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Control of the Schrödinger equation by slow

deformations of the domain

Alessandro Duca∗, Romain Joly† & Dmitry Turaev ‡

Abstract

The aim of this work is to study the controllability of the Schrödinger equation

i∂tu(t) = −∆u(t) on Ω(t) (∗)

with Dirichlet boundary conditions, where Ω(t) ⊂ RN is a time-varying domain. We
prove the global approximate controllability of (∗) in L2(Ω), via an adiabatic deformation
Ω(t) ⊂ RN (t ∈ [0, T ]) such that Ω(0) = Ω(T ) = Ω. This control is strongly based on the
Hamiltonian structure of (∗) provided by [18], which enables the use of adiabatic motions.
We also discuss several explicit interesting controls that we perform in the specific framework
of rectangular domains.

Keywords: Schrödinger equation, PDEs on moving domains, global approximate controlla-
bility, adiabatic control, Fermi acceleration.

1 Introduction

We consider a quantum state confined in a time-varying domain {Ω(t)}t∈I with I = (0, T ). Its
dynamics is modeled by the following Schrödinger equation{

i∂tu = −∆u, (x, t) ∈ Ω(t)× I,
u|∂Ω(t) = 0, (x, t) ∈ ∂Ω(t)× I. (1.1)

The aim of this work is to study the controllability of the Schrödinger equation (1.1) by consid-
ering the time-varying domain Ω(t) as a control. To be able to consider shapes as rectangular
domains, we allow Ω(t) to admit some corners or edges but no degenerate features as cusps.
Let us denote by “C2−curved polyhedron” the image of a (non-degenerate) polyhedron via a
C2−diffeomorphism. Our main result is as follows.

Theorem 1.1. Let d ≥ 2 and Ω0 ⊂ Rd be a connected open bounded set with C2 boundaries or
a C2−curved polyhedron. Let u0 and u1 in L2(Ω0) with ‖u0‖L2 = ‖u1‖L2. For any ε > 0, there
exist T > 0 and a smooth family of domains (Ω(t))t∈[0,T ] such that

Ω(0) = Ω(T ) = Ω0

and such that the solution of (1.1) with initial data u(t = 0) = u0 satisfies

‖u(t = T )− u1‖L2 ≤ ε.
∗Université de Lorraine, CNRS, INRIA, IECL, F-54000 Nancy, France email: alessandro.duca@inria.fr
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Notice that the result of Theorem 1.1 should stay true for more general domains, as soon as
the properties of the Dirichlet Laplacian operator in Ω0 are not too exotic. However, we stick
to the above formulation, as it is sufficient for the examples we consider in this paper.

We recall that (1.1) models the evolution of a quantum particle of Rd confined by infinite
potential walls, for example generated by electric potentials. The above result shows that one
can control the quantum state of the particle by changing the shape of the domain enclosed by
these walls. We emphasize that our process follows a quasi-adiabatic motion and the energy
of the particle changes uniformly slowly on the control interval. It provides a new method for
driving the system from the ground state to an excited state (or a superposition of excited
states), and vice versa, in a soft way, without instantaneous energy changes and without using
resonant interactions. The control protocol provided by our proof is ready-to-use in many
situations. In the most simple cases, the deformations of the domain are either explicit or based
on generic motions, which could be chosen “randomly”. The main non-explicit parameter is the
deformation speed which can be calibrated tentatively in actual/numerical experiments (moving
slowly enough in the adiabatic parts or finding a suitable intermediate speed in the non-adiabatic
parts).

Well-posed unitary flow for the Schrödinger equation in a moving domain

The peculiarity of the equation (1.1) is that the phase space L2(Ω(t),C) depends on time. The
existence and uniqueness of solutions for this type of problems was recently studied in [18].
There, it was shown how to formalize the definition of solutions for the Schrödinger equation
in time-varying domains by only assuming that the deformation is sufficiently smooth. More
precisely, we consider a bounded reference domain Ω0 ⊂ Rd and a specific family of unitary
transformations h](t) : L2(Ω(t),C) → L2(Ω0,C) with inverse h](t) such that equation (1.1) is
the following equation in L2(Ω0,C):

i∂tv = h](t)H(t)h](t)v, (x, t) ∈ Ω0 × I, (1.2)

where the Hamiltonian H(t) is the magnetic Laplacian operator

H(t) = −(divx +iA) ◦ (∇x + iA)− |A|2

with some explicit magnetic potential A depending on the deformation of the domain Ω(t). More
details are recalled in Section 2.

The new formulation (1.2) provides a natural framework for the study of the evolution of
the Schrödinger equation (1.1) and for ensuring the existence and uniqueness of solutions. The
Hamiltonian structure of (1.2) plays a central role in our work as it allows us to use different
features of Hamiltonian dynamics, such as the conservation of the L2-norm or the adiabaticity
of motion, see Section 2.

Control of the quantum system by deformation of the domain

Our strategy for control is based on specific quasi-adiabatic deformations (Ω(t))t∈[0,T ] of the
initial domain Ω0. Recall that a deformation of Ω is adiabatic when, for any initial state with
a definite energy, the motion is sufficiently slow so that the system during its evolution stays
close to the state defined by the same quantum numbers. It is a well-known fact (the so-called
“avoided level crossing theorem”) that for a typical adiabatic deformation of the domain, if u0

is the ground state in the domain Ω(0), then the solution u(t) of (1.1) remains close to the
ground state of Ω(t). See Section 2.2 for a more precise statement. However, we prove Theorem
1.1 by using a special type of deformations (Ω(t))t∈[0,T ] which drive the system close to energy
level crossings and, thus, allow for an adiabatic transition from the ground state to excited
states. In our control protocol, the speed of the domain deformation is uniformly slow; we just
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slightly adjust the speed at the moments near the level crossings in order to distribute the energy
between the modes. A typical example is as follows.

1. Start with u0 being the ground state of Ω0. First, we adiabatically deform Ω0 into a dumbbell
shaped domain Ω: from a smooth part of the boundary of Ω0, we slowly grow an attached
ball ΩL linked by a thin channel to the other part, ΩR, which stays close to the initial shape
Ω0, see Figure 1. We do the deformation sufficiently slowly to be adiabatic, so the state
u(t), eventually, gets close to the ground state of the dumbbell shaped domain, which, if the
channel is sufficiently thin and the attached ball ΩL is sufficiently large, is mostly localized
in ΩL.

2. At the second step, we adiabatically contract the ball ΩL. The modes mostly supported by
ΩL increase their energy during the deformation, while the ones that are mostly localized
in ΩR stay unaffected. This provides the “almost crossings” of the eigenvalues: at certain
moments of time, we have two states, one localized mostly in ΩL and the other in ΩR, with
sufficiently close energies. From the physical point of view, this allows for a tunneling effect.
If we adapt suitably the velocity of the deformation around these critical times, then we can
control how much energy is transferred from the modes in ΩL to the modes in ΩR. The main
difficulties of the proof of Theorem 1.1 consist in controlling this tunneling effect.

3. Once the desired state has been obtained in ΩR, we adiabatically deform the domain back to
its initial shape Ω0 by preserving the simplicity of the spectrum. This final phase preserves
the distribution of energies obtained at the previous step.

The detailed arguments are provided in Section 4.

ΩL

ΩR
ωη

Figure 1: The key idea is to use a dumbbell shaped domain as pictured here: a ball ΩL is linked
to a domain ΩR, close to the original reference domain Ω0, via a very thin channel ωη. At start,
almost all the energy is contained in the left ball ΩL. When we reduce the size of the ball ΩL,
the energy flows to the right part ΩR, by the tunneling effect. The technical issue is to control
this transfer of energy to create the target state in ΩR.

Explicit controls on rectangular domains

In Section 5, we study a different type of domain deformations for the specific case where Ω0

is a rectangle. In the rectangular domain of the size a × b, the spectrum of the Laplacian
operator is completely known: the eigenmode φj,k = sin(jπ/ax1) sin(kπ/bx2) has the total
energy λj,k = π2(j2/a2 + k2/b). Any adiabatic variation of the sizes a and b of the rectangle
preserves both the horizontal and vertical quantum numbers j and k, hence the position of λj,k
in the spectrum linearly ordered by the increase of the energy can be easily switched by a slow
change in a or b. For example, for any k2 > k1 and j2 > j1, when a grows from very small
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to very large values while keeping b constant, we have λj2,k1 > λj1,k2 at the beginning of the
process and λj2,k1 < λj1,k2 at the end.

We exploit this explicit eigenvalue crossings at rectangular deformations and obtain another
strategy for the global approximate controllability, as described in the proof of Proposition 5.5.
Starting with any state, we move it adiabatically to a vicinity of a decoupled state (a function of
x times a function of y). After that, we stop doing an adiabatic control and, instead, move the
decoupled state to the ground state of the rectangle (see Proposition 5.5) by a higher-dimensional
version of the technique that was developed in [4] for the control of the Schrödinger equation in
one-dimensional domains.

Adiabatic permutations of eigenstates

Finally, in Section 5.6, we discuss how simple and explicitly defined deformations permute the
excited states of a particle in a rectangle. With a simple and purely adiabatic periodic motion
of one side of a rectangle, we create a non-trivial permutation of the energy eigenstates. The
trick is that, for a part of each perturbation cycle, we keep the rectangular shape of the domain,
and for the rest of the cycle, we make the domain shape “generic”. This means that, when the
boundary motion is slow enough, the process is adiabatic, hence it preserves 2 quantum numbers
(j and k) in the first part of the cycle, leading to eigenvalue crossings, while in the rest of the
cycle no crossing occurs but the quantum numbers j and k are no longer defined. Altogether
this means that, at the end of the cycle, the system can find itself at an energy eigenstate with
a different pair of quantum numbers. We provide heuristic arguments and numerical evidence
which suggest that iteration of such permutation of eigenstates leads, typically, to an exponential
Fermi acceleration.

The same effect should be observed for adiabatic perturbations of general domains which are
periodically transformed to a dumbbell shape and back. For the part of the perturbation cycle
when the domain has a dumbbell shape, the system has an additional (approximate) quantum
number, which indicates whether the eigenfunction is supported mostly on the left or right part
of the domain. For the part of the cycle when the domain has a generic form, this quantum
number is destroyed. Similarly to the case of the rectangle, such process can lead to a non-trivial
permutation of eigenstates and to the exponential energy growth, see [37].

In general, the eigenstate permutations due to the cyclic adiabatic processes described here
(when different sets of quantum numbers are preserved on different parts of the cycle) provide an
interesting class of number-theoretical games. The analysis of the dynamics of such permutation
should be different from the famous Collatz problem [35], as our permutations are automatically
bijections N→ N, but could be similarly difficult. In addition to dumbbell shapes and rectangles,
one can use integrable domains (ellipses and rings) and domains with discrete symmetries in
order to create additional quantum numbers for a part of the adiabatic cycle. Another possibility
is to consider a pair of quantum-mechanical oscillators cyclically perturbed in such a way that
they interact only for a part of the cycle. In all such processes, physical intuition suggests
that the eigenstates permutations which they generate are well approximated by a positively
biased geometric Brownian motion, see Section 5.6. Providing a rigorous proof for such claim
is a challenging number-theoretical problem, and the results can be applicable beyond quantum
mechanics, for example for the wave equation and Maxwell equation in moving domains.

Previous works

The origin of our article comes from the work [37] where the idea was introduced that the adia-
batic separation of the domain into non-symmetric parts with a consecutive reconnection of the
parts can create eigenvalue crossings in an unavoidable way, leading to a non-trivial permutation
of the eigenstates. Before being able to obtain the results of the present paper, we implemented
the adiabatic separation/reconnection technique on a simple one-dimensional model where the
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control is provided by a moving potential [19]. This was the first step to understand how to
completely and rigorously obtain the global approximate controllability with these techniques.
Then, in [18], the first two authors introduced the framework of the Cauchy problem related
to Schrödinger equation in moving domains. Thus, it is now possible to implement the original
ideas for Equation (1.1).

Notice that the use of eigenvalue crossings to construct controls has been recently proposed
also in [8, 9]. In [13, 14], the authors consider very slow motions to construct a control, these
motions being “quasi-static” because they follow curves of steady states. Even if the PDEs
considered in [13, 14] are not Hamiltonian, this type of control is in the same spirit as our
“quasi-adiabatic” motions.

The control of PDEs by deformation of the domain is a difficult task and there are very few
results in this direction. In [3], the authors study an adiabatic deformation of the domain Ω(t)
in (1.1) in dimension d = 1 and for a specific case of deformation. The articles [4, 5, 6, 34]
also consider the case d = 1. They investigate the exact controllability problem, but only in
neighborhood of some specific solutions (for comparison: our Theorem 1.1 is a global result, but
it does not yield an exact control since we allow a small error ε > 0). Finally, in [27] the strategy
of [4, 5, 6, 34] is followed for the higher space dimension. However, due to an assumption of
radial symmetry, the techniques of [27] remain mostly one-dimensional.

Acknowledgements: We thank the anonymous referee for his fruitful comments. The first
two authors have been supported by the project ISDEEC of the French agency ANR, project
number ANR-16-CE40-0013. The third author was supported by RScF grant 19-71-10048 in
the HSE - Nizhny Novgorod.

2 The moving domains

The Schrödinger equation in domains depending on time was studied in several articles, see
[3, 4, 6, 22, 23, 27, 32], but often in the case of simple deformations. A general theory was
developed in [18]. In this section, we recall the basic tools introduced in this work and also give
some new estimates.

2.1 The basic setting

The first step adopted in order to deal with moving domains consists in pulling back the equation
in a fixed domain Ω0. As it is classical, we use a family of Ck-diffeomorphisms h(t, ·) such that
h(t,Ω0) = Ω(t) for every t in time interval I (see for example [21, 28] for an introduction on the
subject). We need to introduce a topology associated to these deformations via diffeomorphisms.
To this purpose, it is more convenient to extend h : Ω0 → Ω(t) into a diffeomorphism from B to
B where B ⊂ Rd is a large closed ball containing all the domains we are interested with.

