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Key Points:14

• The dynamical e↵ect of plate sphericity on subduction is greater for smaller plates15

(the ‘sphericity paradox’).16

• The state of stress in the central portions of subducted slabs is dominated by the17

longitudinal normal (hoop) stress.18

• Mariana slab earthquakes confirm our prediction that convex slab geometry and19

tensile hoop stress never occur together.20
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Abstract21

Oceanic plates are doubly-curved spherical shells, which influences how they respond to22

loading during subduction. Here we study a viscous fluid model for gravity-driven sub-23

duction of a shell comprising a spherical plate and an attached slab. The shell is 100–24

1000 times more viscous than the upper mantle. We use the boundary-element method25

to solve for the flow. Solutions of an axisymmetric model show that the e↵ect of spheric-26

ity on the flexure of shells is greater for smaller shells that are more nearly flat (the ‘spheric-27

ity paradox’). Both axisymmetric and three-dimensional models predict that the devi-28

atoric membrane stress in the slab should be dominated by the longitudinal normal stress29

(hoop stress), which is typically about twice as large as the downdip stress and of op-30

posite sign. Our models also predict that concave-landward slabs can exhibit both com-31

pressive and tensile hoop stress depending on the depth, whereas the hoop stress in con-32

vex slabs is always compressive. We test these two predictions against slab shape and33

earthquake focal mechanism data from the Mariana subduction zone, assuming that the34

deviatoric stress in our flow models corresponds to that implied by centroid moment ten-35

sors. The magnitude of the hoop stress exceeds that of the downdip stress for about half36

the earthquakes surveyed, partially verifying our first prediction. Our second prediction37

is supported by the near-absence of earthquakes under tensile hoop stress in the portion38

of the slab having convex geometry.39

Plain Language Summary40

Tectonic plates on earth are doubly-curved spherical shells, which influences how41

they respond to applied forces during subduction. We use axisymmetric and three-dimensional42

viscous flow models to study the dynamics of spherical shells sinking under gravity into43

the mantle below. We find the surprising result that the e↵ect of spherical geometry on44

the bending of shells is greater for smaller shells that are more nearly flat, which we call45

the ‘sphericity paradox’. We also find that the stress in the subducted portions of plates46

(‘slabs’) is dominated by the longitudinal normal stress (hoop stress), which is about twice47

as large as the more familiar downdip stress. Earthquake focal mechanisms from the Mar-48

iana subduction zone in the Pacific ocean confirm our prediction that no deep earthquakes49

should occur under tensile hoop stress in portions of slabs having convex landward ge-50

ometry.51

1 Introduction52

An important feature of terrestrial plate tectonics is that plates are doubly-curved53

spherical shells in their pre-deformed state. The mechanics of such objects is described54

by the theory of thin shells, which has a long history going back at least to the work of55

A. E. H. Love (Love, 1944). This theory shows that a doubly-curved shell responds to56

loads di↵erently than a flat plate. Whereas a flat plate supports a normal load solely by57

bending stresses, a shell with double curvature does so by bending stresses combined with58

in-plane ‘membrane’ stresses (Audoly & Pomeau, 2010). Furthermore, curvature renders59

a shell sti↵er and more resistant to bending, because additional energy has to be expended60

on stretching in order to change the intrinsic Gaussian curvature (the product of the two61

principal curvatures) of a surface.62

The largest deformations of Earth’s tectonic plates occur during subduction. It is63

therefore natural to focus on subduction when considering how spherical geometry in-64

fluences the mechanics of terrestrial plates. Naive intuition suggests that the e↵ect of65

spherical geometry should be minor if the domain of interest has a characteristic lateral66

dimension much smaller than the earth’s radius. It should then be possible to understand67

the essentials of subduction dynamics using Cartesian models in which the plates are flat68

in their undeformed state. It is for this reason that the vast majority of numerical sub-69

duction models in the literature use two-dimensional (2-D) or three-dimensional (3-D)70
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Cartesian geometry: representative examples include Ribe (2010), Capitanio and Morra71

(2012), Ćıžková and Bina (2013), Garel et al. (2014) and Bessat et al. (2020) in 2-D and72

Stegman et al. (2010), Li and Ribe (2012), Pusok et al. (2018), Chertova et al. (2018),73

and Balázs et al. (2021) in 3-D. Gerya (2022) gives a detailed review of numerical mod-74

els of subduction.75

Yet despite the dominance of Cartesian models, the question of how sphericity in-76

fluences the mechanics of subduction has not been neglected. Early models were purely77

geometrical (Frank, 1968; Scholz & Page, 1970; Laravie, 1975; Bayly, 1982). Notably,78

Scholz and Page (1970) and Bayly (1982) proposed that a subducting slab should buckle79

at depth along the strike of the trench because the space available to it is progressively80

reduced as it sinks due to the spherical geometry. Schettino and Tassi (2012) used ge-81

ometrical arguments to determine a relationship between trench curvature, the variation82

of slab dip and the lateral strain rate, but did not make use of thin-shell theory.83

To our knowledge, the first studies to investigate the dynamics of bending spher-84

ical shells in a geodynamical context were Tanimoto (1997) and Tanimoto (1998). He85

solved the equations for a normally loaded spherical elastic shell subject to a buoyancy86

force proportional to the normal displacement, and showed that the state of stress in the87

shell is strongly influenced by spherical geometry. Morishige et al. (2010) presented a88

semi-dynamical model for subduction in a spherical shell, and found that sphericity has89

only a small e↵ect on the pattern of horizontal flow around slab edges. Mahadevan et90

al. (2010) investigated the causes of the curvature and segmentation of subduction zones91

via scaling and numerical analysis of small-amplitude deformation of shallow spherical92

caps. They found a scaling law for the wavelength of the edge instability (‘dimpling’)93

that occurs when a distributed radial body force acts on an elastic shell on an elastic foun-94

dation. G. Morra and co-workers used the boundary-element method (BEM) to study95

large-amplitude subduction of spherical viscous shells, focussing on island arc curvature96

(Morra et al., 2006), subduction in a mantle with depth-dependent viscosity (Morra et97

al., 2012), and interaction of several plates (Morra et al., 2012). Chen et al. (2022a) com-98

pared the dynamics of subduction in 3-D Cartesian and spherical geometry, and found99

that the e↵ects of sphericity are important for slabs greater than 2400 km in width. Fi-100

nally, Chen et al. (2022b) determined a qualitative regime diagram for trench types (shaped101

like the letters I, C or W) and subduction modes (‘vertical folding’ and ‘weak retreat’)102

in the space of plate age and width. However, none of the aforementioned studies iden-103

tified the key length scales and dimensionless numbers that control subduction.104

Building on the earlier studies cited above, Chamolly and Ribe (2021) used the BEM105

to investigate subduction of an axisymmetric viscous shell in a mantle with a lower vis-106

cosity. This work showed that the role of sphericity is more complicated than it first ap-107

pears. One would think that the influence of sphericity should be greater for a large shell108

(e.g. a hemisphere), which is di↵ers more from a plane than a small, shallow shell. This109

may be called the ‘geometrical sphericity’ e↵ect. However, there is also a ‘dynamical spheric-110

ity’ e↵ect related to how a spherical shell bends in response to forces applied to its edges.111

