
HAL Id: hal-04734792
https://hal.science/hal-04734792v1

Submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a system of PDEs modeling a non-isothermal
adsorption column with a single species

C Bourdarias, M Gisclon, Timack Ngom

To cite this version:
C Bourdarias, M Gisclon, Timack Ngom. On a system of PDEs modeling a non-isothermal adsorption
column with a single species. Journal of Mathematical Analysis and Applications, 2024, 553 (2),
pp.127997. �10.1016/j.jmaa.2023.127997�. �hal-04734792�

https://hal.science/hal-04734792v1
https://hal.archives-ouvertes.fr


On a system of PDEs modeling a non-isothermal
adsorption column with a single species.

C. Bourdarias ∗, M. Gisclon †and Timack Ngom‡

July 4, 2024

Abstract

We present a study of some theoretical aspects for a model describing a nonisothermal
adsorption column without axial diffusion, with a single gaseous species and adiabatic op-
eration. In this model, the velocity of the gas is part of the unknown (sorption effect). We
obtain an existence and uniqueness result in a variational framework. We then consider the
particular case of instantaneous equilibrium between the gaseous and solid phases.

Key words: gas chromatography, nonlinear chromatography, nonisothermal adsorp-
tion, systems of conservation laws, boundary conditions.
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1 Introduction
Pressure Swing Adsorption (PSA) is a technology that is used to separate some species from
a gas under pressure according to these species’ molecular characteristics and affinity for
an adsorbent material (activated carbon, silica gel, alumina, resin, zeolite. . . ). One of the
primary applications of PSA is in the removal of carbon dioxide (CO2) as the final step
in the large-scale commercial synthesis of hydrogen (H2) for use in oil refineries and in the
production of ammonia (NH3). PSA is used extensively in the production and purification
of oxygen for medical uses. Another application of PSA is the separation of carbon dioxide
from biogas to increase the methane (CH4) ratio. A typical PSA system involves a cyclic
process where a number of connected vessels containing adsorbent material undergo succes-
sive pressurization and depressurization steps in order to produce a continuous stream of
purified product gas.

In previous papers by some of the present authors on this topic, we focused on a model
describing a step of the cyclic process, restricted to isothermal behavior [2] and, in a particular
situation leading to a hyperbolic system, two species [4, 5, 7, 8, 9, 10] (see also [14]). Working
with two species is of course restrictive in view of industrial applications but remains relevant
because this corresponds to an important field of applications: for example separation of
an He-CO2 mixture [21], of CO2-N2, CO2-CH4 or CO2-H2 mixtures. As examples of more
complex situations, the reader will find in [1] a numerical approach to the oxygen enrichment
of a mixture of three components (main constituents of air) and in [13] a theoretical and
experimental study for the bulk separation of a ternary mixture H2-CH4-CO2.

In this paper, we are interested in some theoretical aspects for a model describing a
nonisothermal adsorption column, with only one component and adiabatic operation. For a
description of the general model and a classification of the various systems with respect to
their complexity, we refer to Ruthwen ([20] chapter 9). In general fixed bed chromatography,
each of the N components simultaneously exists under two phases, a gaseous and movable
one with concentration Ci(t, x) and velocity u or a solid (adsorbed) other with concentration
qi(t, x), 1 ≤ i ≤ N .
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The system describing there evolution, in a simplified and adimensional form, may be
written as follows

∂tCi + ∂tqi + ∂x(uCi) = α∂2xxCi, 1 ≤ i ≤ N, (1)
∂tqi +Ai qi = Ai q

∗
i (C), 1 ≤ i ≤ N, (2)

∂tT − β ∂2xxT = −k p(t) ∂xu−
N∑
i=1

γi ∂t qi − k p′(t) (3)

ρ T = p(t), (4)

where C = (C1, · · · , CN ), ρ =
∑N
i=1 Ci. T is the temperature of the gaseous mixture as well

as that of the solid part (the adsorbent bed and the adsorbed components), see Remark 2.1.
The given constants α, k, Ai, γi are non negative.
The so-called isotherms q∗i quantify the amount of adsorbate i on the adsorbent as a function
of the concentrations. A given species i is said at equilibrium when it satisfies qi = q∗i (C).
The precise form of the isotherms is usually unknown and is experimentally obtained, but
there exists empirical models as the linear isotherm due to Henry [22] given by q∗i = Ki ci,
with Ki ≥ 0, semi-empirical models as the Langmuir isotherm [17] q∗i = QiKici

1+
∑N
j=1Kjcj

, with

Ki ≥ 0, Qi > 0 (see also [14, 18]) and theoretical models as the Brunauer-Emmett-Teller
(BET) isotherm [12] which writes, for a single adsorbate with concentration c, q∗(c) =

QK c
(1+(K− 1

cs
) c) (1− 1

cs
)
with Q, K > 0 and 0 < cs < 1.

Notice that the BET theory is an extension of the Langmuir theory, which is a theory for
monolayer molecular adsorption, to multilayer adsorption: gas molecules physically adsorb
on a solid in layers infinitely, only interact with adjacent layers and the Langmuir theory can
be applied to each layer. This model is mainly suitable for materials with pores larger than
a few nanometers.

In each of these models, the isotherms are smooth and increasing with respect to the
concentration of the corresponding adsorbate, thus we assume that q∗i is defined on (R+)N

and satisfies

q∗i (C −D) ≤ Cq |C −D| with Cq > 0, |C −D| =
N∑
i=1

|Ci −Di| (5)

q∗i (C1, · · · , Ci−1, 0, Ci+1, · · · , CN ) = 0,
∂q∗i
∂ci
≥ 0, i ∈ {1, · · · , N}. (6)

The function p, in Equation (4), is the given total pressure, depending only upon t. The
unknown are C, q, u and T . In gas chromatography, velocity variations accompany changes
in gas composition, especially in the case of high concentration solute: it is known as the
sorption effect. This effect is taken into account through Equation (4), which comes from
the law of perfect gas assumed to be valid here. The reader can refer for instance to [14].
The isothermal model consists of the set of Equations (1), (2) and (4) which means that ρ is
a given function depending only upon t. It was studied by one of the authors [2, 3] from both
theoretical and numerical points of view (without axial dispersion, i.e. α = 0). Notice that
in this model, the case N = 1 is of poor interest because C(t, x) = C1(t, x) = ρ(t) is a given
function and the system is solved analytically. On the contrary, in the model studied in this
paper, the case of a single species is interesting because it presents most of the difficulties
with simpler notations.

The paper is organized as follows: in a first section we present the physical model. Next
we show how to build the dimensionless model (1)-(2)-(3)-(4). In Section 4, we focus on the
resolution of a simplified case with only one species and no diffusion. Next, in section 5, we
consider the case of the instantaneous equilibrium between the gaseous and solid phases and
show how to adapt the previous case. Finally we evoke certain variants of the problem, in
particular with regard to the initial and boundary conditions, and the general case of N ≥ 1
species.
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2 A general model for a nonisothermal multicomponent
adsorption column
We present here the model described by Ruthwen ([20] chapter 9) and which is the starting
point of our study. It consists of a set of fluid phase mass balance for each of N species

∂τCi + ∂z(uCi) +
1− ε
ε

∂τqi = DL∂
2
zzCi, 1 ≤ i ≤ N, τ > 0, 0 < z < L (7)

a set of N o.d.e’s describing the exchanges of mass between the gaseous phase ads the solid
(or adsorbed) phase

∂τqi = f(q, C), 1 ≤ i ≤ N, τ > 0, 0 < z < L (8)

where q = (q1, · · · , qN ), C = (C1, · · · , CN ), and a set of two equations governing the tem-
perature Tg of the gaseous mixture, the temperature Ts of the solid phase (the temperature
Tw of the wall is known)

∂τ [εCgTg + (1− ε)CsTs] + ε∂z(CguTg)− ελL∂2zzTg =

(1− ε)
∑
i

(−∆Hi)∂τqi −
4hw
d

(Tg − Tw), τ > 0, 0 < z < L, (9)

Cs∂τTs −
3h

Rp
(Tg − Ts) = (−∆Hi)∂τqi, τ > 0, 0 < z < L. (10)

In this study we use a classical form of Equation (8) with f(q, C) = Ai (q∗i (C) − qi) where
Ai > 0 is a constant, q∗i satisfying (5)-(6).

We assume also that the perfect gas law is valid for the mixture, namely

P (t) = ρRT (11)

with a pressure P depending only upon t and ρ =
∑N
i=1 Ci (total concentration in fluid

phase).
In appendix A the various unknown, functions and constants are given with the corre-

sponding physical units (Tables 1, 2).