Definition 2.1. Let B ⊂ Rd be a large closed ball. We set

‖f‖Ck(B) = max
(
‖f‖L∞(B), . . . , ‖Dkf‖L∞(B)

)
to be the classical Ck−norm. We denote by Diffk(B) the set of the Ck−diffeomorphisms h on
B such that h ≡ id on ∂B. We endow it with the Ck−topology, considering Diffk(B) as a
submanifold of Ck(B,B).

We recall that if h ∈ Diffk(B), then any g ∈ Ck(B,B) that satisfies g ≡ id on ∂B and which
is close enough to h for the Ck−norm, also belongs to Diffk(B). This is the reason why Diffk(B)
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is a submanifold of Ck(B,B) and it can be locally endowed with its topology. Now, we introduce
the space of paths of diffeomorphisms in the same way.

Definition 2.2. If I is a time interval, we introduce the space Pathk(I,B) of Ck−paths of
diffeomorphisms h ∈ Ck(I × B,B) with h(t) ∈ Diffk(B) for all t ∈ I. We consider it as a
submanifold of Ck(I × B,B) and we endow it with the inherited topology.

In this paper, we will always consider the following framework: B ⊂ Rd is a large closed ball
and Ω0 ⊂ B is a reference domain, regular enough to be able to define a Dirichlet Laplacian
operator with the classical properties that we may be interested in. Typically, we can consider a
smooth reference domain or a polyhedral reference domain, but even a Lipschitz domain should
be sufficient to ensure several of our statements. We consider the moving domain Ω(t) with
t ∈ I as the images Ω(t) = h(t,Ω0), where h ∈ Pathk(I,B) for some k ≥ 1. To preserve the
Hamiltonian structure of the Schrödinger equation, it is natural to introduce a unitary version
of the pull-back operator h∗ : φ 7→ φ ◦ h by considering h](t) defined by

h](t) : φ ∈ L2(Ω(t),C) 7−→
√
|J(t, ·)| (φ ◦ h)(t) ∈ L2(Ω0,C) , (2.1)

where J(t, x) := Dh(t, x) is the Jacobian of h and |J | (or |Dh(t, x)|) denotes the absolute value
of its determinant. We also introduce its inverse h](t) with t ∈ I, the push-forward operator

h](t) = (h](t))−1 : ψ ∈ L2(Ω0,C) 7−→
(
ψ/
√
|J(·, t)|

)
◦ h−1 ∈ L2(Ω(t),C) . (2.2)

In the current work, we adopt the notation from [18]. We denote by x the points in Ω(t) and
by y the ones in Ω0. The notation 〈·|·〉 denotes the scalar product in CN with the convention

〈v|w〉 =
d∑

k=1

vk wk , ∀v, w ∈ Cd.

We set v(t) = h](t)u(t) and we pull back Equation (1.1) in the fixed domain Ω0. The straight-
forward computation yields an equation for which the Hamiltonian structure is not obvious at
first sight. This structure was made more explicit in [18], by proving that the equation satisfied
by v is the following{

i∂tv(t, y) = −h]
[(

divx +iAh
)
◦
(
∇x + iAh

)
+ |Ah|2

]
h]v(t, y), (y, t) ∈ Ω0 × I,

v|∂Ω0
= 0, (y, t) ∈ ∂Ω0 × I,

(2.3)

where the magnetic potential Ah is given by Ah(t, x) = −1
2(h∗∂th)(t, x) := −1

2(∂th(t, h−1(t, x))).
Using the equation above, we may define a flow for the Schrödinger equation in the moving
domain Ω(t). The following result is proved in [18].

Theorem 2.3 (Theorem 1.1 of [18]). Let B ⊂ Rd be a large ball and let Ω0 ⊂ B be a
reference domain, either a domain of class C2 or a polyhedron. Let I be a time interval and let
h ∈ Path2(I,B). We set Ω(t) = h(t,Ω0).

Then, Equation (2.3) generates a unitary flow Ũ(t, s) on L2(Ω0) and we may define weak
solutions of the Schrödinger equation (1.1) by transporting this flow via h] to a unitary flow
U(t, s) : L2(Ω(s))→ L2(Ω(t)).

Assume in addition that the path of diffeomorphisms h belongs to Path3(I,B). Then, for any
u0 ∈ H2(Ω(t0)) ∩H1

0 (Ω(t0)) with t0 ∈ I, the flow above defines a solution u(t) = U(t, t0)u0 in
C0(I,H2(Ω(t)) ∩H1

0 (Ω(t))) ∩ C1(I, L2(Ω(t))) solving (1.1) in the L2−sense.
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A similar result for Neumann-type boundary conditions or for more general linear Schrödinger
equations was also obtained in [18]. The Gauge invariance, additional phase shifts or a suitable
version of Moser’s trick may be used to simplify (2.3) in particular situations, as presented in
[18].

Theorem 2.3 shows that a relevant notion of solution of Schrödinger equation in Ω(t) can be
obtained for C2−paths of domains Ω(t) and that this notion corresponds to the natural strong
one in the path of domains is of class C3. Notice that the Ck−smoothness does not refer to the
reference domain Ω(0) = Ω(t0), which may have corners.

Also notice that defining h outside Ω0 and equal to the identity on ∂B is not too much
constraining. If we start from a family of diffeomorphisms (h(t, ·))t∈I ∈ Ck(I × Ω0,Rd), then it
may be impossible to embedded it in Pathk(B) for some ball B due to topological reasons. If for
instance we consider Ω0 ⊂ R2 as an annulus and h reverses it inside out, then we cannot extend
h into a diffeomorphism of a ball. However, we may consider Ω(t0) as a new reference domain
and h̃(t) = h(t) ◦ h(t0)−1 as another family of diffeomorphisms. For all the simple and smooth
examples discussed in this paper, using Whitney extension theorem [39] and standard results of
globalization of local diffeomorphisms (see [24] and also [18]), we can then extend h̃ from Ω(t0)
into some large ball B in order to embed it in Diffk(B).

2.2 Adiabatic motions

The aim of this section is to present the adiabatic result for the Schrödinger equation (2.3) on
moving domains under suitable assumptions on the deformation. To this purpose, we refer to
[18, Section 1 & Section 5.1], where a very similar result is presented and proved.

We consider a family of domains {Ω(τ)}τ∈[0,1] with the framework of Theorem 2.3. We
denote by P (τ) ∈ L(L2(Ω(τ))) with τ ∈ [0, 1] a family of spectral projectors associated to the
Dirichlet Laplacian operator −∆ on Ω(τ). The classical adiabatic principle occurs when the
deformation of the family of domains is sufficiently slow. We represent the slowness of the
motion by a parameter ε > 0 and we consider deformations between the times 0 and 1/ε, that
is the following Schrödinger equation

i∂tuε(t, x) = −∆uε(t, x), t ∈ [0, 1/ε] , x ∈ Ω(εt),
uε(t) ≡ 0, on ∂Ω(εt),
uε(t = 0) = u0 ∈ L2(Ω(0)).

(2.4)

The classical adiabatic principle say that, if we move very slowly, then the energy contained in
a level of energy is almost preserved. Many versions of adiabatic results exist, see for example
[29]. In [18], we have checked the adapatation of this argument to the framework of moving
domains.

Proposition 2.4. (Corollary 1.5 of [18]). Let N > 0. Consider a family of domains
{Ω(τ)}τ∈[0,1] such that, for all τ ∈ [0, 1], the first N eigenvalues (λj(τ))j=1...N of the Dirichlet
Laplacian operator on Ω(τ) are simple. Denote by (ϕj)j=1...N and (ψj)j=1...N some correspond-
ing orthonormal eigenfunctions for τ = 0 and τ = 1 respectively. Then, the solution of (2.4)
with

u0 =

N∑
j=1

cjϕj

satisfies

uε(1/ε) =
N∑
j=1

c̃jψj +R with |c̃j | −−−−−−→
ε−→0

|cj | and ‖R‖L2 −−−−−−→
ε−→0

0 .
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Notice that it is also possible to extend the above result to some cases with multiple eigen-
values, see [29, Remarks 3-4 p. 16]. We will need this extension in the case of rectangular shape.
This case is simple enough to be computed explicitly and, in the present paper, we will restrict
the extension to such case (see the statement of Proposition 5.1 below).

2.3 Continuity estimates

We need to estimate the continuity of the solutions of (2.3) with respect to the different de-
formations of the domain. By Theorem 2.3, we know that (2.3) generates a unitary semigroup
and the L2−norm of v(t) is constant. Since we do not want to involve Poincaré estimates that
depend on the domain, we consider

‖v‖H1(Ω) = ‖∇v‖L2(Ω) + ‖v‖L2(Ω) ,

even if the term ‖∇v‖L2(Ω) is sufficient to define an equivalent norm in H1
0 (Ω). Notice that if

Ω ⊂ B and v ∈ H1
0 (Ω), then the extension of v by zero belongs to H1

0 (B) and has the same H1−
and L2−norms. We first bound the growth of the H1−norm during the dynamics.

Proposition 2.5. Let I be a time interval and t0 ∈ I. For all R > 0, there exists C > 0 such that
the following holds. Let h ∈ Path3(I,B) be a family of diffeomorphisms such that ‖h‖C3(I×B,B) +
‖h−1‖C3(I×B,B) ≤ R. Let Ω0 ⊂ B be any reference domain. Let v be the corresponding solution
of (2.3) with an initial data v(t0) = v0 ∈ H1

0 (Ω0), as given by Theorem (2.3). There holds

∀t ∈ I , ‖v(t)‖H1(Ω0) ≤ CeC|t−t0|‖v(t0)‖H1(Ω0) .

Proof: First notice that, arguing by density, it is sufficient to prove the estimate when v0 ∈
H2(Ω0) ∩H1

0 (Ω0). In this case, the corresponding solution v(t) is differentiable with respect to
the time and (2.3) holds in the L2−sense.

A direct computation (see [21, 28] or [18, Proposition 2.1]) shows that

(h]∇xh])v(t, y) =
√
|J(t, y)|

(
J(t, y)−1

)t · ∇y( v(t, y)√
|J(t, y)|

)
. (2.5)

In particular,

h](∇x + iAh)h]v(t, y) = h]∇xh]v(t, y)− i

2
∂th(t, y)v(t, y)

= (J(t, y)−1)t∇yv(t, y) − 1

2

[
|J(t, y)|−1(J(t, y)−1)t∇y

(
|J(t, y)|

)
+ i∂th(t, y)

]
v(t, y).

(2.6)

It yields the equivalence

1

C1(R)
‖v‖H1(Ω0) ≤ ‖h](∇x + iAh)h]v‖L2(Ω0) + ‖v‖L2(Ω0) ≤ C1(R)‖v‖H1(Ω0), (2.7)

where C1(R) only depends on the bounds on h and its derivatives, and not on Ω0. The L2−norm
of v(t) is constant in time. So, thanks to the relation (2.6), we have

∂t

(
‖h](∇x + iAh)h]v(t)‖2L2 + ‖v(t)‖2L2

)
= 2<

〈
∂t
(
h](∇x + iAh)h]v(t)

)∣∣h](∇x + iAh)h]v(t)
〉
L2

= 2<
〈
h](∇x + iAh)h]∂tv(t)

∣∣h](∇x + iAh)h]v(t)
〉
L2

+ 2<
〈
∂t(J(t, y)−1)t∇yv(t)

∣∣h](∇x + iAh)h]v(t)
〉
L2

−<
〈
∂t

(
|J(t)|−1(J(t)−1)t∇y

(
|J(t)|

)
+ i(J(t)−1)t∂th(t)

)
v(t)

∣∣h](∇x + iAh)h]v(t)
〉
L2
.
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Using the above estimates and the fact that v(t) is the solution of (2.3), we obtain

∂t

(
‖h](∇x + iAh)h]v(t)‖2L2+‖v(t)‖2L2

)
≤ −2<

〈
ih]
[(
∇x + iAh

)2
+ |Ah|2

]
h]v(t)

∣∣h](∇x + iAh
)2
h]v(t)

〉
L2

+ C2(R)‖v(t)‖2H1(Ω0)

≤ 2=
(∥∥h](∇x + iAh

)2
h]v(t)

∥∥2

L2

)
+ C3(R)‖v(t)‖2H1(Ω0)

≤ C3(R)‖v(t)‖2H1(Ω0)

≤ C4(R)
(
‖h](∇x + iAh)h]v(t)‖2L2 + ‖v(t)‖2L2

)
,

where the Ci(R) with i = 1, ..., 4 are constants only depending on the first three derivatives
of h and h−1, and then on the parameter R. It remains to apply Grönwall’s lemma and the
equivalence (2.7). �

We can deduce from the previous estimate a uniform estimation of the continuity at t = 0.

Proposition 2.6. For any T > 0 and R ≥ 0, there exists C > 0 such that the following
holds. Let h ∈ Path3((−T, T ),B) be a family of diffeomorphisms such that ‖h‖C3((−T,T )×B,B) +
‖h−1‖C3((−T,T )×B,B) ≤ R. Let Ω0 be any reference domain in B. Then any solution v(t) of (2.3)
corresponding to h with initial data v(t0) = v0 ∈ H1

0 (Ω0,C) satisfies

∀t ∈ (−T, T ) , ‖v(t)− v0‖L2 ≤ C
√
|t|‖v0‖H1 .

Proof: As in the proof of Proposition 2.5, h is smooth enough to be able to argue by density
and by assuming that v0 belongs to H2 ∩H1

0 . Using the same arguments as above, we write

∂t‖v(t)− v0‖2L2(Ω0) = 2<
〈
∂tv(t)

∣∣ v(t)− v0

〉
L2

= −2=
〈
h]
[
(∇x + iAh)2 + |Ah|2

]
h]v(t)

∣∣ v(t)− v0

〉
L2

= 2=
〈
h]
[
(∇x + iAh) + |Ah|

]
h]v(t)

∣∣h][(∇x + iAh)− |Ah|
]
h](v(t)− v0)

〉
L2

≤ C(R)‖v(t)‖H1 (‖v(t)‖H1 + ‖v0‖H1) ,

with C(R) > 0 only depending on R. Finally, we obtain a uniform bound for ∂t‖v(t)− v0‖2L2(Ω0)

by using Proposition 2.5 and the claim is ensured since ‖v(t)−v0‖2L2(Ω0) ≤ t supt∈(−T,T ) |∂t‖v(t)−
v0‖2L2(Ω0)|. �

We can also estimate the continuity of the solutions with respect to the deformations of the
domain.