Surprisingly, the trend of this e↵ect is the opposite of the geometrical one: dynamical112

sphericity is more important for small, nearly flat shells than for large ones. We call this113

the ‘sphericity paradox’. Chamolly and Ribe (2021) used scaling analysis based on thin-114

shell theory to show that the dynamical sphericity e↵ect is measured by a dimension-115

less ‘dynamical sphericity number’ ⌃D proportional to the cotangent of the angle sub-116

tended by the plate. This implies that the dynamical e↵ect of sphericity increases as the117

plate size diminishes.118

Our study begins (§ 2.1) by deriving the dynamical sphericity number and deter-119

mining reference scaling laws for the sinking speed and the longitudinal normal stress120

(‘hoop stress’) in a subducting axisymmetric shell. In § 3 we obtain some new results121

for axisymmetric shells, focusing on the relative magnitudes of the hoop stress and the122

downdip normal stress in the slab. In § 4, we relax the unrealistic assumption of axisym-123
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metry and consider 3-D models in which the trench is convex landward. In § 5 we con-124

sider the additional e↵ects of radial viscosity stratification, including that associated with125

an inviscid core. In § 6 we examine the case of a trench that is concave landward, cor-126

responding to a slab with negative Gaussian curvature. In § 7 we test the predictions127

of our models against observations from the Mariana subduction zone, using the hypoth-128

esis that the deviatoric stress in the slab is proportional to the deviatoric part of earth-129

quake centroid moment tensors. Finally, § 8 discusses our results in depth.130

2 Physical scalings131

The physical fundamentals of subduction of spherical shells can be elucidated by132

means of scaling analysis of the forces involved. The scalings derived here are hypothe-133

ses that we test in subsequent sections.134

Figure 1 shows the simplified axisymmetric model that we use for scaling analy-135

sis. A shell with thickness h, viscosity ⌘1 and density ⇢1 = ⇢ + �⇢1 is immersed in a136

spherical planet with viscosity ⌘2 and density ⇢. The ratio of the viscosities of the shell137

and the mantle is � = ⌘1/⌘2. The (constant) gravitational acceleration g is directed138

radially inward. The planet’s outer surface r = R0 is free-slip (vanishing normal ve-139

locity and shear traction). The shell consists of a ‘plate’ 0  ✓  ✓t and a ‘slab’ ✓t <140

✓  ✓s. The dip of the slab at its leading end is 's. Above the plate is a lubrication141

or ‘sticky air’ layer of thickness d, which creates a large normal stress ⇠ �⇢1gh that in-142

hibits net downward motion of the plate while allowing it to move freely horizontally and143

to bulge upward (and of course also downward) due to bending (Ribe, 2010). The ra-144

dius of the shell’s midsurface is145

r0(✓) =

⇢
R (✓  ✓t)

R(1� b(⇣3 � ⇣4/2)) (✓ 2 [✓t, ✓s])
(1)146

where R = R0 � h/2� d and147

⇣ =
✓ � ✓t
✓s � ✓t

, b =
2(✓s � ✓t) sin's

2 cos's + (✓s � ✓t) sin's
. (2)148

The functional forms (1) and (2) ensure that the meridional curvature of the midsurface149

is continuous at the trench and that the dip of the midsurface at ✓ = ✓s is 's.150

The key length scale in the model is the ‘bending length’ lb, the length of the por-151

tion of the shell that deforms mainly by bending rather than by extension or shorten-152

ing. It is the sum of the slab length l and the length of the flexural bulge seaward of the153

trench, and is indicated schematically in fig. 1. The bending length is diagnostic of the154

dynamics because the Stokes equations must be solved to determine it. It is not an in-155

dependent variable because it depends on the geometrical parameters h, d, l, ✓t, ✓s and156

's and on the viscosity ratio �. A scaling law for the bending length in 2-D Cartesian157

geometry is presented in Appendix B of (Ribe, 2010).158

The physical scalings discussed below make use of thin-shell theory. The fundamen-159

tal quantity in this theory is the velocity on the shell’s midsurface, with components {U, V,W}.160

U(✓,�) is the velocity parallel to the midsurface in the direction of increasing colatitude.161

V (✓,�) is the component parallel to the midsurface in the direction of increasing lon-162

gitude, and vanishes if the flow is axisymmetric. The lack of a subscript on V will pre-163

vent confusion with the quantities Vsink, VStokes, V1, V2 and V3 introduced later. Finally,164

W (✓,�) is the velocity normal to the midsurface.165

2.1 Geometrical and dynamical sphericity numbers166

What we have called the ‘geometrical sphericity’ of the shell is just the amount by167

which the shell’s midsurface di↵ers from a plane. Geometrical sphericity is small for so-168

called ‘shallow’ shells with ✓t ⌧ 1, and large for e.g. a hemispherical shell with ✓t =169
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Figure 1. Definition sketch of the axisymmetric model in cross-section (not to scale). (a) A

viscous shell with thickness h, viscosity ⌘1 and density ⇢ + �⇢1 is immersed in a spherical viscous

planet with radius R0, viscosity ⌘2 and density ⇢. The planet’s surface r = R0 is free-slip. The

shell comprises a spherical ‘plate’ ✓  ✓t and a ‘slab’ ✓t  ✓  ✓s. The dip of the slab at its

leading end is 's. The lubrication layer above the plate has thickness d, and the radius of the

plate’s midsurface is R = R0 � h/2 � d. The gravitational vector g points radially inward. The

annotation ‘fb’ indicates the position of the flexural bulge. (b) Forces acting on the portion of

the shell that deforms by bending: the negative buoyancy force Fb, the external traction Fext

exerted by the surrounding mantle, and the internal resistance to bending Fint. Fint is the shear

force acting on a vertical plane at the seaward extremity of the bending portion of the shell. Also

shown is the radial sinking speed Vsink of the tip of the slab.
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⇡/2. Because the geometrical sphericity increases with ✓t, we may define a ‘geometri-170

cal sphericity number’
⌃G = ✓t (3)171

The first step in the derivation of the dynamical sphericity number ⌃D is to iden-172

tify the forces (per unit length in the longitudinal direction) acting on the bending por-173

tion of the plate. Figure 1b shows these. The driving force for subduction is the nega-174

tive buoyancy Fb acting on the slab. It scales as175

Fb ⇠ lhg�⇢. (4)176

The negative buoyancy is balanced by two resisting forces: the external traction Fext ap-177

plied by the surrounding mantle, and the internal resistance to bending Fint. The char-178

acteristic stress in the surrounding mantle is ⌘2Vsink/lb, where Vsink (> 0) is the down-179

ward radial velocity of the leading end of the slab. Integrating this over the bending length180

lb, we obtain181

Fext ⇠
⌘2Vsink

lb
lb = ⌘2Vsink. (5)182

Scaling analysis of the force Fint requires the use of thin-shell theory. Fint is a vis-183

cous reaction force that acts on a cross-section of the shell located at the seaward ex-184

tremity of the flexural bulge. It is equal to the integral across the shell (the ‘resultant’)185

of the midsurface-perpendicular shear stress �✓z acting on the cross-section. Its explicit186

definition is (Novozhilov, 1959)187

Fint =

Z h/2

�h/2
�✓z(1�K�z)dz ⌘ N✓ (6)188

where z is a coordinate perpendicular to the midsurface z = 0 and K� is the longitu-189

dinal curvature of the midsurface. If the flow is axisymmetric, N✓ is related to the co-190

latitudinal bending moment M✓ and the longitudinal bending moment M� by (Novozhilov,191

1959, eqn. (7.8))192

N✓ =
1

A✓A�
[@✓(A�M✓)�M�@✓A�] (7)193

where194

A✓ =
⇥
r20 + (@✓r0)

