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Abstract Oceanic plates are doubly curved spherical shells, which influences how they respond to loading
during subduction. Here we study a viscous fluid model for gravity‐driven subduction of a shell comprising a
spherical plate and an attached slab. The shell is 100–1,000 times more viscous than the upper mantle. We use
the boundary‐element method to solve for the flow. Solutions of an axisymmetric model show that the effect of
sphericity on the flexure of shells is greater for smaller shells that are more nearly flat (the “sphericity paradox”).
Both axisymmetric and three‐dimensional models predict that the deviatoric membrane stress in the slab should
be dominated by the longitudinal normal stress (hoop stress), which is typically about twice as large as the
downdip stress and of opposite sign. Our models also predict that concave‐landward slabs can exhibit both
compressive and tensile hoop stress depending on the depth, whereas the hoop stress in convex slabs is always
compressive. We test these two predictions against slab shape and earthquake focal mechanism data from the
Mariana subduction zone, assuming that the deviatoric stress in our flow models corresponds to that implied by
centroid moment tensors. The magnitude of the hoop stress exceeds that of the downdip stress for about half the
earthquakes surveyed, partially verifying our first prediction. Our second prediction is supported by the near‐
absence of earthquakes under tensile hoop stress in the portion of the slab having convex geometry.

Plain Language Summary Tectonic plates on earth are doubly curved spherical shells, which
influences how they respond to applied forces during subduction. We use axisymmetric and three‐dimensional
viscous flow models to study the dynamics of spherical shells sinking under gravity into the mantle below. We
find the surprising result that the effect of spherical geometry on the bending of shells is greater for smaller
shells that are more nearly flat, which we call the “sphericity paradox.” We also find that the stress in the
subducted portions of plates (“slabs”) is dominated by the longitudinal normal stress (hoop stress), which is
about twice as large as the more familiar downdip stress. Earthquake focal mechanisms from the Mariana
subduction zone in the Pacific ocean confirm our prediction that no deep earthquakes should occur under tensile
hoop stress in portions of slabs having convex landward geometry.

1. Introduction
An important feature of terrestrial plate tectonics is that plates are doubly curved spherical shells in their pre‐
deformed state. The mechanics of such objects is described by the theory of thin shells, which has a long his-
tory going back at least to the work of Love (1944). This theory shows that a doubly curved shell responds to loads
differently than a flat plate. Whereas a flat plate supports a normal load solely by bending stresses, a shell with
double curvature does so by bending stresses combined with in‐plane “membrane” stresses (Audoly &
Pomeau, 2010). Furthermore, curvature renders a shell stiffer and more resistant to bending, because additional
energy has to be expended on stretching in order to change the intrinsic Gaussian curvature (the product of the two
principal curvatures) of a surface.

The largest deformations of Earth's tectonic plates occur during subduction. It is therefore natural to focus on
subduction when considering how spherical geometry influences the mechanics of terrestrial plates. Naive
intuition suggests that the effect of spherical geometry should be minor if the domain of interest has a charac-
teristic lateral dimension much smaller than the earth's radius. It should then be possible to understand the es-
sentials of subduction dynamics using Cartesian models in which the plates are flat in their undeformed state. It is
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for this reason that the vast majority of numerical subduction models in the literature use two‐dimensional (2‐D)
or three‐dimensional (3‐D) Cartesian geometry: representative examples include Ribe (2010), Capitanio and
Morra (2012), Čížková and Bina (2013), Garel et al. (2014), and Bessat et al. (2020) in 2‐D and Stegman
et al. (2010), Li and Ribe (2012), Pusok et al. (2018), Chertova et al. (2018), and Balázs et al. (2021) in 3‐D.
Gerya (2022) gives a detailed review of numerical models of subduction.

Yet despite the dominance of Cartesian models, the question of how sphericity influences the mechanics of
subduction has not been neglected. Early models were purely geometrical (Bayly, 1982; Frank, 1968; Lar-
avie, 1975; Scholz & Page, 1970). Notably, Scholz and Page (1970) and Bayly (1982) proposed that a subducting
slab should buckle at depth along the strike of the trench because the space available to it is progressively reduced
as it sinks due to the spherical geometry. Schettino and Tassi (2012) used geometrical arguments to determine a
relationship between trench curvature, the variation of slab dip and the lateral strain rate, but did not make use of
thin‐shell theory.

To our knowledge, the first studies to investigate the dynamics of bending spherical shells in a geodynamical
context were Tanimoto (1997, 1998). He solved the equations for a normally loaded spherical elastic shell subject
to a buoyancy force proportional to the normal displacement, and showed that the state of stress in the shell is
strongly influenced by spherical geometry. Morishige et al. (2010) presented a semi‐dynamical model for sub-
duction in a spherical shell, and found that sphericity has only a small effect on the pattern of horizontal flow
around slab edges. Mahadevan et al. (2010) investigated the causes of the curvature and segmentation of sub-
duction zones via scaling and numerical analysis of small‐amplitude deformation of shallow spherical caps. They
found a scaling law for the wavelength of the edge instability (“dimpling”) that occurs when a distributed radial
body force acts on an elastic shell on an elastic foundation. G. Morra and co‐workers used the boundary‐element
method (BEM) to study large‐amplitude subduction of spherical viscous shells, focusing on island arc curvature
(Morra et al., 2006), subduction in a mantle with depth‐dependent viscosity (Morra et al., 2012), and interaction of
several plates (Morra et al., 2012). Chen et al. (2022a) compared the dynamics of subduction in 3‐D Cartesian and
spherical geometry, and found that the effects of sphericity are important for slabs greater than 2,400 km in width.
Finally, Chen et al. (2022b) determined a qualitative regime diagram for trench types (shaped like the letters I, C,
or W) and subduction modes (“vertical folding” and “weak retreat”) in the space of plate age and width. However,
none of the aforementioned studies identified the key length scales and dimensionless numbers that control
subduction.

Building on the earlier studies cited above, Chamolly and Ribe (2021) used the BEM to investigate subduction of
an axisymmetric viscous shell in a mantle with a lower viscosity. This work showed that the role of sphericity is
more complicated than it first appears. One would think that the influence of sphericity should be greater for a
large shell (e.g., a hemisphere), which is differs more from a plane than a small, shallow shell. This may be called
the “geometrical sphericity” effect. However, there is also a “dynamical sphericity” effect related to how a
spherical shell bends in response to forces applied to its edges. Surprisingly, the trend of this effect is the opposite
of the geometrical one: dynamical sphericity is more important for small, nearly flat shells than for large ones. We
call this the “sphericity paradox”. Chamolly and Ribe (2021) used scaling analysis based on thin‐shell theory to
show that the dynamical sphericity effect is measured by a dimensionless “dynamical sphericity number” ΣD
proportional to the cotangent of the angle subtended by the plate. This implies that the dynamical effect of
sphericity increases as the plate size diminishes.