Proposition 2.7. Let I be a time interval and t0 ∈ I. For any R ≥ 0, there exists C > 0
such that the following holds. Let h ∈ Path3(I,B) and g ∈ Path3(I,B) be two families of
diffeomorphisms such that

‖h‖C3(I×B,B) + ‖h−1‖C3(I×B,B) ≤ R and ‖g‖C3(I×B,B) + ‖g−1‖C3(I×B,B) ≤ R .

Let Ω0 be any reference domain in B. Let v(t) be the solutions of (2.3) corresponding to h with
initial data v(t0) = v0 ∈ H1

0 (Ω0,C) and w be another solution corresponding to g with initial
data w(t0) = w0 ∈ H1

0 (Ω0,C), as given by Theorem 2.3. Then,

‖v(t)− w(t)‖2L2 ≤ ‖v0 − w0‖2L2 + C
(
eC|t−t0| − 1

)
‖h− g‖C2(I×B,B)‖v0‖H1‖w0‖H1 .
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Proof: We use the same arguments leading to the previous propositions. First, we notice that
h and g are smooth enough to be able to argue by density and by assuming that v0 and w0

belong to H2 ∩H1
0 (Ω0,C). Then, since the flow is unitary,

∂t‖v(t)−w(t)‖2L2 = −2Re
(
〈∂tv(t)|w(t)〉L2 + 〈v(t)|∂tw(t)〉L2

)
=− 2Im

〈
h]
[(
∇x + iAh

)2
+ |Ah|2

]
h]v(t)

∣∣∣w(t)
〉
L2

+ 2Im
〈
v(t)

∣∣∣g][(∇x + iAg
)2

+ |Ag|2
]
g]w(t)

〉
L2

=− 2Im
〈
h]
(
∇x + iAh

)
h]v(t)

∣∣∣h](∇x + iAh
)
h]w(t)

〉
L2

+ 2Im
〈
g]
(
∇x + iAg

)
g]v(t)

∣∣∣g](∇x + iAg
)
g]w(t)

〉
L2

− 2Im
〈
h]|Ah|2h]v(t)

∣∣∣w(t)
〉
L2

+ 2Im
〈
v(t)

∣∣∣g]|Ag|2g]w(t)
〉
L2

=− 2Im
〈
h]
(
∇x + iAh

)
h]v(t)

∣∣∣(h](∇x + iAh
)
h] − g]

(
∇x + iAg

)
g]

)
w(t)

〉
L2

− 2Im
〈(
h]
(
∇x + iAh

)
h] − g]

(
∇x + iAg

)
g]

)
v(t)

∣∣∣g](∇x + iAg
)
g]w(t)

〉
L2

(2.8)

+ 2Im
〈(
g]|Ag|2g] − h]|Ah|2h]

)
v(t)

∣∣w(t)
〉
L2 .

We study the objects appearing in (2.8). First, since h]|Ah|2h] = 1
4(∂th)2 and g]|Ag|2h] =

1
4(∂tg)2, we easily bound the last term by∣∣∣〈(g]|Ag|2g] − h]|Ah|2h])v(t)

∣∣w(t)
〉
L2

∣∣∣ ≤ C1(R)‖h− g‖C1(I×B,B)‖v0‖L2‖w0‖L2 .

Secondly, as shown by (2.7),∥∥h](∇x + iAh
)
h]v(t)

∥∥
L2 ≤ C2(R)‖v(t)‖H1 and

∥∥g](∇x + iAg
)
g]w(t)

∥∥
L2 ≤ C2(R)‖w(t)‖H1 .

Then, we write∥∥(h](∇x + iAh
)
h] − g]

(
∇x + iAg

)
g]
)
w(t)

∥∥
L2 =

∥∥(h]∇xh] − g]∇xg])w(t) +
i

2

(
∂th− ∂tg

)
w(t)

∥∥
L2

≤
∥∥(h]∇xh] − g]∇xg])w(t)

∥∥
L2 + ‖h− g‖C1(I×B,B)‖w0‖L2 .

It remains to estimate the terms of the type
∥∥(h]∇xh] − g]∇xg])w(t)

∥∥
L2 . By using (2.5), we

obtain∥∥(h]∇xh] − g]∇xg])w(t)
∥∥
L2

≤
∥∥∥√|Dh|h∗∇xh∗(√|Dh|−1

)
−
√
|Dg|g∗∇xg∗

(√
|Dg|

−1
)∥∥∥

L∞
‖w(t)‖L2

+
∥∥((Dh−1

)t − (Dg−1
)t)∥∥

L∞
‖∇yw(t)

∥∥
L2

≤ C3(R)‖h− g‖C2(I×B,B)‖w(t)‖H1 .

Again, we underline that the constants Ci(R) with i = 1, 2, 3 do not depend on Ω0 or the initial
data. By using the Cauchy-Schwarz inequality in (2.8) and the above estimates, we obtain a
constant C4(R) > 0, only depending on R, such that

∂t‖v(t)− w(t)‖2L2 ≤ C4(R)‖h− g‖C2(I×B,B)‖v(t)‖H1‖w(t)‖H1 .

Finally, we apply Proposition 2.5 to get that there exist C5(R), C6(R) > 0, only depending on
R, such that

∂t‖v(t)− w(t)‖2L2 ≤ C5(R)eC6(R)|t−t0|‖h− g‖C2(I×B,B)‖v0‖H1‖w0‖H1

and it remains to integrate this last estimate in order to ensure the claim. �
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3 Moving domains and the spectrum of the Dirichlet Laplacian

3.1 Generic properties

Micheletti in [25] was one of the first to show that the spectrum of the Laplacian operator is
simple, generically with respect to the geometry of the domain. See also the work of Uhlenbeck
[38] and the very complete book of Henry [21]. They consider fixed domains Ω = h(Ω0), with h
a Ck−diffeomorphism in Diffk(B) as in Definition 2.1. By a generic set of domains, we mean a
generic subset of the Banach manifold Diffk(B). We recall that a subset of a Banach manifold
X is called generic if it contains a countable intersection of dense open subsets of X.

Theorem 3.1 ([25],[38], Chapter 6 of [21]). Let B be a closed ball and let Ω0 be an open
C2−domain, or a polyhedron, with Ω0 ⊂ B̊. For any k ≥ 2, there is a generic set of diffeomor-
phisms h ∈ Diffk(B) such that the Laplacian operator ∆ in h(Ω0) has only simple eigenvalues.

In this paper, we need to follow paths of domains Ω(t) without meeting multiple eigenvalues.
The genericity result above is not sufficient: we need to know that the domains with multiple
eigenvalues belong to a set of codimension at least 2. To study the codimension of this set,
[12] introduces the strong Arnold hypothesis. As noticed in [36], when we only want to obtain a
codimension larger than 2, we may consider a weaker hypothesis: the (SAH2) presented below.
In [36], Teytel shows that for any couple diffeomorphic domains Ω(0) and Ω(1), we can find an
analytic path (Ω(τ))τ∈[0,1] linking them, such that, for all τ ∈ (0, 1), the Laplacian operator on
Ω(τ) has a simple spectrum. In fact, the proof yields a stronger result. Firstly, this path can
be made as close as wanted to a target path. Secondly, it is possible to consider a subfamily of
possible domains as soon as this family satisfies the hypothesis (SAH2) explicitly stated in [36].
Lastly, even if this is not useful for us, notice that [36] states abstract results with many other
applications than the paths of domains.

Theorem 3.2 (Theorem 6.4 of [36]). Let B be a closed ball and let Ω0 be a connected open
C2−domain, or a polyhedron, with Ω0 ⊂ B̊. Let k ≥ 2 and let h ∈ Pathk([0, 1],B) representing a
path of domains Ω(τ) = h(τ,Ω0). Then, for all ε > 0, there exists a close path g ∈ Pathk([0, 1],B)
such that the spectrum of the Dirichlet Laplacian operator −∆ in Ω̃(τ) = g(τ,Ω0) is simple for
all τ ∈ (0, 1) and

g(0) = h(0), g(1) = h(1), ‖g − h‖Ck([0,1]×B,B) < ε.

There are few differences with the original statement of Teytel, that are discussed in the proof
below. We also would like to restrict the possible domains to stay, for example, in the class of
polygonal domains. To this end, we restrict the possible diffeomorphisms to a submanifold H of
Diffk(B). At each h ∈ H, the tangent space ThH is a subspace of Ck(B,Rd). In this framework,
the hypothesis (SAH2) is as follows (see Sections 1 and 6 of [36]).

(SAH2) Let h ∈ H ⊂ Diffk(B) and N ∈ N. We say that (SAH2) is satisfied at h along the
submanifold H for the N first eigenvalues when the following property is verified. If the
Dirichlet Laplacian operator −∆ in Ω = h(Ω0) has a multiple eigenvalue λ among its first
N eigenvalues, then there are two orthogonal eigenfunctions ϕ1 and ϕ2 corresponding to
the eigenvalue λ such that the three linear functionals

g ∈ ThH 7−→
∫
∂Ω

∂ϕi
∂ν

∂ϕj
∂ν

〈
(h∗g)(σ)|ν(σ)

〉
dσ with (i, j) = (1, 1), (2, 2) or (1, 2)

are linearly independent, where ν(σ) denotes the normal vector to ∂Ω at σ.

We can state a modified version of the result of Teytel.
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Theorem 3.3. Let k ≥ 2, N ∈ N and let h ∈ Pathk([0, 1],B) representing a path of domains
Ω(τ) = h(τ,Ω0). Assume that, for all τ ∈ [0, 1], h(τ) belongs to the subclass H ⊂ Diffk(B) and
that Hypothesis (SAH2) holds at h(τ) along H for the N first eigenvalues. Then, for all ε > 0,
there exists a path g ∈ Pathk([0, 1],B) such that, for all τ ∈ (0, 1), there holds g(τ) ∈ H, the N
first eigenvalues of the Dirichlet Laplacian operator −∆ in Ω̃(τ) = g(τ,Ω0) are simple and

g(0) = h(0), g(1) = h(1), ‖g − h‖Ck([0,1]×B,B) < ε.

Proof: All the arguments for proving both previous results are contained in [36], but since
the statements are different from the one of Teytel, we emphasize here some key points. First,
Theorem 6.4 of [36] considers two domains Ω(0) and Ω(1) homotopic to the ball. This hypothesis
is assumed to ensure that there exists at least a path connecting both domains. In our case,
the existence of such a path is part of the hypotheses so we can be more general concerning the
topology of these domains (this was already noticed in the erratum of [33]). Second, Theorem
6.4 of [36] does not consider a subclass H of domains and directly proves that (SAH2) is satisfied
with respecto to the whole class of diffeomorphic domains. However, Assumption (SAH2) and
the main result Theorem B of [36] are stated in a very general way including the possibility of few
degrees of freedom. In Section 6 of [36], Teytel considers the case of domain perturbations and
computes (SAH2) as stated above. He also checks that it is satisfied when H is the whole class of
deformations of the domain as in Theorem 3.2. Notice that (SAH2) is obviously not satisfied for
ϕ1 and ϕ2 supported in different part of the domain and this is why the connectedness requested
in Theorem 3.2 above is mandatory.

We would also like to underline that the arguments of [36] are local ones and that is why
we can state Theorems 3.2 and 3.3 in a perturbative form. If (SAH2) is satisfied at some point
h ∈ H, then it yields local informations in a neighborhood of h as it is classical when applying the
transversality theorems, see for example 3.2 of [36]. Since in Theorem 3.3 we aim at staying close
to a compact path τ ∈ [0, 1] 7→ h(τ) and since we only consider a finite number of eigenvalues,
it is sufficient to check (SAH2) at each point h(τ) and to apply the arguments in a tubular
neighborhood of the original path.

It remains to emphasize that the path constructed in the proof of Theorem B of [36] is
actually constructed as the perturbation of a first path. The original path of Teytel is piecewise
linear and its difficult to control the derivatives of the constructed perturbation. To be complete,
let us show how to adapt the local argument of Teytel to our purpose. Let h(t) be a given path.
We perturb it locally close to a time t0. There exist a small τ > 0, a tubular neighborhood
T ∈ Diffk(B) of {h(t), t0 − τ < t < t0 + τ} and a smooth function γ ∈ C∞([t0 − τ, t0 + τ ]), with
γ and all its derivative vanishing at t0± τ , such that the following holds. There is a hyperspace
D ∈ Diffk(B), complementary to span(∂th(t0)), such that any function g in T is uniquely rep-
resented by coordinates (t, δ) ∈ (t0 − τ, t0 + τ) × D via g(y) = h(t, y) + γ(t)δ(y). The function
g ∈ T 7→ δ ∈ D is a ”nonlinear projection”, that is a Fredholm map of index 1. Due to (SAH2),
the set of diffeomorphisms in Diffk(B) such that the Dirichlet Laplacian operator has multiple
eigenvalues is of codimension at least 2. Thus, its projection by g ∈ T 7→ δ ∈ D has a meager
image. Thus, there exists δ as small as wanted such that, for all t ∈ (t0 − τ, t0 + τ), the path
t 7→ h(t) + γ(t)δ avoids the diffeomorphisms providing multiple eigenvalues. We can repeat this
local perturbation a finite number of times. It is sufficient to cover the whole time interval [0, 1]
because the length τ is uniform with respect to the second time derivative of h, which is bounded
by assumption. �

We will also need domains without rational resonances in the spectrum. Actually, it is a
generic property, as it can be proved by the techniques of Henry in [21]. It is stated as a
consequence of a much general result in [33].
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Theorem 3.4 (Corollary 8 of [33]). Let B be a closed ball and Ω0 a Lipschitz domain with
Ω0 ⊂ B̊. For any k ≥ 2, there is a generic set of diffeomorphisms h ∈ Diffk(B) such that
the Laplacian operator −∆ in h(Ω0) has only simple eigenvalues (λj) ⊂ R that are rationally
independent.

