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Abstract
We address the task of streaming speaker diarization and pro-
pose several contributions to achieve a better trade-off between
latency and accuracy. First, computational latency is reduced to
its bare minimum by switching to a causal frame-wise speaker
segmentation architecture. Then, a multi-latency look-ahead
mechanism is used during training to support adaptive latency
during inference at no additional computational cost. Finally,
we detail the method used during inference to achieve the fi-
nal frame-wise segmentation. We evaluate the impact of these
contributions on the AMI meeting dataset with a focus on the
speaker segmentation step, seen through the prism of voice
activity detection, overlapped speech detection and speaker
change detection.
Index Terms: speaker diarization, speaker segmentation, low
latency, lookahead

1. Introduction
Speaker diarization is the task of partitioning the recording of
a multi-speaker conversation into segments based on speaker
identity. While it has been addressed as a series of simpler sub-
tasks in the past [1], recent years have witnessed a strong in-
terest in monolithic approaches where a single neural network
is trained to ingest the audio and output diarization results di-
rectly [2, 3, 4]. Because multi-stage and end-to-end approaches
both have their pros and cons, recent works have investigated
their combination into hybrid approaches [5, 6], reaching state-
of-the-art performance on several benchmarks [7].

More precisely, hybrid approaches usually consist of two
main steps: end-to-end speaker diarization of a short (up to a
minute) window, sliding over the whole recording; followed by
a clustering step (based on speaker embedding) that stitches the
diarization results of the short windows into a coherent whole.
Both steps assume that their whole input (the window for the
first step, or the recording for the second) is available at once,
and therefore are not suitable for processing live recordings in
a streaming fashion out of the box.

Addressing speaker diarization in a streaming setting brings
its own set of challenges, mostly related to finding the best com-
promise between latency and accuracy (the lower the expected
latency, the lower the accuracy) [8, 9, 10]. For instance, Coria
et al. propose to switch from batch to incremental clustering
but still expect 5s windows to be available at once [11]. Practi-
cally, the latency of this approach is the sum of two terms: the
algorithmic latency which is controlled by the stride of the slid-
ing window, and the computational latency which is the time
needed to process a window. While the algorithmic latency
can be reduced by using a smaller stride, the computational la-
tency is more difficult to reduce as it depends on both the hard-

ware and the window duration. In Section 2, we build on top
of [11, 7] and focus on the architectural changes needed to turn
the offline speaker segmentation model (whose computational
latency depends on the duration of the window) into a causal
frame-wise model with (very) low computational latency, and
study their impact on the accuracy of the system.

Keeping computational latency constant, we then extend
the speaker segmentation model with the built-in ability to con-
trol the trade-off between accuracy and algorithmic latency,
through the use of look-ahead mechanism that greatly facili-
tates the real-time detection of speaker changes in particular.
Look-ahead mechanisms have been implemented in very dif-
ferent ways in the literature: from selecting hypothetical new
words from a proposal distribution [12] to changing the whole
structure of the model to adapt to it [13]. As discussed in Sec-
tion 3, our proposed approach differs from related diarization
work such as [14] (that appends a 1-dimensional convolutional
layer at the end of the encoder of their self-attention system)
because it does not need any architectural changes of the seg-
mentation model, everything happening at training time. We
also further extend the model to support adaptive latency at in-
ference time, at no extra computational cost.

Finally, we evaluate the impact of these contributions on the
AMI meeting dataset in Section 6 with a focus on the speaker
segmentation step, seen through the prism of voice activity de-
tection, overlapped speech detection, and speaker change detec-
tion.

2. From offline to causal frame-wise model

Table 1: Impact of architectural changes in the speaker segmen-
tation model. Average diarization error rates computed on 5s
chunks sampled from the AMI test set. A is the offline segmen-
tation model and D is our proposed frame-wise online model.

LSTM Instance Gain 5s chunk
direction norm. augm. DER%

A ←→ ✓ 17.3
B −→ ✓ 20.3

C −→ 22.2
D −→ ✓ 21.1

We base our segmentation model on the architecture and
loss of [7], which consists of SincNet convolutional layers [15]
followed by bi-directional LSTMs. To switch from this offline
block-wise segmentation model to a causal frame-wise one, two
changes in the architecture are needed, summarized in Table 1:
bi-directional LSTMs must be replaced by uni-directional ones
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(from A to B), and the instance normalization layers within the
SincNet architecture must be removed (from B to C) as they
cannot be used in an online fashion, as they take the whole
waveform into account when calculating their internal mean and
standard deviation. This enables us to achieve a causal frame-
wise model with a computational latency of around 100µs.
However, it also significantly worsens the accuracy of the seg-
mentation. To compensate for the lack of normalization, we use
training time gain augmentation (from C to D), which makes the
model more robust to variability in the amplitude of the input
signal, practically addressing the same issue as normalization.
Practically, a random gain sampled from the interval [-30, 30]
is added to each input.