Our study begins (Section 2.1) by deriving the dynamical sphericity number and determining reference scaling
laws for the sinking speed and the longitudinal normal stress (“hoop stress”) in a subducting axisymmetric shell.
In Section 3 we obtain some new results for axisymmetric shells, focusing on the relative magnitudes of the hoop
stress and the downdip normal stress in the slab. In Section 4, we relax the unrealistic assumption of axisymmetry
and consider 3‐D models in which the trench is convex landward. In Section 5 we consider the additional effects
of radial viscosity stratification, including that associated with an inviscid core. In Section 6 we examine the case
of a trench that is concave landward, corresponding to a slab with negative Gaussian curvature. In Section 7 we
test the predictions of our models against observations from the Mariana subduction zone, using the hypothesis
that the deviatoric stress in the slab is proportional to the deviatoric part of earthquake centroid moment tensors.
Finally, Section 8 discusses our results in depth.
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2. Physical Scalings
The physical fundamentals of subduction of spherical shells can be elucidated by means of scaling analysis of the
forces involved. The scalings derived here are hypotheses that we test in subsequent sections.

Figure 1 shows the simplified axisymmetric model that we use for scaling analysis. A shell with thickness h,
viscosity η1 and density ρ1= ρ+ δρ1 is immersed in a spherical planet with viscosity η2 and density ρ. The ratio of
the viscosities of the shell and the mantle is γ = η1/η2. The (constant) gravitational acceleration g is directed
radially inward. The planet's outer surface r = R0 is free‐slip (vanishing normal velocity and shear traction). The
shell consists of a “plate” 0 ≤ θ ≤ θt and a “slab” θt < θ ≤ θs. The dip of the slab at its leading end is φs. Above the
plate is a lubrication or “sticky air” layer of thickness d, which creates a large normal stress ∼δρ1gh that inhibits
net downward motion of the plate while allowing it to move freely horizontally and to bulge upward (and of
course also downward) due to bending (Ribe, 2010). The radius of the shell's midsurface is

r0(θ) =
⎧⎨

⎩

R (θ≤ θt)

R(1 − b(ζ3 − ζ4/2)) (θ∈ [θt, θs])
(1)

where R = R0 − h/2 − d and

ζ =
θ − θt
θs − θt

, b =
2(θs − θt) sinφs

2 cosφs + (θs − θt) sinφs
. (2)

The functional forms Equations 1 and 2 ensure that the meridional curvature of the midsurface is continuous at the
trench and that the dip of the midsurface at θ = θs is φs.

The key length scale in the model is the “bending length” lb, the length of the portion of the shell that deforms
mainly by bending rather than by extension or shortening. It is the sum of the slab length l and the length of the
flexural bulge seaward of the trench, and is indicated schematically in Figure 1. The bending length is diagnostic
of the dynamics because the Stokes equations must be solved to determine it. It is not an independent variable
because it depends on the geometrical parameters h, d, l, θt, θs, and φs and on the viscosity ratio γ. A scaling law
for the bending length in 2‐D Cartesian geometry is presented in Appendix B of Ribe (2010).

Figure 1. Definition sketch of the axisymmetric model in cross‐section (not to scale). (a) A viscous shell with thickness h,
viscosity η1 and density ρ + δρ1 is immersed in a spherical viscous planet with radius R0, viscosity η2 and density ρ. The
planet's surface r= R0 is free‐slip. The shell comprises a spherical “plate” θ≤ θt and a “slab” θt ≤ θ≤ θs. The dip of the slab at
its leading end is φs. The lubrication layer above the plate has thickness d, and the radius of the plate's midsurface is
R= R0 − h/2 − d. The gravitational vector g points radially inward. The annotation “fb” indicates the position of the flexural
bulge. (b) Forces acting on the portion of the shell that deforms by bending: the negative buoyancy force Fb, the external
traction Fext exerted by the surrounding mantle, and the internal resistance to bending Fint. Fint is the shear force acting on a
vertical plane at the seaward extremity of the bending portion of the shell. Also shown is the radial sinking speed Vsink of the
tip of the slab.
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The physical scalings discussed below make use of thin‐shell theory. The fundamental quantity in this theory is
the velocity on the shell's midsurface, with components {U, V, W}. U(θ, ϕ) is the velocity parallel to the mid-
surface in the direction of increasing colatitude. V(θ, ϕ) is the component parallel to the midsurface in the di-
rection of increasing longitude, and vanishes if the flow is axisymmetric. The lack of a subscript on Vwill prevent
confusion with the quantities Vsink, VStokes, V1, V2, and V3 introduced later. Finally,W(θ, ϕ) is the velocity normal
to the midsurface.

2.1. Geometrical and Dynamical Sphericity Numbers

What we have called the geometrical sphericity of the shell is just the amount by which the shell's midsurface
differs from a plane. Geometrical sphericity is small for so‐called “shallow” shells with θt ≪ 1, and large for, a
hemispherical shell with θt = π/2. Because the geometrical sphericity increases with θt, we may define a
“geometrical sphericity number”

ΣG = θt. (3)

The first step in the derivation of the dynamical sphericity number ΣD is to identify the forces (per unit length in
the longitudinal direction) acting on the bending portion of the plate. Figure 1b shows these. The driving force for
subduction is the negative buoyancy Fb acting on the slab. It scales as

Fb ∼ lhgδρ 1. (4)

The negative buoyancy is balanced by two resisting forces: the external traction Fext applied by the surrounding
mantle, and the internal resistance to bending Fint. The characteristic stress in the surrounding mantle is η2Vsink/lb,
where Vsink (>0) is the downward radial velocity of the leading end of the slab. Integrating this over the bending
length lb, we obtain

Fext ∼
η2Vsink
lb

lb = η2Vsink. (5)

Scaling analysis of the force Fint requires the use of thin‐shell theory. Fint is a viscous reaction force that acts on a
cross‐section of the shell located at the seaward extremity of the flexural bulge. It is equal to the integral across the
shell (the “resultant”) of the midsurface‐perpendicular shear stress σθz acting on the cross‐section. Its explicit
definition is (Novozhilov, 1959)

Fint =∫
h/2

− h/2
σθz (1 − Kϕz) dz ≡ Nθ (6)

where z is a coordinate perpendicular to the midsurface z = 0 and Kϕ is the longitudinal curvature of the mid-
surface. If the flow is axisymmetric, Nθ is related to the colatitudinal bending moment Mθ and the longitudinal
bending moment Mϕ by Novozhilov (1959), Equation 7.8

Nθ =
1

AθAϕ
[∂θ (AϕMθ) − Mϕ∂θAϕ] (7)

where

Aθ = [r20 + (∂θr0)
2
]
1/2, Aϕ = r0 sin θ (8)

are the Lamé parameters of the shell's midsurface. Aθ is the ratio of a change ds of arclength along the shell's
midsurface to the associated change of colatitude dθ, and Aϕ is defined similarly for changes in ϕ. Later we shall
also need the two principal curvatures of the midsurface, defined as

Journal of Geophysical Research: Solid Earth 10.1029/2024JB029500
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Kθ = −
r20 + 2(∂θr0)2 − r0∂2θθ r0
( r20 + (∂θr0)

2
)
3/2 , Kϕ =

∂θr0 cot θ − r0
r0( r20 + (∂θr0)

2
)
1/2 . (9)

Kθ and Kϕ are positive if the center of curvature lies on the side of the midsurface in the direction of the outward‐
pointing normal vector. Therefore both curvatures are negative for a spherical shell. The constitutive relations for
the bending moments are

Mθ =
η1h3

3
(κ̇θ +

1
2
κ̇ϕ), Mϕ =

η1h3

3
(κ̇ϕ +

1
2
κ̇θ) (10)

where

κ̇θ = −
1
A1
∂θ(

1
Aθ
∂θW + KθU), κ̇ϕ = −

1
AθAϕ

∂θAϕ(
1
Aθ
∂θW + KθU) (11)

are bending rates of the shell's midsurface in the colatitudinal and longitudinal directions, respectively.

