation (3)), utilizing classic
expressions from the literature, which we recall below (see Equation (7)) for the general
case, excluding Cardan singularities (these occur when cos(P) = 0).

As the elements of 0Rtool matrix are identical to those of 0Ttool , we denote them as Ti,j,
as defined above.

P = atan2 (−T3,1, sqrt (T2
1,1 + T2

2,1))

R = atan2 (T2,1/cos(P), T1,1/cos(P))
W = atan2 (T3,2/cos(P), T3,3/cos(P))

(7)
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The particular cases of singularity associated with the pitch angle P has been consid-
ered in our algorithm. However, the specific method used for this purpose is not detailed
here, as it is of limited interest for understanding the Forward Kinematics algorithm.

Ultimately, thanks to this Forward Kinematics (FK) model (see Equations (3), (5) and (7)),
we are able to compute the robot’s tool pose parameters relative to the 6 joint parameters Ji
(see Equation (8)):

Pose (J) = Pose ([J1, J2, J3, J4, J5, J6]T) = [X, Y, Z, W, P, R]T (8)

The results obtained using this FK model have been confirmed on both the real
CRX-10iA cobot and the Roboguide software. FANUC Roboguide is a robot simulator that
perfectly emulates FANUC robots movements and dynamic behavior, greatly reducing the
time required to create new motion configurations. Robotic cells can be designed, tested,
and modified entirely offline which enables us to evaluate different configurations of the
robot virtually before implementing them in a real-world setting.

2.5.2. Forward Kinematic Model Validation

As example, we chose the particular configuration [Car#4] mentioned above.
[Car#4] is the configuration #4 of the example proposed by Carbonari et al. in [31].
[Car#4] = [+78, +131, +24, +42, −60, −10]T , where angles are in degrees.
Considering the specificities of FANUC, the equivalent robot posture of [Car#4] con-

figuration, should be expressed as [A#4].
From the Carbonari’s notation and frames, [Car#i] = [q1, q2, q3, q4, q5, q6]T ,

we can express the same cobot posture [A#i], with six FANUC-compatible joint parameters
thanks to Equation (9), where [J] = [J1, J2, J3, J4, J5, J6]T .

J1 = + q1 J4 = − q4
J2 = 90 − q2 J5 = + q5
J3 = − q3 − J2 J6 = − q6

(9)

Then, the posture [Car#4] corresponds to [A#4], see Equation (10):

[A#4] = [+78, − 41, + 17, − 42, − 60, + 10]T (10)

We tested this joints configuration [A#4] on the two cobots CRX10-iA/L and CRX-10iA.
The postures are represented in Figure 4, and they differ only because of changes in the
parameter a2.

• For CRX-10iA/L, the cobot considered in [31], we found

PoseA (10iA/L) = [X, Y, Z, W, P, R]T =

[57.132, 178.588, 522.657, − 131.819, − 45.268, 61.453]T (11)

In [31], authors provided the following coordinates [X, Y]T = [57.1, 178.6]T .
These match what we found in terms of position, but the resolution is 10−1 whereas

FANUC robots resolution is 10−3. Furthermore, they did not specify the end-effector orientation.

• For CRX-10iA, the cobot we are considering in this work, we found

PoseB (10iA) = [X, Y, Z, W, P, R]T =

[80.321, 287.676, 394.356, − 131.819, − 45.268, 61.453]T (12)

The end-effector orientations are obviously identical for both cobots.
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Figure 4. The two cobots (a) CRX-10iA/L and (b) CRX10-iA in the same configuration:
[J1, J2, J3, J4, J5, J6]T = [A#4]

T = [+ 78, − 41, + 17, − 42, − 60, + 10]T .

2.6. Geometric Approach for CRX-10iA Inverse Kinematics Resolution

The inverse kinematic model provides 0, 4, 8, 12, or 16 solutions, depending on the
different parameters of the Desired-Pose.

In certain exceptional configurations, intermediate numbers such as 2, 6, 10, or
14 solutions may occur, indicating the presence of “double” solutions.

Thus, cases with 2 solutions arise when the TCP precisely aligns with the edge of the
workspace (i.e., 1249.039 mm from the center O0).

