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Jérémy Lobry4, Laure Pecquerie1, Blanche Saint-Béat6,
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Numerous threats affect aquatic ecosystems at different biological organizational

levels from individuals to ecosystems. Stresses occurring on the metabolism and

physiological functions of individuals can have repercussions on the individual

behavior, its ability to survive and reproduce, also known as the individual fitness,

whichmay then influence the demography and spatial distribution of populations, and

ultimately modify trophic flows and ecosystem functioning. In a context of a globally

changing environment, predicting the life history traits and fitness of individuals can be

relevantly performed with the association of laboratory experiments with Dynamic

Energy Budget (DEB) theory, while modeling species interactions have proven to be

an efficient tool to understand aquatic food webs using mass-balanced models such

as linear inverse models (LIMs) or Chance and Necessity (CaN) models. However,

while predictive results obtained on individuals can be provided with a thorough

mechanistic interpretation, the propagation of the effects is most often limited to the

closest biological hierarchical level, i.e., the population, and rarely to the food-web

level. Furthermore, there is a need to understand how to avoidmisleading approaches

and interpretations due to the simplicity of experiments. For the moment, no clear

methodology has stoodout yet to do so. In this study, we provide a newmethodology

based on a combination of models (i.e., DEB, LIM, and CaN) aiming at upscaling

information from laboratory experiments on individuals to ecosystems to address

multiple ecological issues. This framework has a potential to enhance our

understanding of higher-scale consequences of the effect of stressors measured at

the sub-individual scale. This combinationofmodelswas chosen for the convergence

of their framework but also their ability to consider a substantial portion of the
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projected uncertainty. The description of this methodology can help experimenters

andmodelers to jointly address a specific question involving upscaling from individual

to ecosystem, proposes approaches, and gives tips on the pitfalls to avoid along the

upscaling process.
KEYWORDS

aquatic food-webs, chance and necessity modelling, ecology, dynamic energy budget,
laboratory experiments, linear inverse modelling, upscaling
1 Introduction

Numerous threats affect aquatic ecosystems, such as climate

change (IPCC, 2019, 2022), pollution (Islam and Tanaka, 2004;

Häder et al., 2020), habitat degradation and loss (Turner et al., 1999;

Geist and Hawkins, 2016), invasive species (Molnar et al., 2008;

Gallardo et al., 2016), and resource overexploitation (Pauly et al.,

2005; Crowder et al., 2008).

Their effects can be observed at different biological

organizational levels from individuals to ecosystems. Climate

change (e.g., temperature increase, acidification) is, for example,

known to induce multiple stresses* [i.e. the physiological cascade of

events that occurs when the organism is attempting to resist death

or reestablish homeostatic norms in the face of insult (Schreck and

Tort, 2016); for a definition of terms noted with a “*” symbol, see

glossary in Supplementary Table S1] on the metabolism and

physiological functions of individuals at various biological levels

as follows: cells, tissues, and organs. Such alterations can have

repercussions on the individual behavior, its ability to survive and

reproduce, also known as the individual fitness, which may then

influence the demography and spatial distribution of populations,

and in fine modify trophic flows and ecosystem functioning

(Koenigstein et al., 2016; Poloczanska et al., 2016; Lennox et al.,

2019). Individuals could therefore be considered as a key unit of

interest for understanding the mechanisms underlying the effects of

perturbations on dynamic systems at higher levels of organization

(Rijnsdorp et al., 2009; Martin et al., 2012).

In this context of a globally changing environment, predicting

the life history traits and fitness of individuals can be relevantly

performed using energy budget-based theories (Pörtner and Peck,

2010; Le Quesne and Pinnegar, 2012). Understanding and

estimating the internal energy allocation under various conditions

is paramount because of the profound impacts it can have on the

individual fitness (Claireaux and Lefrançois, 2007). Among the

theories able to describe the influence of external factors on

individuals, Dynamic Energy Budget (DEB; Nisbet et al., 2000;

Kooijman, 2010) theory has had a strong influence on how

individuals were represented in terms of internal processes over

the last decade (van der Meer et al., 2014). By offering a single and

generic quantitative framework to dynamically describe the energy

and mass budgets of all living organisms at the individual level,
02
models based on the DEB theory (so-called DEB models) can

provide valuable insights on global change impacts on energy

allocation within organism and life history traits such as growth

or fecundity (e.g., Thomas et al., 2016; Mounier et al., 2020a, b).

At a higher level of biological organization, improving our

understanding on the influence of several environmental drivers

on biomass-based trophic networks is particularly prominent and

advocated as a necessity in today’s ecosystem conservation or

management (Fath et al., 2019; Safi et al., 2019). Modeling species

interactions has proven to be an efficient tool to understand aquatic

food webs (Plagányi, 2007) despite their limits in “projecting the

future” (Planque, 2016). Among ecosystem models, mass-balanced*

(i.e., following the conservation law) ones and especially Ecopath

with Ecosim (EwE; Christensen and Pauly, 1992; Christensen et al.,

2005), linear inverse models (LIM; Vézina and Piatt, 1988; Niquil

et al., 2011), or Chance and Necessity (CaN; Planque and Mullon,

2020) models form an important part of their diversity (e.g., Coll

et al., 2015; Colléter et al., 2015; Stock et al., 2023). These kinds of

models generally represent all the trophic levels involved in food

webs from primary producers and dead organic matter to top

predators and humans. Furthermore, their l ink with

thermodynamic laws generates a strong theoretical basis

(Ulanowicz, 2003; Kones et al., 2009; Saint-Béat et al., 2015). All

of this allows modelers to assume how an environmental

disturbance can propagate within a food web.

However, usually, while predictive results obtained on individuals

(from observations or experiments for instance) can be provided with

a thorough mechanistic interpretation, the propagation of the effects

is most often limited to the closest biological hierarchical level, i.e., the

population, and rarely to the food-web level (Stock et al., 2023). Also,

inputs provided by experiments are often limited for higher trophic

levels to specific ages/stages, mostly younger ones and thus, most of

the time, not the main ages observed in situ. In consequence, there is

a need to understand how impacts can differ with age/stage and how

to avoid misleading approaches and interpretations due to the

simplicity of experiments. Hence, when using a food-web mass-

balanced* modeling approach, experimental results obtained from

individuals can be used to adjust growth, consumption, and/or

mortality of mono- or multi-specific trophic groups (Koenigstein

et al., 2016), but no clear methodology has stood out to do so.

In addition, these adjustments often rely on knowledge obtained from
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previous studies not designed for such endpoint. In this context, there

is a necessity to design a clear framework to assess the repercussions

of the effects of stress* induced by environmental factors observed at

sub-individual and individual levels on trophic dynamics and food

webs, thereafter named an upscaling methodology.

A wide range of effects of environmental stresses on trophic

dynamics and ecosystems could be represented by a set of

mathematical models integrating individual-level experimental

data (Le Quesne and Pinnegar, 2012). This would furthermore be

associated with a significant gain in mechanistic understanding.

Developing such upscaling methodology still represents one of the

most open challenges in ecology (Reuter et al., 2010), and remains

particularly relevant and timely concerning the effects of

environmental changes on aquatic ecosystems (Rijnsdorp et al.,

2009; Pörtner and Peck, 2010).