For scaling purposes, we set Aθ ≈ R and Aϕ ≈ R sin θ, the Lamé parameters for a spherical surface of radius R.
Retaining only the dominant terms (the first terms in the parentheses) in Equation 11, we have

κ̇θ ∼ −
1
R2∂

2
θθW, κ̇ϕ ∼ −

cot θ
R2 ∂θW. (12)

Furthermore, Equation 7 takes the form

Nθ ≈
1
R
(Mθ − Mϕ) cot θ +

1
R
∂θMθ. (13)

Now the length scale for colatitudinal derivatives is the bending length lb, which implies ∂θ ∼ R/lb. Moreover,
W ∼ Vsink. Combining these scalings with Equations 10 and 12 we obtain

Mθ,Mϕ ∼
η1h3Vsink

l2b
max(1,

lb cot θ
R

), (14)

Upon choosing θt as a representative value of θ and replacing R by the earth's radius R0, the second term in
parentheses in Equation 14 becomes the dynamical sphericity number

ΣD =
lb
R0

cotθt. (15)

The dimensionless number ΣDmeasures the effect of sphericity on the flexural response of the shell to loading. A
greater ΣD means a larger bending moment (and hence a larger force Fint resisting subduction) for a given Vsink.

The “flat‐earth” limit ΣD→ 0 can be obtained in two ways. The first is to set θt = π/2. This implies the surprising
result that a hemispherical shell should bend under a load in a way similar to a flat plate. The second way to obtain
ΣD → 0 is to write

ΣD =
lb
L
ϵ cot ϵ where ϵ =

L
R0

(16)

and L = R0θt is the length of the plate measured along the earth's surface. Because ϵ cot ϵ ≤ 1, we obtain ΣD → 0
when lb /L → 0. The dynamical sphericity therefore vanishes when the bending length is much smaller than the
plate length. The bending portion of the shell then no longer “feels” the plate's curvature.
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The definition Equation 15 of ΣD implies the seemingly paradoxical result that dynamical sphericity is greater for
a small shell than for a large one. An intuitive understanding of this can be obtained by cutting two shells from a
basketball: a large one equal to a full hemisphere, and a small one in the form of a shallow spherical cap. Now
balance each shell upside down on the point of an upright pencil, and deform them slightly by applying radially
directed forces to opposite sides. You will find that a given applied force produces a smaller deformation of the
shallow cap than of the hemisphere: the latter is “floppy” whereas the former is “stiff.” The same applies to
viscous shells if “deformation” is replaced by “rate of deformation.”

2.2. Sinking Speed

A useful diagnostic parameter for subduction models is the sinking speed Vsink > 0 of the slab's leading edge. It is
controlled by the balance of the three forces Fb, Fext, and Fint shown in Figure 1b. The balance Fb ∼ Fext implies a
characteristic Stokes velocity scale

VStokes =
lhgδρ1
η2

. (17)

Now the normalized sinking speed Vsink/VStokesmust be a function of the ratio Fint/Fext. Using Equations 5, 13, and
14, we find

Fint ∼ η2Vsink f1 (St, ΣD) (18)

where

St =
η1
η2
(
h
lb
)

3

(19)

is a dimensionless “flexural stiffness” and f1 is an unknown function. St determines whether subduction of the
shell is resisted primarily by externally applied tractions (St ≤ 1) or by its internal resistance to bending (St ≫ 1).
The same parameter is relevant for initially flat plates in 2‐D and 3‐D Cartesian geometry (Li & Ribe, 2012;
Ribe, 2010). The requirement that Vsink/VStokes be a function of Fint/Fext now takes the form (Chamolly &
Ribe, 2021)

Vsink
VStokes

= f2 (St, ΣD, ΣG, φs) (20)

where f2 is an unknown function. The last two purely geometrical arguments of f2 account for the effects of
geometrical sphericity and of a variable dip angle, neither of which can be determined by scaling analysis.

2.3. Membrane Stresses

We now turn to the so‐called “membrane” stresses in the shell: the downdip normal stress σθθ and the longitudinal
normal stress σϕϕ (“hoop stress”). These are associated with in‐plane extension or shortening (membrane
deformation) and are constant across the shell, whereas the normal stresses associated with bending vary linearly
across the shell. Membrane stresses are usually measured in terms of their resultants.

Tθ =∫
h/2

− h/2
σθθ (1 − Kϕz) dz = 4η1h(ϵ̇θ +

1
2
ϵ̇ϕ), (21a)

Tϕ =∫
h/2

− h/2
σϕϕ (1 − Kθz) dz = 4η1h(ϵ̇ϕ +

1
2
ϵ̇θ), (21b)

where
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ϵ̇θ =
1
Aθ
∂θU − KθW, ϵ̇ϕ =

1
AθAϕ

(∂θAϕ)U − KϕW (22)

are the rates of extension or shortening of the midsurface in the θ‐ and ϕ‐
directions, respectively. The expressions 22 are valid for axisymmetric shells.
Because earthquakes respond to deviatoric stress rather than total stress, we
introduce two additional resultants of the deviatoric downdip and hoop stress:

Dθ = 2η1hϵ̇θ ≡
2Tθ − Tϕ

3
, Dϕ = 2η1hϵ̇ϕ ≡

2Tϕ − Tθ
3

. (23)

We now perform a scaling analysis of the hoop stress resultant Tϕ. The dominant contribution to Tϕ is the strain
rate ϵ̇ϕ, whose magnitude can be estimated as

ϵ̇ϕ ∼ − KϕW. (24)

Using the Expression 1 for r0(θ) to evaluate Kϕ at θ = θs assuming φs = 45° and θs − θt ≪ 1, we find

Kϕ (θs) = −
(2 + θs − θt) (1 + cotθs)

2
̅̅̅
2

√
R

∼ − R− 1max(1, cotθs). (25)

Combining Equations 24 and 25 with Equation 21b and setting R ≈ R0, we find

Tϕ ∼
η1h
R0
Wsmax(1, cotθs) (26)

where Ws = W(θs).

3. New Results for Axisymmetric Subduction
In this section we present new axisymmetric numerical solutions that extend those of Chamolly and Ribe (2021).
Unless otherwise stated, the models discussed here and subsequently have the reference dimensionless parameters
given in Table 1. For simplicity, we suppose that there is no inviscid core and that the mantle is isoviscous. These
unrealistic assumptions will be relaxed later.

The flow in the shell and in the surrounding mantle satisfies the Stokes equations of slow incompressible viscous
flow. Because inertia is negligible in planetary mantles, the temporal history of a subducting shell is just a
sequence of quasi‐static configurations. The essential dynamics of subduction can therefore be understood by
means of instantaneous solutions of the Stokes equations, to which we limit ourselves in this study.