We will see later another scenario, where the TCP is at the the workspace center, and
which entails 14 solutions, including 12 distinct solutions and 2 double solutions.

When considering a Desired-Pose randomly selected within the cobot workspace, the
highest probability corresponds to 8 solutions, estimated at approximately 80%.

The likelihood of encountering 12 solutions is notably lower.
The probability of encountering 4 or 16 solutions is even lower, approximately 5%.
Please note that these statistic values are approximate, as they depend on the parame-

terization of the poses: Cartesian or spherical coordinates for positions, Cardan or Euler
formalisms, or Quaternions for orientations. Additionally, these values may slightly differ
when considering real accessible poses, accounting for the cobot joint limitations.

Methodology for Geometric Approach to Inverse Kinematics

Given a Desired-Pose = [X, Y, Z, W, P, R]T , the Inverse Kinematics geometrical
approach gives the number N of possible solutions to reach this Desired-Pose. If N solutions
exist, the algorithm provides N vectors of 6 joint parameters for each solution:

[J1i, J2i, J3i, J4i, J5i, J6i]
T f or i ∈ [1, N].

This method is developed through the following seven steps, see Figure 5. If the
Desired-Pose is inside the workspace, the algorithm gives, at least, one Inverse Kinematic
solution. These steps, and associated equations, will provide the reader with the ability to
implement this IK model, applicable to any cobot of the CRX series, by simply modifying
the four dimensional parameters of the cobot.



Robotics 2024, 13, 91 10 of 22

Figure 5. Flowchart of the CRX Inverse Kinematics determination.

Step 1: Positioning the Points O6 and O5 in the frame R0
The three angles W, P, and R are used to establish the rotation matrix 0Rtool , thanks to

Equation (6). This 3 × 3 matrix is the left and upper block of the 4 × 4 matrix 0Ttool .
Furthermore, if we consider the translation vector [X, Y, Z, 1]T , by combination, we

can write the global homogeneous transformation matrix 0Ttool and so the two expressions
of O6 and O5, see Equation (13).

0Rtool = RZ(R) · RY(P) · RX(W)
0O6 = [X, Y, Z, 1]T
0Ttool = 0Rtool ⊕ 0O6
toolO5 = [0, 0, r6, 1]T
0O5 = 0Ttool · toolO5

(13)

Step 2: Positioning the “Candidate-points” O4, in the frame R0
Real point O4 is at a constant distance r5 from O5.
By construction, the two vectors

−−−→
O5O6 and

−−−→
O5O4 are orthogonal.

That means that a candidate-point O4 is on a circle whose center is O5, and radius is r5.
This circle is in a plane, perpendicular to the vector

−−−→
O5O6.

With q ∈ [0, 2 · π], a sample variable representing the characteristic angle of vector
−−−→
O5O4 around axis O5O6, this point toolO4(q), a function of q, can then be considered as a
Candidate-point, as shown in System (14).

For example, q can be varied with a 1 degree sample. There will then be 360 candidate-
points O4 along the considered circle.

toolO4(q) = [r5 · cos(q), r5 · sin(q), r6, 1]T
0O4(q) = 0Ttool · toolO4(q)

(14)

In Figure 6, with two different configurations, we can see the location of the Candidate-
points O4(q) on the red circles around O5.
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Figure 6. Location of the centers O4 (red), O3 UP (blue), and O3 DW (green). (a): example of a pose with
8 IK solutions. (b): example of a pose with 16 IK solutions.

Step 3: Positioning the “Candidate-points” O3, in the frame R0
Considering the position of a particular candidate-point O4(q), we can define the

associated candidate-point O3(q) in the triangle O0O3O4. In fact, there are two solutions
for each O4(q): one above and one below (corresponding to left or right robot elbow, also
called up or down), situated on either side of the line O0O4. These points O3 serve as the
apexes of a triangle, with the other two vertices identified as (O0 and O4(q)).

With d04 the Euclidean distance from O0 to O4(q), the lengths of the three sides of the
triangle are known: a2 (540 mm), −r5 (540 mm), and d04.