Remark 2.1 In the sequel we choose to focus on the case of an adiabatic process, so that
in (9) we have Tg = Tw. Next we assume that the temperatures of the gas and the adsorbent
are the same, i.e. Tg = Ts and the common value is noted T in the sequel. Notice that these
assumptions in no way modify the difficulty of the problem but make it possible to lighten the
notations.

3 The dimensionless model
Let C, T ∗, u∗ be respectively a characteristic concentration, a characteristic temperature
and a characteristic velocity. We set

C̃i =
Ci
C

and q̃i =
1− ε
εC

qi for i : 1, · · · , N,

ρ̃ =
ρ

C
=

N∑
i=1

C̃i, T̃ =
T

T ∗
, ũ =

u

u∗
and τ∗ =

L

u∗
.

We have then ρ̃ T̃ =
ρ T

C T ∗
=

P (t)

RCT ∗
=
P (t)

P ∗
= p(t) where P ∗ = RCT ∗ is a characteristic

pressure. Dividing (7) by C, (8) by
εC

1− ε
, (9) by (1 − ε)CsT

∗ and using the change of

variables t =
τ

τ∗
, x =

z

L
we get the system under its adimensional form

∂tC̃i + ∂tq̃i + ∂x(ũ C̃i) = α∂2xxC̃i,

∂tq̃i + Ãiq̃i = Ãi q̃∗i(C̃),

∂tT̃ − β ∂2xxT̃ = −k p(t) ∂xu−
N∑
i=1

γi ∂tq̃i − k p′(t),

ρ̃ T̃ = p(t)
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where we have set

α =
DL

Lu∗
, β =

ε λL
(1− ε)CsLu∗

, γi =
εC

(1− ε)CsT ∗
∆Hi, k =

εC Cpg
(1− ε)Cs

, Ãi = Aiτ
∗

and
q̃∗i(C̃) =

1− ε
εC

q∗i (C C̃)

with
C̃ = (C̃1, · · · , C̃N ).

Notice that q̃∗i is lipschitz continuous with constant C̃q =
1− ε
ε

Cq.
Omiting the ∼ over the various unknown, functions and constants we obtain the dimen-

sionless model (1)-(2)-(3)-(4).

4 A single species without axial diffusion
In this section we focus on the case of a single species, i.e. N = 1, with gaseous concentration
ρ, solid concentration q and neglect the axial diffusion i.e. α = 0. Moreover, for the sake of
simplicity, we assume that the total pressure is a constant p0 > 0 but we could easily obtain
the same results assuming

p ∈ H1(0,+∞) with p(t) ≥ p0 > 0.

We write the system in the following form for (t, x) ∈ (0, τ) × (0, 1) where τ > 0, in the
sequel, is no longer a variable but the fixed final time:

∂tρ+ ∂x(u ρ) = A (q − q∗(ρ)), (12)
∂tq = −A (q − q∗(ρ)), (13)

∂tT − β ∂2xxT = −k p0 ∂xu+ γ ∂tq (14)

with A, k, γ > 0 and the constraint

ρ T = p0, 0 ≤ t ≤ τ, 0 ≤ x < 1. (15)

In view of (5)-(6) the function q∗ is Cq-lipschitzian and satisfies

q∗(0) = 0, (q∗)′ ≥ 0.

Setting B = Aγ, we can also replace the term γ ∂tq in (14) by −B (q − q∗(ρ)).
The initial and boundary conditions are

(IBC)


∀t ∈ (0, τ), T (t, 0) = Tin(t),
∀t ∈ (0, τ), ∂xT (t, 1) = 0,

∀t ∈ (0, τ), u(t, 0) = uin(t) > 0,
∀x ∈ (0, 1), T (0, x) = T0(x),
∀x ∈ (0, 1), q(0, x) = q0(x).

The Neumann condition (4) for T at the outlet is convenient because (see the next section)
we seek a solution such that u(t, 1) > 0, which is not a priori garanteed whithout some
various constraints on the initial and boundary data in order to get sufficient regularity on
the temperature and the velocity.
In all the sequel L2, resp. L∞, stands for L2((0, τ)× (0, 1)), resp. L∞((0, τ)× (0, 1)) and for
all t ∈ (0, τ ] we note L2

t the space L2((0, t)× (0, 1)). We introduce also the Hilbert space

H =
{
φ ∈ H1(0, 1) ; φ(0) = 0,

∂φ

∂x
(1) = 0

}
.

The main result is

Theorem 4.1 Let τ > 0. We assume that T0 > 0 is constant on (0, 1), q0 ∈ H1(0, 1),
uin ∈W∞1 (0, τ) and Tin ∈ H2(0, τ) with Tin(0) = T0.
In addition we assume that the function

gu =

(
−B − kp0

1 + kp0/T0

(
AT0
p0
− B

T0

))
(q0(x)− q∗(p0/T0))− T ′in(0)
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belongs to H.
Then there exists Tm > 0, pm > 0 and um > 0 such that if Tin ≥ Tm, p0 ≤ pm and

uin ≥ um, the problem (12)-(13)-(14)-(15)-(IBC) has a unique global solution (u , q , ρ , T )
with

u ∈ L∞(0, τ ;L2(0, 1)), (16)
∂xu ∈ L∞(0, τ ; L2(0, 1)) ∩ L2(0, τ ; H1(0, 1)), (17)
∂t∂xu ∈ L∞(0, τ ;L2(0, 1)), (18)
∂tT, ∂xT ∈ L∞, (19)
∂t∂xT, ∂

2
xxT ∈ L∞(0, τ ; L2(0, 1)), (20)

∂2ttT ∈ L2 (21)

and there exists two real numbers a and b such that 0 < a ≤ T ≤ b.

Comments. The conditions gu(0) = 0 and g′u(1) = 0 (gu ∈ H), together with the choice
of the initial and boundary conditions ensure the validity of the compatibility conditions
intended to get sufficient regularity to obtain the outlet condition u(t, 1) > 0. They are for
instance realized if T ′in(0) = 0 (or even Tin = T0 on (0, τ)) and q0(x) = q∗(p0/T0) on (0, 1)
(equlibrium at t = 0), which is physically relevant in an experimental setting.

In order to prove Theorem 4.1 we need an intermediate result

Proposition 4.1 Let τ > 0. Let u such that

(Hu1)



u ∈ L∞(0, τ ;L2(0, 1)),

∂xu ∈ L∞(0, τ ;L2(0, 1)),

∂t∂xu ∈ L2,

u(t, 1) > 0.

Then there exists a real number Tm > 0 such that if Tin ≥ Tm then there exists constants
0 < a < b and a unique couple (q, T ) solution of

∂tq +Aq = Aq∗(p0/T ), (22)
∂tT − β ∂2xxT = −k p0 ∂xu−B(q − q∗(p0/T )), (23)

q(0, ·) = q0 ∈ H1(0, 1),

T (·, 0) = Tin ∈ H2(0, τ),

T (0, ·) = T0 = Tin(0)

such that
0 < a ≤ T ≤ b

and
T ∈ L∞(0, τ ;H1(0, 1)) ∩ L2(0, τ ;H2(0, 1)),

∂tT ∈ L2.

Moreover, assuming
(Hu2) ∂t∂xu ∈ L∞(0, τ ;L2(0, 1)),

if p0 is small enough and if the following compatibility condition is fulfilled

(CC) − k p0 ∂xu(0, ·)−B (q0 − q∗(p0/T0))− T ′in(0) ∈ H

then
∂tT, ∂xT ∈ L∞,

∂t∂xT, ∂
2
xxT ∈ L∞(0, τ ;L2(0, 1)),

∂2ttT ∈ L2.

To prove the main result (Theorem 4.1) as well as Proposition 4.1, we will have to use some
classical estimates in the domain of parabolic PDE that we recall in the next subsection.
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4.1 Classical estimates
We recall the following classic result adapted to the context of our study (see for instance
[16], [11]).