We solve the Stokes equations using the boundary‐element method (BEM) of Chamolly and Ribe (2021). The
BEM calculates the vector velocity at all nodes on the discretized interface between the shell and the surrounding
mantle. As far as the method is concerned, the interface can have any shape. However, in our case the interface is
the surface of a thin shell with one short dimension and two long ones. We can therefore use the theory of thin
viscous shells to interpret our BEM solutions. As noted in Section 2, thin‐shell theory is expressed in terms of the
midsurface velocity with components U, V, and W. The most accurate way to determine the midsurface velocity
from a BEM solution is to exploit a prediction of thin‐shell theory according to which all components of the
velocity vary at most linearly across the shell to lowest order. The midsurface velocity is therefore a simple
average of the velocities at the two points where the normal to the midsurface pierces the interface. In the
axisymmetric model studied in the present section V = 0 while U and W are independent of ϕ. In the three‐
dimensional models to be examined later, V ≠ 0 and U, V, and W are all functions of both θ and ϕ. The kine-
matical quantities κ̇θ, κ̇ϕ, ϵ̇θ and ϵ̇ϕ introduced in Section 2 are obtained from the midsurface velocity field by
differentiation.

Table 1
Parameters of the Reference Model

R0/h d/h θt θs − θt φs γ

63.7 0.3 30° 5° 45° 316
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3.1. Illustrative Kinematical and Dynamical Fields

Figures 2a–2d show several kinematical and dynamical quantities of interest as a function of arclength along the
midsurface of a shellwith the parameters of Table 1. Figure 2a shows the vector velocity field,which corresponds to
subduction by trench rollback. Figure 2b shows the radial velocity ur versus arclength s along the midsurface. The
label “fb” indicates an interval of upward radial velocity, corresponding to flexural bulging. Figure 2c shows the
bending rateḂθ = − κ̇θ − κ̇ϕ/2, which is nonzero in a boundary layer whose arcwise extent is just the bending length
lb. Our definition of lb is indicated. Finally, Figure 2d shows the rates of viscous dissipation as functions of arclength
associated with flexural (red) and membrane (blue) deformation. Dissipation in the shallower portion of the slab is
dominated by flexure, and in the deeper portion by membrane deformation. Dissipation in the plate (s/R0 < 0.4) is
dominated by shortening. The local minima of the red curve correspond to points of inflexion where the bending
rate changes sign.

We now examine two quantities of special interest for the dynamics of axisymmetric shells: the sinking speed
Vsink and the hoop stress resultant.

Figure 2. Instantaneous kinematical fields on the midsurface of shells with the reference parameters of Table 1. Parts (a–d)
are for an axisymmetric shell, and parts (e–h) are for the mirror plane ϕ= 0 of a three‐dimensional shell with ϕf= π/2. (a and
e): Vector velocity; (b and f): radial velocity ur; (c and g): bending rate Ḃθ; (d and h): rates of viscous dissipation due to
flexural (red) and membrane (blue) deformation. The labels “fb” in parts (b) and (f) indicate flexural bulging. The definition of
the bending length lb is shown in part (c). For reasons explained in the text, the membrane dissipation rate for s/R0 < 0.14 and the
flexural dissipation rate are not shown in part (h).
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3.2. Sinking Speed Vsink

Here we test two predictions of our scaling analysis of Vsink. The first is that Vsink should decrease as the plate size
θt decreases, because the greater dynamical sphericity of small plates makes them stiffer. The second is that a
hemispherical shell should bend under edge loading in a way identical to a flat plate.

Figure 3 shows the slab sinking speed Vsink as a function of θt for a shell having the reference parameters of
Table 1 except for θs − θt = 5.5° and γ = 560. In Figure 3a, the lengths of the arrows indicate Vsink for three shells
with θt = 7.5° (green), 30° (blue), and 90° (red). As predicted by the scaling analysis, Vsink decreases as θt de-
creases, by 33% from θt = 90° (a hemispherical shell) to θt = 7.5°. Figure 3b shows the normalized sinking speed
Vsink/VStokes as a function of θt, together with the value (horizontal dashed line) predicted by an independent 2‐D
Cartesian BEM code with an initially flat plate (Ribe, 2010) for the same values of γ, d/h, φs, and the slab length.
The 2‐D BEM prediction is within 1% of the axisymmetric BEM prediction for θt = 90°, demonstrating that a
hemispherical shell subducts like a flat plate. Figure 3 was constructed assuming a fixed slab length, and therefore
a fixed VStokes. The rapid decrease of Vsink/VStokes for small θt is therefore due to the decrease of Vsink as the plate
size decreases.

3.3. Hoop Stress Resultant

We now turn our attention to the hoop stress in the shell. This stress component is important because it can drive
longitudinal buckling instabilities when it is compressive (Ribe et al., 2007). Furthermore, in Section 7 we show
that the hoop stress is a major determinant of earthquake focal mechanisms in deep slabs.

Figure 4 shows the normalized maximum hoop stress resultant R0|Tϕ|max/η1h|Ws| for 175 BEM solutions with
different values of θs − θt and the viscosity ratio γ. The points collapse onto a universal curve that is well fit by
3.161 + 1.306 cot θs (black line). This validates our proposed scaling law Equation 26 to within additive and
multiplicative constants of order unity, which scaling analysis is in principle unable to determine. Note that the
quantity |Ws| in the scaling law is not an independent variable, but itself obeys a scaling law similar to the one
(Equation 20) for Vsink. What Figure 4 shows is that the scaled hoop stress resultant is entirely controlled by θs and
the velocity Ws normal to the midsurface.

A useful way to measure the effect of dynamical sphericity on the hoop stress is to compare |Tϕ|max for a given θs
with its value for θs = 90°. Figure 4 shows that this ratio is 2.0 for θs = 25.5° and 2.8 for θs = 13.5°. Dynamical
sphericity thus increases the hoop stress by a factor of 2–3 for small plates relative to a hemispherical plate. In
comparison, the dynamical sphericity effect on the sinking speed Vsink is only 20%–33% for small plates
(Figure 3).

Figure 3. Sinking speed Vsink of a slab as a function of the plate size θt, for a shell with the standard parameters of Table 1
except θs − θt = 5.5° and γ = 560. (a) Vsink, indicated by the lengths of the arrows, for three shells with θt = 7.5° (green), 30°
(blue), and 90° (red). (b) Normalized sinking speed Vsink/VStokes versus θt. The horizontal dashed line indicates the sinking
speed of a 2‐D slab with the same length and dip as in the 3‐D case.

Journal of Geophysical Research: Solid Earth 10.1029/2024JB029500

CHAILLAT ET AL. 9 of 21

 21699356, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JB

029500 by C
ochrane France, W

iley O
nline L

ibrary on [14/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Next we examine the total stress resultants Tϕ(s) and Tθ(s) and the deviatoric
stress resultants Dϕ(s) and Dθ(s) as functions of arclength along the mid-
surface. Figure 5 shows the resultants for shells with θt = 30° (Figure 5b) and
θt= 60° (Figure 5c). The shape of the shell for θt= 30° is shown in Figure 5a.
Surprisingly, in both cases the state of stress in most of the slab is dominated
by the compressive hoop stress. Focusing on the deviatoric stress resultants,
we see that Dϕ ≈ − 2Dθ for both values of θt.

Our axisymmetric model, despite its idealized character, has uncovered three
surprising aspects of free subduction of spherical shells. The first is the
sphericity paradox: the fact that the effect of sphericity on the flexure of shells
is greater when the shell is smaller and more nearly flat. The second is that a
hemispherical shell loaded along its edge should bend like a flat plate. The
third is that the state of deviatoric stress in a subducting slab—at least one that
is convex landward—should be dominated by the hoop stress rather than the
downdip stress. We can now use these results as guides as we turn to examine
more realistic 3‐D models.