Note that there is a minus sign for r5 because this value is negative in the DHm table.
Eventually, this triangle is in a vertical plane.
According to Inequality (15), for a candidate-point O4(q), there are two solutions,

labeled as candidate O3UP(q) and O3DW(q). The first one, referred to as UP, corresponds
to the “left elbow” configuration for the robot arm. The other solution, denoted as DW,
corresponds to the “right elbow” configuration.

d04 ≤ a2 + (−r5) (15)

The coordinates for positions 0O3UP(q) and 0O3DW(q) are established and integrated
in our algorithm using the relationships derived from the oblique triangle.

In Figure 6, the position 0O3UP(q) is shown in blue and 0O3DW(q) in green. Certainly,
although this is not very easy to see on the plane projection of Figure 6, these two points lie
on 3D curves over a sphere with a radius of a2.

Figure 6a corresponds to the Pose(A#4), see Equation (12) for these Pose coordinates.
Figure 6b corresponds to a Desired-Pose for which 16 solutions are valid. For better

readability, only one posture has been represented.
While the loci of O4(q) are represented as circles (red) in both cases, the 3D closed

curves of the two loci of O3(q) (blue and green for Up and Down loci) corresponding to
a 16-solution Desired-Pose (Figure 6b) are considerably less uniform compared to those
corresponding to 8-solution Desired-Pose (Figure 6a).

Step 4: Perpendicularity of
−−→
O3O4 and

−−→
O4O5 and the two Z4 · Z5 dot-product values

By construction, on the CRX-10iA cobot, the two vectors
−−−→
O3O4 and

−−−→
O4O5 are per-

pendicular. This means that the Candidate-positions O4(q) and O3(q) are viable if the
dot-product between

−−−→
O3O4 and

−−−→
O4O5 is equal to zero.

In order to verify this condition, we computed the two dot-products Z4 · Z5 (first for
O3UP and secondly for O3DW) of the two Candidate-unit-vectors of

−−−→
O3O4 and

−−−→
O4O5 (see

Figure 3) and expressed them as functions of the sample variable q.

UP(q) = Z4 · Z5 f orthecoupleO4(q)andO3UP(q)

DW(q) = Z4 · Z5 f orthecoupleO4(q)andO3DW(q)
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Figures 7–10 show, for different Desired-Poses, the representation of these dot-products:
UP(q) in blue and DW(q) in red. Parameter q varies from 0° to 360°.

Step 5: Determination of the zeros of the two Z4 · Z5 dot-product values
At the end of Step 4, the two functions Z4 · Z5 are known as sample signals. The

number of samples is the number taken for q in Step2.
As these are dot-products, the various samples of Z4 · Z5 move between −1 and +1.

Finding a valid candidate-point O4 is like finding the zeros of the continuous and bounded
functions Z4 · Z5 known per samples.

The number of intersections of the curves with the zero line is between 0 and 8.
We denote as NUP and NDW the number of zeros, respectively, for the functions UP(q)
and DW(q).

Figure 7. The two dot-products Z4 · Z5 function of the parameter q: UP(q) in red and DW(q) in blue.
(a): The blue curve intersects the zero line twice, whereas the red curve does not. (b): The two curves
intersect the zero line twice. The cobot configuration is as depicted in Figure 6a.

Figure 7 illustrates examples where the two curves intersect the zero line 2 or 4 times.
In Figure 8, the curves intersect the zero line 6 or 8 times.
In Figure 9, two examples are presented where the curves intersect the zero line

3 or 7 times. In such cases, double solutions are observed: (a) the red curve and (b) the blue
curve are tangent to the zero line for these double solutions.

The last example, depicted in Figure 10a, shows a specific configuration where the
UP(q) and DW(q) solutions are not defined for all q values between 0° and 360°. This occurs
when the inequality (15) is not satisfied.

Figure 10b illustrates one robot’s posture for this configuration. The end-effector is
then positioned close to the outer boundary of the workspace. This particular configuration
inevitably reduces the number of possible solutions (here N_UP = 0).

Figure 8. The two dot-products Z4 · Z5 intersect 6 times (a) or 8 times (b) the zero line.
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Figure 9. The two dot-products Z4 · Z5 intersect 3 times (a) or 7 times (b) the zero line.

