N
N

N

HAL

open science

gryannote open-source speaker diarization labeling tool

Clément Pagés, Hervé Bredin

» To cite this version:

Clément Pagés, Hervé Bredin. gryannote open-source speaker diarization labeling tool. Interspeech

2024, Sep 2024, Kos, Greece. hal-04734839

HAL Id: hal-04734839
https://hal.science/hal-04734839v1

Submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04734839v1
https://hal.archives-ouvertes.fr

Interspeech 2024
1-5 September 2024, Kos, Greece

gryannote open-source speaker diarization labeling tool

Clément Pagés, Hervé Bredin

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

clement.pages@irit.fr herve.bredin@irit.fr

Abstract

gryannote is a collection of Gradio custom components focus-
ing on the labeling of speaker diarization data. Integrated with
the pyannote speaker diarization ecosystem, it allows to build
web applications to load pretrained pyannote pipelines and cus-
tomize their hyper-parameters, upload or record an audio file,
process it with the pipeline, visualize and interact with its out-
puts, correct them if needed, and export the final annotation in
RTTM format. Each of these components can be used indepen-
dently from each other.

Index Terms: speaker diarization, annotation process, pyan-
note, gradio

1. Introduction

Speaker diarization is the task of partitioning audio into speaker
turns according to the identity of the speaker, basically an-
swering the question “who spoke when?”. Speaker diarization
systems are often used as a pre-processing step for automatic
speech recognition. pyannote.audio [1, 2] is an open-source
Python library focused on the speaker diarization task (includ-
ing voice activity or overlapped speech detection), providing
dedicated pretrained models and pipelines. The main speaker
diarization pipeline is made of three steps: local segmentation
of an audio into speaker turns, extraction of speaker embed-
dings from these segments, and finally clustering of the speaker
turns. It relies on deep learning models trained on large amount
of data, labeled as accurately as possible, which is a very costly
process (in terms of human resources mostly). Therefore, it is
critical for annotation tools to allow fast and accurate labeling.
That is the main purpose of gryannote !, a collection of Gra-
dio custom components. The rest of this paper introduces this
framework, before describing in further details the annotation
application and its different components.

2. Gradio framework

Gradio is an open-source Python package designed to build
web application interface [3]. While Streamlit focuses mostly
on data visualization and dashboard web applications, Gradio is
more suitable for machine learning purposes. It relies on a set
of graphic components that can be considered as subsystems
taking inputs from the user interface or other components, and
predicting one or more outputs according to these inputs. Each
component allows interaction between the user and the machine
learning part (in our case the pyannote.audio library). These
components are divided into two distinctive parts: the backend

Thttps://github.com/clement-pages/gryannote

3650

. Select a pipeline

User

pipeline
audio or
annotations

. Edit annotations

A

annotations

l

annotations

_—
RTTM file
[S—

E
Figure 1: Possible interactions between the user and gryannote

components. Dotted arrows indicate planned (but not yet avail-
able) features.

and the frontend. On one side, the backend is for the logical and
data processing, and is implemented in Python. On the other
side, the frontend is used to retrieve user inputs from the inter-
face and shows prediction results provided by the backend. It is
based on the Svelte framework. One of the strengths of Gradio
is that it is possible to build custom components with specific
behavior and user interface. These customs components can in
turn be deployed as web applications or used in Jupyter note-
books, for example.

3. Custom components

gryannote consists of three distinct custom components, named
pipeline, annotation, and rttm, and described in the following
sections. Figure 1 represents how they interact between them
and with the user, in terms of input and outputs. First, the user
selects a pipeline and its configuration hyper-parameters. Then,
one can apply this pipeline to audio and optionally correct au-
tomatic annotations manually. When the user is satisfied with
the result, they can finally download the corresponding anno-
tations in Rich Transcription Time Marked (RTTM) format for
future reuse. A view of the complete gryannote interface is de-
picted in Figure 2, and shows how these components are vi-
sually organized on the screen. The three components are inde-
pendent from each other and can be used in a standalone manner
if needed.

Enter your Hugging Face token:

pyannote/speaker-diarization-3.1

Show configuration

segmentation
min_duration_off

clustering
threshold

method

nin_cluster_size

Update parameters

I [l MR

A: SPEAKER_00

sample.rttm

ple 16.7150.441
SPEAKER sample 17.156 0,017 <NA> <NA> SPEAKER_01 <NA> <NA>
17.5810; ¥
SPEAKER sample 1 8.311 1,596 <NA> <NA> SPEAKER_O1 <NA>
SPEAKER sample 1 10.467 4.278 <NA> <NA> SPEAKER_OL <NA>
SPEAKER sample 114,304 3,582 <NA> <NA> SPEAKER_00 <NA>
ple 19,907 10T

N>
<A
<NA>

1181580,

SPEAKER sample 1 16.022 3.480 <NA>
1217746757

SPEAKER sample 127,886 2.105 <NA>

<NA> SPEAKER_O1 <NA> <NA>

<NA> SPEAKER_O1 <NA> <NA>

Figure 2:

3.1. Pipeline selection

The pipelineselector component is used to select a pretrained
pipeline used to produce the first (automatic) version of the an-
notations. This pipeline can be supplied in two different ways:
either the user provides a predefined pyannote pipeline instance,
or chooses it interactively with the user interface. In the latter
case, the user chooses a pipeline from a dropdown list, auto-
matically filled by all supported pyannote pipelines available
on HuggingFace Hub. The component also allows the user to
modify the hyper-parameters of the selected pipeline.

3.2. Annotation of the audio

This component lets the user apply the selected pipeline on an
audio recording. This audio is either loaded from disk or gen-
erated directly using the microphone. The component then dis-
plays the annotations predicted automatically by the pipeline.
These annotations can be edited by the user, who can modify
the start and end times of each annotation, as well as adding
and deleting annotations, and splitting annotations. The user
can also modify the label of each annotation. Each of these
functions is associated with a keyboard shortcut, enabling the
user to make the annotation process more efficient. Rather than
playing an audio file, it is also possible to use the recording
function to directly record an audio conversation, and then ob-
tain the corresponding annotations. Alternatively, the compo-
nent can take previously produced annotations as input. In this
case, the component displays the annotations, which can also be
modified by the user.

0.7045654963945799

centroid v

B: SPEAKER 01

Run pipeline

3651

Screen of the app’s interface. (1): pipeline, (2): annotation, (3): rttm

3.3. Export in RTTM format

This component allows the user to export annotations in RTTM
format. These annotations are dynamically updated according
to changes made in the annotatedaudio component. The com-
ponent allows one to download the RTTM file, but also to up-
load an RTTM file to visualize annotations for instance.

4. Future work

We plan to add the ability to use the application, especially the
annotatedaudio component, in a streaming mode. We also aim
to use it in the context of interactive speaker diarization, where
the user can correct the annotations produced by a diarization
system, letting the system provide a new prediction that takes
the correction into account.

5. References

[1] H. Bredin, “pyannote.audio 2.1 speaker diarization pipeline: prin-
ciple, benchmark, and recipe,” in Proc. INTERSPEECH 2023,
2023.

[2] A. Plaquet and H. Bredin, “Powerset multi-class cross entropy
loss for neural speaker diarization,” in Proc. INTERSPEECH 2023,

2023.

A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, and J. Zou,
“Gradio: Hassle-Free Sharing and Testing of ML Models in the
Wild,” Jun. 2019, arXiv:1906.02569 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1906.02569

[3]