To do so, the DEB theory matches the requirements to build a

link from sub-individual experimental results to the food-web levels

(Nisbet et al., 2000, 2012). Past studies already developed links

toward the modeling of populations (e.g., Martin et al., 2012;

Saraiva et al., 2014; Beaudouin et al., 2015), theoretical

communities (Maury and Poggiale, 2013), or simplified food webs

(Grangeré et al., 2010). However, a clear methodology to link DEB

outputs with food-web modeling has, to our knowledge, not stood

out yet.

In this direction, the present study aimed at proposing an

upscaling methodology based on a combination of models to

address multiple ecological issues starting from individual

laboratory experiments, and thereafter linked to individual, then

food-web scales in an aquatic environment. Furthermore, this

framework was designed to consider a substantial portion of the

projected uncertainty. Indeed, literature largely leaves most model

assumptions implicit and deals with uncertainty unevenly often

omitting this aspect in the interpretation of model results altogether
Frontiers in Ecology and Evolution 04
(Gregr and Chan, 2015). Developing such formal framework

therefore requires considering at least input data uncertainty

(deYoung et al., 2004) with dedicated tools.
2 Methods

All the following sections are linked to arrows in Figure 1

representing the full methodology. Except when mentioned, every

hierarchical step must be fulfilled before developing the next one.

The present work was on linking hierarchical scales and not on

presenting each type of models used in detail. Main references for

each model type are provided in a dedicated section, and main

processes, inputs, and outputs are given in Supplementary Table S2.
2.1 From sub-individual to individual

This first step aims at describing the full life cycle of an

individual for a species of interest as a function of food and

temperature conditions as well as potential additional

environmental stressors using a DEB model. DEB models are

usually parameterized with data from multiple sources, including

literature data or experiments originally designed for the model.

Regarding parameter estimation methodologies, we refer the reader

to, e.g., Marques et al. (2018); Boersch-Supan and Johnson (2019),

and Robles et al. (2023), which all provide corresponding code

libraries. Marques et al. (2018) provides details of the AmP

procedure and the AmP portal (https://bio.vu.nl/thb/deb/deblab/

add_my_pet/index.html) that contains more than 4000 animal

species and the associated Matlab libraries DEBtool (2023) and

AmPtool (2023) used to estimate these parameter sets. We also refer

to other parameter estimation studies based on Bayesian methods
FIGURE 2

Schematic representation of the adult stage of the “standard” DEB model (from Kooijman, 2010 and Nisbet et al., 2012). Bold parameters represent
energy flows, while other parameters represent fixed fractions. SDA, specific dynamic action. See Section 2.2.1 or Supplementary Table S3 for the
definition of the parameters.
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such as those of Johnson et al. (2013) and Boersch-Supan and

Johnson (2019) that are particularly designed to provide probability

distribution of parameter values, but see also the work of Marques

et al. (2019) for parameter distribution estimation associated with

the AmP procedure (see arrow 3 and Section 2.2.1).

The DEB theory relies on the assumption that species from a wide

range of taxonomic groups share the samemechanisms governing their

metabolic organization, which can be described by a reduced set of

equations for the standard DEB model (Figure 2; Supplementary Table

S3; see Kooijman, 2010 for a full description of the model), i.e., the

simplest model among the families of existing DEB models. The

differences observed among closely related species are then assumed

to be due to differences in the input parameter values. Several typified

models are now available to capture the diversity of life stages and

sexual dimorphism in animal species (Kooijman, 2014; Marques et al.,

2018, https://bio.vu.nl/thb/deb/deblab/add_my_pet/index.html).

Despite having concepts that might be harder to measure

empirically, the choice of proposing the DEB in our framework

was directed by its ability to facilitate mechanistic understanding of

process generating changes in internal flows of individuals, its

generalization skills, and also because of the access to valuable

resources: extensive literature, code libraries for parameter estimate,

data, and operational models in AmP.

2.1.1 From experiments’ outputs to DEB modeling
Arrow 1 in Figure 1. Laboratory experiments represent the first

step of the framework as our goal is to upscale results obtained at

the sub-individual level to evaluate their implications at higher

organizational levels. Experiment here is understood as a procedure

done in a controlled environment in which the effect of one or

multiple environmental factors (e.g., diets, pollution; thereafter

named conditions), each with one or several treatment levels, are

tested at the individual (e.g., growth in length) or sub-individual

(e.g., mitochondrial performance) scales. An experiment is, in our

definition, always a combination of a control condition and one or

several stress* conditions. For example, an experiment testing the

effects of a depletion of essential fatty acids on the European seabass

Dicentrarchus labrax would follow the growth of individuals

knowing their everyday length and weight and their swimming

performances, e.g., aerobic scope, basal metabolism. This would be

realized with a set of individuals fed with normal fatty acid

concentration, i.e., the control condition, and another set of

individuals with several levels of fatty acid-depleted food, e.g.,

−10%, −15%, and −20%, i.e., the stress* conditions. This would be

done in controlled environments ideally at different stress* and

temperature conditions to obtain functional responses.

A priori, any kind of organism can be used for the experiment,

as long as enough knowledge and data are available on the species to

further develop a DEB model, and if the size and other traits of the

species allow to realize controlled experiments. The purpose of this

step is to use the knowledge obtained by the experiments in the

development of a DEB model with different conditions. In addition,

this knowledge can be a source of data to contribute to the estimate

of parameters in the DEB model in control conditions, along with

data from literature (see arrow 2 and Section 2.1.2.). All along the
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experiment, it is essential to follow both the temperature conditions

(if not already considered as a stressor condition) and the ingested

food. In terms of organism variables, it is necessary to monitor

variables that allow the estimation of growth, development,

maintenance and reproduction when relevant. Measurements

performed both in length (when relevant) and weight during the

experiment are particularly useful for a successful integration of

experimental results into DEB models. However, considering the

initial question, other types of variables can become primordial, e.g.,

the number of eggs produced if the ecological question explores

reproductive success in specific stress conditions. Longitudinal

measurements (i.e., repeated in time for the same individual) are

also particularly useful when individuals can be marked. Also, to

gather other quantitative variables, such as age and food

consumption rate, metabolic rate at different temperatures would

provide more precision to the following steps. Variables measured

both in control and stress* conditions are the most useful to better

understand the mode of action (MoA) of the stressor, i.e., the

metabolic processes potentially impacted by the stressor.

The choice of age/stage on which experiments are done can be

restricted (e.g., availability of individuals, size of the tanks), but one

of the powerful benefits of DEB is the possibility to extrapolate

results to a larger spectrum of sizes, ages, and stages. Also, when

relevant according to the organism of interest, if males and females

are discriminated in experiments, this can also be included in the

DEB model by using a zoom factor that will differentiate individuals

by altering the value of the maximum food assimilation rate _pAmf g
in DEB, and the following different life stage thresholds: hatching,

birth, metamorphosis, and puberty. Finally, results obtained for the

different replicates/individuals will be paramount to tackle the

uncertainty that will be considered in the upscaling process, even

if an “average” individual can be used in the following modeling

steps (see arrow 3 and Section 2.2.1.). Recent developments of the

DEB model by, e.g., Boersch-Supan et al. (2017) and Koch and De

Schamphelaere (2020) permit to catch the inter-individual

variability and overcome the “average” individual approach.

At this step, it is also possible to use a pre-existing DEB model.

In this case, if the experiment outputs were not included for the

initial estimate of DEB parameters, the model still needs to fit well

with the experimental data. Indeed, good fits with the new

observations are a first requirement for the following comparison

between the predicted individuals in control and stress* condition

(s) that will permit deducing DEB parameters that can be influenced

by the stress* and in which proportions.