Figure 10. Configuration close to the outer boundary of the reachable workspace, for which UP(q)
and DW(q) are not defined for all parameter q (a). Corresponding the robot’s posture (b).

At the end of this 4th process step, two functions UP(q) and DW(q) are established.
The search for the zeros of these two functions gives:

Up to 4 values qiUP (NUP ≤ 4 , most often 2; although, occasionally, it may be 0 or 4)
corresponding to UP(qiUP ) = 0;

Up to 4 values qiDW (NDW ≤ 4 , most often 2; although, occasionally, it may be 0 or 4)
corresponding to DW(qiDW ) = 0.

As dot-products of unit vectors, the UP(q) and DW(q) functions are monotonic and
their values lie ∈ [−1, 1]. They exhibit behavior akin to a “distorted sinusoidal curve”
with two alternations, thus potentially providing a maximum of 4 zeros. Identifying zeros
is a classic conventional and straightforward procedure, which we will not delve into
extensively in this paper as it does not present a challenge for the IK problem.

The considered Pose corresponds to that of Equation (12), for which the positions of
O3 and O4 are given in Figure 6a. In Figure 7b, the corresponding curves of UP(q) (in red)
and DW(q) (in blue) are represented.

These two curves intersect the zero a total of 4 times. So, there are therefore 4 qi values.
Listed from smallest to largest (in degrees),

q1DW = 31.782

q1UP = 150.776

q2DW = 178.196

q2UP = 280

A specialized zero-finding procedure has been integrated to the algorithm. This proce-
dure allows zeros to be obtained at a low computational cost (10 ms on a microcomputer,
without any specific code optimization), with an accuracy better than 10−5 deg (more than
sufficient for Fanuc robots, given their programming precision of 10−3 deg for joint values).

Step 6: From Ns valid O4 and O3 points to Ns [Ji] joint values
From a Desired-Pose, the 4th process step gives the number Ns of intersections with

zero line (NUP + NDW), providing then qi solutions for which the candidate points O4 and
O3 (O3UP or O3DW) are valid.
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For any considered qi among the Ns established values, we can compute the correspon-
dent point O4 using Equation (14), then deduce the parameter of the cobot joint1 thanks
Equations (16) and (17).

In fact, two solutions for J1 exist, for a known point O4, see Figure 11.
Equation (16) give the precession angle of the plane containing the triangle O0O3O4.

For a known precession, the two solutions for J1 are given by Equations (17) or (18).
Equation (17) gives the J1 primal value, and Equation (18) gives the J∗1 dual one. As

we have Ns solutions for qi, that means there are Ns primal solutions to the IK and on
another hand Ns dual ones, i.e., a total N = 2 · Ns of IK solutions.

Step 6 of the algorithm deals with the primal joint parameters, step 7 below with the
dual ones.

Figure 11. The two J1 solutions for a precession ΨP of the plane P of the triangle O0O3O4.

toolO4(qi) = [r5 · cos(qi), r5 · sin(qi), r6, 1]T
0O4(qi) = 0Ttool · toolO4(qi)

0O4(qi) = [XO4 , YO4 , ZO4 , 1]T

ψP = atan2 (YO4 , XO4) · 180/π

(16)

J1 = ψP (17)

J∗1 = ψP − π (18)

For a known J1 parameter, J2 and J3 can be expressed using the Equations of System (19),
under the condition that the Inequality (15) is verified. Instructions given in Equation (19)
must be followed in the specified order. We define and use a posture parameter δ such that:

(δ = −1) if the robot posture is UP and (δ = +1) if the robot posture is DW.
Equation (19) is derived from relationships within the triangle (O0O3O4), while con-

sidering the specific convention for FANUC’s Ji parameters. The intermediate parameters
for determining J2 and J3 can be seen in the DHm (Z1X1) plane, in Figure 12.