4. Three‐Dimensional Model With a Convex‐Landward
Trench
Figure 6 sketches the geometry of the first 3‐D model we shall examine. The
shell is a segment of a spherical cap, bounded by half a small circle θ = θt (the
trench) and a portion of a meridian ϕ= ϕf, where ϕ is the longitude. Figure 6b

shows a cross‐section of the model along a meridian. The model comprises three fluid volumes: a shell V1
(viscosity η1), an upper mantle V2 (viscosity η2) and a lower mantle V3 (viscosity η3) bounded below by an inviscid
core. The two independent viscosity ratios are γ = η1/η2 and λ = η3/η2.

The only boundary condition applied to the model is that ϕ = 0 is a plane of mirror symmetry, which allows us to
reduce the size of the problem domain by a factor of two. The matching conditions on velocity and stress at the
various fluid‐fluid interfaces have already been imposed during the derivation of the boundary‐integral equations.
Finally, the free‐slip boundary conditions at the surface r= R0 are satisfied automatically by the Green's functions
we use.

The required boundary‐integral equations are derived in Supporting Information S1. In dimensionless form,
they are

U1 − (1 − γ)∫
S1
(U − U1) ⋅T(x1) ⋅ ndS + λ∫

S2
U ⋅T(x1) ⋅ ndS

− (1 − λ)∫
S3

U ⋅T(x1) ⋅ndS = − ∫
S1
(r − r1)n ⋅G(x1) dS

+ (α2 − α3)∫
S2
(r − R2)n ⋅G(x1) dS − α3∫

S3
(r − R3) n ⋅G(x1) dS,

(27a)

λU2 − (1 − γ)∫
S1

U ⋅T(x2) ⋅ ndS + λ∫
S2
(U − U2) ⋅T(x2) ⋅ ndS

− (1 − λ)∫
S3

U ⋅T(x2) ⋅ ndS = − ∫
S1
rn ⋅G(x2) dS

+ (α2 − α3)∫
S2
(r − R2)n ⋅G(x2) dS − α3∫

S3
(r − R3)n ⋅G(x2) dS,

(27b)

Figure 4. Normalized maximum hoop stress resultant Tϕ predicted by the
axisymmetric BEM model as a function of θs. The results of 175 BEM
solutions for θs − θt ∈ [4°, 7.5°] and γ∈ [100, 1,000] are shown. Other model
parameters are as in Table 1. Each circle represents the average of five
solutions with different values of γ. The black line is 3.161 + 1.306 cot θs.
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U3 − (1 − γ)∫
S1

U ⋅T(x3) ⋅ ndS + λ∫
S2

U ⋅T(x3) ⋅ ndS

− (1 − λ)∫
S3
(U − U3) ⋅T(x3) ⋅ ndS = − ∫

S1
rn ⋅G(x3) dS

+ (α2 − α3)∫
S2
(r − R2)n ⋅G(x3) dS − α3∫

S3
(r − R3) n ⋅G(x3) dS,

(27c)

where α2 = δρ2/δρ1 and α3 = δρ3/δρ1. In Equation 27, all lengths (including R2 and R3) have been non-
dimensionalized by R0 and all velocities by gδρ1R2

0/η2. G and T are Green's functions for the velocity and stress,
respectively, at the point xm (m = 1, 2, or 3) generated by a point force acting at x (the variable of integration).
Equation 27 are three coupled Fredholm integral equations of the second kind for the velocities U1, U2, and U3 on
the surfaces S1, S2, and S3, respectively. The points x1, x2, and x3 are arbitrary field or observation points on S1, S2,
and S3. To simplify the notation, the argument x has been everywhere suppressed. We also use the shorthand
notation rm = r(xm) and Um = U(xm). The Green's functions G(xm) and T(xm) are the same as those in the
axisymmetric model before the azimuthal integration is performed.

Figure 5. Comparison of the total stress resultants Tϕ(s) and Tθ(s) and the deviatoric stress resultants Dϕ(s) and Dθ(s) for
axisymmetric shells as functions of arclength s along the midsurface. (a) Cross‐section of the shell for θt = 30°. Values of
other model parameters are those of Table 1. (b) Stress resultants for the shell shown in part (a). The black vertical dashed line
shows the position of the trench. (c) Same as (b), except for θt = 60°.

Journal of Geophysical Research: Solid Earth 10.1029/2024JB029500

CHAILLAT ET AL. 11 of 21

 21699356, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JB

029500 by C
ochrane France, W

iley O
nline L

ibrary on [14/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The integrals on the right‐hand sides of Equations 27a–27c are called single‐
layer integrals, and represent the driving force of buoyancy. The integrals on
the left‐hand sides are called double‐layer integrals, and are required to ensure
the matching of velocity and stress across interfaces between fluids with
different viscosities. An explanation of how Equations 27a–27c are solved is
given in Supporting Information S1 (Chaillat et al., 2017; Dziewonski &
Anderson, 1981; Hackbusch, 1999; Pozrikidis, 1992, 2002).

Figures 2e–2h show several diagnostic properties of a BEM solution for a 3‐
D model with ϕf = 90° but without viscosity stratification or an inviscid core.
All properties are shown as functions of arclength s along the mirror plane
ϕ = 0 of the shell, and can be compared directly with the corresponding
properties for an axisymmetric shell shown in Figures 2a–2d. Figures 2a and
2e show that the presence of the free edge in the 3‐D case allows the plate to
translate as a whole. Subduction is therefore no longer due entirely to trench
rollback as it was in the axisymmetric case. However, this difference is not
accompanied by a corresponding difference in the flexural dynamics. The
profiles of the radial velocity ur (Figures 2b and 2f) and the bending rate Ḃθ
(Figures 2c and 2g) are nearly indistinguishable between the 3‐D and
axisymmetric cases for s/R0 > 0.3. However, for s/R0 < 0.17 both ur and Ḃθ
are nonzero in the 3‐D case, due to the slow downward flexure of the free
edge.

In Figure 2h, the flexural dissipation is not shown and the membrane dissi-
pation is shown only for s/R0 > 0.14. This is due to numerical instability in the
calculation of the kinematical quantities κ̇ϕ and ϵ̇ϕ, which are small differ-
ences of much larger numbers. Comparing Figures 2d and 2h, we see that the
membrane dissipation rate in the slab is similar in the two cases. However, in
the plate interior s/R0 < 0.54 the dissipation rate is about 10 times larger in the
3‐D case. This dissipation is associated with shortening, not extension.

Figure 7a shows the stress resultants Tθ, Tϕ, Dθ, and Dϕ in the mirror plane
ϕ = 0 for the standard parameters of Table 1 and ϕf = 30°. The stress re-
sultants are still defined by Equations 21 and 23, but with ϵ̇θ and ϵ̇ϕ given by
(Appendix A). The curves are very similar to those for the axisymmetric case
(Figure 5b), and the deviatoric hoop stress dominates in the slab with
Dϕ ≈ − 2Dθ.

Figure 7b shows how the resultants vary with longitude on the leading end
θ = θs of the slab. The (compressive) deviatoric hoop stress is still dominant
withDϕ ≈ − 2Dθ, whereDθ is the (tensile) deviatoric downdip stress resultant.
The resultants are roughly constant for ϕ < 10° and then tend to zero at
ϕ = 30°, which corresponds to the (stress‐free) corner of the slab.