2.1.2 Inputs of literature when developing a
DEB model

Arrow 2 in Figure 1. Even if a particular experiment focuses on

a particular life stage, the full life cycle of an organism will be

embedded in a DEB model. Predictions, e.g., of the egg energy

content as well as ultimate weight could be made with the same set

of parameters. It is therefore commonly done to complement the

experimental data of interest with previous experiments and field

observations reported in the literature to estimate most accurately

the parameter set that best fits all the different sources of data.
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Experiments, when possible, often provide information on the

younger stages, while field observations will more often provide

information on the juvenile and adult stages. If the ecological

question at aim in the foreseen work is oriented on the trophic

network, it is reasonable to think that for macroorganisms, adults’

stages can represent most of the biomass in the natural

environment, and therefore particular attention is required on

fitting these older stages in the DEB. Nonetheless, exceptions can

occur for some species that can be present in certain habitats only

during specific stages, e.g., juvenile fish in nursery grounds.

Field observations useful for the calibration of DEB models are

length- and weight-at-age of individuals, their ultimate length and

weight, age-, length- and weight-at-maturity, and fecundity as a

function of length (or weight) together with proxies for temperature

and food conditions. When collecting such data from the literature,

data from the spatial area of interest are, of course, more relevant

but data from other populations can also be used considering some

uncertainties in the estimation procedure (e.g., by using lower

weight coefficients*, i.e., coefficients used during the estimation

process depending on the confidence in the quality of each dataset

and the priorities for an application for these datasets).
2.2 From individual to static
trophic network

LIM modeling is a steady mass-balanced* trophic modeling

approach useful to describe the structure and functioning of food

webs at the habitat or ecosystem scales (Vézina and Piatt, 1988;

Niquil et al., 2011). Its structure and flow mechanism are often

identical to the ones described in Ecopath (we consider this case

here). Combined with the Markov Chain Monte Carlo method*

(i.e., a class of algorithms creating samples from a continuous

random variable), it allows, contrary to Ecopath, (i) to consider

the probability density function of flows in underdetermined

systems and (ii) to avoid underestimations in both the size and

complexity of the modeled food webs (Van den Meersche et al.,
Frontiers in Ecology and Evolution 06
2009). Classically parameterized with data from multiple sources,

LIM can, in the context of our methodology, be adjusted using

outputs from the previous steps as described below. This procedure

is here only performed for normal conditions to represent the

structure of the food web, while the stress* conditions(s) are

simulated using the CaN modeling approach, as explained below

(see arrows 5 and 7 and Sections 2.3.1 and 2.3.3).

2.2.1 DEB outputs to LIM modeling
Arrow 3 in Figure 1. In a steady-state situation, the

consumption Q (often defined in grams of carbon per kilometer

per year (gC.km−2.year-−1) in LIM, which will constitute the

reference for the following) of a consumer trophic group i is

defined as:

Qi   =  Ui + Pi + Ri (1)

where U (gC.km−2.year−1) is the unassimilated consumption, P

(gC.km−2.year−1) is the production, and R (gC.km−2.year−1) is the

respiration of the group. P includes all mortalities (i.e., predation,

fishing, and other mortalities such as senescence or diseases), net

migration and biomass accumulation, while R represents all the

losses not attributable to feces (and N-wastes when defined in

biomass) constituting U (Christensen et al., 2005; Figure 3). All

these flows are often constrained as ratios of Q or the biomass B of

the trophic group. It is worth noting that in LIM, natural mortalities

other than predation or harvestingM0 (senescence, disease, etc.) are

often considered negligible in LIM for secondary consumers (e.g.,

Chaalali et al., 2015) and are difficult to distinguish from

unassimilated consumption. With the use of DEB modeling as

input in the LIM, it is now theoretically feasible to clarify this

distinction if values of U and P are fixed or precisely narrowed, M0

being grossly the difference between U without DEB-defined

constraints and U with them. Note that this would slightly

modify the estimated assimilation and production flows.

It is possible to use different outputs fromDEBmodels to develop

ecological threshold values for the species of interest in a given food

web (Supplementary Table S4). However, special attention should be
FIGURE 3

Schematic representation of the definition of flows for a trophic group in the LIM model. See section 2.2.1. for the definition of the parameters.
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given to the definition of the different rates and the corresponding

units. Output rates from DEB models are most of the time expressed

on a daily basis, while food webs are often represented on a yearly

basis in LIM, even if exceptions can occur (e.g., Saint-Béat et al., 2014;

Haraldsson et al., 2018). For the following section concerning the

dynamic representation of the food web (see arrows 5–7 and Sections

2.3.1–2.3.3), it is easier to represent annual flows.We will thus express

DEB fluxes in an annual basis.

The transfer of individual’s values to a trophic group is not

straightforward. LIM’s equations, similar to those of Ecopath,

follow the ones of Winberg (1956) that were initially bioenergetic

functions defined for individuals (Link, 2010). In a mass-balanced*

ecosystem modeling framework like LIM, most inputs rely on

observations made on individuals, e.g., Q/B ratio, R/B ratio, or

diets. In this context, a trophic group could be considered as a single

individual organism simplifying the diversity and demography of

the group. This choice can be required for simplicity’s sake or due to

the absence of precise data on the demography and ontogeny for

several species. When comparing different parameterization of LIM

models, we assume stable composition of size, age, and even species

when the group is multi-specific. This issue was already treated by

Christensen et al. (2005) in the “Capabilities and limitations” of the

EwE User’s Guide with the proposition of using multiple life stanza

by splitting the biomass pools when relevant, i.e., species or groups

known to have a strong trophic ontogeny or size-dependent

vulnerability to harvest. Moreover, recruitment is often difficult to

predict in the aquatic environment and depends on many other

parameters than the spawning stock biomass (Subbey et al., 2014).

In consequence, population subdivision often might not be

necessary because the less costly hypothesis for demography

remains to keep it unchanged, except when valuable indices exist.

However, changes in the production of a trophic group (for instance

in the dynamic projection of the trophic network—see arrows 5–7

and Sections 2.3.1–2.3.3) due to environmental conditions and

trophic interactions will be implicitly integrated in trophic flows

as changes in the growth and reproduction of individuals.

Inevitably, the processes represented by the model would imply

changes in the recruitment and demography and even taxonomic

diversity (when applicable) of the group in real life conditions, but

are not here explicitly represented.

Outputs from DEB models do not solve the issue of linking

individual scale outputs to populations, and assumptions must still

be done. However, being available at all possible ages or lengths,

these outputs can be produced for all sizes/ages of a population and

weighted according to the known demography or a good indicator

of it for each of the species present in the trophic group of interest to

provide one value representative of each population. In the absence

of knowledge on the demography, the easiest option is to keep the

values obtained at a middle-adult stage with the DEB model

representing most of the time for macroorganisms the main part

of the biomass, e.g., the common length from the Fishbase database

for fish (Froese and Pauly, 2000), if adult individuals are known to

occur in the represented ecosystem. In addition, the vital rates (i.e.,

consumption, assimilation, egestion, production, respiration,
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excretion when relevant) only slightly evolve at the adult stage

and thus limit the error due to uncertainty on demography.

To obtain the annual DEB outputs, each flow is simply cumulated

over the 365 days of every age or at the age of interest potentially

divided by the average weight of the individual at that age to obtain

its ratio per biomass (i.e., Q/B, P/B, R/B).