N.B., angles are measured positively from Z1 to X1, and r3 is negative.

u1 = atan2 (ZO4 , sqrt (X 2
O4

+ Y 2
O4
))

u2 = −((X 2
O4

+ Y 2
O4

+ Z 2
O4
) − (a 2

2 + r 2
4 ))/(2 · a2 · r4)

u3 = δ · acos(u2)
u4 = atan2 (−r4 · sin(u3), a2 − r4 · cos(u3))
J2 = (π/2 − u1 + u4) · 180/π
J3 = (u1 + u3 − u4) · 180/π

(19)
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Figure 12. Angular parameters used in Equation (19) to determine J2. On this Figure, δ = +1.

For J4 determination, see the System of Equations (20).
We first establish the three transformation matrices:
0T1, 1T2, and 2T3, as functions of J1, J2, and J3, as defined in Equation (1).
Then, we define the two matrices 3T∗

4 and 4T∗
5 with specific values J∗4 = J∗5 = 0.

0T∗
4 = 0T1 · 1T2 · 2T3 · 3T∗

4
0T∗

5 = 0T∗
4 · 4T∗

5
Z4 = 0T∗

4 · [0, 0, 1, 0]T
0O∗

5 = 0T∗
5 · [0, 0, 0, 1]T

V0 = O∗
5 − O4

V1 = O5 − O4
scal1 = V0 · V1
scal4 = (V0 ∧ V1) · Z4
s4 = sign(scal4)
J4 = s4 · acos(scal1) · 180/π

(20)

The System of Equations (21) allows to determine J5 value using the same method
explained above for J4 determination.

0T4 = 0T1 · 1T2 · 2T3 · 3T4
0T∗

6 = 0T4 · 4T∗
5 · 5T∗

6
Z5 = 0T∗

5 · [0, 0, 1, 0]T
0O∗

6 = 0T∗
6 · [0, 0, 0, 1]T

W0 = O∗
6 − O5

W1 = O6 − O5
scal3 = W0 · W1
scal5 = (W0 ∧ W1) · Z5
s5 = sign(scal5)
J5 = s5 · acos(scal3) · 180/π

(21)

For J6 determination, we employ a similar algorithm to the previous one, but it oper-
ates with rotation matrices rather than homogeneous ones, see the System of Equations (22).

We first establish 4T5, with the value J5 obtained just above.
We calculate 0T∗

6 , with J∗6 = 0, and deduce 0R∗
6 , the rotational block element of 0T∗

6 .

0T∗
6 = 0T4 · 4T5 · 5T∗

6
With toolT6 = inv (6Ttool)

0T6 = 0Ttool · toolT6
For i ∈ [1; 3] and j ∈ [1; 3] 0R∗

6(i, j) = 0T∗
6 (i, j)

For i ∈ [1; 3] and j ∈ [1; 3] 0R6(i, j) = 0T6(i, j)
R = inv (0R∗

6) · 0R6
J6 = atan2 (− R(1, 2), R(1, 1))

(22)
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Step 7: Ns IK solutions by the dual property
For CRX cobots, when a solution [J] (6 joint parameters) is valid for a Desired-Pose, it

is easy to verify that the other corresponding solution, called the dual solution, is also valid.
The global dual IK solution of [J] is then denoted as [J∗].
Its first joint parameter is the value J∗1, which is the dual of J1.
According to the FK model, when the dual change is applied to all matrices used in

Equation (3), it can also be demonstrated that two dual joint solutions give the same pose.
The change in variables, for the 6 joints, between [J] and [J∗] is given by Equation (23).

[J ] = [J1, J2, J3, J4, J5, J6]T

[J∗] = [J1 − 180, − J2, 180 − J3, J4 − 180, J5, J6]T
(23)

This means that if a solution is known, consequently, another one is valid. It is
important to note that in any configuration, two dual solutions are distinct because their
joint values are never the same. However, their kinematic diagrams are exactly identical.

As shown at Step 6, we can have up to 8 solutions for a given Desired-Pose. Thus,
this implies that after dual transformations, the maximum number Nmax of all viable IK
solutions is 16.

3. Results: CRX IK Validation

This section illustrates results provided using this geometric approach dedicated to
CRX series cobots. We present various examples of Desired-Poses, highlighting different
scenarios in terms of the number of solutions produced by this IK model.