5. Effect of Viscosity Stratification
As a step toward greater geophysical realism, we now examine a new model
(Figure 6b) in which the viscosity of the lower mantle exceeds that of the

upper mantle by a factor λ = 101.5 = 31.6, identical within uncertainty to the standard value of 30 inferred from
internal loading models (Hager et al., 1985). To isolate the effect of this viscosity jump we continue to ignore the
presence of the core.

The boundary‐integral equations for the new model are obtained from Equation 27 by ignoring Equation 27b and
eliminating the integrals over S2 from Equations 27a and 27c. We also suppose that S3 is perfectly spherical, so
that the single‐layer integrals over S3 vanish.

Figure 6. (a) Bird's‐eye view of the three‐dimensional model with a convex‐
landward trench. The plate is a segment of a spherical cap, bounded by a
trench θ = θt and a free edge ϕ = ϕf, where ϕ is the longitude. The symbol N
at upper right indicates the north pole of the spherical coordinate system. The
meridian ϕ = 0 is a plane of mirror symmetry. The slab θt ≤ θ ≤ θs has the
shape described by Equation 1. (b) Cross‐section of the model of part (a) in
the plane of a meridian. The model comprises a shell V1 (viscosity η1 = γη2),
an upper mantle V2 (viscosity η2), and a lower mantle V3 (viscosity η3= λη2)
bounded below by an inviscid core. The surfaces S1, S2, and S3 are labeled
together with their unit normals n. The additional geometrical parameters h,
d, θt, θs, and φs of the model are as in Figure 1.
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Figure 8a shows the radial velocity ur(s) on themirror planeϕ= 0 of the shell shown in Figure 6a, for both λ= 31.6
and λ= 1. |ur| is smaller in the former case, indicating that the stiffer upper surface of a high‐viscosity lower mantle
reduces the rate of subduction. Figure 8b shows the corresponding stress resultants for λ = 31.6. The state of
deviatoric stress is dominated by the hoop stress in the lower part of the slab, whereDϕ ≈ − 2Dθ. In the upper part,
however, the hoop and downdip stresses are comparable (Dϕ ≈ − Dθ). The corresponding resultants for an iso-
viscous mantle (λ = 1) are shown in Figure 7a.

We close this section with a few words about the influence of an inviscid core. For reasons explained in Sup-
porting Information S1, we estimated the influence of the core using an alternative model in which flow is driven
by the imposed radial deformation of a thin, highly viscous spherical shell in the mid upper mantle (Figure S1 in
Supporting Information S1). We find that the effect of the core on the radial velocity of the thin layer is at most 7%
for spherical harmonic degree l = 2, and negligible for degrees l ≈ 50–100 characteristic of subducted slabs. We
conclude that one can neglect the core in spherical subduction modeling, and that a more important viscosity jump
to include is the one at 660 km depth.

6. Subduction Zones With Negative Gaussian Curvature
In the models examined hitherto, the trench is convex when viewed from the landward side. Examples of such
trenches are Cascadia, Central America, the eastern Aleutian, and the northern Mariana. However, many sub-
duction zones have trenches that are totally or partly concave: examples include the western Aleutian and the
southern Mariana. Concave subduction zones differ from convex ones in that their Gaussian curvature G is
negative.

To understand better the dynamics of concave subduction zones, we consider the shell shown in Figure 9a. The
trench is now concave landward, and is a portion of a small circle with radius 17.2°. The plate has ϕf= 20°, and the

Figure 7. Stress resultants for a 3‐D convex shell with the standard parameters of Table 1 and ϕf = 30°. (a) Stress resultants
versus arclength along the midsurface in the mirror plane ϕ = 0. The black dashed line shows the position of the trench.
(b) Resultants as functions of longitude along the leading edge θ= θs of the slab. Tθ is not shown because it is close to zero on
the free leading edge.
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shape of the slab is given by Equation 1 in sections normal to the trench. The values of all other parameters are those
of Table 1.

Figure 9b shows the resultants of the total and deviatoric downdip (blue) and hoop stresses (red) as a function of
arclength along the midsurface in the mirror plane. Interestingly, the deviatoric stress resultants now change sign
near the lower end of the slab, such thatDϕ is compressive in the upper part of the slab and tensile in its lowermost
part. Yet throughout the slab, the approximate relation Dϕ ≈ − 2Dθ holds, as it did for our models with a convex

Figure 8. Effect of mantle viscosity stratification on the subduction rate and the stress state in the slab, for the shell shown in
Figure 6a and with the standard parameters of Table 1. (a) Radial velocity ur(s) of the midsurface in the mirror plane ϕ= 0 for
λ = 31.6 and λ = 1. (b) Stress resultants Tθ(s), Tϕ(s), Dθ(s), and Dϕ(s) in the mirror plane for λ = 31.6. The black dashed line
shows the position of the trench. The corresponding curves for λ = 1 are those of Figure 7a.

Figure 9. State of stress in a shell with a concave trench. (a) Bird's‐eye view of the shell. The opening angle is ϕf = 20°, and
the radius of the trench is 17.2°. Other parameters are as in Table 1. (b) Downdip (blue) and hoop (red) stress resultants along
the mirror plane. The black dashed line shows the position of the trench.
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trench. We were unable to calculate reliably the resultants along the leading edge of the slab due to numerical
instability (small differences of large numbers).

7. Testing the Models: The Mariana Subduction Zone
We now test the predictions of our BEM models using observations in the Mariana Trench region. In this sub-
duction zone, the slab is strongly curved in both the down‐dip and along‐strike directions. In the simple
axisymmetric model studied in Section 3, θ and ϕ are the colatitude and longitude, which naturally correspond to
the down‐dip and along‐strike direction since the symmetry axis passes through the north pole. However, the
down‐dip and along‐strike directions in real‐world subduction zones do not in general align with geographic
spherical coordinates. To minimize the introduction of new notation, we extend the meaning of the symbols θ and
ϕ to the local downdip and along‐strike directions, respectively, and use the symbols u and v for the longitude and
latitude of the global spherical coordinate system.

Figure 10a shows a map view of the Mariana region, and Figure 10b shows a 3‐D view of the slab from the Slab2
data set (Hayes et al., 2018). The slab geometry changes from convex in the north (21–26°N) to concave in the
south (12–19°N). The concavity/convexity of the slab is determined by the along‐strike curvature Kϕ, which we
estimate as

Kϕ ≈ −
( ruur2v − 2rurvruv + r2u rvv) cos v

r1( r2u + r2v)
3/2 (28)

where r(u, v) is the radius of the slab surface as a function of longitude u and latitude v and subscripts u and v
indicate partial differentiation. Formula 28 gives the curvature of a line defined by the implicit equation r(u,
v) = r1, which corresponds to the intersection of the slab surface with a sphere of radius r1. The formula is valid
when the local curvature is much larger than 1/r1, which is generally the case for slabs. Since the tangent to the
curve r(u, v)= r1 defines the strike direction, we refer toKϕ as the along‐strike curvature. The calculated values of
Kϕ are shown by blue and red in Figure 10a, projected onto the surface from their different depths (increasing
from east to west). Figure 10a also shows earthquake focal mechanisms (beachball diagrams) which we use to

Figure 10. (a) Map view of the Mariana subduction zone. Along‐strike curvature Kϕ derived from Slab2 (Hayes et al., 2018) is color‐coded. Beachballs show focal
mechanisms of earthquakes larger than Mw5.5 from the GCMT catalog (Ekstrom et al., 2012). (b) Mariana slab geometry from Slab2 from the surface to 300 km depth.
The lateral scales are stretched by a factor of 4 relative to the vertical scale.
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estimate the local state of stress. For a double‐couple moment solution (not to be confused with a bending
moment), the T‐axis (red sector of the beach ball) and the P‐axis (white sector) correspond to the tensile and
compressive directions, respectively.