Looking at Table 1 in more details, we can observe that
gain augmentation allows to close half of the gap between a
model with normalization layers and a model without. Yet,
there is still a significant difference between the offline model
(DER=17.3%) and the frame-wise one (DER=21.1%), mostly
caused by the change in the LSTM direction.
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Figure 1: Frame-wise DER within a 5s chunk, as a function of
the frame position within the chunk. Blue curve is the model D,
black curve is the original offline model A, and red curve is our
proposed streaming model with a 500ms latency look-ahead.

Figure 1 dives deeper into the impact of the architectural
changes on the behavior and accuracy of the model within a 5s
chunk. Focusing on the black (model A) and blue (model D)
curves for now, we notice that the bidirectional offline model
A is, on average, more accurate in the middle of 5s chunks
than on both sides for which its performance degrades symmet-
rically. As expected, its streaming counterpart (model D) is sig-
nificantly worse at the beginning of each chunk – which can be
explained by the total absence of context at the beginning of the
chunk.

3. Multi-latency training with look-ahead
The segmentation model ingests a 5s audio waveform, pro-
cesses it into a sequence of frames, and operates on each frame
in a causal manner. We propose to rely on a look-ahead mech-
anism to give the model information on several frames ahead
of the current one. The model will simply “wait” for a small
but constant number frames (which we denote λ) before giving

its prediction. Figure 2 depicts this principle: the output frame
t+ λ actually corresponds to the prediction for the input frame
t. This allows the model to access more context about what
happens right after the frame of interest t, i.e. frames between t
and t+ λ.

Figure 2: Look-ahead mechanism (the left part of the prediction
and the right part of the reference are never used)

In practice, adding this look-ahead ability to the model does
not need any additional architectural changes on the model side.
It is achieved at training time, by shifting the prediction and
the target before calculating the permutation-invariant powerset
cross-entropy loss [7]. More precisely, without look-ahead, the
loss function is defined as

L (y, ŷ) = min
p∈P
LCE (p(y), ŷ) (1)

where y and ŷ are the targets and predictions in powerset
space [7], and P is the set of speaker permutations in this space.
Adding look-ahead is obtained by cropping out the last λ frames
of the targets and the first λ frames of the predictions (depicted
as hatched red rectangles in Figure 2):

L (y, ŷ) = min
p∈P
LCE (p(y0→T−λ), ŷλ→T ) (2)

The approach can easily be generalized to multiple laten-
cies (λ1, λ2, . . . , λK ), though that needs a slight modification
of the final classifier layer. We denote Kpowerset the number of
classes in the powerset space (typically Kpowerset = 7 for chunks
with a maximum number of 3 speakers per chunk and 2 simul-
taneous speakers per frame). We duplicate the final classifier
layer K times, so that the model now outputs K predictions
ŷk, one for each latency. The rest of the model is common to
every latency. The training loss is computed as the sum of the
aforementioned look-ahead training loss over each latency:

L (y, ŷ) =
K∑

k=1

min
p∈P
LCE

(
p(y0→T−λk ), ŷ

k
λk→T

)
(3)

Despite this slight change in architecture, this infers no ad-
ditional cost at inference time as one simply goes through the
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Figure 3: Streaming inference. With the exception of the very first chunk that is used entirely, only the final 500ms of each subsequent
chunk is used in the final concatenated output. Predictions of each chunk are permutated for consistency with previous chunks.

branch of the requested latency. In other words, one can train a
single model and use it for different use cases requiring different
latencies. Going back to Figure 1, we can now focus our atten-
tion on the red curve which illustrates the performance at 500ms
latency of such a multi-latency streaming model. Adding such a
delay allows to compensate for most of the performance degra-
dation initially witnessed when switching from offline to causal
segmentation.

4. Streaming inference
Figure 3 depicts how this model is used in practice for streaming
speaker segmentation of long form audio. To keep the advan-
tages of hybrid speaker diarization approaches, we stick with an
approach based on sliding windows (5s chunks with a 500ms
stride). For instance, when working with 5s chunks and 500ms
stride, 10 chunks are active at the same time, being processed
in parallel, frame by frame. With the exception of the very first
chunk that is used entirely, only the final 500ms of each subse-
quent chunk is used in the final concatenated output.

To ensure permutation consistency and not accidentally
break speech turns when switching from chunk c − 1 to chunk
c, we find the permutation pc that minimizes the loss defined
in Equation 1 between the prediction on chunk c − 1 (used as
targets y) and chunk c, as soon as the part of chunk c that will
not end up in the final concatenation is available (here: frames
between t=0 and t=4.5s, used as prediction ŷ). The final 500ms
of chunk c are then concatenated, frame by frame, to the final
output using this permutation pc.

Note that this approach does not go all the way to speaker
diarization but focuses on speaker segmentation (hence the title

of the paper). Nevertheless it remains useful as several stream-
ing tasks can be addressed with speaker segmentation only:
streaming voice activity detection, streaming overlapped speech
detection, streaming speaker change detection, or even stream-
ing automatic speech recognition.