In our first example, typical of the most common scenarios, we observe eight solutions.
The second example presents a case with 12 solutions, while the third illustrates a pose
yielding 16 solutions. This range demonstrates the model’s versatility in addressing various
poses and the number of feasible solutions it can generate.

3.1. Examples with 8 IK Solutions for CRX-10iA/L and CRX-10iA

The examples chosen here correspond to the poses described in Section 2.5.2.

• The first example concerns the CRX-10iA/L cobot, with the following desired values:

PoseA = [57.132, 178.588, 522.657, − 131.819, − 45.268, 61.453]T

The different sets of joint angles for the eight solutions are given in Table 3. These
solutions have been verified and shown to be valid on Roboguide Software.

It becomes evident that among the 16 solutions proposed in [31], only 8 are feasible.
This highlights the importance of carefully evaluating the validity of potential solutions
mainly in terms of accuracy.

Table 3. The joint values [Ji] for the 8 IK solutions to reach PoseA on CRX-10iA/L cobot.

J1 J2 J3 J4 J5 J6

[JA#1] 39.902 61.782 137.023 75.169 116.229 90.344

[JA#2] 114.690 47.928 160.609 23.885 170.539 −10.812

[JA#3] 86.018 −42.379 16.943 −35.883 −55.129 2.977

[JA#4] 78 −41 17 −42 − 60 10

[JA#5] −140.098 −61.782 42.977 −104.831 116.229 90.344

[JA#6] −65.310 −47.928 19.391 −156.116 170.539 −10.812

[JA#7] −93.982 42.379 163.057 144.118 −55.129 2.977

[JA#8] −102 41 163 138 −60 10
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• The second example concerns the CRX-10iA, with the following pose values:

PoseB = [80.321, 287.676, 394.356, − 131.819, − 45.268, 61.453]T

The different sets of joint angles are given in Table 4. These eight solutions have been
confirmed, first virtually on Roboguide software then implemented on the real cobot. Two
of these solutions are represented in Figure 6a. The 1st line of Table 4 corresponds to the
cobot posture represented in cyan, the 4th line corresponds to the one represented in black.

By comparing Tables 3 and 4, it is apparent that postures [JA#4] and [JB#4] are identical
(as are dual postures [JA#8] and [JB#8]). This outcome was expected since the desired poses
were derived from line 4 of the tables, which served as the starting point for the analysis
(giving Desired-Poses: PoseA and PoseB).

Table 4. The joint values [Ji] for the 8 IK solutions to reach PoseB on CRX-10iA.

J1 J2 J3 J4 J5 J6

[JB#1] 44.611 89.087 109.193 94.703 121.416 121.782

[JB#2] 35.162 88.468 140.150 −108.846 −111.920 −91.804

[JB#3] 29.462 −39.473 −8.392 117.682 85.679 −119.224

[JB#4] 78 −41 17 −42 − 60 10

[JB#5] −135.389 −89.087 70.807 −85.297 121.416 121.782

[JB#6] −144.839 −88.468 39.850 71.154 −111.920 −91.804

[JB#7] −150.538 39.473 188.392 −62.318 85.679 −119.224

[JB#8] − 102 41 163 138 − 60 10

3.2. Examples with 12 IK Solutions for CRX-10iA

• We examine the following example, denoted as PoseC, which yields 12 distinct IK
solutions, see Table 5:

PoseC = [600, 0, 100, − 180, 0, 70]T

This example is particularly intriguing because, owing to its unique desired orientation,
it can be solved manually without the need for inverse kinematics, relying simply on
trigonometric relationships and DHm parameters.

The same end-effector pose could be achieved through 12 sets of joint angles, as
shown in Table 5. It is important to note that values such as 78.001 or 179.999 are not are
not rough estimates of the whole numbers 78 or 180, but rather precise solutions of the
Inverse Kinematics, resolved to an accuracy of 10−3 degrees while taking into account
joint limitations.

Table 5. The joint values [Ji] for the 12 IK solutions to reach PoseC on CRX-10iA.