Cautions have to be taken if the trophic group is multi-specific.

Similarly to the demography issue raised above for populations,

assumptions have to be done to upscale from individual to trophic

groups. In this case, the most straightforward one is to use the

species for which experimental data are available as the reference

and consider the results identical for all the species composing the

group. This hypothesis seems reasonable because the species

composing such group are supposed to be gathered according to

their diet and vital rates’ similarities. Another solution would be to

weight the values obtained from DEB modeling according to the

biomass proportion of the species in the group to provide ecological

thresholds* (i.e., minimum or maximum values of a constraint*

defined by inequality) for the LIM. However, this would require

having other constraints* (i.e., model input data to limit the

solutions for the flows to possible values) value for the other

species constituting the group, which is not always the case.

For a multi-age and multi-specific trophic group, a constraint*

j is defined as:

ji =  osoaBs,ajs,a

osoaBs,a
(2)

For each species s and age a composing the trophic group.

The better use of Q as constraint* for the LIM is to compute a

value relatively to B of the trophic group, i.e., Q/B. To give the best

flexibility to the LIM, we propose to use the thresholds* of P and R

relatively to Q, i.e., the net growth efficiency P/Q and R/Q.

The conversion of DEB outputs to Q, P, and R is obtained from

Nisbet et al. (2012), who worked on relating the DEB theory to

other bioenergetic approaches to obtain, in our case, vital rates in

gC.year−1 and biomass in gC following the LIM.

The relation between the representations of the consumption

rate in DEB noted QDEB and LIM is the most straightforward. QDEB

(derived from the “food consumption rate” C of Nisbet et al., 2012)

is computed as:

QDEB =
12
mX

_pX (3)

where _pX is the ingestion rate (J.year−1), 12 is the molecular

weight of carbon (g.mol−1), and mX is the chemical potential of

food (J.mol−1).

The animal’s biomass in DEB BDEB is computed as the sum of

the structure, reserve and (for adults) reproductive reserve:

BDEB = WV +WE +WR = 12
dV  V
wV

+
E + ER
mE

� �
(4)

where WV is the structural weight (g), WE is the reserve weight

(g),WR is the weight of the reproduction buffer (g), dV is the density
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of the structural volume (g.cm−3), V the structural volume (cm3),

wV is the molar weight of the reserve (g.mol−1), E is the reserve

energy (J), ER is the reproduction buffer energy (J), and mE is the

chemical potential of reserve (J.mol−1).

The production rate in DEB PDEB (from the “growth” G of

Nisbet et al., 2012) is computed as:

PDEB =
12
mE

( _pA − (1 − kG) _pG − _pD) (5)

where _pA is the assimilation rate (J.year−1), kG is the fraction of

energy for growth that is fixed into structure, _pG is the rate of energy

allocated to growth (J.year−1), and _pD the dissipation rate (J.year−1),

which encompasses all processes not associated with the production

of new reserve and structure (Figure 2).

If the currency used in the LIM is the carbon, the respiration

rate in DEB RDEB (from the sum of “specific dynamic actions” S and

“standard metabolism and activity” MA of Nisbet et al., 2012) is

computed as:

RDEB = 12
(1 − kX) _pX

mX
+
(1 − kG) _pG + _pD

mE
−
kP _pX
mP

� �
(6)

where kX is the assimilation efficiency in the DEB, kP is the

fraction of the ingestion rate transformed into feces, and mP is the

chemical potential of feces (J.mol−1). If the LIM is defined in

biomass, excretion has also to be considered following Equation 8

from Nisbet et al. (2012). This case is not tackled in

our methodology.

The assimilation efficiency as defined in LIM obtained from the

DEB and noted ADEB is computed as:

ADEB =
PDEB + RDEB

QDEB
(7)

As explained above, the use of QDEB for the Q/B input in the

LIM requires its division by the average weight of the individual

during a year. The use of PDEB and RDEB as P/Q and R/Q ratio only

requires their division by QDEB.

An equality equation* (defined as x = j, with x as unknown flow
and j as empirical data) for the LIM can then be defined using DEB

outputs for a given constraint* j. A DEB model classically gives

only one output and not the uncertainty around it. However, using

only these values as equations in the LIM is giving too much credit

on the DEB model predictions, while it is possible to consider its

variability and uncertainty by building LIM inequations* (defined

as x ≥ j or x ≤ j).
As previously evoked, there are ways to obtain more complex

outputs than a single value from the DEB, i.e., the Bayesian method

developed by Boersch-Supan et al (2017); Boersch-Supan and

Johnson (2019) or the confidence interval definition proposed by

Marques et al. (2019). If available, the outputs from these methods

can provide much better estimates of the thresholds* provided for

the LIM, even if we still have to set their limits, at least when using

the Bayesian method (e.g., 5th and 95th percentiles of predictions).

Once the thresholds* are defined by the modeler, a set of

inequations* can thus be defined for a constraint* j knowing the

minimum and maximum values that xi can reach.
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If the last option is not feasible, another one is to use an

equivalent of the Ecopath pedigree* (i.e., a coded statement

categorizing the origin of a given input and by the same token

specifying the likely uncertainty associated with the input;

Christensen et al., 2005; Supplementary Table S5), as previously

done by Nogues et al. (2021), i.e., giving a fixed percentage of

uncertainty z around the output considered as an average value. A

typical set of inequalities* for j can thus be obtained:

xi ≥ ji − jiz (8)

xi ≤ ji + jiz (9)

z has to be given according to the confidence the user has on

DEB’s outputs to describe the species in the area of interest.

2.2.2 Inputs of literature to LIM modelling
Arrow 4 in Figure 1. Despite the contribution of inputs from the

previous steps, literature still constitutes a valuable source of

information to evaluate the flow intensity within biomass-based

trophic networks. These can belong to different sources, e.g.,

experimental studies, in situ observations, empirical relationships,

other calculations from other values or even from other models

when judged credible, which inform on the diet and vital rates of the

groups. If there is no pre-existing LIM of the concerned ecosystem,

all information necessary on how to build such model can be found

in the work of Niquil et al. (2011).

The trophic network being static in LIM, the biomass is fixed,

and a median or mean value is therefore to be given when having a

time-series of biomass for the group observed. It is equivalent to

consider that the variation of biomass is negligible throughout the

time step of the model (e.g., the year). It is constituted by the

different stages/ages of the species, except when the choice was

made to use a multi-stanza group (see arrow 3 and Section 2.2.1).

Information on the species of interest, in addition to the DEB, is

useful, at least concerning its/their diet. Concerning vital rates, the

use of good quality thresholds* can be valuable in addition to

outputs from the DEB because despite the potential of adding an

equivalent of Ecopath pedigree* uncertainty around the predictions

(see arrow 3 and Section 2.2.1.), DEB modeling still mostly relies on

a single output when not using a methodology that considers

uncertainty (see Section 2.2.1). By using additional literature-

based thresholds*, the plausibility coverage by the thresholds*

obtained from the DEB can be reduced.
2.3 From static to dynamic trophic network

CaN modeling is close to the concept of LIM modeling

(Supplementary Table S6), but while the latter takes into account

uncertainty on trophic flows in a static way, CaN modeling

considers the uncertainty and variability of trophic relationship

intensity in a dynamic way (Planque and Mullon, 2020). It can be

performed using the RCaN package in the R environment

(Drouineau et al., 2021; Drouineau et al., 2023). All the details on

the implementation of parameters and constraints* in the CaN
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modeling are given by Mullon et al. (2009); Planque et al. (2014),

and Lindstrøm et al. (2017).