In general, there are four possible combinations of slab geometry and the sign of the hoop stress: convex/
compressive, concave/compressive, concave/tensile, and convex/tensile. Our BEM models predict that concave‐
landward slabs can exhibit both compressive and tensile hoop stress depending on the depth, whereas the hoop
stress in convex slabs is always compressive. To test this prediction, we estimate the stress state in the Mariana
slab using focal mechanisms from all earthquakes with magnitudes >Mw5 from the GCMT catalog (Ekstrom
et al., 2012) that are located within 100 km of the Mariana subduction zone interface given by Slab2 (Figure 10b).
For each earthquake, we estimate the dimensionless deviatoric stress τ as

τ = M− 1
0 (M −

1
3
(trM)I) (29)

where M is the moment tensor,M0 is the moment magnitude, and I is the identity tensor. The hoop stress is then
τϕϕ= eϕ · τ · eϕwhere eϕ is the along‐strike direction. For each earthquake, we calculate the along‐strike curvature
at the point on the slab interface that is closest to the event.

Figure 11a shows a plot of τϕϕ versus Kϕ for the earthquakes in the northern (blue) and southern (red) portions of
the Mariana slab. The slab geometry and sign of the hoop stress for each quadrant of the diagram are indicated in
green. The NE, SE, and SW quadrants are heavily populated with earthquakes, but the NW (convex/tensile)
quadrant is almost empty, validating the prediction of our BEM models.

Another prediction of our BEM models is that the magnitude of the deviatoric hoop stress in slabs significantly
exceeds that of the downdip stress. To test this prediction, we show in Figure 11b the hoop stress τϕϕ versus the
downdip stress τθθ for all the Mariana earthquakes in our catalog. The hoop stress is dominant in quadrants I and
III, whereas the downdip stress is dominant in quadrants II and IV. Earthquakes with dominant hoop stress and
those with dominant downdip stress are roughly equal in number, supporting partially (but only partially) the
prediction of the BEM models.

Figure 11. Distributions of stress and curvature in the northern (blue) and southern (red) Mariana subduction zone, determined as described in the text. (a) Dimensionless
deviatoric hoop stress τϕϕ versus along‐strike curvature Kϕ. Portions of the figure corresponding to convex versus concave geometry and tensile versus compressive
stress are indicated. (b) τϕϕ versus dimensionless down‐dip stress τθθ. Hoop stress is dominant in quadrants I and III, and downdip stress in quadrants II and IV.
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8. Discussion
The first notable result of this study is the importance of distinguishing between geometrical and dynamical
effects of sphericity on subduction dynamics. The former is greater for a larger shell, whose midsurface differs
more from a plane than that of a small one. This purely geometrical effect can be characterized by a geometrical
sphericity number

ΣG = θt (30)

which is simply the angular radius of the trench (or the minimum radius if the trench is concave). However, the
dynamical sphericity effect has the opposite trend: it is greater for a small plate than for a large one. This is so
because the dynamical effect of sphericity is measured by the dynamical sphericity number

ΣD =
lb
R0

cotθt (31)

which for a given lb is greater for a smaller plate.

Under what conditions is dynamical sphericity negligible? This question can be answered by writing the defi-
nition Equation 31 in an alternative way as ΣD = (lb /L)ϵ cot ϵ where ϵ = L/R0 and L is the plate radius measured
along the Earth's surface. The limit of negligible sphericity ΣD → 0 then occurs either when ϵ = π/2 (a hemi-
spherical shell) or when lb /L→ 0 for arbitrary ϵ. Both of these limiting cases imply that the dynamical sphericity
effect is smaller for larger shells. As an extreme example, consider the Earth's largest plate, the Pacific plate.
Modeling this plate crudely as a spherical cap of area A= 1.05 × 108 km2 (Bird, 2003), we find L= 6,000 km and
ϵ = 0.94. Then for a representative bending length lb ≈ 900 km, we find ΣD ≈ 0.1, a very small value. Dynamical
sphericity is therefore unlikely to be important for the Pacific plate, although it will be much more important for
smaller plates.

Our BEM models predict that not all combinations of the signs of the along‐strike curvature (convex or concave)
and of the hoop stress (compressive or tensile) can exist in subducted slabs. We find that concave‐landward slabs
can exhibit both compressive and tensile hoop stress depending on the depth, whereas the hoop stress in convex
slabs is always compressive. We tested this prediction using slab geometry and earthquake focal mechanism data
from the Mariana subduction zone to locate the earthquakes on a plot of dimensionless hoop stress versus along‐
strike curvature. As expected, the concave/compressive, concave/tensile and convex/compressive quadrants of
the diagram are densely populated with earthquakes, while the convex/tensile quadrant is almost empty
(Figure 11a).

Another prediction of our models is that the state of deviatoric stress in slabs is dominated by the hoop stress. For a
wide range of models, we find the “rule of thumb” Dϕ ≈ − 2Dθ, where Dϕ and Dθ are the resultants of the
deviatoric hoop stress and downdip stress, respectively. This rule is a direct consequence of the definitions
Equation 23 when |Tϕ| ≫ |Tθ|. Note that Dϕ and Dθ nearly always have opposite signs. The importance of hoop
stresses is a consequence of the doubly curved character of spherical shells, and has no analog in singly curved
shells with zero Gaussian curvature.

However, our prediction of dominant hoop stress is only partially supported by centroid moment tensor data from
the Mariana subduction zone. Figure 11b shows that there are indeed many earthquakes with dominant hoop
stresses (quadrants I and III), but that the earthquakes with dominant downdip stress (quadrants II and IV) are at
least as numerous.

A possible explanation for the lack of a consistent relation between τϕϕ and τθθ is that Mariana earthquakes occur
at different distances z from the slab's neutral surface where the midsurface‐parallel bending stress changes sign.
Equations 9.7 and 4.25 of Novozhilov (1959) show that the (total) normal stresses within a deforming shell are

σθθ = 4η1[ϵ̇θ +
1
2
ϵ̇ϕ + z(K̇θ +

1
2
K̇ϕ)], (32a)
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σϕϕ = 4η1[ϵ̇ϕ +
1
2
ϵ̇θ + z(K̇ϕ +

1
2
K̇θ)]. (32b)

where z is the coordinate normal to the midsurface z = 0. Here K̇θ = κ̇θ + Kθϵ̇θ and K̇ϕ = κ̇ϕ + Kϕϵ̇ϕ are the rates
of change with time of the curvatures of the midsurface in the downdip and along‐strike directions, respectively,
associated with deformation by bending. Earthquakes occurring at different values of z will therefore “feel”
different amounts of bending stress, leading to a complex relationship between σϕϕ and σθθ.