2
⇤1/2

, A� = r0 sin ✓ (8)195

are the Lamé parameters of the shell’s midsurface. A✓ is the ratio of a change ds of ar-196

clength along the shell’s midsurface to the associated change of colatitude d✓, and A�197

is defined similarly for changes in �. Later we shall also need the two principal curva-198

tures of the midsurface, defined as199

K✓ = �r20 + 2(@✓r0)2 � r0@2
✓✓r0

(r20 + (@✓r0)2)3/2
, K� =

@✓r0 cot ✓ � r0
r0(r20 + (@✓r0)2)1/2

. (9)200

K✓ and K� are positive if the center of curvature lies on the side of the midsurface in201

the direction of the outward-pointing normal vector. Therefore both curvatures are neg-202

ative for a spherical shell. The constitutive relations for the bending moments are203

M✓ =
⌘1h3

3

✓
̇✓ +

1

2
̇�

◆
, M� =

⌘1h3

3

✓
̇� +

1

2
̇✓

◆
(10)204

where205

̇✓ = � 1

A1
@✓

✓
1

A✓
@✓W +K✓U

◆
, ̇� = � 1

A✓A�
@✓A�

✓
1

A✓
@✓W +K✓U

◆
(11)206

are bending rates of the shell’s midsurface in the colatitudinal and longitudinal direc-207

tions, respectively.208
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For scaling purposes, we set A✓ ⇡ R and A� ⇡ R sin ✓, the Lamé parameters for209

a spherical surface of radius R. Retaining only the dominant terms (the first terms in210

the parentheses) in (11), we have211

̇✓ ⇠ � 1

R2
@2
✓✓W, ̇� ⇠ �cot ✓

R2
@✓W. (12)212

Furthermore, (7) takes the form213

N✓ ⇡ 1

R
(M✓ �M�) cot ✓ +

1

R
@✓M✓. (13)214

Now the length scale for colatitudinal derivatives is the bending length lb, which implies215

@✓ ⇠ R/lb. Moreover, W ⇠ Vsink. Combining these scalings with (10) and (12) we216

obtain217

M✓,M� ⇠ ⌘1h3Vsink

l2b
max

✓
1,

lb cot ✓

R

◆
, (14)218

Upon choosing ✓t as a representative value of ✓ and replacing R by the earth’s radius219

R0, the second term in brackets in (14) becomes the dynamical sphericity number220

⌃D =
lb
R0

cot ✓t. (15)221

The dimensionless number ⌃D measures the e↵ect of sphericity on the flexural response222

of the shell to loading. A greater ⌃D means a larger bending moment (and hence a larger223

force Fint resisting subduction) for a given Vsink.224

The ‘flat-earth’ limit ⌃D ! 0 can be obtained in two ways. The first is to set ✓t =225

⇡/2. This implies the surprising result that a hemispherical shell should bend under a226

load in a way similar to a flat plate. The second way to obtain ⌃D ! 0 is to write227

⌃D =
lb
L
✏ cot ✏ where ✏ =

L

R0
(16)228

and L = R0✓t is the length of the plate measured along the earth’s surface. Because229

✏ cot ✏  1, we obtain ⌃D ! 0 when lb/L ! 0. The dynamical sphericity therefore230

vanishes when the bending length is much smaller than the plate length. The bending231

portion of the shell then no longer ‘feels’ the plate’s curvature.232

The definition (15) of ⌃D implies the seemingly paradoxical result that dynami-233

cal sphericity is greater for a small shell than for a large one. An intuitive understand-234

ing of this can be obtained by cutting two shells from a basketball: a large one equal to235

a full hemisphere, and a small one in the form of a shallow spherical cap. Now balance236

each shell upside down on the point of an upright pencil, and deform them slightly by237

applying radially directed forces to opposite sides. You will find that a given applied force238

produces a smaller deformation of the shallow cap than of the hemisphere: the latter is239

‘floppy’ whereas the former is ‘sti↵’. The same applies to viscous shells if ‘deformation’240

is replaced by ‘rate of deformation’.241

2.2 Sinking speed242

A useful diagnostic parameter for subduction models is the sinking speed Vsink >243

0 of the slab’s leading edge. It is controlled by the balance of the three forces Fb, Fext244

and Fint shown in fig. 1b. The balance Fb ⇠ Fext implies a characteristic Stokes ve-245

locity scale

VStokes =
lhg�⇢1
⌘2

(17)246

Now the normalized sinking speed Vsink/VStokes must be a function of the ratio Fint/Fext.247

Using (5), (13) and (14), we find

Fint ⇠ ⌘2Vsinkf1(St,⌃D) (18)248
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where

St =
⌘1
⌘2

✓
h

lb

◆3

(19)249

is a dimensionless ‘flexural sti↵ness’ and f1 is an unknown function. St determines whether250

subduction of the shell is resisted primarily by externally applied tractions (St  1)251

or by its internal resistance to bending (St � 1). The same parameter is relevant for252

initially flat plates in 2-D and 3-D Cartesian geometry (Ribe, 2010; Li & Ribe, 2012).253

The requirement that Vsink/VStokes be a function of Fint/Fext now takes the form (Chamolly254

& Ribe, 2021)
Vsink

VStokes
= f2(St,⌃D,⌃G,'s) (20)255

where f2 is an unknown function. The last two purely geometrical arguments of f2 ac-256

count for the e↵ects of geometrical sphericity and of a variable dip angle, neither of which257

can be determined by scaling analysis.258

2.3 Membrane stresses259

We now turn to the so-called ‘membrane’ stresses in the shell: the downdip nor-260

mal stress �✓✓ and the longitudinal normal stress ��� (‘hoop stress’). These are associ-261

ated with in-plane extension or shortening (membrane deformation) and are constant262

across the shell, whereas the normal stresses associated with bending vary linearly across263

the shell. Membrane stresses are usually measured in terms of their resultants264

T✓ =

Z h/2

�h/2
�✓✓(1�K�z)dz = 4⌘1h

✓
✏̇✓ +

1

2
✏̇�

◆
, (21a)265

266

T� =

Z h/2

�h/2
���(1�K✓z)dz = 4⌘1h

✓
✏̇� +

1

2
✏̇✓

◆
, (21b)267

where268

✏̇✓ =
1

A✓
@✓U �K✓W, ✏̇� =

1

A✓A�
(@✓A�)U �K�W (22)269

are the rates of extension or shortening of the midsurface in the ✓- and �- directions, re-270

spectively. The expressions (22) are valid for axisymmetric shells. Because earthquakes271

respond to deviatoric stress rather than total stress, we introduce two additional resul-272

tants of the deviatoric downdip and hoop stress:273

D✓ = 2⌘1h✏̇✓ ⌘ 2T✓ � T�

3
, D� = 2⌘1h✏̇� ⌘ 2T� � T✓

3
. (23)274

We now perform a scaling analysis of the hoop stress resultant T�. The dominant275

contribution to T� is the strain rate ✏̇�, whose magnitude can be estimated as276

✏̇� ⇠ �K�W. (24)277

Using the expression (1) for r0(✓) to evaluate K� at ✓ = ✓s assuming 's = 45� and278

✓s � ✓t ⌧ 1, we find279

K�(✓s) = � (2 + ✓s � ✓t)(1 + cot ✓s)