Proposition 4.2 Let τ > 0, β > 0, D0 ∈ H and f ∈ L2([0, τ) × [0, 1]). Let D the unique
weak solution of

∂tD − β ∂2xxD = f,

D(t, 0) = 0, t ≥ 0,

∂xD(t, 1) = 0, t ≥ 0,

D(0, x) = D0(x), 0 ≤ x ≤ 1

then
||D||2L2 ≤ τ eτ (||f ||2L2 + ||D0||2L2(0,1)), (24)

||∂tD||2L2 ≤ ||f ||2L2 + β||D′0||2L2(0,1), (25)

||∂2xxD||2L2 ≤
1

β2
||f ||2L2 +

1

β
||D′0||2L2(0,1), (26)

sup
t∈(0,τ)

||∂xD||2L2(0,1)(t) ≤
1

β
||f ||2L2 + ||D′0||2L2(0,1). (27)

In order to get more regularity fot T we will use the following result

Proposition 4.3 Let τ > 0, β > 0, G0 ∈ H ∩H2(0, 1) and h ∈ H1((0, τ) ; L2(0, 1)). Let G
the unique weak solution of

∂tG− β ∂2xxG = h,

G(t, 0) = 0, t ≥ 0,

∂xG(t, 1) = 0, t ≥ 0,

G(0, x) = G0(x), , 0 ≤ x ≤ 1.

If the following compatibility condition is fulfilled

g := h(0, ·) + βG′′0 ∈ H (28)

then
||∂tG||2L2 ≤ ||h||2L2 + β||G′0||2L2(0,1), (29)

||∂2ttG||2L2 ≤ 2||∂th||2L2 + 2β||g′||2L2(0,1), (30)

||∂t∂2xxG||2L2 ≤
1

β2
||∂th||2L2 +

1

β
||g′||2L2(0,1), (31)

sup
t∈(0,τ)

||∂t∂xG||2L2(0,1)(t) ≤
1

β
||∂th||2L2 + ||g′|2L2(0,1). (32)

4.2 Proof of Proposition 4.1
We use an argument of fixed point on T in a ball of L2(0, τ∗;H1(0, 1)) with 0 < τ∗ ≤ τ small
enough and we show that it is possible to iterate this process until reaching time τ . Let Eτ
be the closed convex set defined by

Eτ = {φ ∈ L2(0, τ ;H1(0, 1)); 0 < a ≤ φ ≤ b, φ(0, x) = T0, φ(t, 0) = Tin(t), ∂xφ(t, 1) = 0}

where the reals a and b are defined further. The space L2(0, τ ;H1(0, 1)) is equipped with
the classical norm

|||f ||| = ||f ||L2 + ||∂xf ||L2 .

We introduce the mapping

Φ : Eτ → L∞(0, τ ;H1(0, 1)) ∩ L2(0, τ ;H2(0, 1))

by setting Φ(S) = T where T is the unique weak solution of
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∂tT − β∂2xxT = −k p0 ∂xu−B (q − q∗(p0/S)), (33)
T (t, 0) = Tin(t) > 0, t ∈ (0, τ),

T (0, x) = T0, x ∈ (0, 1),

∂xT (t, 1) = 0, t ∈ (0, τ)

with q solution of
∂tq +Aq = Aq∗(p0/S), (34)

q(0, x) = q0(x), x ∈ (0, 1).

Using Proposition 4.2 with D = T − Tin (notice that D0 = T0 − Tin(0) = 0) we get the
following estimates on T

||T − Tin||2L2 ≤ τ eτ ||f ||2L2

where we have set

f = −k p0 ∂xu−B (q − q∗(p0/S))− T ′in (35)

and thus

||T ||2L2 ≤ 2 τ eτ ||f ||2L2 + 2 ||Tin||2L2(0,τ), (36)

||∂tT ||2L2 ≤ 2||f ||2L2 + 2 ||T ′in||2L2(0,τ), (37)

||∂2xxT ||2L2 ≤
1

β2
||f ||2L2 , (38)

sup
t∈(0,τ)

||∂xT ||2L2(0,1)(t) ≤
1

β
||f ||2L2 . (39)

We also need L2 estimates for q and q∗.

Lemma 4.1 Let τ > 0, A > 0, S a measurable function satisfying S ≥ a > 0, q0 ∈ L2(0, 1)
and q a solution of

∂tq +Aq = Aq∗(p0/S)

with q(0, x) = q0(x) and q∗ Cq-lipschitzian then for all t ∈ (0, τ ]:∣∣∣∣∣∣q∗ (p0
S

)∣∣∣∣∣∣2
L2
t

≤ t
C2
q p

2
0

a2
, (40)

||q||2L2
t
≤ t

(
||q0||2L2(0,1) + τ

AC2
q p

2
0

2 a2

)
. (41)

Proof: We have
∂tq +Aq = Aq∗(p0/S)

with q(0, x) = q0(x). We multiply by 2q and integrate on (0, 1) then

d

dt

∫ 1

0

q2 dx+ 2A

∫ 1

0

q2 dx = 2A

∫ 1

0

q q∗(p0/S) dx.

We integrate with respect to time on (0, σ) where σ ∈ (0, t), then∫ 1

0

q2(σ, x)dx+ 2A

∫ σ

0

∫ 1

0

q2(s, x) dx ds = 2A

∫ σ

0

∫ 1

0

q q∗(p0/S) dx ds+

∫ 1

0

q20(x) dx.

But 2Aq q∗ ≤ 2Aq2 +
A

2
(q∗)2 then

||q||2L2(0,1)(σ) =

∫ 1

0

q2(σ, x)dx

≤
∫ 1

0

q20 dx+
A

2
||q∗(p0/S)||2L2

t
.
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q∗ is Cq-lipschitzian then

||q∗(p0/S)||2L2
t

=

∫ t

0

∫ 1

0

(q∗)2(p0/S) dx ds

≤ t C2
q

p20
a2

namely (40). Finally

||q||2L2(0,1)(σ) ≤
∫ 1

0

q20 dx+ τ
AC2

q p
2
0

2a2

and

||q||2L2
t
≤ t

(
||q0||2L2(0,1) + τ

AC2
q p

2
0

2 a2

)
namely (41). �

We will prove that for Tin large enough and a convenient choice of a and b we have
φ(Eτ ) ⊂ Eτ . Next we will show that, for a time τ∗ ≤ τ , φ is stictly contracting on Eτ∗ .
Then, thanks to Schauder’s theorem, there exists a unique fixed point Tτ∗ for φ in Eτ∗ and
this fixed point is solution of

∂tT − β ∂2xxT = −k p0 ∂xu−B (q − q∗(ρ))

on [0, τ∗]× [0, 1] with ρ =
p0
T
. In a first step we have to find a, b such that if 0 < a ≤ S ≤ b

then a ≤ T = Φ(S) ≤ b. For this, we are looking for L∞ estimates on T . First, we have

|T (t, x)− Tin(t)| = |T (t, x)− T (t, 0)|

=

∣∣∣∣∫ x

0

(∂xT )(t, s) ds

∣∣∣∣
≤ ||∂xT ||L2(0,1)(t). (42)

Next, using (27) with D = T − Tin and f defined in (35) we have

||∂xT ||2L2(0,1)(t) ≤ ||T ′0||2L2︸ ︷︷ ︸
0

+
1

β
||f ||2L2 =

1

β
||f ||2L2

≤ 4

β

(
k2p20||∂xu||2L2 +B2 ||q||2L2 +B2||q∗(p0/S))||2L2 + ||T ′in||2L2(0,τ)

)
≤ 4

β

(
k2p20||∂xu||2L2 +B2τ(||q0||2L2 +

C2
q p

2
0

a2
(1 +

Aτ

2
))

+||T ′in||2L2(0,τ)

)
(43)

In the sequel, the total pressure p0 will have to be adjusted in order to ensure the contracting
property of Φ and we assume that p0 ≤ pM where pM > 0 is some arbitrary constant.

Setting

δ(a) =

[
4

β

(
k2p2M ||∂xu||2L2 +B2τ ||q0||2L2 +

C2
q p

2
M

a2
(1 +

Aτ

2
)) + ||T ′in||2L2(0,τ)

)]1/2
we get

Tin(t)− δ(a) ≤ T (t, x) ≤ δ(a) + Tin(t).

The real number a > 0 has to be defined such that Tin(t) ≥ a and Tin(t)− δ(a) ≥ a for
all t ∈ (0, τ), i.e.

Tin(t) ≥ a and (Tin(t)− a)2 − C − d

a2
≥ 0

where we have set

C =
4

β

(
k2||pM ∂xu||2L2 + τ B2 ||q0||2L2 + ||T ′in||2L2(0,τ)

)
> 0

and

d =
4B2τ C2

q p
2
M

β

(
1 + τ

A

2

)
> 0.
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Lemma 4.2 There exists a real number Tm > 0 which depends on the various constants of
the problem (except p0) and the intial-boundary data such that if Tin ≥ Tm then there exists
a real number a > 0 independant of p0 such that

Tin ≥ a and Tin − δ(a) ≥ a.