In most of our 3‐D models the stress in the interior of the plate is compressive. This result is also predicted by the
2‐D BEM solutions of Ribe (2010), for which the plate is flat in its undeformed state. The origin of intraplate
compressive stress can be understood using a simple 1‐Dmodel for the deformation of a thin viscous plate moving
in the x‐direction with speed U(x). The flow within the plate satisfies 4η1hU″ + σxz = 0, where primes denote
derivatives and σxz is the shear stress acting on the base of the plate. Integrating once and applying the boundary
condition U′(0) = U′0, we find

4η1hU′ = 4η1hU′0 − ∫
x

0
σxzdx ≡ N0 − ∫

x

0
σxzdx (33)

where N0 is the force (per unit length “into the page”) applied to the trailing end of the plate. The solution
Equation 33 shows that the intraplate stress is compressive (U′ < 0) if N0 < 0 and σxz > 0, signs that correspond to
forces that push the plate in the direction of its motion. These forces are generated by the large‐scale cellular flow
driven by the subducting slab, wherein streamlines originating on the slab reconnect to the plate's trailing edge and
lead to a non‐trivial ambient dynamic pressure around the plate (Goldberg & Holt, 2024).

The large compressive hoop stress in our models with both convex and concave trenches can in principle drive
longitudinal buckling instabilities with fold axes parallel to the downdip direction (Bayly, 1982; Scholz &
Page, 1970). Such buckling, if it occurs, can have a major effect on the behavior of the slab in the mantle transition
zone (MTZ). Theoretical (Ribe et al., 2007) and numerical (Čížková & Bina, 2013; Lee & King, 2011) studies
suggest that slabs encountering an increase of viscosity at 660 km depth can buckle periodically, creating piles of
folds whose axes are horizontal. If however longitudinal buckling at shallower depths has corrugated the slab and
thereby stiffened it, periodic folding will be more difficult. Exploring the interaction between longitudinal
buckling and horizontal periodic folding is beyond the scope of the present study, but will be the subject of future
work.

We close with a few words on the relevance of hoop stresses to the focal mechanisms of deep earthquakes. Even
though the Mariana CMT data suggest that the hoop stress is not always dominant in subducting slabs, it
nevertheless exceeds the down‐dip stress for about half the earthquakes we examined. The hoop stress may
therefore play an important role as a driving mechanism of deep earthquakes. It has already been suggested that
downdip stresses associated with the bending and unbending of subducted slabs may generate deep intraplate
earthquakes and double Wadati‐Benioff zones (Sandiford et al., 2019; Sippl et al., 2022). Our boundary‐element
models and our statistical analysis of Mariana earthquakes suggest that hoop stresses associated with the lateral
stretching and compression of the subducted slab may be an equally important mechanism for generating deep
earthquakes. We leave for future work the extension of our analysis to other subduction zones in the Pacific ocean
and elsewhere.

Appendix A: Kinematical Quantities and Dissipation Rates
The rate of deformation of the midsurface of a thin viscous shell is described by six kinematical quantities. The
rate of membrane deformation is described by two rates of extension ϵ̇θ and ϵ̇ϕ and a rate of shear ω. The rate of
flexural deformation is described by two rates of bending κ̇θ and κ̇ϕ and a rate of twisting τ. The general ex-
pressions for these quantities in terms of the components (U, V, W) of the midsurface velocity and their de-
rivatives are given by Equation 4.23 of Novozhilov (1959), and are

ϵ̇θ = Bθ∂θU + BθBϕ∂ϕAθV − KθW, (A1a)
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ϵ̇ϕ = Bϕ∂ϕV + BθBϕ∂θAϕU − KϕW, (A1b)

ω = AϕBθ∂θ (BϕV) + AθBϕ∂ϕ (BθU), (A1c)

κ̇θ = − Bθ∂θ (Bθ∂θW + KθU) − BθBϕ∂ϕAθ (Bϕ∂ϕW + KϕV), (A1d)

κ̇ϕ = − Bϕ∂ϕ (Bϕ∂ϕW + KϕV) − BθBϕ∂θAϕ (Bθ∂θW + KθU), (A1e)

τ = − BθBϕ∂2θϕW + B2
θ Bϕ∂ϕAθ∂θW − Kθ (Bϕ∂ϕU − BθBϕ∂ϕAθU)

+BθB2
ϕ∂θAϕ∂ϕW − Kϕ (Bθ∂θV − BθBϕ∂θAϕV).

(A1f)

where Bθ = 1/Aθ and Bϕ = 1/Aϕ.

In our models with a convex trench the cross‐sectional shape of the shell is independent of ϕ, which implies
∂ϕAθ = ∂ϕAϕ = ∂ϕKθ = ∂ϕKϕ = 0. Equations A1a–A1f then take the simpler forms.

ϵ̇θ = Bθ∂θU − KθW, (A2a)

ϵ̇ϕ = Bϕ∂ϕV + BθBϕ∂θAϕU − KϕW, (A2b)

ω = AϕBθ∂θ (BϕV) + Bϕ∂ϕU, (A2c)

κ̇θ = − Bθ∂θ (Bθ∂θW + KθU), (A2d)

κ̇ϕ = − Bϕ (Bϕ∂2ϕϕW + Kϕ∂ϕV) − BθBϕ∂θAϕ (Bθ∂θW + KθU), (A2e)

τ = − BθBϕ∂2θϕW − KθBϕ∂ϕU + BθB2
ϕ∂θAϕ∂ϕW − Kϕ (Bθ∂θV − BθBϕ∂θAϕV). (A2f)

In some cases our calculations of the kinematical quantities are limited to the mirror plane ϕ = 0, where
V = ∂ϕU = ∂ϕW = 0. The quantities ω and τ then vanish identically, while ϵ̇θ, ϵ̇ϕ, κ̇θ, and κ̇ϕ retain their forms
(Equations A2a–A2f). The final simplification is for the axisymmetric deformation of an axisymmetric shell, for
which (Equations A2a–A2f) simplify to

ϵ̇θ = Bθ∂θU − KθW, (A3a)

ϵ̇ϕ = BθBϕ∂θAϕU − KϕW, (A3b)

ω = 0, (A3c)

κ̇θ = − Bθ∂θ (Bθ∂θW + KθU), (A3d)

κ̇ϕ = − BθBϕ∂θAϕ (Bθ∂θW + KθU), (A3e)

τ = 0. (A3f)

The rates of viscous dissipation Φ per unit midsurface area associated with membrane and flexural deformation
can be calculated from the quantities defined above. The membrane and flexural energies per unit midsurface area
of a deformed elastic shell are the quantities in square brackets in (9.12) of Novozhilov (1959). Transforming
these to expressions for dissipation rates in a viscous shell using the Stokes‐Rayleigh analogy (Ribe, 2018), we
obtain

Φm = 2η1h[ϵ̇
2
θ + ϵ̇

2
ϕ + ϵ̇θϵ̇ϕ +

ω2

4
], Φ f =

1
6
η1h

3 [κ̇2θ + κ̇
2
ϕ + κ̇θκ̇ϕ + τ

2], (A4)

where m and f stand for “membrane” and “flexural,” respectively.
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Data Availability Statement
The 3‐D spherical boundary‐element code used in this research is available from Ribe et al. (2023).
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