In a CaN model, the variation in the biomass of a trophic group

i is described as:

dBi

dt
=   gio

j
Fji + Ii −o

j
Fij − Ei − miBi (10)

where g is the assimilation efficiency* (i.e., the proportion of

prey biomass ingested by i that can contribute to growth,

reproduction, and maintenance), o
j
Fji is the biomass of prey

groups j consumed by i, o
j
Fij is the biomass of i consumed by its

predators, Ii and Ei are the imports and exports of i in or out of the

system, respectively, mi represents the other losses* (i.e., a correction

factor that accounts for variations in energy content between prey),

and Bi is the biomass of i.
2.3.1 LIM outputs to CaN modeling
Arrow 5 in Figure 1. A comparison of two LIM models could be

done if biomass observations were available in the control and

stress* conditions. However, as it is rarely the case, the purpose of

the LIM step was to obtain a reliable balanced* version of the

trophic network to simulate the control state that will serve as a

basis for comparisons with the stress* condition(s) with CaN

modeling. We do not consider that LIM is well adapted for

projection in the future of scenarios as, except in situations of

extreme biomass variation like during phytoplankton blooms (e.g.,

Haraldsson et al., 2018), LIM works with a static biomass,

neglecting biomass variations, compared to flow values. By

modifying vital rates of the species of interest directly from the

DEB to the LIM, one would assume that all the biomasses of the

different trophic groups would remain stable and that flows would

adapt with this situation, which seems unlikely in reality. Here, to

build projections of food webs under stress* condition(s), the

variation of biomass needs to be estimated by a model due to the

important effects of biomass variations on trophic network’s

structure and functioning. The LIM step can even be eventually

by-passed to use directly the CaN modeling, which is, in our

context, the best tool to answer the question of trophic

relationships in the transition from control to stress* conditions,

but this would generate a minimized exploration of uncertainty on

CaN input parameters.

Biomasses have to be set in our methodology for the initial year

of the simulation. Otherwise, these would not be constrained and

generate dynamics far from the goal of having a representation of

the control condition. The simplest way is to use the B values used

for the LIM. After this first year, no value is given for the biomasses

for the rest of the simulation (see arrow 6 and Section 2.3.2).

Every iteration of the LIM is a potential version of the trophic

network under the control conditions. If we aim to limit the number

of simulations within the CaN modeling, it is safer to initialize the

CaN parameters from the mean value of the flows obtained from

the LIM (Saint-Béat et al., 2013). However, a way to take advantage

of the uncertainty of the LIM is to use a given number of randomly

chosen solutions of the vector of flows. By this operation, the

uncertainty of the LIM would be spread on the main parameters
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of the CaN model. From each of these versions of the trophic

network, multiple simulations would finally be done with the CaN

modeling. This technical solution increases drastically the number

of simulations to run and analyze but remains the most rigorous for

uncertainty evaluation.

Multiple outputs from LIM can be used in the CaN modeling.

Within this latter, the main parameters driving the simulations are the

refuge biomass* (i.e., the absolute minimum biomass that a trophic

group can reach), the prey digestibility* (i.e., a correction factor

that accounts for variations in energy content between prey),

the assimilation efficiency*, the satiation* (i.e., the maximum

consumption rate per unit biomass of the predator), the inertia* (i.e.,

a parameter that expresses the variations in biomass from 1 year to the

next are bounded between a maximum growth rate and a maximum

mortality rate), and the other losses* (Lindstrøm et al., 2017).

Several constraints* can be included to represent the trophic

network. Imports, often parameterized in LIM, can be added as a

constant or bounded value, proportional or not to the biomass of

the group. This is particularly useful if the user wants to represent

the primary production. It is, however, possible to do like

Lindstrøm et al. (2017) and represent the primary producers as

constant net imports (see Drouineau et al. (2021) for the different

ways to implement the constraints*). According to the type of

ecosystem represented, the consumption of detritus can be

significant and represents a substantial part of the energy source.

In these conditions, the simplest way to represent detritus is to

include them as trophic imports for the groups concerned, for

example, as a ratio of their biomasses. In the following, Q for

secondary consumers will thus include the trophic imports

when existing.

Starting from a LIM, it is likely that the currency of the trophic

network will be organic carbon. Therefore, there are two ways to

operate the CaN modeling, either keeping carbon as a currency,

which is not originally the case in CaN modeling (i.e., originally in

biomass), or transferring the model into wet weight or any other

desired currency. If the choice is the latter, all biomasses and flows

have thus to be converted using conversion factors (e.g., Brey

et al., 2010).

The refuge biomass* can be set to 1% of the initial biomass, as

proposed by Planque et al. (2014).

If the model is kept in carbon, which seems the easiest way to

proceed, prey digestibility* is set to one for all the trophic groups

to mimic the LIM results. In this case, the assimilation efficiency*

g has a similar definition than for LIM and is for each group

equal to:

g =
P + R
Q

(11)

based on the outputs of the LIM. Otherwise, both must be

defined from literature in accordance with each other (Lindstrøm

et al., 2017).

The satiation* s is based on the Q/B ratio from the LIM and

includes the trophic imports. Keeping this value for a trophic group

is equivalent to assuming that this group has the same feeding rate

than the one it could achieve under “safe” laboratory conditions.

According to Christensen et al. (2005), such an assumption is
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reasonable at least for marine mammals that will always try to feed

to satiation*, while it is rarely the case for fish (Ahrens et al., 2012).

Depending on the knowledge on the satiation* of the different

groups in a particular ecological context, the Q/B value can be

increased by a certain percentage to obtain the satiation* parameter.

The satiation* is computed as follows:

s =
Q
B
l (12)

where l is a ratio equal to or greater than 1 defined for each

trophic group using literature or expert knowledge.

The inertia* r results from the P/B ratio at satiation* obtained

from the LIM. Following the implementation of the inertia* in CaN

modeling, the inertia* is computed as follows:

r = log(1 + s
P
Q
) (13)

where s is the previously computed satiation* for each

trophic group.

The other losses* µ are obtained from the following

computation:

m =
R +M0

B
(14)

Unless the user has insights about the amount of other natural

mortalities, the other losses* are considered equal to the respiration

flow from LIM. For primary producers, other mortalities are

defined as:

M0 = (1 − g )I (15)

where g is the previously computed assimilation efficiency* (that

considers losses to sediment organic matter in LIM), and I refers to

the import flow.

The exports of trophic groups are also a common output from

the LIM. They correspond to emigration but also to fish/harvest

when occurring in a given ecosystem. Like imports, exports can be

added as explicit constraints* for the CaN projections according to

the user’s knowledge on the process.