Proof: we search a under the form a = λTm, λ ∈]0, 1[ where Tm has to satisfy

(Tm − a)2 − C − d

a2
≥ 0

i.e. ϕ(λ) ≥ 0 where we have set ϕ(λ) = T 4
m λ

2(1− λ)2 − C T 2
mλ

2 − d.

We have ϕ′(λ) = 2λT 4
m P (λ) where P (λ) = 2λ2− 3λ+ 1− C

T 2
m

= 2(λ−λ1)(λ−λ2) has two

real roots λ1, λ2 such that, provided 1− C

T 2
m

> 0:

0 < λ1 =
1

4
(3−

√
∆) <

1

2
< 1 < λ2 =

1

4
(3 +

√
∆)

with ∆ = 1 +
8C

T 2
m

> 1. We have ϕ(0) = −d < 0, ϕ(1) = −CT 2
m− d < 0 and ϕ reaches its

maximum on ]0, 1[ for λ = λ1, thus a exists if and only if ϕ(λ1) ≥ 0.

In order to get a lower bound λ∗1 > 0 for λ1 we choose Tm such that T 2
m − µC ≥ 0 for

some fixed µ > 1 and we set
T (1)
m =

√
µC,

λ∗1 =
1

4

(
3−

√
1 +

8

µ

)
> 0.

Now, using P (λ1) = 0 and λ∗1 ≤ λ1 <
1

2
we have

ϕ(λ1) = T 4
mλ

2
1

(
λ21 − 2λ1 + 1− C

T 2
m

)
− d

= T 4
mλ

2
1

(
λ21 − 2λ1 − 2λ21 + 3λ1

)
− d

= T 4
mλ

3
1(1− λ1)− d

> T 4
m

(λ∗1)3

2
− d.

Thus ϕ(λ1) > 0 as soon as Tm ≥ T (2∗)
m where (T

(2∗)
m )4 =

2d

(λ∗1)3
.

Finally we set Tm = max(T
(1)
m , T

(2∗)
m ) and a = λ1Tm. �

It remains to define b by setting for instance b = ||Tin||∞+ δ(a). Notice that a, b, Tm are
independant of p0. With Tin ≥ Tm defined in Lemma 4.2 and the corresponding choices of
a, b we get Φ(Eτ ) ⊂ Eτ .

Lemma 4.3 There exists a time τ∗ ≤ τ such that the application φ is contracting on Eτ∗ .

Proof: let S1 ∈ Eτ∗ , S2 ∈ Eτ∗ , T1 = φ(S1), T2 = φ(S2). Let q1 be associated with T1.
Let q2 be associated with T2. We put D = T2 − T1 and Q = q2 − q1. Then D, Q satisfy

∂tD − β∂2xxD = −BQ−B(q∗(p0/S2)− q∗(p0/S1)),

∂tQ+AQ = A(q∗(p0/S2)− q∗(p0/S1)) (44)

with
D(t, 0) = 0, t ∈ (0, τ),

∂xD(t, 1) = 0, t ∈ (0, τ),

D(0, x) = 0, 0 ≤ x ≤ 1,

Q(0, x) = 0, 0 ≤ x ≤ 1.

9



In order to estimate ||Q||2L2 we mutliply Equation (44) by 2Q and we integrate on (0, 1). We
obtain

d

dt

∫ 1

0

Q2dx+ 2A

∫ 1

0

Q2 dx = 2A

∫ 1

0

Q(q∗(p0/S2)− q∗(p0/S1)) dx

≤ 2A

∫ 1

0

Q2 dx+
A

2

∫ 1

0

(q∗(p0/S2)− q∗(p0/S1))2 dx

then
d

dt

∫ 1

0

Q2dx ≤ A

2

∫ 1

0

(q∗(p0/S2)− q∗(p0/S1))2 dx.

We integrate in time then∫ 1

0

Q2dx ≤ A

2
||q∗(p0/S2)− q∗(p0/S1)||2L2(0,1).

But q∗ is Cq−lipschitzian then

|q∗(p0/S2)− q∗(p0/S1)| ≤ Cqp0

∣∣∣∣ 1

S2
− 1

S1

∣∣∣∣
≤ Cq p0

a2
|S2 − S1|

because a2 ≤ |S1S2|. Then

||q∗(p0/S2)− q∗(p0/S1)||2L2(0,1) ≤
C2
q

a4
||p0(S2 − S1)||2L2 (45)

and then ∫ 1

0

Q2dx ≤ A

2

C2
q

a4
||p0(S2 − S1)||2L2 .

Finally

∀t ∈ (0, 1], ||Q||2L2
t
≤ t A

2

C2
q

a4
||p0(S2 − S1)||2L2 . (46)

Using Estimate (27) with D0 = 0 and

f = −BQ+B(q∗(p0/S2)− q∗(p0/S1)) (47)

we obtain, using (45) and (46)

||∂xD||2L2
t
≤ t

β
||h||2L2

≤ t
2B2

β

(
||Q||2L2 + ||q∗(p0/S2)− q∗(p0/S1)||2L2

)
≤ t

2B2

β a4

(
τ
A

2
+ 1

)
C2
q ||p0(S2 − S1)||2L2

≤ t
2B2

β a4

(
τ
A

2
+ 1

)
C2
q ||p0(∂x(S2 − S1))||2L2

and we have also ||D||2L2 ≤ ||∂xD||2L2 . It remains to choose t ≤ τ such that

t
2B2

β a4

(
τ
A

2
+ 1

)
C2
q < 1.

Then there exists a time τ∗ ≤ τ such that Φ is strictly contracting on Eτ∗ and thus there
exists a unique fixed point for Φ, denoted Tτ∗ which is the unique solution of (14) where
ρ =

q

T
, q satisfying (13). �

To obtain a global solution, it remains to show that we can iterate the above process on
[τ∗, 2τ∗] and so on until reaching the final time τ .

Let S ∈ L2((τ∗, τ ); H1(0, 1)) be a function satisfying the boundary conditions of the
problem, the initial condition S(τ∗, ·) = T (τ∗, ·) on (0, 1) and a ≤ S ≤ b. Let T the solution
of (33) on (τ∗, τ)× (0, 1) with S instead of S, with the same initial and boundary conditions
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as S.
Let S, resp. T , the function equal to Tτ∗ for t ∈ [0, τ∗) and equal to S, resp. T , for
t ∈ [τ∗, τ). Let q be the solution of (34) with q(0, ·) = q0. Then S, T, q satisfy (33), (34) for
t ∈ (0, τ) with the initial and boundary conditions of the problem and the estimate (43) is
valid on (0, τ), thus on (τ∗, τ). This allows us to get a ≤ T ≤ b, to iterate the process on
(τ∗,max(2τ∗, τ)) and finally to get a solution on (0, τ).

In order to obtain the estimates of additional regularity under the assumptions (Hu2)
and (CC), we set, using the notations of Proposition 4.3

h = −k p0 ∂xu−B(q − q∗(p0/T ))− T ′in(t), (48)

G = T − Tin,

G0 = T0 − Tin(0) = 0,

g = h(0, .) = −k p0 ∂xu(0, ·)−B(q0 − q∗(p0/T0))− T ′in(0)

where (q, T ) is the solution of (22)-(23). Then we have juste to apply Proposition (4.3) and
we get

||∂tT ||2L2 ≤ 2||h||2L2 + 2||T ′in||2L2(0,τ), (49)

||∂2ttT ||2L2 ≤ 2
(
||∂th||2L2 + β||g′||2L2(0,1) + ||T ′′in||2L2(0,τ)

)
, (50)

||∂t∂2xxT ||2L2 ≤
1

β2
||∂th||2L2 +

1

β
||g′||2L2(0,1), (51)

sup
t∈(0,τ)

||∂t∂xT ||2L2(0,1)(t) ≤
1

β
||∂th||2L2 + ||g′||2L2(0,1). (52)

In the sequel, C denotes various constants depending only on initial and boundary data.
First we have, with (48)

||h||2L2 ≤ 3
(
k2 ||p0 ∂xu||2L2 +B2||q − q∗(p0/T )||2L2 + ||T ′in||2L2(0,τ)

)
≤ C (1 + ||p0 ∂xu||2L2)

or, as well

||h||2L2 ≤ C (1 + ||p0 ∂t∂xu||2L2),

and we get
||∂tT ||2L2 ≤ C (1 + ||p0 ∂t∂xu||2L2). (53)

Next we have

∂th = −kp0∂t∂xu+AB(q − q∗(p0/T ))−B(q∗)′(p0/T )
p0
T 2
∂tT − T ′′in(t)

and thus

||∂th||2L2 ≤ 4

(
k2 ||p0 ∂t∂xu||2L2 +A2B2||q − q∗(p0/T )||2L2 + p20

B2C2
q

a2
||∂tT ||2L2 + ||T ′′in||2L2(0,τ)

)
.