2
p
2R

⇠ �R�1max(1, cot ✓s). (25)280

Combining (25) with (21b) and setting R ⇡ R0, we find281

T� ⇠ ⌘1h

R0
Wsmax(1, cot ✓s) (26)282

where Ws = W (✓s).283
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Table 1. Parameters of the reference model

R0/h d/h ✓t ✓s � ✓t 's �

63.7 0.3 30� 5� 45� 316

3 New results for axisymmetric subduction284

In this section we present new axisymmetric numerical solutions that extend those285

of Chamolly and Ribe (2021). Unless otherwise stated, the models discussed here and286

subsequently have the reference dimensionless parameters given in Table 1. For simplic-287

ity, we suppose that there is no inviscid core and that the mantle is isoviscous. These288

unrealistic assumptions will be relaxed later.289

The flow in the shell and in the surrounding mantle satisfies the Stokes equations290

of slow incompressible viscous flow. Because inertia is negligible in planetary mantles,291

the temporal history of a subducting shell is just a sequence of quasi-static configura-292

tions. The essential dynamics of subduction can therefore be understood by means of293

instantaneous solutions of the Stokes equations, to which we limit ourselves in this study.294

We solve the Stokes equations using the boundary-element method (BEM) of Chamolly295

and Ribe (2021). The BEM calculates the vector velocity at all nodes on the discretized296

interface between the shell and the surrounding mantle. As far as the method is concerned,297

the interface can have any shape. However, in our case the interface is the surface of a298

thin shell with one short dimension and two long ones. We can therefore use the theory299

of thin viscous shells to interpret our BEM solutions. As noted in § 2, thin-shell theory300

is expressed in terms of the midsurface velocity with components U , V and W . The most301

accurate way to determine the midsurface velocity from a BEM solution is to exploit a302

prediction of thin-shell theory according to which all components of the velocity vary at303

most linearly across the shell to lowest order. The midsurface velocity is therefore a sim-304

ple average of the velocities at the two points where the normal to the midsurface pierces305

the interface. In the axisymmetric model studied in the present section V = 0 while306

U and W are independent of �. In the three-dimensional models to be examined later,307

V 6= 0 and U , V and W are all functions of both ✓ and �. The kinematical quantities308

̇✓, ̇�, ✏̇✓ and ✏̇� introduced in § 2 are obtained from the midsurface velocity field by309

di↵erentiation.310

3.1 Illustrative kinematical and dynamical fields311

Figures 2a–d show several kinematical and dynamical quantities of interest as a func-312

tion of arclength along the midsurface of a shell with the parameters of Table 1. Fig. 2a313

shows the vector velocity field, which corresponds to subduction by trench rollback. Fig. 2b314

shows the radial velocity ur versus arclength s along the midsurface. The label ‘fb’ in-315

dicates an interval of upward radial velocity, corresponding to flexural bulging. Fig. 2c316

shows the bending rate Ḃ✓ = �̇✓�̇�/2, which is nonzero in a boundary layer whose317

arcwise extent is just the bending length lb. Our definition of lb is indicated. Finally, fig. 2d318

shows the rates of viscous dissipation as functions of arclength associated with flexural319

(red) and membrane (blue) deformation. Dissipation in the shallower portion of the slab320

is dominated by flexure, and in the deeper portion by membrane deformation. Dissipa-321

tion in the plate (s/R0 < 0.4) is dominated by shortening. The local minima of the red322

curve correspond to points of inflexion where the bending rate changes sign.323

We now examine two quantities of special interest for the dynamics of axisymmet-324

ric shells: the sinking speed Vsink and the hoop stress resultant.325
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Figure 2. Instantaneous kinematical fields on the midsurface of shells with the reference pa-

rameters of Table 1. Parts (a)–(d) are for an axisymmetric shell, and parts (e)–(h) are for the

mirror plane � = 0 of a three-dimensional shell with �f = ⇡/2. (a) and (d): vector velocity; (b)

and (f): radial velocity ur; (c) and (g): bending rate Ḃ✓; (d) and (h): rates of viscous dissipation

due to flexural (red) and membrane (blue) deformation. The labels ‘fb’ in parts (b) and (f) in-

dicate flexural bulging.. The definition of the bending length lb is shown in part (c). For reasons

explained in the text, the membrane dissipation rate for s/R0 < 0.14 and the flexural dissipation

rate are not shown in part (h).
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Figure 3. Sinking speed Vsink of a slab as a function of the plate size ✓t, for a shell with the

standard parameters of Table 1 except ✓s � ✓t = 5.5� and � = 560. (a) Vsink, indicated by the

lengths of the arrows, for three shells with ✓t = 7.5� (green), 30� (blue), and 90� (red). (b) Nor-

malized sinking speed Vsink/VStokes vs. ✓t. The horizontal dashed line indicates the sinking speed

of a 2-D slab with the same length and dip as in the 3-D case.

3.2 Sinking speed Vsink326

Here we test two predictions of our scaling analysis of Vsink. The first is that Vsink327

should decrease as the plate size ✓t decreases, because the greater dynamical sphericity328

of small plates makes them sti↵er. The second is that a hemispherical shell should bend329

under edge loading in a way identical to a flat plate.330

Figure 3 shows the slab sinking speed Vsink as a function of ✓t for a shell having331

the reference parameters of Table 1 except for ✓s � ✓t = 5.5� and � = 560. In figure332

3a, the lengths of the arrows indicate Vsink for three shells with ✓t = 7.5� (green), 30�333

(blue), and 90� (red). As predicted by the scaling analysis, Vsink decreases as ✓t decreases,334

by 33% from ✓t = 90� (a hemispherical shell) to ✓t = 7.5�. Fig. 3b shows the normal-335

ized sinking speed Vsink/VStokes as a function of ✓t, together with the value (horizon-336

tal dashed line) predicted by an independent 2-D Cartesian BEM code with an initially337

flat plate (Ribe, 2010) for the same values of �, d/h, 's, and the slab length. The 2-D338

BEM prediction is within 1% of the axisymmetric BEM prediction for ✓t = 90�, demon-339

strating that a hemispherical shell subducts like a flat plate. Figure 3 was constructed340

assuming a fixed slab length, and therefore a fixed VStokes. The rapid decrease of Vsink/VStokes341

for small ✓t is therefore due to the decrease of Vsink as the plate size decreases.342
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3.3 Hoop stress resultant343

We now turn our attention to the hoop stress in the shell. This stress component344

is important because it can drive longitudinal buckling instabilities when it is compres-345

sive (Ribe et al., 2007). Furthermore, in § 7 we show that the hoop stress is a major de-346

terminant of earthquake focal mechanisms in deep slabs.347

Figure 4 shows the normalized maximum hoop stress resultant R0|T�|max/⌘1h|Ws|348

for 175 BEM solutions with di↵erent values of ✓s�✓t and the viscosity ratio �. The points349

collapse onto a universal curve that is well fit by 3.161+1.306 cot ✓s (black line). This350

validates our proposed scaling law (26) to within additive and multiplicative constants351

of order unity, which scaling analysis is in principle unable to determine. Note that the352

quantity |Ws| in the scaling law is not an independent variable, but itself obeys a scal-353

ing law similar to the one (20) for Vsink. What fig. 4 shows is that the scaled hoop stress354

resultant is entirely controlled by ✓s and the velocity Ws normal to the midsurface.355