3.2 Singular convergence

In this section, we consider the case of singular convergence of domains. For all η ∈ [0, 1],
let Ωη ⊂ Rd be bounded domains with Lipschitz boundaries. Let (ληj )j∈N∗ be the eigenvalues
of the corresponding Dirichlet Laplacian operators in Ωη, ordered and counted by multiplicity.
For λ 6∈ {ληj}, we denote by Rη(λ) ∈ L(L∞(Rd)) the corresponding resolvent operator defined

as follows. Any function f ∈ L∞(Rd) is first truncated inside Ωη, then we apply the classical
resolvent (λ − ∆)−1 to obtain a function in L∞(Ωη), which is extended by zero to go back to
L∞(R)d afterwards. This extension enables to compare resolvent in a space independent of η
and it is sufficient to obtain the convergence of the spectrum.

Arendt and Daners show in [1] and [15] the following result.

Theorem 3.5 (Theorem 5.10 and Section 7 of [1] and Theorem 7.5 of [15]). Assume
that for all compact K ⊂ Ω0, there is η0 > 0 such that for all η ∈ (0, η0), K ⊂ Ωη. Assume the
same for the exteriors: for all compact K ⊂ Rd \Ω0, there is η0 > 0 such that for all η ∈ (0, η0),
K ⊂ Rd \ Ωη.

Then, the spectrum of the Dirichlet Laplacian operators converges when η goes to zero in the
following sense:

(i) for all j ≥ 1, ληj −→ λ0
j when η −→ 0.

(ii) For all λ 6∈ {λ0
j}, Rη(λ) is well defined for η small enough and Rη(λ) converges to R0(λ)

in L(L∞(Rd)). In particular, the spectral projectors of the Dirichlet Laplacian operators
converge when η goes to zero. If λ0

j is a simple eigenvalue with an eigenfunction ϕ0
j , then

there exist eigenfunctions ϕηj such that ϕηj −→ ϕ0
j in H1

0 (Rd) when η −→ 0.

For further details, we refer to Theorem 5.10 and Section 7 of [1], and Theorem 7.5 of [15]
(see also [2]). We notice that the domains considered in this paper are “strongly regular” in the
sense of [1] because they have Lipschitz boundaries. We intend to use Theorem 3.5 in the case
of dumbbell shaped domains, which is a very classical example.

4 Proof of Theorem 1.1

4.1 Preliminaries

A first important remark is that, since the flow is unitary, the smallness of the errors in L2(Ω(t))
is preserved by the flow for all t′ > t. Thus, we may simply count the accumulated errors at
each time that an approximation is made, without wondering what happens to the neglected
term in the future.

Let Ω0 ⊂ Rd be the reference domain of Theorem 1.1 and B a large ball containing it. Let
u0 and u1 respectively be the starting and aimed states in L2(Ω0). Let ε > 0 be the accepted
error. Using the generic simplicity stated in Theorem 3.1, we can find a homotopic domain Ω′0 in
which the associated Dirichlet Laplacian operator has a simple spectrum with a Hilbert basis of
eigenfunctions (ϕj)j≥1. Let h ∈ Pathk([0, 1],B) be such that h(0,Ω0) = Ω0 and h(1,Ω0) = Ω′0.

We notice that if u(t) is solution of the Schrödinger equation (1.1) in Ω(t) = h(t,Ω0) with
ui = u(t = 0) and uf = u(t = 1), then v(t) = u(1− t) is solution of the same equation (1.1) in
Ω(1−t) with initial data v(t = 0) = uf and endpoint v(t = 1) = ui. This time reversibility of the
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Schrödinger equation allows to define the solutions of (1.1) when we “reverse” the deformation of
the domain. Notice that the roles of the initial and final states are swapped, up to conjugation.

Let u0(t) be the solution of (1.1) in Ω(t) = h(t,Ω0) with initial data u(t = 0) = u0 and
set u′0 = u0(t = 1). Let v(t) be another solution of the Schrödinger equation (1.1) in Ω(t) with
initial data v(t = 0) = u1 and set v′ = v(t = 1). Thanks to the time reversibility of the equation,
u1(t) := v(1− t) is the solution of (1.1) in Ω(1− t) steering u′1 := v′ in u1.

There exist N ∈ N and some coefficients (cj)j=1...N and (dj)j=1...N such that

N∑
j=1

|cj |2 =

N∑
j=1

|dj |2 ,
∥∥∥u′0 − N∑

j=1

cjϕj

∥∥∥
L2(Ω′0)

≤ ε

4
and

∥∥∥u′1 − N∑
j=1

djϕj

∥∥∥
L2(Ω′0)

≤ ε

4
,

where we use ‖u′0‖ = ‖u′1‖ because the flow given by Theorem 2.3 is unitary and ‖u0‖ = ‖u1‖
by assumption. Assume that the following claim holds.

Claim 4.1. Let N ∈ N and ε > 0 be given and let A =
(∑N

j=1 |bj |2
)1/2

. Then there exist T > 0

and a path h′(t) ∈ Pathk([0, T ],B) such that the following holds. The motion is a loop in the
sense that h′(0) = h′(T ) = id. Moreover, if u′(t) is the solution of the Schrödinger equation
(1.1) in Ω′(t) = h′(t,Ω′0) with initial data u′(0) = Aϕ1, then

∥∥∥u′(T )−
N∑
j=1

bjϕj

∥∥∥
L2(Ω′0)

≤ ε

4
.

Denote by h′0 and h′1 the deformations driving Aϕ1 to
∑N

j=1 cjϕj and
∑N

j=1 djϕj respectively,
up to an error ε/4. We concatenate h(t), h′0(T − t) ◦ h(1), h′1(t) ◦ h(1) and h(1 − t) to obtain,
thanks to the time reversibility, a motion of the domains steering approximately u0 in u1. Indeed,
this deformation drives u0 successively to u′0 which is close to

∑N
j=1 cjϕj (up to an error ε/4),

then to Aϕ = Aϕ1 (up to an error ε/2), then to
∑N

j=1 djϕj (up to an error 3ε/4) which is close
to u′1 (up to an error ε), and finally to u1 (up to an error ε).

To summarize, these preliminaries reduce the whole proof of Theorem 1.1 to the above claim
(which is a particular case of Theorem 1.1). Proving Claim 4.1 is the purpose of the remaining
part of this section.

4.2 Sketch of the global strategy

One of the main ideas of our strategy was introduced in [37]. Assume that the spectrum of our
operator splits into two separated parts that belong to two separated subspaces of the phase
space: domain with two disconnected parts, separation between even and odd eigenfunctions,
between states not depending on x1 and states not depending on x2. . . Then, when we make
adiabatic motions, the distribution of energy follows the curves of eigenvalues, even when eigen-
values of one part cross eigenvalues of the other part, due to their independence. Following this
idea, we can shuffle the energy carried by the eigenfunctions and drive a state

∑N
j=1 bjϕj to

another state
∑N

j=1 bσ(j)ϕj where σ is a permutation of the indices.
In [19], we studied the simple situation of the Schrödinger equation on [0, 1] with a potential

V (x). When V (x) is a very high and localized wall, the segment is almost split into two parts,
but not perfectly. We showed that the idea of [37] can still be used, up to carefully avoiding the
tunneling effect when both part of the segment have a resonance. Moreover, a new observation
was made in comparison with [37]: we showed that one, in fact, can use this tunneling effect to
distribute the energy between two eigenmodes when they (almost) cross.

We use here the same strategy. We intend to create a situation where the spectrum of the
Dirichlet Laplacian operator on the domains Ω(t) behaves in Figure 2. We separate the spectrum
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between two parts, the left and right ones. The right eigenvalues λRj are almost constant. The

lowest left eigenvalue λL1 corresponds to the ground state Aϕ1 at t = 0 which is our starting
state. Then, we deform the domain to increase the eigenvalue λL0 , see Figure 2. If we do this in
a adiabatic way, the distribution of energy is not modified (see Lemma 4.4 below). But when λL1
meets λR1 , a tunneling effect appears and, by tuning the speed with which the domain boundary
moves, we are able to distribute the energy between the levels λL1 and λR1 , following the method
of [19]. This is the key argument of the proof of Theorem 1.1 which is ensured in Lemma 4.2
below. We continue to increase the left part of the spectrum until λL1 has crossed all the desired
levels λRj to distribute the energy as in our aimed state

u1 =
N∑
j=1

ajϕj .

crossings where we can distribute
the energy between two levels

t
λL1

λL2

λL3

λR1

λR2

λR3

λR4

Figure 2: The “ideal” behavior of the spectrum during our control process. The eigenvalues are
split between two groups λLj and λRj . We deform the domain to ensure that the eigenvalue λL1
cross a suitable number of eigenvalues λRj of the other group. At each crossing point, an accurate

use of the tunneling effect enables to distribute the desired part of the energy carried by λL1 to λRj .
The actual deformation of the domain used in our proof mimics this “ideal” situation, except
that the crossing of the eigenvalues will be broken into an “almost crossing”, which still yields a
tunneling effect.

Indeed, in our proof, we will not be able to reproduce the “ideal” situation of Figure 2. To
perform the strategy above, we approximate Figure 2 via the classical dumbbell shaped domains.
Other frameworks are possible (see Section 5 for example), but the dumbbell shaped domains
yield a simple and general proof. By assumption, our initial reference domain Ω0 provides a
simple spectrum. This domain, denoted by ΩR, corresponds to the right part of the spectrum
(λRj )j∈N∗ . From a smooth part of the boundary, we grow an attached ball ΩL linked with a thin
channel ωη, see Figure 1. The spectrum of the Dirichlet Laplacian −∆ on this ball is denoted
(λLj )j∈N∗ . The interest of this dumbbell shaped domain is that, if the channel is very thin, then

the spectrum of the whole domain can be approximated by (λLj )j∈N∗ ∪ (λRj )j∈N∗ . During this

deformation, if we move adiabatically as in Proposition 2.4 and if ΩL is sufficiently large, then
the ground state of the initial domain is mainly supported by the ball ΩL, because λL1 is the
lowest eigenvalue.

Afterwards, we reduce the size of the ball ΩL in order to obtain the behavior of the spectrum
as described above (Figure 2). We use the tunneling effect when the ground energy level λL1
of the left ball is equal to an eigenvalue λRk of the right domain. In these resonant moments,
it is then possible to distribute a part of the energy contained in the left ball to k−th energy
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level of the right part. Notice that, for the actual eigenvalues of the Laplacian operator in
the dumbbell domain with the thin channel, the crossing of the “ideal” eigenvalues λL1 and λRk
becomes an “almost crossing” because the exact crossing is not a generic situation (see Section
3.1). However, they will be close enough to observe a tunneling effect.

4.3 The basic step: distribution of energy during the (almost) crossing of
eigenvalues

The purpose of this section is to rigorously obtain the key step of the strategy described in
Section 4.2: the distribution of the energy via the tunneling effect. We make precise in the
following lemma the situation of Figure 1 and analyze the evolution of the state during the
deformation. In what follows, Ω0 denotes the starting domain of Theorem 1.1 and B is a large
ball containing it.

Lemma 4.2. Let cj ∈ R, j = 1, . . . ,K be given, let α ∈ [0, 1] and let δ > 0. There exist a time
interval I = [t0, t1] and a family of diffeomorphisms h(t) ∈ Path3(I,B) such that the following
holds.

The spectrum of the Dirichlet Laplacian operator is simple on Ω(t0) = h(t0,Ω0) and Ω(t1) =
h(t1,Ω0) respectively. Denote by (ϕj)j∈N∗ and (ψj)j∈N∗ two respective Hilbert bases of eigen-
functions in these domains. Let u(t) be the solution of the Schrödinger equation on the moving
domain Ω(t) = h(t,Ω0) with initial data u(t0) =

∑K
j=1 cjϕj. Then at time t1, there exist phase

shifts θj ∈ R such that∥∥∥∥∥∥u(t1)−

αeiθKcKψK +
√

1− α2eiθK+1cKψK+1 +

K−1∑
j=1

eiθjcjψj

∥∥∥∥∥∥
L2(Ω(t1))

≤ δ .

Proof: We set δ′ = δ/
(
4(K + 1)(max |cj |)

)
. Consider first a domain Ω0

0 = ΩR ∪ ΩL split
into two parts. The right side is a smooth domain ΩR diffeomorphic to the starting domain of
Theorem 1.1 (possibly with holes and corners). Up to use Theorem 3.1, we can assume that
the spectrum of the Dirichlet Laplacian operator on ΩR is simple and we denote by (λRj )j∈N∗ its

ordered eigenvalues and by (ϕRj )j∈N∗ a corresponding Hilbert basis of eigenfunctions. The left

side ΩL is a simple domain, typically a ball. Its size is chosen such that the first eigenvalue λL1
of the Dirichlet Laplacian operator is precisely equal to λRK , with a corresponding eigenfunction
ϕL1 . Choose a large ball B containing both parts of the domain. We consider a family of
diffeomorphisms h(t) ∈ Path3([−τ, τ ],B) for some small τ > 0 such that: h(t = 0) = id, the
right part is never modified, i.e. h(t)|ΩR = id for all t ∈ [−τ, τ ], and the left part is simply

homothetically transformed by h(t)|ΩL = (1 − t)id for all t ∈ [−τ, τ ]. We set Ω0(t) = h(t,Ω0
0).

For small τ > 0, this construction yields the following properties for the spectrum of the Dirichlet
Laplacian operator in Ω0(t):

(i) For all t, its first K − 1 eigenvalues are λRj with j = 1, . . . ,K − 1, with eigenfunctions ϕRj .

(ii) For t < 0, the K−th eigenvalue of Ω0(t) is (1− t)−2λL1 with eigenfunction h](t)ϕ
L
1 and the

(K+ 1)−th eigenvalue is λRK with eigenfunction ϕRK . For t > 0, the situation is symmetric
with λRK < (1− t)−2λL1 .

(iii) At t = 0, the K−th eigenvalue is the double one created by the crossing of the spectral
curves above.