Finally, with (53)

||∂th||2L2 ≤ C (1 + ||p0 ∂t∂xu||2L2). (54)

Using these estimates in (50), (51) and (52) we get similarly

||∂2ttT ||2L2 ≤ C (1 + ||p0 ∂t∂xu||2L2), (55)

||∂t∂2xxT ||2L2 ≤ C (1 + ||p0 ∂t∂xu||2L2), (56)

sup
t∈(0,τ)

||∂t∂xT ||2L2(0,1) ≤ C (1 + ||p0 ∂t∂xu||2L2). (57)
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The L∞ bounds for ∂tT and ∂xT follow easily. First

|∂tT (t, x)| ≤ ||T ′in||∞ +

∫ 1

0

|∂t∂xT (t, ξ)| dξ

≤ ||T ′in||∞ + sup
t
||∂t∂xT ||L2(0,1)(t)

≤ C (1 + ||p0 ∂t∂xu||2L2)1/2. (58)

Next we have, with T0 constant

∂2xxT =

∫ τ

0

∂t∂
2
xxT (s, x) ds,

(∂2xxT )2 ≤ τ ||∂t∂2xxT ||2L2
(0,τ)

(x)

and thus, integrating over (0, 1) with respect to x we get, thanks to (56), ∂2xxT ∈ L∞(0, τ ; L2(0, 1))
with the estimate

sup
t∈(0,τ)

||∂2xxT ||2L2(0,1)(t) ≤ C τ (1 + ||p0 ∂t∂xu||2L2).

Finally we write

|∂xT (t, x)| ≤ |∂xT (t, 1)|+
∫ x

1

|∂2xxT (t, ξ)| dξ

≤
∫ 1

0

|∂2xxT (t, ξ)| dξ

≤ sup
t
||∂2xxT ||L2(0,1)(t)

≤ τ1/2 ||∂t∂2xxT ||2L2

≤ C τ1/2 (1 + ||p0 ∂t∂xu||2L2)1/2. (59)

This concludes the proof of Proposition 4.1. �

Remark 4.1 Under the assumptions (Hu2) and (CC), using the L∞ estimate (58) we get
immediately new estimates for ∂tT and ∂xT

||∂tT ||L2 ≤ C τ (1 + ||p0 ∂t∂xu||2L2), (60)
sup
t∈(0,τ)

||∂xT ||2L2(0,1)(t) ≤ C τ (1 + ||p0 ∂t∂xu||2L2). (61)

4.3 Proof of Theorem 4.1
The proof is based on a fixed point method for the velocity u, using Equation (12). More
precisely, for a velocity u given in a closed convex set Uτ defined below, with q, T the solutions
of (13)-(14) and ρ = p0/T , we define v = ψ(u) as the solution of

∂x(ρ v) = −∂tρ+A(q − q∗(ρ)),

v(t, 0) = uin(t)

and we show that, for p0 small enough, ψ is contracting for an appropriate norm and for a
small final time. Then we iterate the process as in the proof of Proposition 4.1.
The previous equation gives succesively

p0 v(t, x) = ρ T (t, x) v(t, x)

= T (t, x) (ρ v)(t, 0) + T (t, x)

∫ x

0

∂x(ρ v(t, ξ)) dξ

= T (t, x) (ρin uin)(t) + T (t, x)

∫ x

0

(−∂tρ+A(q − q∗(ρ))) dξ

= T (t, x) (ρin uin)(t) + T (t, x)

∫ x

0

(−∂t(p0/T ) +A(q − q∗(p0/T ))) dξ

= T (t, x) (ρin uin)(t) + T (t, x)

(∫ x

0

p0
∂tT

T 2
(t, ξ)dξ +

∫ x

0

(A(q − q∗(p0/T ))(t, ξ) dξ

)
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and

p0 ∂xv(t, x) = (ρin uin)(t) ∂xT (t, x) + ∂xT (t, x)

∫ x

0

[
A(q − q∗(p0/T )) + p0

∂tT

T 2

]
(t, ξ) dξ

+T (t, x)A(q − q∗(p0/T ))(t, x) + p0
∂tT

T
(t, x). (62)

Assuming T (0, ·) = T0 constant on (0, 1) we have

p0 ∂xv(0, x) = T0A(q0(x)− q∗(p0/T0)) + p0
∂tT (0, x)

T0
.

Moreover, the compatibility conditions being fulfilled, we have

∂tT (0, x) = βT ′′0 − kp0 ∂xu(0, x)−B (q0(x)− q∗(p0/T0))

= −kp0 ∂xu(0, x)−B (q0(x)− q∗(p0/T0))

and finally

∂xv(0, x) =

(
AT0
p0
− B

T0

)
(q0(x)− q∗(p0/T0))− kp0

T0
∂xu(0, x), (63)

thus the fixed point u, if it exists, satisfies

∂xu(0, x) =

(
AT0
p0
− B

T0

)
1 + kp0

T0

(q0(x)− q∗(p0/T0)). (64)

Using this expression of ∂xu(0, x) we get, with the notations of Proposition 4.3

g = gu =

(
−B − kp0

1 + kp0/T0

(
AT0
p0
− B

T0

))
(q0(x)− q∗(p0/T0))− T ′in(0)

and the asumptions of Theorem 4.1 ensure the compatility conditions. Of course, with this
choice, ∂xv(0, x) = ∂xψ(u)(0, x) = ∂xu(0, x) and the compatibility conditions remain valid
with v.

Now, let M > 0, M1 > 0, um > 0 and

Uτ =
{
u ∈ L∞(0, τ ;H1(0, 1)), ∂t∂xu ∈ L2, u(t, 0) = uin(t) ≥ um > 0,

∂xu(0, x) satifying (64) on (0, 1), sup
t∈(0,τ)

||p0∂xu||2L2(0,1)(t) ≤M, sup
t∈(0,τ)

||p0 ∂t∂xu||2L2(0,1)(t) ≤M1

}
.

The constants Tm, a, b introduced in the proof of Proposition 4.1 are now associated to the
constant M in place of ||p0M∂xu||2L2(0,1)and thus no longer depend on the velocity u ∈ Uτ .

We recall that for all T associated to some u ∈ Uτ we have 0 < a ≤ T < b as soon as
Tin ≥ Tm.

Moreover the various estimates stated in the proof of Proposition 4.1 are used in the sequel
with ||p0∂xu||2L2 and ||p0 ∂t∂xu||2L2 respectively replaced by M and M1. The minimum input
velocity um must be defined such as u(t, 1) > 0, but we have

u(t, 1) = uin(t) +

∫ 1

0

∂xu(t, ξ) dξ

≥ um −
∫ 1

0

|∂xu(t, ξ)| dξ

≥ um − sup
t
||∂xu||L2(0,1)(t)

≥ um −
√
M

p0

thus we choose um such that

um >

√
M

p0
. (65)

In all the sequel, C denotes various constants depending only on the constants of the problem,
including τ , M , M1 and on the initial and boundary data via appropriate norms.
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Lemma 4.4 If p0 is small enough then there exists τ1 ∈ (0, τ ] such that for all u ∈ Uτ1 we
have ||p0∂xv||2L2

τ1

≤M .

Proof: using (62) we can write

p0 ∂xv = A1 +A2 +A3 +A4

with
A1 = (ρin uin)(t) ∂xT,

A2 = ∂xT

∫ x

0

r(t, ξ dξ

where
r = A(q − q∗(p0/T )) + p0

∂tT

T 2
,

A3 = T A(q − q∗(p0/T )),

A4 = p0
∂tT

T
.

Then
∀t ∈ (0, τ ], ||p0 ∂xv||2L2

t
≤ 4(||A1||2L2

t
+ ||A2||2L2

t
+ ||A3||2L2

t
+ ||A4||2L2

t
).

We have first, thanks to Estimate (39)

||A1||2L2
t

= ||uin ρin ∂xT ||2L2
t

≤ ||uin ρin||2∞||∂xT ||2L2

≤ C t

Next we have

||A2||2L2
t

= ||∂xT
∫ x

0

r||2L2
t

=

∫ t

0

∫ 1

0

(∂xT )2
(∫ x

0

r

)2

≤ sup
s∈(0,τ)

||∂xT ||2L2(0,1)(s)||r||
2
L2(0,1)(t)

then, using (40) and (41)

||A2||2L2
t
≤ 3 sup

s∈(0,τ)
||∂xT ||2L2(0,1)(s)

(
A2 ||q||2L2

t
+A2||q∗(p0/T )||2L2

t
+
p20
a4
||∂tT ||2L2

)
≤ C(t+ p20).