J1 J2 J3 J4 J5 J6

[JC#1] −14.478 119.780 78.001 −180 168.001 −95.522

[JC#2] −6.336 121.233 89.999 −116.197 179.999 −39.861

[JC#3] 6.335 121.233 90 −63.811 179.999 −0.146

[JC#4] 14.478 119.780 78.001 0 −168.001 55.522

[JC#5] −14.478 11.999 −29.780 −180 60.220 −95.522

[JC#6] 14.478 11.999 −29.780 0 −60.220 55.522

[JC#7] 165.522 −119.780 101.999 0 168.001 −95.522

[JC#8] 173.664 −121.233 90.001 63.811 179.999 −39.861

[JC#9] −173.665 −121.233 90 116.190 179.999 −0.146
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Table 5. Cont.

J1 J2 J3 J4 J5 J6

[JC#10] −165.522 −119.780 101.999 −180 −168.01 55.522

[JC#11] 165.522 −11.999 −150.220 0 60.220 −95.522

[JC#12] −165.522 −11.999 −150.220 180 −60.220 55.522

For this particular pose, the desired direction Ztool of the end-effector is vertical, see
Figure 13a, a common case for many pick-and-place applications in robotics. This is reflected
by the orientation values (W = 180° and P = 0°) and by the common points of intersection
between the two UP(q) and DW(q) curves, see Figure 13b (blue and red curves intersect the
zero line at the same points).

This means that, for specific wrist configurations, there could be two solutions UP(q)
and DW(q) where the configuration of the wrist in both solutions are precisely the same.

This phenomenon mirrors what occurs with a spherical wrist configuration. Conse-
quently, we can observe identical values in lines #1 and #5 of Table 5 (J1 = −14.478°) and
the exact opposite values in lines #4 and #6 (J1 = + 14.478°).

Ensuring that Inverse Kinematic solutions are both reliable and accurate is essential.
Equally important is the consideration of a robot’s joint constraints. Our algorithm ad-
dresses this by incorporating joint limits into the solution process, the desired PoseC is such
an illustration.

Figure 13. (a) Cobot posture corresponding to line 6 of Table 5. (b) The two UP(q) and DW(q)
dot-products (Z4 · Z5) corresponding to PoseC.

3.3. Example with 16 IK Solutions for CRX-10iA

• For this example, the pose parameters were obtained using FK from posture [JD#7],
where joint parameters are in whole degrees (as well as its dual posture, [JD#15]). This
is why the values of the following PoseD are defined with a resolution of 10−3 mm
and 10−3 deg.

PoseD = [209.470, − 42.894, 685.496, − 95.378, − 64.226, − 56.402]T

This example demonstrates the existence of a Desired-Pose, with 16 solutions, as shown
in Figure 14. The 7th image of this figure corresponds to the cobot posture represented, in
black, in Figure 6b. All of the 16 configurations were verified using Roboguide software
(version 9).

Table 6 displays the six joint parameters corresponding to each of these solutions. All
these solutions have been tested on the real cobot.

In this example, the distance between the Tool Center Point and the vertical axis Z0 of
frame R0 is 214 mm. This point is located near the center of the cobot’s workspace, away
from the outer boundary. This characteristic is common to all poses with 16 IK solutions.
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Table 6. The joint values [Ji] for the 16 IK solutions to reach PoseD on CRX-10iA.

J1 J2 J3 J4 J5 J6

[JD#1] −60.125 62.707 112.015 90.165 92.586 132.291

[JD#2] −63.318 62.684 143.064 −93.111 −89.750 −78.691

[JD#3] 11.855 54.151 144.007 −28.773 −142.889 −48.616

[JD#4] 49.247 46.825 135.954 29.379 −134.512 −5.010

[JD#5] −62.156 −40.094 14.333 92.039 91.458 −129.964

[JD#6] 47.115 −53.924 35.922 28.105 −41.924 −48.121

[JD#7] 0 −45 44 −37 −53 0

[JD#8] −47.369 −40.310 45.272 −78.410 −81.969 17.952

[JD#9] 119.875 −62.707 67.985 −89.835 92.586 132.291

[JD#10] 116.682 −62.684 36.936 86.889 −89.750 −78.691

[JD#11] −168.145 −54.151 35.993 151.227 −142.889 −48.616

[JD#12] −130.753 −46.825 44.046 −150.621 −134.512 −5.01

[JD#13] 117.844 40.094 165.667 −87.961 91.458 −129.964

[JD#14] −132.885 53.924 144.078 −151.895 −41.924 −48.121

[JD#15] −180 45 136 143 −53 0

[JD#16] 132.631 40.310 134.728 101.590 −81.969 17.952

Figure 14. Visualizations of 16 distinct postures to access the same PoseD.
PoseD = [209.470, − 42.894, 685.496, − 95.378, − 64.226, − 56.402]T .