To complete this non-connected domain Ω0
0, we add a small channel ωη connecting smoothly

its left and right parts. The parameter η belongs to (0, 1] and describes the thickness of the
channel. We set Ωη

0 = Ω0
0 ∪ ωη and we assume that it is diffeomorphic to the reference domain

16



of Theorem 1.1 (the connection with ωη is smooth, but it does not remove the possible corners
and holes of the starting domain). When η goes to zero, the domain Ωη

0 converges to Ω0
0 in a

singular way, as it is classical for the dumbbell shaped domains. More precisely, we need that
the spectrum of the Dirichlet Laplacian operator in Ωη

0 converges to the corresponding one in
Ω0

0 in the sense of [1, 15], see also references therein. It is sufficient to satisfy the hypotheses
of Theorem 3.5 and it is the case for any natural choice of shape for the thin channels ωη. We
refer to Figure 1 to convince the reader that all the required properties can be satisfied by Ωη

0.

Now, we consider the evolution of a solution of the Schrödinger equation when we move the
domain from −τ to τ . We denote by Ωη(t) the domains h(t,Ωη

0) for t ∈ (−τ, τ) and η ∈ [0, 1].
For η > 0, these are dumbbell shaped domains. The variation of t changes the size of the
left part and also slightly deforms the connecting channel. When η goes to 0, the connecting
channel disappears. By abuse of notations, we still denote by ϕRj the extensions by zero of the

eigenfunctions of the right part to the whole domain Ωη(t). We set ϕL(t) = h](t)ϕ
L
1 where we

use the same notation again, for the eigenfunction of the left part and its extension. Notice
that these extensions by zero still belong to H1

0 (Ωη(t)). Moreover, since we consider only a
finite number of energy levels, their H1

0−norms, related to the corresponding eigenvalues, are
bounded by a constant M , independent of t ∈ (−τ, τ) or η ∈ (0, 1]. We apply Proposition 2.7
with R = 2(‖h‖C3 +‖h−1‖C3) and T = τ , and we fix τ > 0 small enough such that 2C

√
τM ≤ δ′.

Since the estimation of Proposition 2.7 is independent of the domain and thus of η, it ensures
the following property.

(iv) For all η ∈ (0, 1], if u(t) is the solution of the Schrödinger equation in the moving domain
Ωη(t) with initial data u(−τ) = ϕRj with j ≤ K or u(−τ) = ϕL(−τ), then, for all
t ∈ [−τ, τ ], we have

‖u(t)− u(−τ)‖L2 ≤ δ′.

In addition, this property is also true when the motion h(t) is slightly modified or when τ
is smaller.

Since ϕL(t) is a homothetic transformation of ϕL1 , up to choose τ even smaller, we can also
assume that

‖ϕL(t)− ϕL(−τ)‖L2 ≤ δ′, ∀t ∈ [−τ, τ ].

The properties (i)-(iii) hold for the split domain Ω0(t). We now choose η > 0 small enough to
approximate these properties by the corresponding ones for the domain Ωη(t). More precisely,
for all j < K, the j−th eigenvalue of the Dirichlet Laplacian operator on Ω0(0) is simple, see
property (i). By the convergence of the spectrum recalled in Theorem 3.5, we can choose η0 > 0
and τ > 0 small enough such that for all t ∈ (−τ, τ) and η ∈ [0, η0], the j−th eigenvalue of the
Dirichlet Laplacian operator on Ωη(t) is also simple. In addition, we can choose a smooth curve
ϕj(t) of corresponding eigenfunctions such that

(v) For all j ≤ (K − 1) and t ∈ [−τ, τ ], the eigenfunction ϕj(t) satisfies the following identity

‖ϕj(t)− ϕRj ‖L2 ≤ δ′.

We now fix τ > 0 small enough such that (iv) and (v) hold, and we restrict the deformations
of the domains h(t) to this time interval. Due to property (ii) above, by choosing η smaller
if necessary, we can also assume that the K and K + 1 eigenvalues of the Dirichlet Laplacian
operator on Ωη(t) are also simple at t = ±τ and that the corresponding eigenfunctions are close
to ϕRK and ϕL(±τ). Of course, due to the crossing stated in (iii), we cannot hope to have the
convergence for all t between −τ and τ . However, we can also assume that the two-dimensional
spectral projector corresponding to the K−th and (K+ 1)−th eigenvalues together are close up
to an error δ′. To simplify the notation, as a final adjustment, we allow a small perturbation
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of h(t) given by Theorem 3.2 such that the K−th and (K + 1)−th eigenvalues of the Laplacian
operator on Ωη(t) are simple for all t ∈ (−τ, τ). We let the reader check that we were careful to
make all the arguments above uniform in a small neighborhood of h. Due to this simplicity, we
can choose smooth curves of eigenfunctions ϕK(t) and ϕK+1(t) corresponding to the K−th and
(K + 1)−th eigenvalues of the Laplacian operator on Ωη(t) such that the following relations are
verified.

(vi) At t = −τ , we have ‖ϕK(−τ)− ϕL(−τ)‖L2 ≤ δ′ and ‖ϕK+1(−τ)− ϕRK‖L2 ≤ δ′.
(vii) At t = τ , we have ‖ϕK(τ)− ϕRK‖L2 ≤ δ′ and ‖ϕK+1(τ)− ϕL(τ)‖L2 ≤ δ′.
Notice that ϕL(−τ) belongs to the limit eigenspace span(ϕL(t), ϕRK) for all t ∈ [−τ, τ ], up to
a small error δ′, see the remark below (iv). Applying the convergence of the two-dimensional
spectral projector corresponding to the K−th and (K + 1)−th eigenvalues (see Theorem 3.5),
we can also ensure the following property up to take a thinner channel ωη.

(viii) For all t ∈ [−τ, τ ], it is satisfied |〈ϕL(−τ)|ϕK(t)〉|2 + |〈ϕL(−τ)|ϕK+1(t)〉|2 = 1± 2δ′ where
we use the notation ±α to denote an error term of size at most α.

Now, the global setting is finally defined. It remains to check that it fulfills Lemma 4.2.
To recover the notations of its statement, we set t0 := −τ , Ω(t0) = Ωη(t0), with η as small as
required above, and ϕj := ϕj(−τ) for j ≤ K + 1. Let uj(t) be the solution of the Schrödinger
equation with the chosen moving domains and with the initial data uj(t0) = ϕj . By linearity,
we have u(t) =

∑
cjuj(t). For all j < K, by (iv) and (v), we get

∀t ∈ [−τ, τ ] , ‖uj(t)−ϕj(t)‖L2 ≤ ‖uj(t)−ϕj(−τ)‖L2 +‖ϕj(−τ)−ϕRj ‖L2 +‖ϕRj −ϕj(t)‖L2 ≤ 3δ′ .

Since, by (vi) and (vii), 〈ϕK(−τ)|ϕL(−τ)〉 = 1 ± δ′ and 〈ϕK(τ)|ϕL(−τ)〉 = 0 ± δ′, there is an
intermediate time t ∈ [−τ, τ ] such that |〈ϕK(t)|ϕL(−τ)〉| = α ± δ′. Due to (viii), we also have
|〈ϕK+1(t)|ϕL(−τ)〉| =

√
1− α2 ± 3δ′. Using (iv), we obtain

|〈ϕK(t)|uK(t)〉| = |〈ϕK(t)|ϕL(−τ)〉| ± δ′ = α± 2δ′

and in the same way

|〈ϕK+1(t)|uK(t)〉| =
√

1− α2 ± 4δ′ .

Thus, at this precise time t, we can choose θK and θK+1 in R such that

∥∥∥u(t)−
(
αeiθKcKϕK(t)+

√
1− α2eiθK+1cKϕK+1(t)+

K−1∑
j=1

cjϕj(t)
)∥∥∥
L2
≤ 4(K+1)(max |cj |)δ′ = δ.

Set t1 := t and Ω(t1) := Ωη(t). It simply remains to notice that, due to the simplicity of the
spectrum, the eigenfunctions ψj correspond to ϕj(t) up to a phase shift θj . �

Remark: The strategy behind Lemma 4.2 is robust and can be performed in different ways.
For example, we may consider other type of domains than the dumbbell shaped one. We can
also allow crossings of ληK(t) and ληK+1(t) since the arguments should still hold once we are
able to define continuous branches of eigenfunctions ϕK(t) and ϕK+1(t) satisfying the exchange
stated in (vi) and (vii). As a different strategy, we can replace, in some situations, the brief
deformation in the small interval (−τ, τ) by a slow and long adiabatic deformation or use conical
intersections as in [8]. We refer to Section 5.5 for further discussions.
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4.4 Adjusting the phases

The arguments above allow us to distribute the energy between the different eigenmodes. How-
ever, to drive the solution close to a given state, we also need to produce the correct phases.
This is a classical issue with a classical simple solution.

Lemma 4.3. Let Ω0 ⊂ B be a domain in which the Dirichlet Laplacian operator has a simple
spectrum (λj)j∈N∗ with a corresponding Hilbert basis of eigenfunctions (ϕj)j∈N∗. Let N ≥ 1

and let u0 =
∑N

j=1 cjϕj with cj ∈ C. For any real phases (θj)j=1...N and δ > 0, there exists a

time T and a motion of domains h ∈ Path3([0, T ],B) such that the following holds. We have
h(0) = h(T ) = id and if u(t) is the solution of the Schrödinger equation in the moving domains
Ω(t) = h(t,Ω0), then ∥∥∥u(T )−

N∑
j=1

cje
iθjϕj

∥∥∥
L2
≤ δ .

Proof: Due to the generic rational independence stated in Theorem 3.4, we can find a domain
Ω1 diffeomorphic to Ω0 with a corresponding Laplacian operator having rationally independent
eigenvalues. Denote by (µj)j∈N∗ this spectrum and by (ψj)j∈N∗ the corresponding eigenfunc-
tions. We consider a deformation of the domain going from Ω0 to Ω1, staying equal to Ω1 for a
short time and then going back to Ω0. We would like that the corresponding solution u(t) has
the same distribution of energy on the eigenmodes at the beginning and at the end up to a small
error. This is possible, either by choosing Ω1 very close to Ω0 and using the continuity stated in
Proposition 2.7, or by traveling from both domains very slowly and using the adiabatic result
stated in Lemma 4.4 below. Once we know how this back-and-forth motion modifies the phases,
we can stop the dynamics at Ω1 for longer time. Here, the solution evolves as

∑N
j=1 cje

i(µjt+αj)ψj .

Due to the rational independence of the µj ’s, the trajectory t 7→ (µjt+αj)j=1...N ∈ TN is dense
in the torus and we can find a time such that u(t) has the suitable phases, up to a small error.
Going back to Ω0 changes these phases but in a way that has been anticipated. �

4.5 Proof of Claim 4.1

In this Section, we complete the proof of Theorem 1.1 by combining the arguments above in
order to prove Claim 4.1. It could be useful to keep in mind the insight provided by Section 4.2,
Figure 2, and Figure 1.

Fix an error δ > 0 equal to ε/(2N). Using Lemma 4.3, we know that the problem of the
phases can be repaired at the end, up to an error δ. To simplify the notations, from now on, a
state will be represented by its distribution of energy when it will be defined on a domain Ω where
the spectrum of the associated Laplacian operator is simple. In other words, (a1, a2, . . . , aN )
stands for a state

∑N
j=1 e

iθjajϕj where ϕj is a Hilbert basis of eigenfunctions of L2(Ω) and θj ∈ R.

Following this convention, we start with the state (A, 0, 0, . . .) in the domain Ω′0 ⊂ B ⊂ Rd. We
denote by aj = |bj | the coefficients of the aimed distribution of energy when the phases are
neglected.

By Lemma 4.2, there exists a deformation between two domains Ω1 and Ω2 that drives the
state (A, 0, . . .) to (a1,

√
A2 − a2

1, 0, . . .) up to an error δ > 0. To go from our first domain Ω′0
to Ω1 without changing the distribution of energy, we use an adiabatic motion as given by the
following result.

Lemma 4.4. Let Ω0 and Ω1 ⊂ B be two homotopic domains in which the spectrum of the
Dirichlet Laplacian operator is simple. Denote by (ϕj)j∈N∗ and (ψj)j∈N∗ two respective Hilbert
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basis of eigenfunctions in these domains. Let u0 =
∑N

j=1 cjϕj be given. For all δ > 0, there

exist T > 0 and a deformation of domains h ∈ Path3([0, T ],B) such that h(0,Ω0) = Ω0 and
h(T,Ω0) = Ω1. Moreover, if u(t) is the solution of the Schrödinger equation in Ω(t) = h(t,Ω0)
with initial data u(0) = u0 ∈ L2(Ω0), then there exist θj ∈ R such that

∥∥∥u(T )−
N∑
j=1

cje
iθjψj

∥∥∥
L2(Ω1)

≤ δ .

Proof: It is sufficient to combine the existence of a path avoiding multiples eigenvalues as given
by Theorem 3.2 and an adiabatic dynamics as given by Proposition 2.4. �

First, we use Lemma 4.4 to go from (A, 0, 0, . . .) in Ω′0 to (A, 0, 0, . . .) in Ω1 up to an error
δ. Second, we use Lemma 4.2 to arrive in Ω2 with the state (a1,

√
A2 − a2

1, 0, . . .) up to an
error 2δ > 0. Third, Lemma 4.2 provides a deformation between two new domains Ω3 and
Ω4 driving the state (a1,

√
A2 − a2

1, 0, . . .) to the state (a1, a2,
√
A2 − a2

1 − a2
2) up to an error

δ > 0. Hence, starting with our state (a1,
√
A2 − a2

1, 0, . . .) in Ω2 (up to an error 2δ), we use
Lemma 4.4 to drive the state to (a1,

√
A2 − a2

1, 0, . . .) in Ω3 (up to an error 3δ). Then, we use
the foreseen application of Lemma 4.2 to obtain the state (a1, a2,

√
A2 − a2

1 − a2
2) in Ω4 up to

an error 4δ > 0. . .
We use this argument iteratively: Lemma 4.2 constructs the distribution of the energy level

by level and Lemma 4.4 enables to travel between the different domains required by Lemma
4.2. After (N − 1) repetitions of this strategy, we obtain the distribution of energy (a1, . . . , aN )
in a domain Ω2N−2 up to an error (2N − 2)δ. Then, we use an adiabatic motion of Lemma
4.4 in order to go back to the initial domain Ω′0 with a distribution (a1, . . . , aN ) up to an error
(2N − 1)δ. Finally, it remains to use Lemma 4.3 to adjust the phases and to obtain the precise
state

∑N
j=1 bjϕj up to an error 2Nδ = ε.