Finally, constraints* can be described on the diet of the trophic

groups. These constraints* can be added on trophic links as presented

by Drouineau et al. (2021) for explicit structural constraints*, e.g.,

when a prey is always more abundant than another one in the diet of

a predator. However, the use of constraints* on the diet has to be

done carefully, because too many constraints* could lead to not

consider the potential variation of diets among trophic groups in the

projections, especially in new configurations such as the stress* state

(s). On the other side, no constraints* could represent an underuse of

the knowledge on the system and make the CaN model explore

implausible situations. The choices of the thresholds to use thus have

to be made by the user. One possibility is to add a constraint* only

when the proportions of two preys in the diet of a predator differ by a

fixed magnitude, e.g., when a prey is always 10 times more abundant

than another in a diet. In addition, it can also be relevant to define a

constraint* on the minimum predation undergone by a

defined group.
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2.3.2 Inputs of literature to CaN modeling
Arrow 6 in Figure 1. According to the data availability on the

biomass-based trophic network and the ecological question raised

for the experimental study, partial or full time series, e.g., biomass

from surveys, catches, primary production, etc. (see Drouineau

et al., 2021 for examples of additional explicit constraints*), can be

added to the CaN model to represent a given period. However, for

the moment, CaN modeling does not allow users to change the

values of inertia*, satiation*, and other losses* during a simulation.

Therefore, it is not currently possible to design a simulation plan

considering a time series for the stress* condition(s), except if these

conditions already happened on a different time series than the one

used for control condition, which is rarely the case. A solution is to

start both control and stress* condition(s) with the same initial

biomasses (see arrow 5 and Section 2.3.1). The model is then run for

a given number of years free of time series constraints, i.e., close to

the Non-Deterministic Network Dynamics (NDND) framework if

considering only the biomasses (Planque et al., 2014; Lindstrøm

et al., 2017), using potential additional permanent constraints* on

the diets and/or import and export flows. In this case, time series

can also be a way to calibrate* (i.e., adjust the parameters of a model

by integrating the uncertainty of the parameters and/or the model

to obtain a representation of the modeled system that satisfies a

predefined criterion) the model with the control condition if the

stability of the system is targeted, i.e., by modifying the ratios used

to link consumption and satiation* and/or the thresholds of

diet constraints*.

If the user does not use the values obtained from the LIM, it is

still possible to use the empirical relationships given by Lindstrøm

et al. (2017) to derive the values of inertia*, satiation*, and other

losses* for every trophic group.
2.3.3 DEB outputs to CaN modeling
Arrow 7 in Figure 1. As previously demonstrated, LIM outputs

can be used to obtain a range of values of parameters (assimilation

efficiency*, satiation*, inertia*, other losses*) for all the trophic

groups in the control condition. The projection of stress* condition

(s) for the focus species or trophic group is then input with

perturbations of these same parameters quantified from

DEB outputs.

The relative variations of Q, P, and R in the stress* state(s)

compared to the control state are used to proportionally modify the

assimilation efficiency*, satiation*, inertia*, and other losses*. The

other values remain the same, including potential constraints* on

diets. Like previously exposed in Section 2.2.1, the modification is

justified by the analogy between the individual variations and the

ones undergone by the group. Therefore, any modification of Q, P,

and R are expected to affect all individuals of the group with the

same magnitude. Like described in Section 2.2.1, this magnitude is

obtained by weighting the values predicted by the DEB model

depending on the demography of the species and/or the species

composing the trophic group. The assimilation efficiency*,

satiation*, inertia*, and other losses* for a stress* condition y are

defined as:
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gy = g
ADEBy

ADEB
(16)

sy = s
QDEBy

QDEB
(17)

ry = log 1 + sy
P
Q

(
PDEBy
QDEBy

)

( PDEB
QDEB

)

0
@

1
A = log 1 + s

PPDEBy
QPDEB

� �
(18)

my = m
RDEBy

RDEB
(19)

where QDEBy , PDEBy , RDEBy and ADEBy are obtained from the

DEB model representing the stress* condition with the

computations described in Section 2.2.1 (Equations 3–7) and 2.3.1

(Equations 11–15). If a secondary consumer is subject to trophic

import, the constraint* can be modified accordingly.

The change in these three constraints* is supposed to modify

the trajectories observed on projections performed with the CaN

model. Depending on the trophic level of the group(s) modified

following the methodology, cascading effects can be observed on the

other compartments of the food web.

Other meta-parameters must be defined in the “sampleCaN”

function of the RCaN package. For more details, see the work of

Drouineau et al. (2021). It is noteworthy that the choice of the
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settings will greatly influence the time of sampling of the polytope*

(i.e., a finite region of n-dimensional space bounded by

hyperplanes), which could be limiting if multiple outputs of the

LIM are used as input for the CaN modeling.
3 Results

The presented framework is finally able to provide a

comparison of the trophic network between the control and

stress* conditions. The simulations can last for the number of

years specified by the user with different purposes, e.g., to find

stable states of the stress* state(s) or just to look at the trends of

several parameters (Table 1).

Different indicators can be observed, like the biomasses of the

different groups, the diet contributions or predation pressures, or

even trophic network indicators (ENAs, Fath et al., 2019), etc. Note

that producing ENAs would require balancing* yearly the network

by changing as little as possible these values. Such automatic

balancing* can be done with the “balance” function of the enaR

package in the R environment (Lau et al., 2017) that uses the

algorithm developed by Allesina and Bondavalli (2003). For

examples of outputs, see e.g., the work of Drouineau et al. (2021)

and Sivel et al. (2021).

Despite these final outcomes, several outputs of interest are also

provided throughout the framework at different scales (Table 1).
TABLE 1 Potential outputs generated throughout the framework from experiments, DEB, LIM, and CaN modeling used directly within or outside of it.

Experiments* DEB modeling* LIM modeling** CaN modeling

Potential
problematics
and insights

- Evolution of the herbivory path in the context of a decline in plankton quality in coastal food webs
- Impacts of heat waves on estuarine foraging area functioning
- Consequences of electromagnetic fields generated by offshore wind farms on local food-web dynamics

Within the
upscaling
framework

Length, weight,
condition, age, food
consumption rate,
metabolic rate,
and fecundity

Consumption, production, respiration rates, and
assimilation efficiency

Biomass, consumption,
production, respiration, imports,

exports per trophic group Dynamics of biomasses, diet
contributions, predation
pressures, ENAs of the

food web

Other results

Behavior, immunity
and any other
measurable

physiological feature

Maturity, growth, and fecundity outside of the
experimental range, age to reach maximum length,

life span, and any other variable of DEB

Uncertainty on steady-state flows,
ENAs on steady-state food web

Uncertainty
considerations

Interindividual
variability of

measured factors

Parameter distribution estimation if using the
methods of Boersch-Supan and Johnson (2019) or
Marques et al. (2019). Otherwise, modeler-defined

confidence interval following Ecopath
pedigree method

Probability density function of
flows from and to each node of

the static trophic network
(consumption, production,

respiration, etc.)

Uncertainty and variability of
trophic relationship intensity

in a dynamic way

Potential
examples of

scaling and results
(given for the

first problematic)

- Declines in length,
weight, with constant
condition index and
basal metabolism

- Decline in growth,
more food ingestion,
higher metabolism

- Less food ingestion,
decline in weight

- Decrease of assimilation and production/
consumption ratio

- Increase in consumption/biomass and respiration/
biomass ratios, and mortality

- Decrease in consumption/biomass ratio,
constant respiration

/

- Increase in intermediate
trophic levels and detritivory/

herbivory index
- Decline in biomass of
predators on the medium
term after a decline in their

prey
- Decline in biomass of the

species of interest and
declines in total system

throughflow and exports out
of the system
*Only for the group(s) of interest.
**Only for control condition.
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Experimental results, if executed for the purpose of the study, can

provide outcomes out of the scope of the framework, e.g., concerning

behavioral aspects not represented in DEB, LIM, nor CaN. In the

same way, DEB outputs can be numerous and predict the life cycle of

individuals through growth, maturation or reproduction features.