4. Discussion and Conclusions

In this paper, we discussed the CRX cobots series introduced by FANUC. After em-
phasizing the significance of cobotics in various applications, we proceeded to develop
both Forward and Inverse Kinematic models for CRX cobots.

The Forward Kinematic model that we have introduced adheres closely to the FANUC
approach. It is a model designed to ascertain the pose delivered by the cobot for a given
configuration, represented by the six programmed Ji values.

This implies that the model developed accurately incorporates the origins and direc-
tions of the joint values, as well as the specific coupling between the J2 and J3 joints, in the
Forward Kinematics calculations.

We have demonstrated the potential utility of the differential approach for joint control
under 6D path-planning constraints in certain specific scenarios. It is nevertheless crucial
to emphasize the necessity of a complete and reliable Inverse Kinematic solution.

While previous solutions have offered partial sets of equations, notably the one pro-
posed by FANUC in Roboguide software, and others have exhibited inconsistencies, this
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study provides a numerical geometric approach for the inverse kinematic solution for
cobotic arms with non-spherical wrists, specifically the CRX-10iA, with a particular focus
on completeness and accuracy.

This novel approach

• Enables the determination of the exact number of possible joint solutions for a
desired pose.

• Provides the different sets of joint angles values [Ji] for these distinct solutions.

Through Forward and Inverse kinematic models computing, simulations on the
Roboguide software, and experiments on the real cobot CRX-10iA, we have demonstrated
that the number of IK solutions can range from 2 to 16. In most cases, 8 IK solutions are
valid. However, IK solutions may also occur in increments of 4, 8, 12, or 16, with occasional
instances of 2, 6, 10, or 14 solutions.

The technique we have developed has been experimentally validated and proven to
be robust. It accurately determines the number of IK solutions corresponding to the actual
valid solutions within joint limits, ensuring neither more nor fewer solutions are provided.
Moreover, this method provides joint angle values with sub-millidegree accuracy in a few
milliseconds, so operates rapidly and efficiently from a computational point of view.

This approach can be applied to all 6R serial robots with a non-spherical wrist. For
example, as part of a comparative analysis, we tested it on the Universal Robot, UR5,
for which, however, an explicit IK model can be established. The results provided were
consistent with the literal IK.

In the continuation of this work on CRX cobots series, we will aim to characterize
workspace domains with a specific number of IK solutions and define their boundaries,
particularly when this number exceeds eight. Additionally, we will explore the issue of
crossing these boundaries, for instance, when transitioning from a 16-solution domain to
one with a 12-solution domain, and vice versa.

We will also study the concept of “aspect” and changes in aspect, examining the link
between aspect and p-solution domains. As mentioned above, we will explore the issue of
transitioning between aspects and within a given aspect.

Figure 15 highlights a particular example of this future work: transitioning from
one solution to another within the same set of solutions (from [JD#2] to [JD#4]), while
maintaining the same initial and final poses, without encountering any singularities during
the movement.

Figure 15. Envelope of cobot postures, representing the displacement between two distinct solutions
(from [JD#2] to [JD#4] of Table 6), in the case where there are 16 IK solutions for the same pose.
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Abbreviations
The following abbreviations are used in this manuscript:

DHm Denavit–Hartenberg modified
DoF Degree-of-Freedom
FK Forward Kinematics
IK Inverse Kinematics
MRI Magnetic Resonance Imaging
MSD Musculoskeletal Disorders
TCP Tool Center Point
UR Universal Robots
XYZ End-effector position
WPR Cardan’s angles
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