5 Study of a particular example: rectangular and quasi-rectan-
gular domains

In this section, we explore the case of rectangles in R2 with moving boundaries. In this particular
framework, several arguments of our strategy can be made more explicit. To follow a motion
where the spectrum of the Laplacian operator stay simple, as in Section 3.1, we need to leave the
family of rectangular domains. However, the rectangular shape makes Hypothesis (SAH2) easy
to check and we can find explicitly the perturbations enabling to break the double eigenvalues.

In this section, we even design a control by a deformation different from the dumbbell shape
adopted in the proof of Theorem 1.1. It shows how our general arguments are robust and may
be applied for various control strategies. We consider the two-dimensional framework, but the
results of this section can be easily extended to the multi-dimensional case.

5.1 Rectangular domains: the basic motion

We act on the quantum state by moving the sizes of a family of rectangles

Ω(t) =
(
0, f1(t)

)
×
(
0, f2(t)

)
. (5.1)

where fi ∈ C2([0, T ],R+) with j = 1, 2. If we need to transport (1.1) from Ω(t) to a fixed domain,
the simplest way is as follows. Consider the square Ω0 = (0, 1) × (0, 1) ⊂ R2 as the reference
domain. We set h(t) : y = (y1, y2) ∈ Ω0 7−→

(
f1(t) y1, f2(t) y2

)
∈ Ω(t) which defines a family

of diffeomorphisms h(t) such that Ω(t) = h(t,Ω0). As presented in [18, Section 5.2], instead of
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directly using the transformations of Section 2, it is simpler to perform a gauge transformation.

We set ψ(t, x) = 1
4

(
f ′1(t)
f1(t) x

2
1 +

f ′2(t)
f2(t) x

2
2

)
. Then u solves (1.1) if and only if w = h]e−iψu satisfies

the equation

i∂tw = − 1

f1(t)2
∂2
y1y1w −

1

f2(t)2
∂2
y2y2w +

1

4

(
f ′′1 (t)f1(t)y2

1 + f ′′2 (t)f2(t)y2
2

)
w. (5.2)

One of the useful features of rectangular domains is the fact that the spectrum is completely
known and the eigenmodes are decoupled. More precisely, we set

φk1,k2(t) = ϕ1
k1(t, x1)ϕ2

k2(t, x2) with ϕjk(t, ·) =

√
2

fj(t)
sin
( kπ

fj(t)
·
)
. (5.3)

The eigenmode φk1,k2 corresponds to the eigenvalue λk1,k2 =
π2k21
f21

+
π2k22
f22

. Notice that these

eigenvalues may intersect, but always in a smooth way in the sense that the spectral projection
on φk1,k2(t) depends smoothly of t. In this case, it is expected that adiabatic theory applies as
in the case of a simple spectrum considered in Proposition 2.4.

Proposition 5.1 (Adiabatic motion of rectangles).
Let Ω(τ) be a family of rectangles defined as above with f1, f2 ∈ C2([0, 1],Ω0). For every family
of eigenmodes φk1,k2(τ), kj ∈ N∗ and every u0 ∈ L2(Ω(0)), we have∣∣〈uε(1/ε)|φk1,k2(1/ε)〉

∣∣ =
∣∣〈u0|φk1,k2(0)〉

∣∣+Oε→0(ε) ,

where uε(t) is the solution of (2.4) with initial state u0.

In particular, an adiabatic deformation of the rectangle drives φk1,k2(0) close to the mode
φk1,k2(1). The ordering of the sequence of eigenvalues λk1,k2 depends on the lengths fj(τ), and
the rank of φk1,k2(1) might not be the same as the one of φk1,k2(0). In other words, the adiabatic
deformation of the rectangle allows for passing through the eigenvalue crossings that appear
during the deformation of the rectangle and for performing the permutations of eigenmodes.

Proof of Proposition 5.1: We did not find any accurate reference for a version of the adiabatic
theorem with crossing of eigenvalues, which directly applies in the general situation of a moving
domain Ω(τ) (the corresponding Hamiltonian depends on the time in a not so classical way).
However, the proof in the case of rectangular shapes is not difficult (in particular thanks to the
gauge transformation, which is not always possible, see [18]). We provide it below for the sake
of completeness.

We adapt the gauge transform above: we set ψε(τ, x) = ε
4

(
f ′1(τ)
f1(τ) x

2
1 +

f ′2(τ)
f2(τ) x

2
2

)
and wε(t) =

h](εt)e−iψε(εt)uε(t). Again, uε(t) is the solution of (2.4) if and only if wε satisfies the equation

i∂twε(t) = − 1

f1(εt)2
∂2
y1y1wε −

1

f2(εt)2
∂2
y2y2wε +

ε2

4

(
f ′′1 (εt)f1(εt)y2

1 + f ′′2 (εt)f2(εt)y2
2

)
wε (5.4)

in the square (0, 1)2. Up to a mutiplicative constant, the eigenmode φk1,k2(x) in Ω(τ) becomes
ψ(y) := sin(k1πy1) sin(k2πy2) in the square and is independent of t. We also notice that the
phase e−iψε(εt) behaves as 1 +O(ε) for small ε > 0. Thus, proving Proposition 5.1 comes down
to show that ∣∣〈wε(1/ε)|ψ〉∣∣ =

∣∣〈wε(0)|ψ〉
∣∣+Oε→0(ε)
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for any solution of (5.4). First notice that, due to Hamiltonian structure of (5.4), the L2−norm
of wε is constant and the last term of (5.4) is of order O(ε2). Thus, we get that

∂t〈wε(t)|ψ〉 = i

〈( 1

f1(εt)2
∂2
y1y1 +

1

f2(εt)2
∂2
y2y2

)
wε

∣∣∣ψ〉 + O(ε2)

= i

〈
wε

∣∣∣ ( 1

f1(εt)2
∂2
y1y1 +

1

f2(εt)2
∂2
y2y2

)
ψ

〉
+ O(ε2)

= −i
( π2k2

1

f1(εt)2
+

π2k2
2

f2(εt)2

)
〈wε(t)|ψ〉 + O(ε2)

:= −iλk1,k2(εt)〈wε(t)|ψ〉 + O(ε2) .

Thus, if we set Λ(τ) =
∫ τ

0 λk1,k2(σ) dσ, then we obtain

〈wε(1/ε)|ψ〉 = e−iΛ(1)/ε〈wε(0)|ψ〉 + O(ε) .

This concludes the proof of Proposition 5.1 (even providing the exact phase shift). �

5.2 Decoupling: application of the 1D bilinear control

The main feature of the family of rectangular domains is the possibility of decoupling the
horizontal and vertical coordinates. If u is decomposed as u(t, x1, x2) = u1(t, x1)u2(t, x2) for
(x1, x2) ∈ Ω(t), then w = h]e−iψu is also a product of functions

w(t, y1, y2) = w1(t, y1)w2(t, y2) with wj(t, yj) =
1√
fj
e−

i
4
f ′jfjy

2
j uj(t, fj(t)yj). (5.5)

It is straightforward to split (5.2) and to check that w1 and w2 are respectively solutions of the
following equations

i∂tw1 = − 1

f1(t)2
∂2
y1y1w1 +

1

4
f ′′1 (t)f1(t)y2

1w1 in (0, 1),

i∂tw2 = − 1

f2(t)2
∂2
y2y2w2 +

1

4
f ′′2 (t)f2(t)y2

2w2 in (0, 1).

(5.6)

Vice-versa, if w1 and w2 are solutions of (5.6), then w = w1w2 is solution of (5.2) which provides
a solution u of (1.1). We can exploit this decoupling as follows. First, we simplify the expressions
in (5.6) in order to eliminate the time-dependence of the main operator. We use the following
change of variables appearing in [4, 27] (see also [3, 6, 34]):

τj =

∫ t

0

1

fj(s)2
ds and Uj(τj) =

f ′j(t)fj(t)

4
j = 1, 2. (5.7)

We substitute these elements in the corresponding equation in (5.6). We obtain two com-
pletely decoupled bilinear Schrödinger equations

i∂τjwj = −∂2
yjyjwj +

(
U ′j(τj)− 4Uj(τj)

)
y2
jwj in (0, 1) , j = 1, 2. (5.8)

We can now use the well-known results concerning the bilinear control of the one-dimensional
Schrödinger equation to obtain the following control. Notice that similar approaches for the
one-dimensional case are used in [4, 6, 27, 34].
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Proposition 5.2 (Approximate control for decoupled data).
Let Ωi = (0, a)×(0, b) with a, b > 0. Let ui, uf ∈ L2(Ωi) satisfying ‖ui‖L2 = ‖uf‖L2 and admitting
a decoupling

ui(y1, y2) = ui
1(y1)ui

2(y2) and uf(y1, y2) = uf
1(y1)uf

2(y2).

For every ε > 0, there exist T > 0 and a family of moving rectangles {Ω(t)}t∈(0,T ) as in (5.1)
such that Ω(0) = Ω(T ) = Ωi and such that the solution of the corresponding dynamics (1.1) with
initial data u(t = 0) = ui satisfies

‖u(t = T )− uf‖L2 ≤ ε.

Proof: Up to rescaling the components, we can assume that ‖ui
j‖L2 = ‖uf

j‖L2 = 1 for j = 1, 2.
To prove the result, it is sufficient to provide deformations of the lengths fj(t) enabling to
control the equations (5.8). Due to the decoupling, we can apply the one-dimensional results.
The bilinear equation

i∂τw = −∂2
yyw + V (τ)y2w y ∈ (0, 1) (5.9)

is globally approximately controllable in L2(0, 1) (and in H3) thanks to [17, Example 2.2 &
Theorem 4.4] (see also [7, 10, 11, 16, 26, 30]). Notice that the cited result is stated with
V ∈ L2, but the control can actually be in C∞. The controllability ensures the existence of
two times τ f

j > 0, j = 1, 2 and two controls Vj(τ) ∈ C∞(0, τ f
j) such that the dynamics of

i∂τwj = −∂2
yjyjwj + Vj(τ)y2

jwj steers wi
j close to wf

j with respect to the L2−norm in a time τ f
j .

Moreover, the gauge transformation (5.5) is independent of fj when the rectangle is not moved,
thus wi

j and wf
j are determined explicitly from ui and uf.

The main problem here is to construct functions fj(t) providing the aimed controls Vj(τ).
To simplify the notations, we omit the index j in this part. We choose a solution U(t) of

U ′(τ) = 4U(τ) + V (τ) for τ ∈ [0, τ f]

with an initial data U(0) sufficiently large such that U(τ) > 0 for τ ∈ [0, τ f]. Since the above
ODE is linear, this step is easy. Finding f satisfying (5.7) is instead more subtle. We consider
τ(t) a local solution of the nonlinear second order ODE

τ ′′(t) = −8(τ ′(t))2U(τ(t)),
τ(0) = 0,
τ ′(0) = 1/a2.

(5.10)

The theorem of Cauchy-Lipschitz obviously applies to (5.10) but it provides only the local
existence and uniqueness. The solution τ(t) of (5.10) exists until τ(t) leaves [0, τ f] or until τ ′(t)
blows up. We first notice that τ ′′(t) < 0 and thus τ ′(t) is decreasing. Moreover, (c, 0) is a
solution of (5.10) for all c ∈ [0, τ f]. Since τ ′(0) 6= 0, τ ′(t) never vanishes. Both remarks imply
that τ ′(t) stays in (0, 1/a2] and thus it can not blow up. Since τ(t) is increasing, there are two
possibilities: either the solution τ exists for all t > 0, or τ(t) reaches τ f at a time T . This last
possibility is the one we need to control (5.9) since τ has to describe the whole interval [0, τ f].
But

d

dt

( 1

τ ′(t)

)
= − τ ′′(t)

(τ ′(t))2
= 8U(τ(t)) ∈

(
0, 8‖U‖∞

]
Thus, 1/τ ′(t) ≤ 1/a2 + 8‖U‖∞t and τ(t) ≥ 1

8‖U‖∞

(
ln
(
1/a2 + 8‖U‖∞t

)
+ 2 ln a

)
, which imply

that τ must reach τ f in a finite time T . We can finally set f(t) = 1/
√
τ ′(t) for all t ∈ [0, T ]

(recall that τ ′(t) > 0). It is then straightforward to check that, by construction, the change of
variables (5.7) effectively transforms (5.8) to (5.9) with V (τ) the suitable control.

The above arguments show that we can drive ui
1 to uf

1 in a time T1 and ui
2 to uf

2 in a time
T2. A priori T1 6= T2 and we let one of the components evolves following the free Schrödinger
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equation during the time |T1 − T2|. Moreover, it is possible that the final rectangle has not
the dimensions a × b. In this case, we deform adiabatically the rectangle to obtain the aimed
dimensions. Both associated evolutions do not change the distribution of energy of the modes,
but add phases. Thus, we obtain a state

∑
k cke

iθkϕk instead of uf =
∑

k ckϕk (where (ϕk)k∈N
denotes a Hilbert basis of eigenfunctions). Since we are interested in approximate controllability,
it is sufficient to consider a finite sum on the first eigenfunctions ϕk, k = 0, . . . , N . If a and b are
rationally independent, then it is sufficient to wait and let the evolution of the free Schrödinger
equation unfolds the considered first phases up to a sufficiently small error. When a and b are
not rationally independent, we firstly deform adiabatically the initial rectangle Ω0 into a new
one Ω̃0 satisfying such hypothesis. Now, we rotate the states as in the previous point and we
finally come back adiabatically to Ω0. The adiabatic back-and-forth deformations of Ω0 in Ω̃0

also add some phases but we can program the intermediate rotations in order to also remove
these new phases (see the arguments of Lemma 4.3). �

Notice that the controllability result from Proposition 5.5 is only valid for the very specific
class of states which are separable in the variables. In Section 5.4, we use this specific control to
obtain the global approximate controllability for general quantum states defined on a rectangle.

