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Abstract—We describe a computing architecture capable of
simulating networks with billions of spiking neurons using an
ordinary Apple MacBook Air equipped with a M2 processor, 24
GB of on-chip unified memory and a 4TB solid-state disk. We
use an event-based propagation approach that processes packets
of N spikes from the M neurons in the system on each processing
cycle. Each neuron has C binary input connections, where C can
be 128 or more. During the propagation phase, we increment
the activation values for all targets of the N neurons that fired.
In the second step, we use the histogram of activation values to
determine the firing threshold on the fly and select the N neurons
that will fire in the next packet. We note that this active selection
process could be related to oscillatory activity in the brain, which
may have the function of fixing the percentage of neurons that
fire on each cycle. Critically, there are absolutely no restrictions
on architecture, since each neuron can have a direct connection
to any other neuron, allowing us to have both feed-forward
as well as recurrent connections. With M = 232neurons, this
allows 264 possible connections, although actual connectivity is
extremely sparse. Even with off-the-shelf hardware, the simulator
can continuously propagate packets with thousands of spikes and
millions of connections dozens of times a second. Remarkably, all
this is possible using an energy budget of just 37 watts, close to
the energy required by the human brain. The work demonstrates
that brain-scale simulations are possible using current hardware,
but this requires fundamentally rethinking how simulations are
implemented.

Index Terms—Spiking neural networks, Brain-scale simula-
tions, Binary weights, Sparse network, GPU acceleration, Apple
M2 chip, Bio-plausible networks

I. INTRODUCTION

Deep Neural Networks are now state of the art in many com-
puting areas, achieving super-human performance for many
applications, including image categorization [5], [17], [23],
[24], audio analysis [4], [21], [27] and language processing
[1], [6], [19]. The original AlexNet architecture from 2012
required 650,000 neurons with 60 million parameters [14]. But

more recent systems, particularly the latest Large Language
Models such as GPT-4, have hundreds of billions and even
trillions of parameters. One problem with such systems is that
they require a massive energy budget. Indeed, to implement
a neural network the size of the human brain using the
conventional processing strategies used in Artificial Neural
Networks, the amount of energy required would be over a
million times more than the 20 Watts used by the brain. How
can the brain function on such a tiny energy budget? Could
future hardware allow more efficient implementations? Several
active research areas are related to this question. For example,
novel devices such as memristors could implement synapses
more efficiently than conventional logic circuits [15], [16], and
in-memory computing could avoid the huge energetic cost of
moving data typical with Von Neumann architectures [13].

However, in this paper, we argue that brain-scale simulations
with billions of neurons are already possible using off-the-
shelf computer hardware without the need for additional
cutting-edge technology. Specifically, we demonstrate that it
is perfectly possible to simulate a fully recurrent network
with billions of neurons and hundreds of billions of synaptic
connections using nothing more than a standard MacBook
Air equipped with an M2 processor, 24GB of on-chip unified
memory and 4 Terabytes of SSD memory. Even today, it is
possible to obtain a MacStudio equipped with an M1 Ultra
chip that has 128 GB of on-chip unified memory. This would
be sufficient to simulate the entire human neocortex, which
contains roughly 16 billion neurons. Given the speed with
which such technology is advancing, it seems reasonable to
suppose that within a year or so, it will be possible to simulate
networks with more neurons than the entire human neocortex.
Indeed, with the processing architecture that we are proposing,
there is effectively no upper limit on the size of the neural
networks that can be simulated.



II. NOVEL FEATURES OF OUR ARCHITECTURE

Here, we build on ideas developed initially for Arnaud
Delorme’s SpikeNet simulator [7], [8] in the late 1990s,
one of the first event-driven spiking neural simulators, still
downloadable today on SpikeNET github. SpikeNet kept a
list of neurons firing on a particular time-step and propagated
spikes by updating the activation level of all neurons to
which they are connected. This contrasts radically with most
Artificial Neural Network implementations that recalculate the
activity of every neuron in the system on every time step,
using floating point values for both the activation level and
the weights associated with each input, computations that are
very costly.