A useful way to measure the e↵ect of dynamical sphericity on the hoop stress is356

to compare |T�|max for a given ✓s with its value for ✓s = 90�. Figure 4 shows that this357

ratio is 2.0 for ✓s = 25.5� and 2.8 for ✓s = 13.5�. Dynamical sphericity thus increases358

the hoop stress by a factor of 2–3 for small plates relative to a hemispherical plate. In359

comparison, the dynamical sphericity e↵ect on the sinking speed Vsink is only 20–33%360

for small plates (figure 3).361

Next we examine the total stress resultants T�(s) and T✓(s) and the deviatoric stress362

resultants D�(s) and D✓(s) as functions of arclength along the midsurface. Figure 5 shows363

the resultants for shells with ✓t = 30� (fig. 5b) and ✓t = 60� (fig. 5c). The shape of364

the shell for ✓t = 30� is shown in fig. 5a. Surprisingly, in both cases the state of stress365

in most of the slab is dominated by the compressive hoop stress. Focusing on the devi-366

atoric stress resultants, we see that D� ⇡ �2D✓ for both values of ✓t.367

Our axisymmetric model, despite its idealized character, has uncovered three sur-368

prising aspects of free subduction of spherical shells. The first is the sphericity paradox:369

the fact that the e↵ect of sphericity on the flexure of shells is greater when the shell is370

smaller and more nearly flat. The second is that a hemispherical shell loaded along its371

edge should bend like a flat plate. The third is that the state of deviatoric stress in a sub-372

ducting slab — at least one that is convex landward — should be dominated by the hoop373

stress rather than the downdip stress. We can now use these results as guides as we turn374

to examine more realistic 3-D models.375

4 Three-dimensional model with a convex-landward trench376

Figure 6 sketches the geometry of the first 3-D model we shall examine. The shell377

is a segment of a spherical cap, bounded by half a small circle ✓ = ✓t (the trench) and378

a portion of a meridian � = �f , where � is the longitude. Fig. 6b shows a cross-section379

of the model along a meridian. The model comprises three fluid volumes: a shell V1 (vis-380

cosity ⌘1), an upper mantle V2 (viscosity ⌘2) and a lower mantle V3 (viscosity ⌘3) bounded381

below by an inviscid core. The two independent viscosity ratios are � = ⌘1/⌘2 and � =382

⌘3/⌘2.383

The only boundary condition applied to the model is that � = 0 is a plane of mir-384

ror symmetry, which allows us to reduce the size of the problem domain by a factor of385

two. The matching conditions on velocity and stress at the various fluid-fluid interfaces386

have already been imposed during the derivation of the boundary-integral equations. Fi-387

nally, the free-slip boundary conditions at the surface r = R0 are satisfied automati-388

cally by the Green’s functions we use.389
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The plate is a segment of a spherical cap, bounded by a trench ✓ = ✓t and a free edge � = �f ,

where � is the longitude. The symbol N at upper right indicates the north pole of the spherical

coordinate system. The meridian � = 0 is a plane of mirror symmetry. The slab ✓t  ✓  ✓s has

the shape described by (1). (b) Cross-section of the model of part (a) in the plane of a meridian.

The model comprises a shell V1 (viscosity ⌘1 ⌘ �⌘2), an upper mantle V2 (viscosity ⌘2), and a

lower mantle V3 (viscosity ⌘3 ⌘ �⌘2) bounded below by an inviscid core. The surfaces S1, S2 and

S3 are labeled together with their unit normals n. The additional geometrical parameters h, d,

✓t, ✓s and 's of the model are as in fig. 1.
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The required boundary-integral equations are derived in the Supporting Informa-390

tion. In dimensionless form, they are391

392

U1 � (1� �)

Z

S1

(U �U1) · T (x1) · ndS + �

Z

S2

U · T (x1) · ndS393

� (1� �)

Z

S3

U · T (x1) · ndS = �
Z

S1

(r � r1)n ·G(x1)dS394

+ (↵2 � ↵3)

Z

S2

(r �R2)n ·G(x1)dS � ↵3

Z

S3

(r �R3)n ·G(x1)dS, (27a)395

396

397

398

�U2 � (1� �)

Z

S1

U · T (x2) · ndS + �

Z

S2

(U �U2) · T (x2) · ndS399

� (1� �)

Z

S3

U · T (x2) · ndS = �
Z

S1

rn ·G(x2)dS400

+ (↵2 � ↵3)

Z

S2

(r �R2)n ·G(x2)dS � ↵3

Z

S3

(r �R3)n ·G(x2)dS, (27b)401

402

403

404

U3 � (1� �)

Z

S1

U · T (x3) · ndS + �

Z

S2

U · T (x3) · ndS405

� (1� �)

Z

S3

(U �U3) · T (x3) · ndS = �
Z

S1

rn ·G(x3)dS406

+ (↵2 � ↵3)

Z

S2

(r �R2)n ·G(x3)dS � ↵3

Z

S3

(r �R3)n ·G(x3)dS, (27c)407

408

where ↵2 = �⇢2/�⇢1 and ↵3 = �⇢3/�⇢1. In (27), all lengths (including R2 and R3)409

have been nondimensionalized by R0 and all velocities by g�⇢1R2
0/⌘2. G and T are Green’s410

functions for the velocity and stress, respectively, at the point xm (m = 1, 2 or 3) gen-411

erated by a point force acting at x (the variable of integration). The equations (27) are412

three coupled Fredholm integral equations of the second kind for the velocities U1, U2413

and U3 on the surfaces S1, S2 and S3, respectively. The points x1, x2 and x3 are arbi-414

trary field or observation points on S1, S2 and S3. To simplify the notation, the argu-415

ment x has been everywhere suppressed. We also use the shorthand notation rm = r(xm)416

and Um = U(xm). The Green’s functions G(xm) and T (xm) are the same as those417

in the axisymmetric model before the azimuthal integration is performed.418

The integrals on the right-hand sides of (27a)–(27c) are called single-layer integrals,419

and represent the driving force of buoyancy. The integrals on the left-hand sides are called420

double-layer integrals, and are required to ensure the matching of velocity and stress across421

interfaces between fluids with di↵erent viscosities. An explanation of how (27) are solved422

is given in the Supporting Information (Dziewonski & Anderson, 1981; Pozrikidis, 1992;423

Hackbusch, 1999; Pozrikidis, 2002; Chaillat et al., 2017).424

Figures 2e–h show several diagnostic properties of a BEM solution for a 3-D model425

with �f = 90� but without viscosity stratification or an inviscid core. All properties426

are shown as functions of arclength s along the mirror plane � = 0 of the shell, and can427

be compared directly with the corresponding properties for an axisymmetric shell shown428

in figures 2a–d. Figures 2a and 2e show that the presence of the free edge in the 3-D case429

allows the plate to translate as a whole. Subduction is therefore no longer due entirely430

to trench rollback as it was in the axisymmetric case. However, this di↵erence is not ac-431

companied by a corresponding di↵erence in the flexural dynamics. The profiles of the432

radial velocity ur (figs. 2b and 2f) and the bending rate Ḃ✓ (figs. 2c and 2g) are nearly433

indistinguishable between the 3-D and axisymmetric cases for s/R0 > 0.3. However,434

for s/R0 < 0.17 both ur and Ḃ✓ are nonzero in the 3-D case, due to the slow downward435

flexure of the free edge.436
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Figure 7. Stress resultants for a 3-D convex shell with the standard parameters of Table 1

and �f = 30�. (a) Stress resultants versus arclength along the midsurface in the mirror plane

� = 0. The black dashed line shows the position of the trench. (b) Resultants as functions of

longitude along the leading edge ✓ = ✓s of the slab. T✓ is not shown because it is close to zero on

the free leading edge.