Finally, LIM outputs are limited in comparison as they are only

available for a control condition but can still provide reference states

for multiple flows and ENAs on control condition.
4 Discussion

In this study, we provide a new methodology aiming at

upscaling information from laboratory experiments on

individuals to food webs. This framework brings new insights on

the potential of understanding higher-scale consequences of the

effect of stressors measured at the sub-individual scale. This original

approach extends past works on this topic, tackles a portion of

uncertainty, but still remains constrained by some limitations.
4.1 The design of a methodology

Our methodology does not imply newly developed techniques

or models, but mainly clarifies the usefulness of connecting different

models and the ways to link them to address the question of the

effects of environmental stresses* observed at the individual level on

the food-web functioning.

Forbes et al. (2008) defined three broad classes of population

models designed to mechanistically “relate individual-level

responses to changes in population size and structure,” i.e.,

demographic models, energy budget models, and IBMs* (i.e.,

models in which each individual has a set of state variables or

attributes and behavior). Each of them has advantages and

disadvantages in their use for upscaling in terms of their

generality, realism, and accuracy. Among them, IBMs* are maybe

the most natural and has proven to be an efficient tool for the

transfer from individual through population (DeAngelis and

Grimm, 2014; Grimm et al., 2017), especially when associated

with DEB models (Martin et al., 2012). Here, we propose

something different from the IBM framework. Our orientation on

steady mass-balanced* trophic models, such as LIM and CaN, was

partly driven by the purpose to describe the full food web or

ecosystem and not only a portion of it through the population.

This choice reduced the potential of observing some emergent

patterns likely to happen as when using IBMs*. Hybrid models

mixing both IBM* and simplified food webs (e.g., Strauss et al.,

2017; Morell et al., 2023) have already been implemented in some

specific cases. However, our approach allowed the simulation of a

larger potential of bottom–up and top–down dynamics with an

explicit representation of the lowest and highest trophic levels.

The methodology for transfer across biological organization

levels has, of course, to be chosen according to available data and

models. In several past studies, the interest and techniques to perform

general upscaling were described, and our methodology matches
Frontiers in Ecology and Evolution 12
these past classifications by covering an important part of

their diversity.

Carlotti and Poggiale (2010) described this transfer through the

following two different techniques: “lumping” and replication.

Contrary to replication, involving the multiplication of individual

entities as in IBMs*, “lumping” is the simple use of characteristics

from one organizational level, often the individual, to the upper

organization level, e.g., the population, involving the use of an

average individual. In our framework, this technique is used to

represent the trophic group starting from the individual organism

modeled with the DEB theory, by simply applying the same vital

rates to the whole group of individuals. However, the diversity of

ages or stages of individuals can be represented in the group using

DEB outputs, which provides more than what is often realized in

trophic modeling. Moreover, DEB modeling provides more

flexibility and a deeper comprehension than empirical

relationships to mimic stresses*, as it relies on experimental data

finely representative of the species of interest and provides a

mechanistic interpretation for the MoA of the stressor.

Using a terminology initially developed for IBM*, Reuter et al.

(2005) described the properties of upscaling in qualitative terms as

follows: (1) Collective properties, attributed equally to different

organizational levels of the system, e.g., the scale up of energy fluxes

from individual level to communities by Barneche et al. (2014).

These are used in our framework when the biomasses of several

individuals modeled with the DEB theory are summed to generate

the initial trophic group on the food-web models. (2) Emergent

properties* result from the activities of lower-level entities on a

higher organizational level while not being present on the lower

level. No aggregational emergent properties* (i.e., statistical

properties that do not necessarily result from interactions of

lower-level entities or non-linear feedback processes) are put

forward in our framework, partly because our framework is based

on models not spatially explicit, while connective emergent

properties* (properties that necessarily depend on interactions

and feedback processes between the represented organisms and

between these organisms and their environment) among entities

can be attributed to two main parts of our methodology. The first

one is responsible for the relationships between the components of

an organism’s metabolism obtained from the sub-individual

experimental results and represented with the DEB modeling. The

second one is the trophic control driving the final dynamic food

web in comparison to the individual level from the DEB model.

Our methodology thus incorporates a suit of methods for

upscaling through the transfer of information at the upper

organizational level using intuitive and relevant hypothesis to link

each node with its upper hierarchical level (Figures 2, 3; see also

Supplementary Tables S4, S6 for equivalences between parameters

of DEB, LIM, and CaN) and in fine to reach the dynamic food-web

level while tackling uncertainty.

Here, we propose a set of models (DEB, LIM, and CaN), but the

purpose of our methodology was not to be exhaustive in existing

models and their ability to address ecological questions. Alternative

models could be used given that formulation of processes and

baseline assumptions are consistent between approaches.
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Otherwise, changes in the type of model used would require

adaptations of the methodology that are out of the scope of this

study (see, for instance, a comparison between the DEB theory and

the biogeochemical model ERSEM of Marques et al., 2014). For

example, it is not mandatory to stay within the LIM framework.

Many Ecopath models are published, available, and provide similar

outputs compared with LIM models. However, most often, they

only provide the equivalent of one version of the network obtained

from the LIM, except if uncertainty is accounted for (e.g., Guesnet

et al., 2015; Steenbeek et al., 2018). But even in this case, the

exploration of possible trophic network structure is limited in

comparison to LIM due to the limited set of parameters that can

be perturbed. Similarly, Ecosim (Walters et al., 1997) could

theoretically be used for modeling food-web dynamics. However,

contrary to RCaN, its trophic interactions are deterministic, and

modifying vital rates and exploring uncertainty rates is not as

straightforward as in RCaN, but a diversity of practices exists (see

Stock et al., 2023 for a review). Using the EwE suite instead of our

framework would most likely result in important biases on the

simulation of the extent of possible impacts. Population level could

also be added before the trophic network level to avoid our

assumptions on demography using IBM or matrix population

models (e.g., Klanjscek et al., 2006; Saraiva et al., 2014). It could

be necessary to develop it if there is an important effect requiring it,

e.g., migrations depending on the levels of maturity that could

modify the demography of the population and/or its density.
4.2 Propagation of uncertainty

Beyond the construction of a way to perform upscaling, we tried

to consider uncertainty among the components of the framework.

This development is crucial especially when inputs are of low

quality but also because of the large number of components and

processes involved in aquatic ecosystems that may modify the

responses of individuals between experimental conditions and

between the lab and the field (Planque, 2016). One good way to

deal with uncertainty is to build a framework that includes the

uncertainty from the beginning of the study and that is shared by all

scientific partners throughout the process (Refsgaard et al., 2007).

The terminology of Walker et al. (2003) defines uncertainty

according to its location, level, and nature. First, the different

locations of uncertainty are partially tackled by our framework.

The “context” uncertainty belongs to the user and cannot be

optimized in the context of this paper, while “model” uncertainty

is not explored with the use of only one set of models at each level.

However, “input” and “parameter” uncertainties are reduced by the

DEB if uncertainty is considered with the methodology of Boersch-

Supan et al (2017); Boersch-Supan and Johnson (2019), or

artificially by adding an equivalent of the Ecopath pedigree* value

around the DEB predictions, and are inherent to the LIM and CaN

approaches. “Model outcome” uncertainty (i.e., the accumulated

uncertainty associated with the model outcomes) is captured within

the thresholds of the final CaN uncertainty. Second, the level of

uncertainty is explicitly described in the different models by the

constraints* given that traduce the knowledge of the user. Finally,
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the nature of uncertainty is divided between epistemic uncertainty,

mostly in the DEB and LIM, and stochastic uncertainty, traduced in

the trophic relationships of the CaN modeling.