In this section, we list the novel features that we have
adopted in our network that make it possible for us to simulate
activity in networks with over four billion spiking neurons on
a simple MacBook Air equipped with an M2 chip, 24 GB
of on-chip unified memory, an internal 2TB solid state disk,
and additional external storage. The code was implemented
using Swift and Metal, Apple’s GPU-accelerated graphics and
compute framework.

A. Zero-less Binary Weights

One of the key features that add to the memory efficiency
of our simulation is using sparse binary weights instead of
floating point ones and furthermore, having a zero-less com-
pression of the weight matrix to make its memory footprint
even smaller.

We achieve this compression by only storing the addresses
or IDs of the pre-synaptic neurons having a non-zero connec-
tion with every post-synaptic neuron in our network. Thus,
effectively discarding all the zero weights from our network,
resulting in a zero-less weight matrix.

Each post-synaptic neuron has a set of C binary input
connections from other neurons in the network. The current
implementation uses C values of up to 256, but with more ex-
ternal memory, it would be trivial to increase this number. The
connections are initially stored in a set of backward connection
files as lists of 32-bit numbers that specify the addresses of
the pre-synaptic neurons. These backward connection files are
then used to generate a second set of files containing the
forward connections for each neuron. On average, neurons
have C forward connections, although this will vary.

The backward connections are the equivalent of the recep-
tive field of every post-synaptic neuron, while the forward
connections are the equivalent of the emitting field of the pre-
synaptic neurons [20].

B. Propagation based simulation

In our GPU implementations, we employ an event-driven
strategy for propagating incoming spikes akin to the SpikeNet
simulator. We have employed a temporal coding based scheme
with only one spike per neuron as it is a more effective
spike coding scheme compared to rate coding [3] and is more
hardware efficient in its implementation [25].

The simulation starts by activating a particular set of N
neurons, which can be chosen randomly or used to represent
sensory events. The simulator reads the list of post-synaptic
targets for each neuron from the forward connection files
and uses GPU threads to increment the activation levels of
their targets. It also updates a histogram of the activation
levels, which is used to select the N neurons with the highest
activation levels. These neurons are subsequently used for the
next processing cycle, and their activation levels are reset to
zero accordingly.

C. Oscillations, N-of-M Coding and the Histogram Method

A major innovation is the fact that neurons do not have
a predefined threshold. Instead, by generating a histogram
of activation values at the end of each propagation cycle,
we can pick off the N most active neurons and guarantee
that activity can continue indefinitely. In conventional spiking
neuron simulators, there is a high risk that activity will
die out in a few cycles, or that an avalanche effect makes
too many neurons spike. While this trick of having spiking
thresholds determined on the fly may seem un-biological, it is
possible that oscillations could be nature’s way of keeping the
number of active neurons strictly under control. It is a way to
implement N of M coding [10] that could be extremely useful,
as well as allowing the implementation of synfire chains [2] .

To achieve this, our simulator maintains a histogram of
the activation levels for all M neurons in the system and
updates the histogram during the propagation phase using
GPU threads. Once propagation is complete, we can determine
threshold values that allow a predetermined number of neurons
to fire, and this is used to generate the new list during a second
pass through the list of targets. Importantly, the time taken
to implement this phase is independent of M - the number
of neurons in the system. M can be 232 (as in the current
simulations) but could be even larger, allowing networks with
more neurons than the entire human brain to be implemented.

Effectively, this histogram method is just a computational
trick. But, interestingly, it is functionally equivalent to an
oscillation-based system that progressively depolarizes the
entire population of neurons, leading them to fire in turn
according to their underlying level of activation. The system
would need an additional inhibitory circuit that effectively
counts the number of neurons that have fired and blocks the
excitatory ramp signal as soon as a given number of neurons
has fired. This temporal coding trick for performing a k-
Winner Take All (k-WTA) operation was originally proposed
in [26] but also discussed more recently [9].