In fig. 2h, the flexural dissipation is not shown and the membrane dissipation is437

shown only for s/R0 > 0.14. This is due to numerical instability in the calculation of438

the kinematical quantities ̇� and ✏̇�, which are small di↵erences of much larger num-439

bers. Comparing figs. 2d and 2h, we see that the membrane dissipation rate in the slab440

is similar in the two cases. However, in the plate interior s/R0 < 0.54 the dissipation441

rate is about ten times larger in the 3-D case. This dissipation is associated with short-442

ening, not extension.443

Fig. 7a shows the stress resultants T✓, T�, D✓, and D� in the mirror plane � =444

0 for the standard parameters of Table 1 and �f = 30�. The stress resultants are still445

defined by (21) and (23), but with ✏̇✓ and ✏̇� given by (A2). The curves are very sim-446

ilar to those for the axisymmetric case (fig. 5b), and the deviatoric hoop stress domi-447

nates in the slab with D� ⇡ �2D✓.448

Fig. 7b shows how the resultants vary with longitude on the leading end ✓ = ✓s449

of the slab. The (compressive) deviatoric hoop stress is still dominant with D� ⇡ �2D✓,450

where D✓ is the (tensile) deviatoric downdip stress resultant. The resultants are roughly451

constant for � < 10� and then tend to zero at � = 30�, which corresponds to the (stress-452

free) corner of the slab.453
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Figure 8. E↵ect of mantle viscosity stratification on the subduction rate and the stress state

in the slab, for the shell shown in fig. 6a and with the standard parameters of Table 1. (a) radial

velocity ur(s) of the midsurface in the mirror plane � = 0 for � = 31.6 and � = 1. (b) stress

resultants T✓(s), T�(s), D✓(s), and D�(s) in the mirror plane for � = 31.6. The black dashed line

shows the position of the trench. The corresponding curves for � = 1 are those of fig. 7a.

5 E↵ect of viscosity stratification454

As a step towards greater geophysical realism, we now examine a new model (fig.455

6b) in which the viscosity of the lower mantle exceeds that of the upper mantle by a fac-456

tor � = 101.5 = 31.6, identical within uncertainty to the standard value of 30 inferred457

from internal loading models (Hager et al., 1985). To isolate the e↵ect of this viscosity458

jump we continue to ignore the presence of the core.459

The boundary-integral equations for the new model are obtained from (27) by ig-460

noring (27b) and eliminating the integrals over S2 from (27a) and (27c). We also sup-461

pose that S3 is perfectly spherical, so that the single-layer integrals over S3 vanish.462

Fig. 8a shows the radial velocity ur(s) on the mirror plane � = 0 of the shell shown463

in fig. 6a, for both � = 31.6 and � = 1. |ur| is smaller in the former case, indicating464

that the sti↵er upper surface of a high-viscosity lower mantle reduces the rate of sub-465

duction. Fig. 8b shows the corresponding stress resultants for � = 31.6. The state of466

deviatoric stress is dominated by the hoop stress in the lower part of the slab, where D� ⇡467

�2D✓. In the upper part, however, the hoop and downdip stresses are comparable (D� ⇡468

�D✓). The corresponding resultants for an isoviscous mantle (� = 1) are shown in fig.469

7a.470

We close this section with a few words about the influence of an inviscid core. For471

reasons explained in the Supporting Information, we estimated the influence of the core472
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using an alternative model in which flow is driven by the imposed radial deformation of473

a thin, highly viscous spherical shell in the mid upper mantle (Supporting Information,474

Figure S1). We find that the e↵ect of the core on the radial velocity of the thin layer is475

at most 7% for spherical harmonic degree l = 2, and negligible for degrees l ⇡ 50–100476

characteristic of subducted slabs. We conclude that one can neglect the core in spher-477

ical subduction modeling, and that a more important viscosity jump to include is the478

one at 660 km depth.479

6 Subduction zones with negative Gaussian curvature480

In the models examined hitherto, the trench is convex when viewed from the land-481

ward side. Examples of such trenches are Cascadia, Central America, the eastern Aleu-482

tian, and the northern Mariana. However, many subduction zones have trenches that483

are totally or partly concave: examples include the western Aleutian and the southern484

Mariana. Concave subduction zones di↵er from convex ones in that their Gaussian cur-485

vature G is negative.486

To understand better the dynamics of concave subduction zones, we consider the487

shell shown in fig. 9a. The trench is now concave landward, and is a portion of a small488

circle with radius 17.2�. The plate has �f = 20�, and the shape of the slab is given by489

equation (1) in sections normal to the trench. The values of all other parameters are those490

of Table 1.491

Figure 9b shows the resultants of the total and deviatoric downdip (blue) and hoop492

stresses (red) as a function of arclength along the midsurface in the mirror plane. Inter-493

estingly, the deviatoric stress resultants now change sign near the lower end of the slab,494

such that D� is compressive in the upper part of the slab and tensile in its lowermost495

part. Yet throughout the slab, the approximate relation D� ⇡ �2D✓ holds, as it did496

for our models with a convex trench. We were unable to calculate reliably the resultants497

along the leading edge of the slab due to numerical instability (small di↵erences of large498

numbers).499

7 Testing the models: The Mariana subduction zone500

We now test the predictions of our BEM models using observations in the Mari-501

ana Trench region. In this subduction zone, the slab is strongly curved in both the down-502

dip and along-strike directions. In the simple axisymmetric model studied in § 3 , ✓ and503

� are the colatitude and longitude, which naturally correspond to the down-dip and along-504

strike direction since the symmetry axis passes through the north pole. However, the down-505

dip and along-strike directions in real-world subduction zones do not in general align with506

geographic spherical coordinates. To minimize the introduction of new notation, we ex-507

tend the meaning of the symbols ✓ and � to the local downdip and along-strike direc-508

tions, respectively, and use the symbols u and v for the longitude and latitude of the global509

spherical coordinate system.510

Figure 10a shows a map view of the Mariana region, and fig 10b shows a 3-D view511

of the slab from the Slab2 dataset (Hayes et al., 2018). The slab geometry changes from512

convex in the north (21-26�N) to concave in the south (12-19�N). The concavity/convexity513

of the slab is determined by the along-strike curvature K�, which we estimate as514

K� ⇡ � (ruur2v � 2rurvruv + r2urvv) cos v

r1(r2u + r2v)
3/2

(28)515

where r(u, v) is the radius of the slab surface as a function of longitude u and latitude516

v and subscripts u and v indicate partial di↵erentiation. The formula (28) gives the cur-517

vature of a line defined by the implicit equation r(u, v) = r1, which corresponds to the518

intersection of the slab surface with a sphere of radius r1. The formula is valid when the519
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Figure 9. State of stress in a shell with a concave trench. (a) Bird’s-eye view of the shell.