Next, with (40) and (41), we have

||A3||2L2
t

= ||T A(q − q∗(p0/T ))||2L2
t

≤ 2 b2A2
(
||q||2L2

t
+ ||q∗(p0/T ))||2L2

t

)
≤ C t.

Finally, with (37)

||A4||2L2
t

= ||p0
∂tT

T
||2L2

t

≤ p20
a2
||∂tT ||2L2

≤ Cp20

and we can write finally
||p0 ∂xv||2L2

t
≤ C (t+ p20).

If, for instance, p0 ≤
M

2C
, we set τ1 =

M

2C
and we get finally ||p0∂xv||2L2

τ1

≤ M for u ∈ Uτ1 .
�
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Lemma 4.5 If p0 is small enough then there exists τ2 ∈ (0, τ ] such that for all u ∈ Uτ2 we
have ||p0∂t∂xv||2L2

τ2

≤M1.

Proof: we have

p0∂t∂xv =

8∑
i=1

Bi (66)

where
B1 = (uin ρin)′(t)∂xT,

B2 = (uin ρin)(t)∂t∂xT,

B3 = ∂t∂xT

∫ x

0

r

where again

r = A(q − q∗(p0/T )) + p0
∂tT

T 2
,

B4 = ∂xT

∫ x

0

∂tr,

B5 = A(q − q∗(p0/T )) ∂tT,

B6 = T∂tr,

B7 =
p0
T
∂2ttT,

B8 = − p0
T 2

(∂tT )2.

Under the asumptions of Theorem 4.1, the compatibility conditions are satisfied and we will
have to use the various estimates (53) to (61) with ||p0∂t∂xu||2L2((0,τ∗]×(0,1)) ≤M1.

With (59) we get first

||B1||2L2
t
≤ ||(uin ρin)′||2∞ ||∂xT ||2L2

t
≤ C t.

Next, with (57)
||B2||2L2

t
≤ ||uin ρin||2∞ ||∂t∂xT ||2L2

t
≤ C t.

For B3 we proceed as above for A2 and we get

||B3||2L2
t
≤ sup
s∈(0,τ)

||∂t∂xT ||2L2(0,1)(s) ||r||
2
L2
t
.

Using (40), (41) and (60) we have finally

||B3||2L2
t
≤ C t.

Similar estimates are also obtained easily for ||B4||2L2 , ||B5||2L2 and ||B6||2L2 .
For B7, using (55)

||B7||2L2
t
≤ C p20.

For B8, using (58)
||B8||2L2

t
≤ C t p20.

Finally
||p0∂t∂xv||2L2

t
≤ C (t+ p20)

and we conclude as for ||p0∂xv||2L2
t
in Lemma 4.4. �

From Lemma 4.4 and Lemma 4.5 we deduce that for p0 small enough there exists τ ′ =
min(τ1, τ2) ≤ τ such that ψ(Uτ ′) ⊂ Uτ ′ . Now we show that for ψ is contracting on a subset
of Uτ ′ under some conditions. More precisely

Lemma 4.6 For p0 small enough there exists a time τ∗ ≤ τ such that the application ψ is
contracting on Uτ∗ for the norm

||u|| = ||u(t, 0)||L2(0,τ∗) + ||p0∂xu||L2
τ∗
.
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Proof: Let u1, u2 ∈ Uτ ′ , let T1, T2, q1, q2 associated to u1, u2 respectiveley, with the
same boundary conditions and u1(0, .) = u2(0, .). We set

ρ1 =
p0
T1
, ρ2 =

p0
T2
, ψ(u1) = v1, ψ(u2) = v2.

As v1(t, 0) = v2(t, 0) = uin(t), we have just to control ||p0 ∂x(v2 − v1)||2
L2
t
for 0 < t ≤ τ ′.

Setting

r1 = A(q1 − q∗(p0/T1)) + p0
∂tT1
T 2
1

,

r2 = A(q2 − q∗(p0/T2)) + p0
∂tT2
T 2
2

,

D = T2 − T1
we have

p0 ∂x(v2 − v1) = A1 +A2 +A3 +A4 +A5

A1 = u0(t) ρ0 ∂xD,

A2 = ∂xD

∫ x

0

r2,

A3 = ∂xT1

(∫ x

0

(r2 − r1)

)
,

A4 = Dr1,

A5 = T2(r2 − r1)

and D = T2 − T1 satisfies

k ∂tD − β ∂2xxD = p0 (∂xu2 − ∂xu1) +B (q2 − q1)−B (q∗(p0/T2)− q∗(p0/T1)),

D(t, 0) = 0, t ∈ (0, τ),

∂xD(t, 1) = 0, t ∈ (0, τ),

D(0, x) = 0, 0 < x < 1.

Setting
h = p0 (∂xu2 − ∂xu1) +B (q2 − q1)−B (q∗(p0/T2)− q∗(p0/T1))

thanks to Proposition 4.2 and Equation (43) we have the following estimates

||∂tD||2L2
t
≤ ||h||2L2

t
, (67)

sup
s∈(0,t)

||∂xD||2L2(0,1)(s) ≤
1

β
||h||2L2

t
(68)

and the estimates (60)-(61) are valid for T1 and T2.
Then

||A1||2L2
t
≤ t

β
||u0ρ0||2∞||h||2L2 ,

||A2||2L2
t
≤ t

β
||r2||2L2 ||h||2L2 ,

||A3||2L2
t

= ||∂xT1
(∫ x

0

(r2 − r1)

)
||L2

t

≤ sup
s∈(0,τ)

||∂xT1||L2(0,1)(s) ||r2 − r1||2L2
t

≤ C ||r2 − r1||2L2
t
,
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||A4||2L2
t

= ||Dr1||2L2
t

=

∫ t

0

∫ 1

0

D2r21

≤
∫ t

0

∫ 1

0

(∫ x

0

∂xD

)2

r21

≤
∫ t

0

(∫ 1

0

(∂xD)2
)∫ 1

0

r21

≤ sup
0≤s≤t

||∂xD||2L2(0,1)(s)||r1||
2
L2
t

≤ 1

β
||h||2L2

t
||r1||2L2

t
,

||A5||2L2 ≤ C ||r2 − r1||2L2 .

Now, we have to estimate ||r1||2L2
t
, ||r2||2L2

t
, ||r2 − r1||2L2

t
and ||h||2

L2
t
.

As seen before (proof of Lemma 4.4), we have for i = 1, 2

||ri||2L2
t
≤ C (t+ p20).

Next,

r2 − r1 = A(q2 − q1)−A(q∗(p0/T1)− q∗(p0/T2)) + p0

(
1

T 2
2

− 1

T 2
1

)
∂tT1 −

∂tD

T 2
2

p0.

With Equation (46) we have

||q2 − q1||2L2
t
≤ t p20

AC2
q

2a4
||D||2L2

≤ t2 p20
AC2

q

2a4β
||h||2L2

t
(69)

and with (45), where Si = Ti

||q∗(p0/T1)− q∗(p0/T2)||2L2
t
≤

C2
q

a4
||p0D||2L2

t

≤ t p20
C2
q

a4 β
||h||2L2

t
. (70)

For the third term ∣∣∣∣p0( 1

T 2
2

− 1

T 2
1

)
∂tT1

∣∣∣∣ = p0
|T1 + T2|
T 2
1 T

2
2

|D||∂tT1|

≤ p0
2 b

a4
|D||∂tT1|

then, thanks to Equations (68) and (60)∣∣∣∣∣∣∣∣p0( 1

T 2
2

− 1

T 2
1

)
∂tT1

∣∣∣∣∣∣∣∣2
L2
t

≤ p20
4b2

a∗8

∫ t

0

∫ 1

0

D2(∂tT1)2

≤ p20
4b2

a∗8
sup

s∈(0,τ)
||∂xD||2L2(0,1)(s)||∂tT1||

2
L2
t

≤ C p20 ||h||2L2
t

Finally, with Equation (67), we have

||r2 − r1||2L2
t
≤ C p20 ||h||2L2

t
.

Using again Equations (69) and (70), we have

||h||2L2
t
≤ 3

(
||p0 ∂x(u2 − u1)||2L2

t
+B2||q2 − q1||2L2

t
+B2 ||q∗(p0/T2)− q∗(p0/T1)||2L2

t

)
≤ 3

(
||p0 ∂x(u2 − u1)||2L2

t
+B2

(
t2 p20

AC2
q

2a4β
||h||2L2

t

)
+B2

(
t p20

C2
q

a4 β
||h||2L2

t

))
≤ 3

(
||p0 (∂x(u2 − u1)||2L2

t
+K p20 ||h||2L2

t

)
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with

K = τ B2
C2
q

βa4

(
1 +

A

2
τ

)
.