As evoked above, modeling an average individual in the DEB

process can be problematic, and uncertainty approach has to be

advocated (Boersch-Supan and Johnson, 2019). This is not only to

represent the variability of individuals, but it is also crucial for the

understanding of populations’ resilience that can vary in relation to

the pool of individual traits, e.g., regarding global change (McKenzie

et al., 2016). The DEB theory focuses on processes at an intermediate

individual scale (Sousa et al., 2010). It assumes the choice of ignoring

the molecular understanding of processes, such as those concerning

the effect of pollution on the immune system. However, it captures

the effects reflected on the energy transfer through large directions of

the individual’s life cycle, growth, and reproduction principally. The

response of individuals and the repercussions of individuals’ plasticity

are one of the pros of our approach, which, however, does not fully

capture the allometry influences on the food web, e.g., the influence of

temperature on size and mass of individuals potentially influencing

their diet and consequently ecosystem structure (Freitas et al., 2010;

Palkovacs, 2011).
4.3 Planning the answer (linkage
with experiments)

Our framework advocates for the use of laboratory experiments

as basal inputs in association with the necessity to use numerical

models to open for a larger scale. Small-scale aquariums are well

adapted for individual levels, while obviously less useful for

populations and communities, for which mesocosms permit more

insights. Mesocosms can include multiple trophic levels at the same

place and time, but they often lack the ability to represent networks

with sufficient interacting groups under various conditions (Queirós

et al., 2015). These ones are more challenging, costly, and finally

lack predictive power (Forbes et al., 2008; Andersson et al., 2015;

Queirós et al., 2015). Moreover, when experimental results are used

as inputs for upscaling, these must be carefully treated to provide

realistic projections. A classic example lies in the differences

between the functional responses obtained from laboratory

experiments and in situ observations (Morozov, 2010), which

imply the use of well-defined upscaling methodologies (Carlotti

and Poggiale, 2010). With a “lumping” aggregation approach from

DEB, it may sometimes be possible to directly relate experimental

observations to model parameters, while in other cases, links will be

less clear (Le Quesne and Pinnegar, 2012). Models are known to be

less structurally sensitive to the choice of a specific functional

response if they include mass-balance* resource dynamics and

individual maintenance (Aldebert et al., 2018). Using models like

DEB could therefore be appropriate to at least reduce the

uncertainty on such biological processes.

The DEB modeling used here is mostly adult focused because

the methodology presented is based on mass-balanced* modeling,

so the length of individuals is not explicit, unless multiple life stanza

are defined or if the trophic network is only frequented by a precise

stage of a species. If so, it could require an extensive focus on
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younger stages. If only a precise stage of a species is represented, a

stronger focus has probably to be done on the hypothesis

concerning the population effects and the imports and exports,

which would have repercussions on the way constraints* are

written, e.g., the proportionality of exports and imports.

The association of modelers and experimentalists is therefore

globally required in aquatic sciences (Andersson et al., 2015;

Koenigstein et al., 2016; McKenzie et al., 2016), especially when

trying to develop a framework like the one presented here. The

integration of physiology into models is needed to answer complex

questions involving repercussions at different biological scales

(McKenzie et al., 2016) involving multiple pathways by which

stresses* can affect species (Stock et al., 2023). A paramount factor

influencing a nonlinear transferability from experiments to in situ is

the behavior of individuals in association with physiology (Pörtner

and Peck, 2010; Cooke et al., 2014). Avoidance of areas or predators,

ability to feed on preferential prey, or changes in the mono- or multi-

specific movement may modify the values associated with

consumption, production, or respiration in comparison with simple

physiological results from experiments. This issue is not explicit in

DEB representations but can be circumvented by bringing qualitative

information concerning the variation of other components at the

level of the trophic group (e.g., mortality by predation, predation

abilities, etc.). These observations can complete the quantitative

scenarios defined from the DEB model outputs with “qualitative”

scenarios. This can be concretely realized by the increase or decrease

of the different ratios. Qualitative scenarios have to be defined by the

user knowing the effects different treatments can have on a species’

behavior or vulnerability involving a consensus between all specialists

involved in the ecological questioning.
5 Conclusion

In this study, we proposed a framework designed to address an

ecological question involving upscaling from individual to food

web. The connection of experiments to a series of models is

innovative as it permits to consider the effect of any stress* on

individuals, focusing on a species or a trophic group, and spread

them for a dynamic projection of aquatic food webs, while dealing

with a non-negligible portion of uncertainty. This study does not

have the pretention to give the one and only approach to follow to

understand the effects of environmental factor from the individual

level to the trophic web level, but proposes a framework of how to

answer such ecological question in an aquatic system context. It can

help experimenters and modelers to jointly address a specific

question, proposes approaches, and gives tips on the pitfalls to

avoid along the upscaling process.
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Hoegh-Guldberg, O., et al. (2016). Responses of marine organisms to climate change
across oceans. Front. Mar. Sci. 3. doi: 10.3389/fmars.2016.00062

Pörtner, H. O., and Peck, M. A. (2010). Climate change effects on fishes and fisheries:
towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779. doi: 10.1111/
j.1095-8649.2010.02783.x

Queirós, A. M., Fernandes, J. A., Faulwetter, S., Nunes, J., Rastrick, S. P. S.,
Mieszkowska, N., et al. (2015). Scaling up experimental ocean acidification and
warming research: from individuals to the ecosystem. Glob Change Biol. 21, 130–
143. doi: 10.1111/gcb.12675

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and Vanrolleghem, P. A. (2007).
Uncertainty in the environmental modelling process – A framework and guidance.
Environ. Model. Software 22, 1543–1556. doi: 10.1016/j.envsoft.2007.02.004

Reuter, H., Hölker, F., Middelhoff, U., Jopp, F., Eschenbach, C., and Breckling, B.
(2005). The concepts of emergent and collective properties in individual-based models
—Summary and outlook of the Bornhöved case studies. Ecol. Model. 186, 489–501.
doi: 10.1016/j.ecolmodel.2005.02.014

Reuter, H., Jopp, F., Blanco-Moreno, J. M., Damgaard, C., Matsinos, Y., and
DeAngelis, D. L. (2010). Ecological hierarchies and self-organisation – Pattern
analysis, modelling and process integration across scales. Basic Appl. Ecol. 11, 572–
581. doi: 10.1016/j.baae.2010.08.002

Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C., and Pinnegar, J. K.
(2009). Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66,
1570–1583. doi: 10.1093/icesjms/fsp056

Robles, J. F., Chica, M., Filgueira, R., Aguera, A., and Damas, S. (2023).
MultiCalib4DEB: A toolbox exploiting multimodal optimisation in Dynamic Energy
Budget parameters calibration. ArXiv:2301.07548. doi: 10.48550/arXiv.2301.07548

Safi, G., Giebels, D., Arroyo, N. L., Heymans, J. J., Preciado, I., Raoux, A., et al. (2019).
Vitamine ENA: A framework for the development of ecosystem-based indicators for decision
makers. Ocean Coast. Manage. 174, 116–130. doi: 10.1016/j.ocecoaman.2019.03.005
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Sea Res. 92, 144–157. doi: 10.1016/j.seares.2014.02.003
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