The opening angle is �f = 20�, and the radius of the trench is 17.2�. Other parameters are as in

Table 1. (b) Downdip (blue) and hoop (red) stress resultants along the mirror plane. The black

dashed line shows the position of the trench.
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local curvature is much larger than 1/r1, which is generally the case for slabs. Since the520

tangent to the curve r(u, v) = r1 defines the strike direction, we refer to K� as the along-521

strike curvature. The calculated values of K� are shown by blue and red in fig. 10a, pro-522

jected onto the surface from their di↵erent depths (increasing from east to west). Fig-523

ure 10a also shows earthquake focal mechanisms (beachball diagrams) which we use to524

estimate the local state of stress. For a double-couple moment solution (not to be con-525

fused with a bending moment), the T-axis (red sector of the beach ball) and the P-axis526

(white sector) correspond to the tensile and compressive directions, respectively.527

In general, there are four possible combinations of slab geometry and the sign of528

the hoop stress: convex/compressive, concave/compressive, concave/tensile, and convex/tensile.529

Our BEM models predict that concave-landward slabs can exhibit both compressive and530

tensile hoop stress depending on the depth, whereas the hoop stress in convex slabs is531

always compressive. To test this prediction, we estimate the stress state in the Mariana532

slab using focal mechanisms from all earthquakes with magnitudes > Mw5 from the GCMT533

catalogue (Ekstrom et al., 2012) that are located within 100 km of the Mariana subduc-534

tion zone interface given by Slab2 (fig. 10b). For each earthquake, we estimate the di-535

mensionless deviatoric stress ⌧ as536

⌧ = M�1
0

✓
M � 1

3
(trM)I

◆
(29)537

where M is the moment tensor, and M0 is the moment magnitude, and I is the iden-538

tity tensor. The hoop stress is then ⌧�� = e� ·⌧ ·e� where e� is the along-strike direc-539

tion. For each earthquake, we calculate the along-strike curvature at the point on the540

slab interface that is closest to the event.541

Figure 11a shows a plot of ⌧�� vs. K� for the earthquakes in the northern (blue)542

and southern (red) portions of the Mariana slab. The slab geometry and sign of the hoop543

stress for each quadrant of the diagram are indicated in green. The NE, SE, and SW quad-544

rants are heavily populated with earthquakes, but the NW (convex/tensile) quadrant545

is almost empty, validating the prediction of our BEM models.546

Another prediction of our BEM models is that the magnitude of the deviatoric hoop547

stress in slabs significantly exceeds that of the downdip stress. To test this prediction,548

we show in figure 11b the hoop stress ⌧�� vs. the downdip stress ⌧✓✓ for all the Mariana549

earthquakes in our catalog. The hoop stress is dominant in quadrants I and III, whereas550

the downdip stress is dominant in quadrants II and IV. Earthquakes with dominant hoop551

stress and those with dominant downdip stress are roughly equal in number, support-552

ing partially (but only partially) the prediction of the BEM models.553

8 Discussion554

The first notable result of this study is the importance of distinguishing between555

geometrical and dynamical e↵ects of sphericity on subduction dynamics. The former is556

greater for a larger shell, whose midsurface di↵ers more from a plane than that of a small557

one. This purely geometrical e↵ect can be characterized by a geometrical sphericity num-558

ber559

⌃G = ✓t (30)560

which is simply the angular radius of the trench (or the minimum radius if the trench561

is concave). However, the dynamical sphericity e↵ect has the opposite trend: it is greater562

for a small plate than for a large one. This is so because the dynamical e↵ect of spheric-563

ity is measured by the dynamical sphericity number564

⌃D =
lb
R0

cot ✓t (31)565

which for a given lb is greater for a smaller plate.566
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Figure 10. a) Map view of the Mariana subduction zone. Along-strike curvature K� derived

from Slab2 (Hayes et al., 2018) is color-coded. Beachballs show focal mechanisms of earthquakes

larger than Mw5.5 from the GCMT catalogue (Ekstrom et al., 2012). b) Mariana slab geometry

from Slab2 from the surface to 300 km depth. The lateral scales are stretched by a factor of 4

relative to the vertical scale.
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Figure 11. Distributions of stress and curvature in the northern (blue) and southern (red)

Mariana subduction zone, determined as described in the text. a) Dimensionless deviatoric hoop

stress ⌧�� vs. along-strike curvature K�. Portions of the figure corresponding to convex vs. con-

cave geometry and tensile vs. compressive stress are indicated. b) ⌧�� vs. dimensionless down-dip

stress ⌧✓✓. Hoop stress is dominant in quadrants I and III, and downdip stress in quadrants II

and IV.

–23–



manuscript submitted to JGR: Solid Earth

Under what conditions is dynamical sphericity negligible? This question can be an-567

swered by writing the definition (31) in an alternative way as ⌃D = (lb/L)✏ cot ✏ where568

✏ = L/R0 and L is the plate radius measured along the Earth’s surface. The limit of569

negligible sphericity ⌃D ! 0 then occurs either when ✏ = ⇡/2 (a hemispherical shell)570

or when lb/L ! 0 for arbitrary ✏. Both of these limiting cases imply that the dynam-571

ical sphericity e↵ect is smaller for larger shells. As an extreme example, consider the Earth’s572

largest plate, the Pacific plate. Modelling this plate crudely as a spherical cap of area573

A = 1.05⇥ 108 km2 (Bird, 2003), we find L = 6000 km and ✏ = 0.94. Then for a rep-574

resentative bending length lb ⇡ 900 km, we find ⌃D ⇡ 0.1, a very small value. Dy-575

namical sphericity is therefore unlikely to be important for the Pacific plate, although576

it will be much more important for smaller plates.577

Our BEM models predict that not all combinations of the signs of the along-strike578

curvature (convex or concave) and of the hoop stress (compressive or tensile) can exist579

in subducted slabs. We find that concave-landward slabs can exhibit both compressive580

and tensile hoop stress depending on the depth, whereas the hoop stress in convex slabs581

is always compressive. We tested this prediction using slab geometry and earthquake fo-582

cal mechanism data from the Mariana subduction zone to locate the earthquakes on a583

plot of dimensionless hoop stress vs. along-strike curvature. As expected, the concave/compressive,584

concave/tensile and convex/compressive quadrants of the diagram are densely populated585

with earthquakes, while the convex/tensile quadrant is almost empty (fig. 11a).586

Another prediction of our models is that the state of deviatoric stress in slabs is587

dominated by the hoop stress. For a wide range of models, we find the ‘rule of thumb’588

D� ⇡ �2D✓, where D� and D✓ are the resultants of the deviatoric hoop stress and downdip589

stress, respectively. This rule is a direct consequence of the definitions (23) when |T�| �590

|T✓|. Note that D� and D✓ nearly always have opposite signs. The importance of hoop591

stresses is a consequence of the doubly-curved character of spherical shells, and has no592

analog in singly-curved shells with zero Gaussian curvature.593

However, our prediction of dominant hoop stress is only partially supported by cen-594

troid moment tensor data from the Mariana subduction zone. Figure 11b shows that there595

are indeed many earthquakes with dominant hoop stresses (quadrants I and III), but that596

the earthquakes with dominant downdip stress (quadrants II and IV) are at least as nu-597

merous.598

A possible explanation for the lack of a consistent relation between ⌧�� and ⌧✓✓ is599

that Mariana earthquakes occur at di↵erent distances z from the slab’s neutral surface600

where the midsurface-parallel normal stress changes sign. Equations (9.7) and (4.25) of601

Novozhilov (1959) show that the (total) normal stresses within a deforming shell are602

�✓✓ = 4⌘1


✏̇✓ +

1

2
✏̇� + z

✓
K̇✓ +

1

2
K̇�

◆�
, (32a)603

604

��� = 4⌘1


✏̇� +

1

2
✏̇✓ + z

✓
K̇� +

1

2
K̇✓

◆�
. (32b)605

where z is the coordinate normal to the midsurface z = 0. Here K̇✓ = ̇✓ +K✓ ✏̇✓ and606