Thus, assuming p0 small enough such that 3Kp20 < 1, we get

||h||2L2
t
≤ C||p0 (∂xu2 − ∂xu1)||2L2

t

and
||r2 − r1||2L2

t
≤ C p20 ||p0 (∂xu2 − ∂xu1)||2L2

t
.

Finally, by gathering the previous estimates we obtain

||p0 ∂x(v2 − v1)||2L2
t
≤ C (p20 + t) ||p0 (∂xu2 − ∂xu1)||2L2

t

Now, we fix p0 satisfying all the previous constraints and being such that C p20 < 1, then
there exists a time τ∗ ≤ τ ′ satisfying C (p20 + τ∗) < 1, so that ψ is contracting on Uτ∗ .
Let u ∈ Uτ∗ be the unique fixed point of ψ, let (q, T ) be the corresponding solution of (22)-
(23) and let be ρ =

p0
T
, then we easily get that (u , q , ρ , T ) is the unique solution of the

problem (12)–(4) on (0, τ∗)× (0, 1). It remains to iterate the process on (τ∗, 2τ∗) and so on,
until reaching the final time τ . This is achieved in the same spirit than the end of the proof
of Proposition 4.1. The important point is that it is possible to use the same estimates as
on (0, τ∗), using only the initial data (it means t = 0 and not t = τ∗) and boundary data of
the problem. �

5 The case of instantaneous equilibrium
We consider now, as in references [4] to [10], the case of instantaneous equilibrium : formally,
when A → ∞, Equation (13) reduces to q = q∗(ρ) and the system of Equations (12)-(13)-
(14)-(15) becomes

∂t(ρ+ q∗(ρ)) + ∂x(u ρ) = 0, (71)
∂tT − β ∂2xxT = −k p0 ∂xu+ γ ∂tq

∗(ρ), (72)
ρ T = p0, (73)

with the same initial-boundary conditions (IBC), without the one concerning q.
Notice that the problem of the convergence of the solution of System (12)-(13)-(14) towards
the solution of System (71)-(72)-(73) is open. We can observe that the key L2 and H1

estimates obtained in Section 4 blow up as A → ∞. The same difficulty would arise in [2]
in the BV framework due to the same parameter. The corresponding system was sudied in
a serie of papers ([4, 5, 7, 8, 9, 10]) but the analogous problem of convergence remains also
open.

In the sequel we assume that q∗ ∈W 2,∞(R+).
We will get an existence and uniqueness result for this problem using globally the same
procedure as in the previous case but the regularity needed to ensure u(t, 1) ≥ 0 (in particular
∂2ttT ∈ L2) cannot be obtained as in the proof of Proposition 4.1 because the function h in
(48) would become

h = −k p0 ∂xu+ γ ∂tq
∗(ρ)− T ′in(t)

= −k p0 ∂xu− γp0(q∗)′(p0/T )
1

T 2
∂tT − T ′in(t) (74)

and ∂th involves ∂2ttT and (∂tT )2. We must therefore take into account this regularity in the
space used for the fixed point.
Notice that, subject to sufficient regularity, Equation (72) implies

∂tT (0, x) = β∂2xxT0︸ ︷︷ ︸
0

−k p0 ∂xu(0, x)− γp0(q∗)′(p0/T0)
1

T 2
0

∂tT (0, x)

and thus
∂tT (0, x) =

−k p0
1 + γp0(q∗)′(p0/T0) 1

T 2
0

∂xu(0, x). (75)
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On the other hand, the formula (62) becomes

p0 ∂xv(t, x) = (ρin uin)(t) ∂xT (t, x)

+∂xT (t, x)

∫ x

0

[
(q∗)′(p0/T )

1

T 2
∂tT + p0

∂tT

T 2

]
(t, ξ) dξ

+p0 (1 + (q∗)′(p0/T )
1

T
) ∂tT (76)

thus, for the solution (u, T ) we get

p0 ∂xu(0, x) = p0 (1 + (q∗)′(p0/T0)
1

T0
) ∂tT (0, x)

that is also
∂tT (0, x) =

T0
1 + (q∗)′(p0/T0)

∂xu(0, x). (77)

From (75) and (77) we deduce that necessarily ∂xu(0, x) = 0 and thus ∂tT (0, x) = 0. In
addition we get easily u(0, ·) = uin(0) on (0, 1).
The main result for this problem is

Theorem 5.1 Let τ > 0. We assume T0 > 0 constant on (0, 1), uin ∈ W∞1 (0, τ) and
Tin ∈ H2(0, τ) with Tin(0) = T0 and T ′in(0) = 0.

Then there exists some real numbers Tm > 0, pm and um > 0 such that if Tin ≥ Tm,
p0 ≤ pm and uin ≥ um then the problem (71)-(72)-(73)-(IBC) has a unique global solution
(u, ρ, T ) satisfying

u ∈ L∞(0, τ ;L2(0, 1)), (78)
∂xu ∈ L∞(0, τ ; L2(0, 1)) ∩ L2(0, τ ; H1(0, 1)), (79)
∂t∂xu ∈ L∞(0, τ ;L2(0, 1)), (80)
∂tT, ∂xT ∈ L∞, (81)
∂t∂xT, ∂

2
xxT ∈ L∞(0, τ ; L2(0, 1)), (82)

∂2ttT ∈ L2. (83)

This solution satisfies u(0, ·) = uin(0), ∂T (0, ·) = 0 on (0, 1) and there exists two reals
numbers a, b such that 0 < a ≤ T ≤ b.

As a first step we show the following result

Proposition 5.1 Let τ > 0. Assume that T0 > 0 is constant on (0, 1), Tin ∈ H2(0, τ) with
Tin(0) = T0 and T ′in(0) = 0.
Let u such that

(Hu1)



u ∈ L∞(0, τ ;L2(0, 1)),

∂t∂xu ∈ L∞(0, τ ;L2(0, 1)),

∂xu(0, ·) = 0 on (0, 1),

u(·, 1) > 0 on (0, τ).

If p0 is small enough, then there exists a real number Tm > 0 such that if Tin ≥ Tm then there
exists constants 0 < a < b and a unique function T ∈ L∞(0, τ ;H1(0, 1)) ∩ L2(0, τ ;H2(0, 1))
solution of Equation (72) with

T (0, ·) = T0 on (0, 1),

T (·, 0) = Tin, ∂tT (·, 1) = 0 on (0, τ),

such that 0 < a ≤ T ≤ b and

∂tT, ∂xT ∈ L∞,

∂t∂xT, ∂
2
xxT ∈ L∞(0, τ ;L2(0, 1)),

∂2ttT ∈ L2.
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5.1 Proof of Proposition 5.1
We will start by giving some a priori estimates necessary for the definition of the workspace.
If T solves (71)-(72)-(IBC) and satisfies T ≥ a > 0 where a is some constant independant of
p0, then applying Proposition 4.2 to D = T − Tin we get, with h defined in (74)

||∂tT ||2L2 ≤ 2||h||2L2 + 2||T ′in||2L2(0,τ)

≤ 6

(
k2||p0∂xu||2L2 +

p20γ
2C2

q

a4
||∂tT ||2L2 + ||T ′in||2L2(0,τ)

)
+ 2||T ′in||2L2(0,τ)

where Cq = ||(q∗)′||L∞ . Thus, assuming p0 ≤ pM where pM > 0 is some arbitrary
constant, and for instance

6p2Mγ
2C2

q

a4
≤ 1

2
, (84)

we get

||∂tT ||2L2 ≤ N1, (85)

where we have set
N1 = 12k2||pM∂xu||2L2 + 16 ||T ′in||2L2(0,τ).

Let Eτ the convex subset of H1((0, τ)× (0, 1)) defined by

Eτ =
{
φ ∈ H1((0, τ)× (0, 1)) ; ∂tφ ∈ H1((0, τ)× (0, 1)), 0 < a ≤ φ ≤ b,

φ(0, x) = T0, ∂tφ(0, x) = 0, φ(t, 0) = Tin(t), ∂xφ(t, 1) = 0, ||∂tφ||2L2 ≤ N1 , ||∂tφ||2H1 ≤ N2

}
where the real numbers N2, a and b are defined further. The space H1((0, τ) × (0, 1)) is
equipped with the classical norm

|||φ||| = ||φ||L2 + ||∂tφ||L2 + ||∂xφ||L2 .