While it would be possible to implement this sort of
oscillatory mechanism in a spiking neural network simulator,
it would be computationally extremely expensive, especially
when M, the number of neurons in the population, is large. It
would involve modifying the activation level of every neuron
over and over again. However, the histogram-based method
described here works well irrespective of the number of
neurons in the simulation.

https://github.com/arnodelorme/SpikeNET


III. IMPLEMENTATION OVERVIEW

In this section, we outline the implementation details that
determine the life cycle of neurons in a typical Terabrain
architecture. On the arrival of incoming spikes, neurons in
our architecture go through three main phases, namely prop-
agation, reset and leak phase, resembling biological neurons.
Furthermore, we used a p-bit quantised neuronal activation for
reduced memory footprint, which means the highest activity
in the system can be 2p − 1, where p can be 4, 8 or higher
depending on the requirements. For the sake of clarity, we
provide the pseudo-code for our algorithm in the sub-section
below.

A. Phases in Terabrain architecture

The propagation phase involves an event-based increment
of neuronal activation for every neuron present in the forward
connection list of the N excited neurons, while the rest
remains untouched. In this phase, we also update our activation
histogram to keep track of the suitable threshold (τs) for
selecting N out of M neurons to spike, in each cycle.

Algorithm 1 Propagation cycle

Require: Contiguous list of target neuron IDs, denoted by
actForwrdConnx, in the emitting field of the N excited
neurons out of M

Require: p-bit Counter array for neuronal activation, denoted
by actArr and the initialised histogram of the p-bit activa-
tion, histoList for all M neurons

function PROPAGATE SPIKES
for targNeur in actForwrdConnx do ▷ GPU threaded

prevCount = actArr[targNeur]
actArr[targNeur] += 1 ▷ Incrementing activation
histoList[prevCount] += 1 ▷ Update histogram
histoList[prevCount-1] -= 1

function CHOOSE SPIKE THRESHOLD
pop = 0 ▷ Population counter for N of M
index = len(histoList)
while pop < N do ▷ Highest activity population of N

pop += histoList[index-1]
index -= 1

thresh← index ▷ Spiking Threshold on the fly
return thresh

The reset phase involves selecting the addresses or IDs
of neurons that will be part of the N most highly activated
neurons to be propagated along-with the external spikes for
the next cycle and resetting their activation back to zero
subsequently.

To optimise the reset phase in a way that it remains
unaffected by the actual size of the network, we dispatch GPU
threads to only go through the list of target neurons in the
current cycle, select the N-of-M most active neurons, and reset
their activation. In this way, we save the computational cost
of going through all the neurons in our network, which can
be extremely large.

Algorithm 2 Spike List generation and reset cycle

Require: Empty list of outgoing spikes, spikeList which
stores the IDs of outgoing spikes

Require: Spiking threshold returned from the previous func-
tion, thresh

function GENERATE SPIKE LIST
for targNeur in actForwrdConnx do ▷ GPU threaded

count = actArr[targNeur]
if count ≥ thresh and len(spikeList) < N then

spikeList.append(targNeur)
actArr[targNeur] = 0 ▷ Reset activation
histoList[count] -= 1 ▷ Update histogram
histoList[0] += 1

The leak phase requires us to go through the activity of all
the neurons in our simulation and perform different leak modes
on them akin to the functioning of biological LIF neurons.

Algorithm 3 Neuron leak cycle

Require: p-bit Counter array for neuronal activation, denoted
by actArr

Require: Wipe mode, w for different leaky decays of the
neuronal activation with time and wipe threshold wipeTh
for special mode w = 3

function NEURON LEAK FUNCTION
for neuron in M do ▷ GPU threaded

if (actArr[neuron] > 0) and (w == 1) then
actArr[neuron] = 0 ▷ Hard reset

if (actArr[neuron] > 0) and (w == 2) then
actArr[neuron] -= 1 ▷ Gradual decrement

if (0 < actArr[neuron] < wipeTh) and (w == 3) then
actArr[neuron] = 0 ▷ Hard reset for low

activity

B. In-Core vs. Out-of-Core

In principle, our architecture has no real limitation in terms
of scaling. However, simulating networks of considerable
size presents a challenge in storing the binary connection
matrix, even after applying the zero-less compression tech-
nique. Despite this, we identify two feasible strategies for
storing synaptic connections in our network, each with distinct
advantages and limitations.