K̇� = ̇� + K�✏̇� are the rates of change with time of the curvatures of the midsur-607

face in the downdip and along-strike directions, respectively, associated with deforma-608

tion by bending. Earthquakes occurring at di↵erent values of z will therefore ‘feel’ dif-609

ferent amounts of bending stress, leading to a complex relationship between ��� and �✓✓.610

In most of our 3-D models the stress in the interior of the plate is compressive. This611

result is also predicted by the 2-D BEM solutions of Ribe (2010), for which the plate is612

flat in its undeformed state. The origin of intraplate compressive stress can be under-613

stood using a simple 1-D model for the deformation of a thin viscous plate moving in614

the x-direction with speed U(x). The flow within the plate satisfies 4⌘1hU 00 + �xz =615
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0, where primes denote derivatives and �xz is the shear stress acting on the base of the616

plate. Integrating once and applying the boundary condition U 0(0) = U 0
0, we find617

4⌘1hU
0 = 4⌘1hU

0
0 �

Z x

0
�xzdx ⌘ N0 �

Z x

0
�xzdx (33)618

where N0 is the force (per unit length ‘into the page’) applied to the trailing end of the619

plate. The solution (33) shows that the intraplate stress is compressive (U 0 < 0) if N0 <620

0 and �xz > 0, signs that correspond to forces that push the plate in the direction of621

its motion. These forces are generated by the large-scale cellular flow driven by the sub-622

ducting slab, wherein streamlines originating on the slab reconnect to the plate’s trail-623

ing edge and lead to a non-trivial ambient dynamic pressure around the plate (Goldberg624

& Holt, 2024).625

The large compressive hoop stress in our models with both convex and concave trenches626

can in principle drive longitudinal buckling instabilities with fold axes parallel to the downdip627

direction (Scholz & Page, 1970; Bayly, 1982). Such buckling, if it occurs, can have a ma-628

jor e↵ect on the behavior of the slab in the mantle transition zone (MTZ). Theoretical629

(Ribe et al., 2007) and numerical (Lee & King, 2011; Ćıžková & Bina, 2013) studies sug-630

gest that slabs encountering an increase of viscosity at 660 km depth can buckle peri-631

odically, creating piles of folds whose axes are horizontal. If however longitudinal buck-632

ling at shallower depths has corrugated the slab and thereby sti↵ened it, periodic fold-633

ing will be more di�cult. Exploring the interaction between longitudinal buckling and634

horizontal periodic folding is beyond the scope of the present study, but will be the sub-635

ject of future work.636

We close with a few words on the relevance of hoop stresses to the focal mechanisms637

of deep earthquakes. Even though the Mariana CMT data suggest that the hoop stress638

is not always dominant in subducting slabs, it nevertheless exceeds the down-dip stress639

for about half the earthquakes we examined. The hoop stress may therefore play an im-640

portant role as a driving mechanism of deep earthquakes. It has already been suggested641

that downdip stresses associated with the bending and unbending of subducted slabs may642

generate deep intraplate earthquakes and double Wadati-Benio↵ zones (Sandiford et al.,643

2019; Sippl et al., 2022). Our boundary-element models and our statistical analysis of644

Mariana earthquakes suggest that hoop stresses associated with the lateral stretching645

and compression of the subducted slab may be an equally important mechanism for gen-646

erating deep earthquakes. We leave for future work the extension of our analysis to other647

subduction zones in the Pacific ocean and elsewhere.648

Appendix A Kinematical quantities and dissipation rates649

The rate of deformation of the midsurface of a thin viscous shell is described by650

six kinematical quantities. The rate of membrane deformation is described by two rates651

of extension ✏̇✓ and ✏̇� and a rate of shear !. The rate of flexural deformation is described652

by two rates of bending ̇✓ and ̇� and a rate of twisting ⌧ . The general expressions for653

these quantities in terms of the components (U, V,W ) of the midsurface velocity and their654

derivatives are given by eqns. (4.23) of Novozhilov (1959), and are655

✏̇✓ = B✓@✓U +B✓B�@�A✓V �K✓W, (A1a)656

657

✏̇� = B�@�V +B✓B�@✓A�U �K�W, (A1b)658

659

! = A�B✓@✓ (B�V ) +A✓B�@� (B✓U) , (A1c)660

661

̇✓ = �B✓@✓ (B✓@✓W +K✓U)�B✓B�@�A✓ (B�@�W +K�V ) , (A1d)662

663

̇� = �B�@� (B�@�W +K�V )�B✓B�@✓A� (B✓@✓W +K✓U) , (A1e)664
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665
666

⌧ = �B✓B�@
2
✓�W +B2

✓B�@�A✓@✓W �K✓(B�@�U �B✓B�@�A✓U)667

+B✓B
2
�@✓A�@�W �K�(B✓@✓V �B✓B�@✓A�V ). (A1f)668

669

where B✓ = 1/A✓ and B� = 1/A�.670

In our models with a convex trench the cross-sectional shape of the shell is inde-671

pendent of �, which implies @�A✓ = @�A� = @�K✓ = @�K� = 0. Equations (A1)672

then take the simpler forms673

✏̇✓ = B✓@✓U �K✓W, (A2a)674
675

✏̇� = B�@�V +B✓B�@✓A�U �K�W, (A2b)676
677

! = A�B✓@✓ (B�V ) +B�@�U, (A2c)678
679

̇✓ = �B✓@✓ (B✓@✓W +K✓U) , (A2d)680
681

̇� = �B�(B�@
2
��W +K�@�V )�B✓B�@✓A� (B✓@✓W +K✓U) , (A2e)682

683

⌧ = �B✓B�@
2
✓�W �K✓B�@�U +B✓B

2
�@✓A�@�W �K�(B✓@✓V �B✓B�@✓A�V ). (A2f)684

685

In some cases our calculations of the kinematical quantities are limited to the mir-686

ror plane � = 0, where V = @�U = @�W = 0. The quantities ! and ⌧ then vanish687

identically, while ✏̇✓, ✏̇�, ̇✓, and ̇� retain their forms (A2). The final simplification is688

for the axisymmetric deformation of an axisymmetric shell, for which (A2) simplify to689

✏̇✓ = B✓@✓U �K✓W, (A3a)690

691

✏̇� = B✓B�@✓A�U �K�W, (A3b)692
693

! = 0, (A3c)694
695

̇✓ = �B✓@✓ (B✓@✓W +K✓U) , (A3d)696
697

̇� = �B✓B�@✓A� (B✓@✓W +K✓U) , (A3e)698
699

⌧ = 0. (A3f)700

701

The rates of viscous dissipation � per unit midsurface area associated with mem-702

brane and flexural deformation can be calculated from the quantities defined above. The703

membrane and flexural energies per unit midsurface area of a deformed elastic shell are704

the quantities in square brackets in (9.12) of Novozhilov (1959). Transforming these to705

expressions for dissipation rates in a viscous shell using the Stokes-Rayleigh analogy (Ribe,706

2018), we obtain707

�m = 2⌘1h


✏̇2✓ + ✏̇2� + ✏̇✓ ✏̇� +

!2

4

�
, �f =

1

6
⌘1h

3
⇥
̇2
✓ + ̇2

� + ̇✓̇� + ⌧2
⇤
, (A4)708

where m and f stand for ‘membrane’ and ‘flexural’, respectively.709
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