We introduce the mapping

Φ : Eτ → H1((0, τ)× (0, 1))

by setting Φ(S) = T where T is the unique weak solution of

∂tT − β∂2xxT = −k p0 ∂xu− γp0(q∗)′(p0/S)
1

S2
∂tS, (86)

T (t, 0) = Tin(t) > 0, t ∈ (0, τ),

T (0, x) = T0, x ∈ (0, 1),

∂xT (t, 1) = 0, t ∈ (0, τ).

In order to define a, b such that a ≤ T ≤ b we proceed as in Section 4. First, with S ∈ Eτ
and

f = −k p0 ∂xu− γp0(q∗)′(p0/S)
1

S2
∂tS − T ′in

we have

sup
0≤t≤τ

||∂xT ||2L2 ≤ 1

β
||f ||2L2

≤ 3

β

(
k2||pM∂xu||2L2 + ||T ′in||2L2(0,τ) +

p2Mγ
2C2

q

a4
N1

)
= C +

d

a4

After similar computations as in the proof of Proposition 4.1 we are led to set

Tm = max(
√
µC,

(
6d

(λ∗1)5

)1/8

), a = λ1Tm, b = ||Tin||∞ + δ
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where µ > 1 is some arbitrary constant, δ =

√
C +

d

a4
and

λ∗1 =
5−

√
1 + 24/µ

6
, λ1 =

5−
√

1 + 24C/T 2
m

6
.

With these values of a, b we have a ≤ S ≤ b =⇒ a ≤ T ≤ b and this value of a is used
in (84).
Next, with (84) we get immediately

||∂tT ||2L2 ≤ 2||f ||2L2 + 2||T ′in||2L2

≤ 6

(
k2||pM∂xu||2L2 +

p20γ
2C2

q

a4
N1 + ||T ′in||2L2(0,τ)

)
+ 2||T ′in||2L2(0,τ)

≤ N1.

Now we redefine h as h = −k p0 ∂xu − γp0(q∗)′(p0/S)
1

S2
∂tS − T ′in(t). We have h ∈ L2

and also ∂th ∈ L2, indeed:

∂th = −kp0∂t∂xu+
γp0
S2

(
(q∗)′(p0/S) +

p0
S

(q∗)′′(p0/S)
)

(∂tS)2 (87)

−γp0
S

∂2ttS − T ′′in(t) (88)

and ∂tφ ∈ H1((0, τ)× (0, 1)) =⇒ ∀p ≥ 2, ∂tφ ∈ Lp, thus (∂tS)2 ∈ L2 and

||(∂tS)2||2L2 = ||∂tS||4L4 ≤ c ||∂tS||4H1 ≤ cN2
2

where c > 0 is a true constant. With the assumptions of Proposition 5.1 and ∂tS(0, x) = 0
we have h(0, x) = 0 and the compatibility condition needed to apply Proposition 4.3 to
D = T − Tin is obviously fulfilled and we get in particular

||∂tT ||2H1 ≤ C
(
||kpM∂t∂xu||2L2 + pMN1 + 1 + p20||∂tS||2H1

)
where C is some constant depending only on the various constants of the problem, except p0,
and the initial-boundary data. ChoosingN2 such thatN2 ≥ 2C

(
||kpM∂t∂xu||2L2 + pMN1 + 1

)
,

we have ||∂tT ||2H1 ≤ N2 provided p20 ≤
||kpM∂t∂xu||2L2 + pMN1 + 1

N2
.

Moreover, with Equation (86) we get ∂T (0, ·) = 0 on (0, 1) and with the various constaints
on p0 and a, b, N2 previously defined we hace Φ(Eτ ) ⊂ Eτ . Next, we can proof that Φ is
contracting on Eτ∗ for some τ∗ ≤ τ as in the proof of Proposition 4.1, but we have to impose
a supplementary constraint on p0 due to the term ||∂tS2 − ∂tS1||2L2 . The unique fixed point
lies in Eτ∗ and we finally iterate the process until we reach the final time τ . �

5.2 Short proof of Theorem 5.1
The proof is very similar to that of Theorem 4.1.With the same notations we work here with

Uτ =
{
u ∈ L∞(0, τ ;H1(0, 1)), ∂t∂xu ∈ L2, u(t, 0) = uin(t) ≥ um > 0,

∂xu(0, x) = 0 on (0, 1), sup
t∈(0,τ)

||p0∂xu||2L2(0,1) ≤M, sup
t∈(0,τ)

||p0 ∂t∂xu||2L2(0,1) ≤M1

}
and v = ψ(u) satisfies

p0 ∂xv(t, x) = (ρin uin)(t) ∂xT (t, x) + ∂xT (t, x)

∫ x

0

[
(1 + (q∗)′(p0/T ))

p0
T 2
∂tT

]
(t, ξ) dξ

+ (1 + (q∗)′(p0/T ))
p0
T
∂tT.

With T (0, x) = T0 and ∂tT (0, x) = 0 we get ∂xv(0, x) = 0. the rest of the proof does not
involve any additional difficulty. �
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6 About some variants
The model studied in this paper admits multiple variants depending on the type of phe-
nomenon in which the experimenter is interested. One can take into account the axial
diffusion in the mass conservation equations (α 6= 0 in Equation (1)).

We could also take into account the pressure drop along the column according to the
Ergun Equation ([15])

∂P

∂z
=

150µ

(2Rp)2
(1− ε)2

ε3
u+

1.75 ρg
2Rp

1− ε
ε3

u2.

The choice of boundary conditions is not always very explicit in the articles based on ex-
perimentation, but the velocity is often considered constant or, depending on the type of
phenomenon considered, its inlet or outlet sign is known a priori. This is the reason why
we have chosen to take a positive velocity at the column inlet and to set sufficient regula-
rity conditions to ensure a positive velocity at the outlet, which justifies the type of simple
boundary conditions envisaged. For other conditions one may consult for instance Ruthwen
[20], or [19] (Danckwerts boundary conditions).
To be closer to real conditions we could for example, with a inlet positive speed uin, adopt
the following Danckwerts type conditions for the temperature in a dimensionless form

T (t, 0) = Tin,
∂T

∂x
(t, 1) = −δ pe u−(t, 1) (T (t, 1)− Te), (89)

where δ is a constant, pe is the external pressure, Te is the external temperature at the
outlet (assumed constant) and u− = −min(0, u). Of course we retrive the outlet boundary
condition used in this study when u(t, 1) ≥ 0. The main difficult here is of course the fact
that u, thus its sign, is part of the unknown. Note that from a numerical point of view this
is not an obstacle because by using for example a splitting method (as in [3] for instance) it
is possible to predict the sign of the outlet speed then to apply the corresponding condition.
The case of N species, N ≥ 2, and its numerical treatment with conditions of the type (91)
is the subject of a work in preparation by the same authors.

A Variables and constants

Ci (mole ·m−3) concentration in fluid phase for species i
qi (mole ·m−3) concentration in solid phase for species i
u (m · s−1) velocity of the gaseous mixture
Tg (K) temperature of the gaseous mixture
Ts (K) temperature of the solid phase
q∗i (C1, · · · , CN ) (mole ·m−3) ith isotherm: concentration in solid phase at equilibrium for species i
P (t) (Pa) time-dependant pressure in the column

Table 1: Unknown and functions

Notice also that Cg = Cpgρ.
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Ai (s−1) mass transfer rate for species i
Cg (J ·m−3 ·K−1) volumetric heat capacity of fluid phase
Cs (J ·m−3 ·K−1) volumetric heat capacity of solid phase
Cpg (J ·mole−1 ·K−1) heat capacity per unit volume of fluid phase
Cps (J · kg−1 ·K−1) heat capacity per unit volume of solid phase
DL (m · s−1) axial dispersion coefficient
L (m) lenght of the column
N number of species
R (J ·mole−1 ·K−1) molar gas constant
Rp (m) adsorbent pellet radius
Tw (K) wall temperature
d (m) internal diameter of adsorbent bed
h (W ·m−2 ·K−1) overall heat transfer coefficient between adsorbent particle and ambient fluid
hw(W ·m−2 ·K−1) overall heat transfer coefficient at column wall
z (m) distance measured from inlet
−∆Hi (J ·mole−1) heat of adsorption for species i
ε (adim) voidage of adsorbent bed
λL (W ·m−1 ·K−1) effective axial thermal conductivity
µ (kg · s−1 ·m−1) dynamic viscosity of a gas mixture
ρ (mole ·m−3) total concentration in fluid phase
ρb (kg ·m−3) density of adsorbent
τ (s) time

Table 2: Constants
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