The first approach involves utilizing the 24 GB unified
shared RAM of the M2 chip for storage, resulting in an In-core
version of our architecture. While this method offers higher
I/O bandwidth, facilitating rapid read/write operations, it is
constrained by the RAM’s limited storage capacity, which may
become saturated during extremely large simulations.

Alternatively, the second strategy involves storing synaptic
connections on external Solid State Drives (SSDs). This Out-
of-Core approach allows for the simulation of substantially
larger architectures without memory constraints. The primary



challenge here is the lower I/O bandwidth of external SSDs,
which slows down read/write speeds. To mitigate this, we
employed multi-threaded reading using Swift’s Grand Cen-
tral Dispatch. This enables concurrent read/write operations,
leveraging the 10-core CPU of the M2 chip to counteract the
reduced I/O speed.

IV. RESULTS

A. Scalability of simulations

The first important result of the present study is the demon-
stration that when the simulation is propagating packets with
N spikes that each have C binary connections, the time taken
to run each step increases roughly linearly 1 with the number
of spikes in each packet.

Fig. 1: Log-Log scaled graph of total time versus the packet
of spike size (N), with C = 128 binary connections on Apple
M1 chip with 16 GBs of shared RAM

The second important result is the demonstration that the
time taken to propagate each packet is effectively invariant
with the size of the network, making it feasible to simulate
networks with billions of neurons. The only real constraint is
the amount of external storage space available. For the current
simulations, we equipped the basic Mac with two additional
4TB SSDs (Solid-State-Disks) that could each be used to store
up to 1 trillion connections (because each connection requires
4 bytes (32 bits) of storage).

1We can infer from figure 1, that the trend is perfectly linear in Log-Log
scaled graph for N >= 100, i.e. for bigger packet sizes

Fig. 2: Log-Log scaled graph of total time versus the archi-
tecture size (M), with C = 128 binary connections on Apple
M1 chip with 16 GBs of shared RAM

B. Optimum thread size

We systematically evaluated various thread grid configura-
tions to determine the optimal thread count for parallel spike
propagation. Our findings indicate that a configuration of 4 or
8 thread blocks, each consisting of 1024 concurrent threads,
is adept at efficiently propagating large batches of spikes.
This efficiency correlates with the maximal concurrent thread
processing capacity of the M2 chip.

The following section includes a comparative performance
analysis graph, illustrating the efficacy of our architecture
across different thread grid dimensions:

Fig. 3: Variation of GPU compute time for an architecture
with 4 Billion neurons, according to the number of threads
dispatched

V. DISCUSSIONS

A. Comparing the In-Core and Out-of-Core versions

As we discussed in section III-B , the main limitation with
the out-of-core version will be the speed with which data
can be read from the external file. Read speeds on currently
available SSD technologies can exceed 6 GB/second, but this
is for sequential reads. In our case, the main limit corresponds
to the maximum number of random reads and writes (IOPS),
currently around 1 million. Note that each operation reads
in 4KB of data, meaning that each neuron that spikes could
effectively have up to 1K targets.

Such simulations will work much faster when the con-
nection lists are loaded directly into RAM as in the in-
core version. Indeed, we have noticed that throughput can
be considerably increased using this strategy. The In-Core
version is roughly 30 times faster than the out-of-core version.
However, while systems such as the Mac Studio Ultra can
already have up to 128 GB of on-chip unified memory, and
there are rumours of future systems with up to 384 GB, such
systems will remain very expensive. For this reason, we are
concentrating on what can be achieved with more affordable
systems.



B. Visualisation

The simulator also displays the list of spiking neurons in a
rotating cube, for example with dimensions of 1000 x 1000 x
1000 for visualising a billion neurons in real time with the
simulation. A video of the simulator can be found on the
github link provided here.