5. Experiments
We ran experiments and report results on the MixHeadset vari-
ant of the AMI meeting dataset [16], following the official
train/development/test partition. It comprises 100 hours of
recordings of meetings in English, divided into around 80h for
training and 20h for the development and test sets.

Our segmentation model processes 5 second audio chunks
sampled at 16kHz, corresponding to sequences of 80k audio
samples. These sequences are fed into SincNet convolutional
layers, following the original configuration [15], with the excep-
tion of the stride of the initial layer, set to 10 (we get one frame
every 17ms), and the removal of the instance normalization lay-
ers. Four uni-directional Long Short-Term Memory (LSTM)
recurrent layers (each with 128 units) are stacked on top of
two additional fully connected layers (each with 128 units and
leaky ReLU activation) which also operate at frame-level. A
final fully connected classification layer with a logsoftmax ac-
tivation function outputs either a Kpowerset dimensional speaker
activation or a Kpowerset × K dimensional activation if used in
the multi-latency configuration (K is the number of latencies).
Overall, our model contains 600k trainable parameters – most
of which (500k) comes from the recurrent layers.

We train the model with Adam optimizer with default Py-
Torch parameters and mini-batches of size 32. Learning rate
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Figure 4: Impact of latency on voice
activity detection.
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Figure 5: Impact of latency on overlapping
speech detection.

0 50 100 250 500 1000 Offline
Latency (ms)

17

18

19

20

21

22

23

24

25

26

Di
ar

iza
tio

n 
Er

ro
r R

at
e

AMI

0 50 100 250 500 1000 Offline
Latency (ms)

DIHARD

0 50 100 250 500 1000 Offline
Latency (ms)

VoxConverse

Figure 6: Impact of latency on speaker
change detection.

is initialized at 10−3 and reduced by a factor of 2 every time
its performance on the development set reaches a plateau for 30
epochs straight. The models are trained for at most one hundred
hours. All metrics were computed using pyannote.metrics [17]
open source Python library.

6. Results and discussion
We train a single multi-latency look-ahead speaker segmenta-
tion model on AMI training set, with the following target la-
tencies: 0ms, 50ms, 100ms, 250ms, 500ms, and 1s. When
studying the impact of latency in the rest of this section, keep in
mind that there is only one single model behind, and we simply
choose which latency branch to use at inference time.
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Figure 7: Performance of the proposed streaming speaker seg-
mentation model, as a function of the considered latency. Num-
bers are computed on the first 4 seconds of 5 seconds chunks
sampled from AMI test set (for fair comparison with the 1000ms
latency that does not generate output for last second).

Before diving into long-form streaming experiments, Fig-
ure 7 focuses on the impact of latency within a 5s chunk. Re-
ported numbers in Figure 7 shall therefore not be confused with
standard diarization error rates on AMI test set in the literature.
The first observation is that a 1s latency is almost as a good as
the non-streaming bi-directional version of the model. We also
report the actual value of the 3 components of diarization error

rate (missed detection, false alarm and speaker confusion rates)
to get a better understanding of the impact of the look-ahead
mechanism. Most of the improvement comes from a signifi-
cant decrease in missed detection and false alarm rates. The
speaker confusion rate remains almost constant (and low) as we
increase latency – which is somehow expected as there are only
a few speakers in a 5s chunk.

Figures 4, 5 and 6 summarize results on long-form record-
ings, for voice activity detection, overlap speech detection,
and speaker change detection. Because AMI test only con-
tains 16 files, the confidence interval at 95% computed us-
ing scipy’s bayes mvs is quite high [18]. Streaming voice
activity detection is derived from the proposed segmentation
by classifying frames as “speech” when at least one speaker
is active, and “non-speech” otherwise. Streaming overlapped
speech detection is achieved by classifying frames as “over-
lapping speech” when two or more speakers are active at the
same time, and “non-overlapping speech” otherwise. Stream-
ing speaker change detection is evaluated with oracle cluster-
ing of speech turns obtained thanks to the speaker segmenta-
tion, and computing the resulting diarization error rate. In all
three cases, and as anticipated in Figure 7, a higher latency in-
creases performance. For the three metrics, the improvement
even seems almost linear with respect to the allowed latency, up
to a latency of 1s that is almost on par with the performance of
an offline model.

7. Conclusion
In this paper, we study the impact of a multi-latency look-ahead
mechanism on the quality of a streaming speaker segmentation
model. We test those approaches on the AMI dataset and com-
pare the streaming model with its offline counterpart. We show
that our proposed method is systematically capable of closing
the gap between the streaming and the offline configuration.
Next steps include validating the approach on other datasets and
integrating this approach into a complete streaming speaker di-
arization pipeline using incremental online clustering of speaker
embedding extracted from resulting speech turns.
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