5.3 Breaking symmetries: adiabatic motions without crossing of eigenvalues

In this subsection, we investigate the existence of deformations of a rectangle in another one,
avoiding all the possible crossings of the first N modes. We can preserve the rectangular shape of
the domain as in (5.1) as soon as the first N eigenmodes are simple. Each time we approach the
shape of a rectangle admitting a double eigenvalue, we need to break the rectangular structure
with a short deformation given by Theorem 3.3 in order to avoid it. After, we come back to the
rectangular shape and we iterate this process until we reach the final domain. The key point here
is the use of Theorem 3.3 to preserve the simplicity of the spectrum. Any generic perturbation
of the shape would work. However, we show that very specific and simple perturbations are
sufficient to break the symmetries. To this end, we need to show the validity of Hypotheses
(SAH2) of Section 3.1 along a deformation of rectangular shapes defined as in (5.1).

Let Ω0 = (0, 1)×(0, 1) and h be a diffeomorphism h : (y1, y2) ∈ Ω0 7→ (ay1, by2) with a, b > 0.
The spectrum of the Dirichlet Laplacian in Ω = h(Ω0) can present double eigenvalues according
to the lengths a and b. We consider the parameters a and b so that there is a double eigenvalue

λ =
π2k2

1

a2
+
π2k2

2

b2
=
π2l21
a2

+
π2l22
b2

(5.11)

with suitable different k1, k2, l1, l2 ∈ N∗. We denote by φk1,k2 and φl1,l2 two corresponding
orthonormal eigenfunctions defined as in (5.3). To by-pass this double eigenvalue, we use the
strategy of Theorem 3.3 in the class of deformations H consisting of diffeomorphisms of the form
(y1, y2) 7→ (f1(y2)y1, f2(y1)y2) with fj > 0 polynomials of degree 2. The class H contains the
rectangular deformations as well as tilting or bending of edges (see Table 1). Since we argue by
locally perturbing a straight path of rectangles, we only need to verify the conditions (SAH2)
for the eigenvalue λ of the rectangular shape, with perturbations in the tangent space ThH. We
compute in Table 1 the corresponding integrals considered in the conditions (SAH2) by using
the notation

Im1,m2,n1,n2(g) =
∣∣∣ ∫

∂Ω

∂φm1,m2

∂ν

∂φn1,n2

∂ν
〈h∗g|ν〉dσ

∣∣∣, (m1,m2), (n1, n2) ∈
{

(k1, k2), (l1, l2)
}
.

Let us consider now the expressions provided in Table 1. Both ratio Ik1,k2,k1,k2/Il1,l2,l1,l2
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Table 1: The family of rectangular deformations is too symmetric to make possible to avoid dou-
ble eigenvalues. We look for additional deformations enabling to by-pass the double eigenvalues.
In this table, we consider several simple perturbations h∗g of a rectangle (0, a) × (0, b) and we
compute the integrals required to check Hypothesis (SAH2) of Section 3.1.
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associated to g1 and g2 (the rectangular deformations) are different since

Ik1,k2,k1,k2
Il1,l2,l1,l2

(g1) =
2k2

1π
2

a3

a3

2l21π
2

=
k2

1

l21
6= k2

2

l22
=
Ik1,k2,k1,k2
Il1,l2,l1,l2

(g2). (5.12)

Indeed we must have
k21
l21
6= k22

l22
otherwise (5.11) would imply (k1, k2) = (l1, l2). The inequality

(5.12) yields that the functionals corresponding to Ik1,k2,k1,k2 and Il1,l2,l1,l2 (the first two rows
of Table 1) are linearly independent, even with simple rectangular deformations. In order to
show that also the third functional is linearly independent, we need to consider non-rectangular
transformations g3 and g4. The first ensures the property for g ∈ ThH 7→ Ik1,k2,l1,l2 when
k2 6≡ l2 mod 2, while the second when k2 ≡ l2 mod 2. The use of the simple deformations g1, g2,
g3 and g4 (Table 1) is sufficient to ensure the Hypothesis (SAH2). However, it is also possible
to combine g3 and g4 in the transformation g5 which always works but it does not preserve any
symmetry at all.

The linear independence of the three functionals yields the validity of the conditions (SAH2)
and allows us to use Theorem 3.3 in order to avoid multiple eigenvalues.

Proposition 5.3. Let N ∈ N and Ω0 = (0, 1)× (0, 1). Let h ∈ Pathk[0, 1] be defined as in (5.1)
and represent a family of moving rectangles Ω(τ) = h(τ,Ω0) such that

Ω(0) = (0, a)× (0, b), Ω(1) = (0, a′)× (0, b′) .

For all ε > 0, there exists a path g ∈ Pathk[0, 1] such that:

• g(0) = h(0), g(1) = h(1) and for all τ ∈ (0, 1), g(τ) belongs to H, i.e. it is a combination
of the first fourth transformations g1, . . . , g4 of Table 1,

• g is a small perturbation of the initial rectangular path that is ‖g − h‖Ck([0,1]Ω0) < ε

• the N first eigenvalues of the Dirichlet Laplacian operator −∆ in Ω̃(τ) = g(τ,Ω0) are simple
for all τ ∈ (0, 1).

In our framework, it is noteworthy that g2 can be recovered by g1 composed by a homothety.
Since this last transformation preserves the simplicity of the spectrum, we can always make
the spectrum simple by perturbing only one edge of a rectangular shape: it is not necessary
to deform two sides of the rectangle in order to avoid the eigenvalues crossings. We state this
result in the following corollary where we denote by H̃ the manifold of the diffeomorphisms
(y1, y2) 7→ (f1(y2)y1, y2) with f1 > 0 a polynomial of degree 2.

Corollary 5.4. In Proposition 5.3, if b = b′, we can strengthen the fact that g belongs to H̃ by
constructing g with suitable time-varying coefficients α, β and γ such that

g(τ) : (y1, y2) 7→
(

(α(τ) + β(τ)y2 + γ(τ)y2
2)y1 , y2

)
.

5.4 Global approximate controllability

In this section, we present how to approximately control quantum states defined on a two
dimensional rectangle by moving its borders. The control is obtained by coupling the two
arguments presented above:

- It is possible to drive a decoupled state to another decoupled state by changing the dimensions
of the rectangle (Proposition 5.2).

- Adiabatic motions of the rectangle, including slight deformations of a side, preserve the
distribution of the energy (Section 5.3).
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It is noteworthy that the result of this section is a particular case of Theorem 1.1. However,
the strategy of control presented here is different from the one of the proof in Section 4. It
underlines that our arguments are generally robust and they provide useful tools for different
situations and aims.

Proposition 5.5. Let Ωi = (0, a) × (0, b) with a, b > 0. Let ui, uf ∈ L2(Ωi) satisfy ‖ui‖L2 =
‖uf‖L2. For every ε > 0, there exist T > 0 and a family moving domains {Ωt}t∈(0,T ) such that
Ω(0) = Ω(T ) = Ωi and such that the solution of the corresponding dynamics (1.1) with initial
data u(t = 0) = ui satisfies

‖u(t = T )− uf‖L2 ≤ ε.

Proof: In what follows, we denote by ϕΩ
j the j−th eigenmode of Dirichlet Laplacian on domain

Ω. In order to control any couple of states in L2(Ω0), it is sufficient to drive the ground state
ϕΩ0

1 close to any state with norm 1. Without loss of the generality, we can assume that the
target state u ∈ L2(Ω0) is a linear combination of a finite number of eigenmodes such that

u =

N∑
j=1

cjϕ
Ω0
j , {cj}j≤N ⊂ C,

N∑
j=1

|cj |2 = 1.

In the first step, we deform adiabatically Ω0 in a rectangle Ω1 = (0, a1)× (0, b1). It preserves the
energy of the ground state as the first eigenvalue of a Dirichlet Laplacian on a connected domain
is always simple. We choose a1 � b1 so that the first N modes of the Dirichlet Laplacian in Ω1

have the form

ϕΩ1
j (x1, x2) =

2√
a1b1

sin
(jπ
a1
x1

)
sin
( π
b1
x2

)
, (x1, x2) ∈ Ω1, ∀j ≤ N. (5.13)

This first motion steers ϕΩ0
1 close to eiθϕΩ1

1 . In the second step, we use Proposition 5.5 to drive

eiθϕΩ1
1 =

2√
a1b1

eiθ sin
( π
a1
x1

)
sin
( π
b1
x2

)
close to

N∑
j=1

cje
iθjϕΩ1

j (x1, x2) =
N∑
j=1

cj
2√
a1b1

eiθj sin
(jπ
a1
x1

)
sin
( π
b1
x2

)

=

√
2

b1
sin
( π
b1
x2

) N∑
j=1

cj

√
2

a1
eiθj sin

(jπ
a1
x1

)
where the phases {θj}j≤N will be defined later. Notice that the states above are decoupled so
Proposition 5.5 may apply. In fact, we only need to control the horizontal part of the state, so it
is mainly a one-dimensional result. The trick is to choose Ω1 sufficiently close to an horizontal
segment to ensure that the relevant modes are all “horizontal”. Finally, we can deform back Ω1

in Ω0 adiabatically by avoiding all the crossing of the N first eigenvalues. This last motion is
defined by applying the adiabatic regime to the path provided in Proposition 5.3. This allows
us to preserve the distribution of the energy (up to a small error) but it adds some phases to
the modes and we obtain (approximatively) the state

u =
N∑
j=1

cje
iθjeiρjϕΩ0

j

where ρj do not depend on {θj}j≤N . The values {ρj}j≤N are well-known in advance and then
we can program {θj}j≤N in order to remove all the phases appearing at the end of the motion. �
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5.5 Examples of applications to simple transformations of the states

In this subsection, we present some explicit examples of controls and permutations of modes
due to the techniques developed in this work. In what follows, we denote Ω = (0, a)× (0, b) with
a > b > 0.

Switching the quantum numbers.

The following is a completely adiabatic deformation of Ω steering any mode φj,k to φk,j . First, we
deform the dimension of the rectangle (0, a)× (0, b) into (0, b)× (0, a) adiabatically. Proposition
5.1 ensures that we follow the mode φj,k. Then we simply rotate adiabatically the rectangle
(0, b)× (0, a) in (0, a)× (0, b) and the state becomes φk,j . See Figure 3.

Figure 3: The figure represents an adiabatic deformation of a rectangle steering φ2,1 in φ1,2.

Pumping an eigenstate into another.

Here, we provide an adiabatic deformation of (0, a) × (0, b) steering the mode φj,k in φj′,k′ as
soon as neither mode is the first one. Assume that our aimed state φj′,k′ corresponds to the p-th
mode.

(i) First, we modify the horizontal edge (0, a) in (0, a′) such that in the rectangle (0, a′)×(0, b),
the mode φj,k corresponds to the p-th eigenvalue. This is always possible as soon as
(j, k) 6= (1, 1) and p > 1. Proposition 5.1 shows that, if the motion is sufficiently slow,
then we actually drive the mode φj,k of the rectangle (0, a)× (0, b) to the mode φj,k of the
rectangle (0, a′)× (0, b).

(ii) Second, we deform back the domain in (0, a) × (0, b) by breaking the rectangular shape
of the domain in order to avoid all the eigenvalue crossings. To this purpose, we use
Proposition 5.3 or even Corollary 5.4 and we can stay very close to the family of rectangles
of height b. Due to Proposition 2.4, the p-th mode φj,k of the rectangle (0, a′) × (0, b) is
transformed into the p-th mode of the rectangle (0, a)×(0, b), which is φj′,k′ by assumption.

Figure 4 illustrates the change of φ2,1 into φ1,2. Notice that for concrete applications, when we
deform back the domain to the original rectangle, it could be simpler to break the symmetry by
adding a generic electric potential rather than tilting or bending the edges.

Creating superposition of excited states.

As we have noticed in the previous examples, different adiabatic deformations of the initial
rectangle Ω yield to different results, depending if we allow the eigenvalues to cross or not. For
example, consider again the mode φ2,1 in a domain (0, a)× (0, b) where a > b. We observe the
following phenomena.

(i) If we contract adiabatically the domain by preserving its rectangular shape, then the mode
φ2,1 is double when Ω becomes the square (0, b)×(0, b). If we continue the reduction slowly
to obtain a rectangle (0, a′) × (0, b) with a′ < b, then the final mode is still φ2,1 due to
Proposition 5.1.
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eigenvalues

Figure 4: The figure represents a deformation of a rectangle steering φ2,1 in φ1,2. We start with
a rectangle (0, a) × (0, b) with a > b and we reduce the length a to a′ < b. The energy levels of
the states φ2,1 and φ1,2 cross and during an adiabatic motion, the state follows the eigenstate
φ2,1. Then, we go back to the original rectangle with a slight deformation of the edge. Here, we
break the symmetry allowing to preserves the order of the modes. During an adiabatic motion,
the state follows the third eigenstate which is φ1,2 at the end of the motion. Notice that if a and
a′ are close enough to b, then the only possible energy crossing (that we need to avoid when we
go back) concerns φ2,1 in φ1,2. Table 1 shows that a slight tilt of the right edge is sufficient.

(ii) When we suitably modify this dynamics by breaking the rectangular symmetry of Ω, using
Corollary 5.4, the rank of φ2,1 is preserved and, then, it is steered in the second eigenmode
of the new domain, which is not φ2,1 anymore but φ1,2 if a′ < b.

From a spectral point of view, both motions follow the spectral curve associated to the mode
φ2,1 until we reach the eigenvalue crossing involving φ2,1 and φ1,2. If we continue to reduce
adiabatically the rectangle, then we pass through the crossing by pursuing the mode φ2,1. When
we adiabatically modify the shape of Ω in order to preserve the simplicity of the spectrum, we
follow φ1,2 instead.

Now, assume that we choose an intermediate deformation interpolating the motions (i) and
(ii) above. Then, by the intermediate value theorem, it is possible to distribute the initial energy
of φ2,1 between the modes φ2,1 and φ1,2, see Figure 5. This idea permits to steer φ2,1 into any
superposition of φ2,1 and φ1,2. Notice that the speed of the intermediate motion is obviously not
adiabatic for this regime but has been set to be slow enough so that both pure motions (i) and
(ii) are adiabatic. The same technique, applied to a finite number of modes, allows to control
any superposition of excited states in any other (similarly to what happens in Figure 2). Notice
that the ground state φ1,1 can not be adiabatically controlled in this way as it is always simple.
A possible solution is to deal with the ground state via the control method used in Propositions
5.2 and 5.5.