C. Propagating spikes in the Terabrain

As we discussed already in section III about the implemen-
tational details, here we provide a schematic of the propagation
of spikes in a typical Terabrain architecture.

Fig. 4: Simple terabrain architecture with M = 16 neurons and
N = 3, for detecting CAT pattern in text input sequence

The input stimulus in this case is a text sequence, and the
neuron which is selective to respond to the "CAT" stimulus
has connections with the corresponding input pre-synaptic
neurons. There is a winner-take-all inhibition circuit that only
lets the N = 3 shortest latency spikes to be propagated in a
sparse and zero-less fashion to make the "CAT" neuron reach
the spiking threshold, which is τs = 3 in this case.

VI. PERSPECTIVES

The results presented here are primarily aimed at demon-
strating the feasibility of simulating very large networks of
spiking neurons without the need for any specialized hardware.
The basic simulations use patterns of connections that are ini-
tially completely random, so the system does not perform any
useful function. To perform a specific task using a Terabrain
architecture, the connections would have to be specified using
some form of learning procedure. We already have some well-
defined ideas for how this sort of learning could be done.
Essentially, we have developed unsupervised learning schemes
that effectively swap the inputs to a given neuron to match
patterns of firing that tend to repeat, similar to the JAST
Learning algorithm that was patented by Simon Thorpe et.
al, which can be found on this link.

One might wonder why one would ever require so many
neurons. Suppose that we used text to develop the equivalent
of a large language model, with neurons selective to all the
words in the language and connections that would allow
semantic knowledge to be stored in a semantic network. In
such a case, you might think it would be enough to have one

neuron for each word and use floating point connections to
link them together, with strengths that depend on the degree
of association. However, it is important to note that we do
not anticipate implementing a mechanism that could prevent
multiple copies of the same neuron from developing. In this
case, the very large number of neurons available could allow
the frequency of a given word to be represented by the number
of selective neurons. High-frequency words would naturally
have more copies than rare ones, making them more likely to
be included in the N neurons active on the next processing
cycle. Effectively, this means that the Bayesian prior for
a particular stimulus could be encoded by the number of
selective neurons.

At this stage, it is totally unclear what would be a suitable
value for N. The most useful value might well depend on
the type of data being processed and the task at hand. One
additional advantage of the current simulation system is that
N can be chosen at will and continuously varied if needed. The
simple fact is that keeping N low provides massive advantages
in terms of computational load. Keeping N very low could be
the secret of the human brain’s remarkable power efficiency.

Moreover, having lower values of N allows us to have a
more controllable system which could be essential for having
an explainable system. In other words, since N can be as low
as we like, we can isolate the minimal subset of features that
cause the inference, thus resulting in a fully explainable white
box in contrast to generic neural networks in literature.

VII. CONCLUSIONS

In conclusion, we have shown that today’s computer hard-
ware can already simulate extremely large spiking neural
networks with billions of neurons and potentially trillions of
binary connections.

Related Neuromorphic approaches include the SpiNNaker
project developed by Steve Furber’s group [11], [12] and the
recently announced DeepSouth project [18], [22]. But these
systems typically assume that neurons are firing at 1 or 2
spikes a second. Under such conditions, simulating systems the
size of the human neocortex would require propagating billions
of spikes every second, and this requires very specialised
hardware for real time processing. One of the key innovations
of the present work is the decision to only allow N spikes on
each processing cycle. With modest values for N, this allows
extremely large networks to be simulated without the need for
specialized hardware.

Remarkably, our simulations were possible using an energy
budget of around 37W, less than twice of the human brain’s
consumption. However, this requires radical changes to the
conventional processing strategies for simulating neural net-
works. Some of those ideas could be useful for other less
conventional approaches to implementing neural networks. A
critical challenge will be to see whether such ultra-sparse
systems are capable of performing advanced tasks such as
language processing and reasoning. Our ongoing work is
looking at how to implement learning algorithms that allow
neurons to become selective to repeat activity patterns.

https://github.com/karaditya/Binary-Spiking-Neural-Network-BSNN-/blob/main/README.md
https://patents.google.com/patent/EP3324343A1/en
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