Let us also discuss the possibility of using the conical intersections of eigenvalues, following
the method introduced in [8]. Consider a family of shapes Ω(α, β) parametrized by two real
parameters. Assume that, in the domain Ω(0, 0), the Laplacian operator has an eigenvalue λj =
λj+1 of multiplicity two. This intersection is conical if the local dependance of the eigenvalues
with respect to the parameters satisfies

∃C, ε > 0 , ∀(α, β) ∈ BR2(0, ε) , λj+1(α, β)− λj(α, β) > C(|α|+ |β|) (5.14)

(it is in fact possible to deal with an intersection of more eigenvalues by considering more
parameters). In [8], the authors provide a way to approximately control the state inside the j
and (j + 1) level sets by using adiabatic deformations of the parameters α and β. The conical
intersections are generic patterns and we can use this type of idea to realize the exchange of
energy between different levels, even in the proof of our Theorem 1.1. However, it is noteworthy
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Figure 5: The figure shows how to use the tunneling effect to create superposed states. On
the left, we pass adiabatically an eigenvalue crossing with a rectangular deformation and the
quantum numbers of the state do not change thanks to Proposition 5.1. On the right, we break
the symmetry and there is not any real crossing of eigenvalues anymore. Here, Corollary 5.4
yields that an adiabatic motion preserves the position in the spectrum and it switches the pure
states. In the middle, we follow an interpolated deformation with the same speed, which produces
an interpolated state. Physically, we use the tunneling effect to create a superposed state.

that (5.14) cannot hold for rectangular shapes with α and β being the size of the rectangle:
due to the homothetic invariance, the degeneracy λj = λj+1 remains true in a direction (α, β).
In other words, the family of rectangles behaves as a one-parameter family of domains from
the point of view of crossing of the eigenvalues. It means that, similarly to all the previous
proposed strategies, we have to seek for conical intersections by slightly breaking the symmetry
of the rectangle to obtain a more generic shape and one parameter has to deform the shape
away from the family of rectangular shapes. Then the problem of checking (5.14) is equivalent
to computations as those of Table 1.

Controls on quasi-rectangular domains.

Every result presented above is not only guaranteed for the rectangles, but also for domains which
are very close to it in the meaning of Theorem 3.5. In this situation, the spectral behavior of
the Hamiltonian generating the dynamics is very close to the one on a rectangle and then, all
the techniques above are still valid, up to a small error depending on the domain.

To apply one of these control processes to a general domain, we can proceed as follows. We
can deform the domain adiabatically back-and-forth to an almost rectangular one by preserving
the simplicity of the spectrum. While the domain is quasi-rectangular, we apply the prescribed
control (see Figure 6).

5.6 Pumping motion and Fermi acceleration

In this section, we discuss in more details the pumping motion introduced above and represented
in Figure 4.

Consider a free quantum-mechanical particle in a rectangular box [0, a] × [0, 1]. The eigen-
functions and their corresponding energies are respectively

φm,n = sin
(
πm

x

a

)
sin
(
πny

)
and E(m,n) = π2

(m2

a2
+ n2

)
where m,n ≥ 1. We slowly change the length of the rectangular box until reaching the shape
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Figure 6: The figure represents how to apply to the case of general domains the controls discussed
before. The first and the last motions are back-and-forth adiabatic deformations of the domain
in a quasi-rectangular one. In the intermediate step instead, we apply the chosen control process.

[0, ã]× [0, 1], where the eigenfunctions and energies are now

φ̃m,n = sin
(
πm

x

ã

)
sin
(
πny

)
and Ẽ(m,n) = π2

(m2

ã2
+ n2

)
During the deformation, in the adiabatic limit, the quantum numbers m and n are preserved,
i.e., if the process is slow enough, then by starting with the state φm,n, the system will find
itself close to the state φ̃m,n. Next, we return the box to its original size and, on the way
back, we slowly deform the boundary of the box in such manner that it has a generic non-
rectangular shape all the time, except at the start and at the end of the process. The genericity
means no crossing of the energy levels, i.e., the instantaneous energy spectrum stays simple,
see Section 5.3. As already noticed, this break of symmetry can also be performed by keeping
the rectangular shape and adding a generic non-symmetric potential, which could be simpler in
practice. Assume that a and ã are irrational, so that both corresponding spectra in the boxes are
simple. Thus, following the total ordering according to the increase of energy, we can define the
number k̃(m,n) such that φ̃m,n is the k̃(m,n)-th eigenfunction of the Laplacian in [0, ã]× [0, 1].
This number is adiabatically preserved when we return the box to its original shape, meaning
that the quantum state finishes close to φm′,n′ such that k(m′, n′) = k̃(m,n) (where k(m′, n′)
is similarly defined by the fact that φm′,n′ is the k(m′, n′)-th eigenfunction of the Laplacian
operator in [0, a]× [0, 1]).

We obtain a cyclic process such that at its first stage the quantum numbers m and n are
preserved, while at the second stage the ordering k of the energy is preserved. Hence the values
of m and n at the end of the cycle do not need to be the same as at the beginning. It generates
a permutation σ : N→ N defined by

σ(k) = k̃(m(k), n(k))

with the obvious (abusive) notations that the numbers m(k) and n(k) are uniquely determined
by k(m(k), n(k)) = k.

It would be interesting to understand the dynamics of the iterations of this permutation.
Indeed, if the pumping motion is slow enough, the quantum state will be successively transformed
in the σj(k)-th eigenmode, j = 1, 2, 3, . . . for as many cycles as we want. In simpler one-
dimensional models, a similar permutation process can be explicitly studied, see [19, 37]. Here,
the existence of two quantum numbers m and n make the rigorous study much more involved.
However, we conjecture that typically, σj(k) grows exponentially with the number of iterations,
i.e. the corresponding physical process should exhibit an exponential energy growth.
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There can only be two type of dynamics for bijections of the set of natural numbers: the
orbit is either periodic (looped), or it tends to infinity at forward and backward iterations. This
depends on initial conditions; however, we conjecture that for a generic choice of a and ã, only
a small set of initial conditions produce looped orbits. Moreover, for a typical non-looped orbit,
we have

lim inf
j→+∞

1

j
ln(σj(k)) > 0 .

Physical justification to this claim is given by the second law of thermodynamics: the entropy
cannot decrease. Indeed, by definition, the Gibbs volume entropy is the logarithm of the number
of states below the given energy level, i.e., it is ln k (see also [20, 31]). We, therefore, expect
that the increment of ln k (the entropy) after each cycle should, typically, be strictly positive.
The resulting exponential growth of the energy generated by a periodic motion of a wall is the
quantum version of the famous Fermi acceleration.

To substantiate the growth of entropy claim, we present the following computation. Consider
m,n ≥ 1. In the starting rectangle [0, a] × [0, 1], the numbers (m′, n′) ∈ (N∗)2 related to an
eigenmode φm′,n′ with energy E(m′, n′) less that E(m,n) are exactly the integer points contained
in the ellipse {(x, y), π2(x2/a2 + y2) ≤ E(m,n)}. Up to a lower order term, this number is a
quarter of the surface of the ellipse and thus

k(m,n) =
πa

4

(m2

a2
+ n2

)
+ o(m2 + n2) .

In the same way, in the intermediate rectangle [0, ã] × [0, 1], k̃(m,n) ∼ πã
4

(
m2

ã2
+ n2

)
. This

provides a good estimation for k̃(m,n) and thus a good estimation for σ(k) if (m(k), n(k)) is
known. But obtaining (m(k), n(k)) from k is very complicated. Thus, we rather consider the
mean value of the entropy increase

δE(K) :=
1

K

K∑
k=1

ln(σ(k))− ln(k)

for the first K states. Let E0 := E(m(K), n(K)) be the energy of the K−th mode in the
rectangle [0, a] × [0, 1]. The arguments above show that it can be estimated as follows. Let
Q = {(x, y) ∈ R2

+, π
2(x2/a2 + y2) ≤ E0} be the quarter of the ellipse corresponding to E0 and

Q′ = {(x′, y) ∈ R2
+, π

2(x′2 + y2) ≤ E0} the quarter of the disk. We have

δE(K) =
1

Vol(Q)

∫
Q

ln
(πã

4

(x2

ã2
+ y2

))
− ln

(πa
4

(x2

a2
+ y2

))
dx dy + o(1).

=
1

Vol(Q′)

∫
Q′

ln
(a
ã
x′

2
+
ã

a
y2
)
− ln

(
x′

2
+ y2

)
dx′ dy + o(1).

=
4π

E0

∫ √E0/π

0
r dr

∫ π/2

0
ln
(a
ã

cos2 θ +
ã

a
sin2 θ

)
− ln

(
cos2 θ + sin2 θ

)
dθ + o(1).

=
2

π

∫ π/2

0
ln
(a
ã

cos2 θ +
ã

a
sin2 θ

)
dθ + o(1).

This growth in mean of the entropy can be estimated numerically. In any case, we know that it
is positive. Indeed, the strict concavity of the logarithm ensures that∫ π/2

0
ln
(a
ã

cos2 θ +
ã

a
sin2 θ

)
dθ >

∫ π/2

0
cos2 θ ln

a

ã
+ sin2 θ ln

ã

a
dθ

= ln
a

ã

∫ π/2

0
cos2 θ − sin2 θ dθ = 0.
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One should note that the positivity of lim infK→∞ δE(K) is not enough to conclude that
σ generates long growing orbits. For example, if we consider the pumping that alternates the
lengths a and ã = 1/a, then this will only lead to transpositions, i.e., every orbit will loop after
the second iteration. Still, we believe that for generic values of a and ã, the iterations of σ
have the same characteristic as the one of a random process with fast decaying correlations.
In the random case, the limit of δE is the expectation of the increase of the random sequence
i 7→ ln(σi(k)), and a Chebyshev-like inequality shows that, almost surely, i 7→ σi(k) grows
exponentially.

We did numerical experiments to test this prediction. For a = π/2 and ã = a/3, we
computed the energies of the first modes and thus built a table of the values of σ(k) for all
k ≤ 370800. The computed value of δE(105) is 0.28713, whereas the above integral estimation
predicts 0.28768. An illustration of some orbits of the permutation is given in Figure 7. To
investigate our conjecture that periodic orbits are very rare and perhaps in finite number, we
looked for the periodic orbits starting with k ≤ 105, with period less than 30 and never growing
above the rank 370800 (the limit of our computed permutation). We only found 9 periodic
orbits, only two being more complicated than transpositions (see Figure 7).

Figure 7: Some trajectories j 7→ σj(k) generated by the permutation associated to the pump-
ing motion with a = π/2 and the ratio of compression a/ã = 3. The horizontal axis indi-
cates the “time” index j and the vertical one displays log10(σj(k)). Several randomly cho-
sen trajectories are represented in color (until they reach the bound 370800, above which
our permutation is not computed). Two examples of periodic orbits (19 44 110 39 52) and
(528 1491 1429 2152 3969 1407) are enhanced with diamonds. The dotted line represents the
mean exponential growth rate which is approximatively 0.28. We notice that the randomly chosen
orbits present a variety of growth rates but overall compatible with the mean one.
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de Lindóia, 1996).

[3] Y. Band, B. Malomed and M. Trippenbach, Adiabaticity in nonlinear quantum dynamics:
Bose-Einstein condensate in a time varying box, Physical Review A no65 (2002), p. 033607.

[4] K. Beauchard, Controllablity of a quantum particle in a 1D variable domain, ESAIM, Con-
trol, Optimization and Calculus of Variations no14 (2008), pp. 105–147.

[5] K. Beauchard, J.-M. Coron, Controllability of a quantum particle in a moving potential
well, Journal of Functional Analysis no232 (2006), pp. 328–389.

[6] K. Beauchard, H. Lange and H. Teismann, Local exact controllability of a 1D Bose-Einstein
condensate in a time-varying box, SIAM Journal on Control and Optimization no53 (2015),
pp. 2781–2818.

[7] U. Boscain, M. Caponigro, T. Chambrion and M. Sigalotti, A weak spectral condition for
the controllability of the bilinear Schrödinger equation with application to the control of
a rotating planar molecule, Communications in Mathematical Physics no311 (2012), pp.
423–455.

[8] U. Boscain, F. Chittaro, P. Mason and M. Sigalotti, Adiabatic control of the Schrödinger
equation via conical intersections of the eigenvalues, IEEE Transactions on Automatic Con-
trol no57 (2012), pp. 1970–1983.

[9] U. Boscain, J. P. Gauthier, F. Rossi and M. Sigalotti, Approximate Controllability, Exact
Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems,
Communications in Mathematical Physics no333 (2015), pp. 1225–1239.
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(2010), pp. 901–915.

[31] T. Pereira and D. Turaev, Exponential energy growth in adiabatically changing Hamiltonian
systems, Physical Review E 91 (2015), 010901(R).

[32] D.N. Pinder, The contracting square quantum well, American Journal of Physics no58
(1990), p. 54.

[33] Y. Privat and M. Sigalotti, The squares of the Laplacian-Dirichlet eigenfunctions are gener-
ically linearly independent, ESAIM: COCV no16 (2010), pp. 794–805. Erratum in ESAIM:
COCV no16 (2010), pp. 806-807.

[34] P. Rouchon, Control of a quantum particle in a moving potential well, 2nd IFAC Workshop
on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003), Seville.

[35] T. Tao, Almost all orbits of the Collatz map attain almost bounded values, Forum of Math-
ematics, Pi no10 (2022), e12.

35



[36] M. Teytel, How rare are multiple eigenvalues?, Communications on Pure and Applied Math-
ematics no52 (1999), pp. 0917–0934.

[37] D. Turaev, Exponential energy growth due to slow parameter oscillations in quantum me-
chanical systems, Physical Review E no93 (2016), 050203(R).

[38] K. Uhlenbeck, Generic properties of eigenfunctions, American Journal of Mathematics no98
(1976), pp. 1059–1078.

[39] H. Whitney, Analytic extensions of functions defined in closed sets, Transactions of the
American Mathematical Society no36 (1934), pp. 63–89.

36


