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ABSTRACT

In this work, we present various machine learning models to predict emotional states in horses. We manually label

the images to learn the task in a supervised manner. We perform data exploration and use different cropping

methods, mainly based on Yolo and Faster R-CNN, to create two new datasets: 1) the cropped body, and 2)

the cropped head dataset. We build different models based on convolutional neural networks (CNNs) using

(un)cropped datasets and compare their performances to accurately predict emotions. The cropped head dataset

yields the best results despite lacking important region of interests like a tail, which experts use to annotate images.

Furthermore, we update our models using various techniques, such as transfer learning and fine-tuning to further

improve their performance. The best performance is achieved through a model based on stacking principals, which

gave a boost to the overall performance with an accuracy of 87%, precision of 79%, and recall of 97%. Finally, we

employ three interpretation methods to understand the internal workings of our models. Different interpretation

methods seem to highlight different features of the same model. We found that only LIME appears to detect some

of the features that are used by experts to annotate emotional states.

Introduction

Animal welfare is becoming an increasing social concern, especially regarding animals utilized by humans. Eques-
trian sports are no exception, and numerous horse-riding practices are currently criticized for being detrimental to
the comfort of the horses (1). In order to identify the horse’s state of well-being of ridden horses, certain indicators
based on behaviours, posture and facial expressions must be taken into account (2; 3). For example, tail swishing
behaviour indicates a state of discomfort in the horse when ridden and is often synchronised with the use of spurs (2).
In addition, the head behind the vertical posture is recognised as being a sign of the horse’s discomfort (2). Finally,
certain facial expressions such as the opening of the eyes or mouth and the position of the ears provide information
about the comfort level of the ridden horse (3). However, measuring these indicators is challenging and requires
sustained observation by individuals with experience in the field. In fact, it is generally necessary to carefully watch
the videos of the horses and manually code each behaviour, posture, or facial expression. This process is highly
time-consuming as it is done manually and sometimes even frame by frame (e.g., in the case of facial expressions (4)).
Additionally, it involves a subjective element, often necessitating that two individuals independently review the same
video to verify the consistency of the measurements. Thus, an automatized deep learning analysis based on the
detection of certain regions of interest, such as facial expressions and the horse’s posture, would be a great help in
taking account of animal welfare.

Artificial intelligence (AI)-based methods have gained popularity in recent years and have been successfully
applied in many domains such as image recognition, robotics, speech recognition, life sciences, etc. Regarding
deep learning models to predict emotions in horses, in one study (5), authors built classification models using
convolutional neural networks (CNNs) based on facial features. These features were annotated using the horse
grimace scale method. This study was based on the assessment of the facial expressions of seven horses undergoing
castration, which were filmed two days before and four days after the procedure. They selected 3000 images by
visual inspection out of 185672 extracted frames of videos. Finally, this dataset was divided into three subsets based
on different features: 1) ears, 2) eyes, and 3) chewing muscles, mouths and nostrils. They obtained an accuracy of



75.8% for classifying pain into three categories: not present, moderately present, and obviously present. However,
for the binary classification, i.e., presence or absence of the pain, they achieved an accuracy of 88.3%. In another
study (6), the authors developed a detector to recognize horses in the image and a classifier to predict the emotion of
the detected horse. To train and test the system, a dataset of 440 images was collected from private sources, with
each image labeled with one of four emotional markers: alarmed, annoyed, curious, or relaxed. There were 110
images per emotion, and the dataset was divided into 400 training images and 40 test images. Their model achieved
an accuracy of 65% on the testing set.

As compared to the aforementioned methods, in this work, we used a combination of labelling methods: HGS (7)
and RHpE (8), instead of using a single method. This approach enables us to obtain information not only on facial
emotions but also on those coming from the other body parts of horses. Previous results have shown the need to
crop the images in the dataset to allow the model to focus on the crucial elements of the image while reducing the
influence of the background on prediction accuracy. We used pretrained Yolo and faster-RCNN to identify and crop
the horse’s body and the horse’s head. We used several preprocessing methods to improve quality of the data, such as
data or resolution augmentation. Then, for the classification step, we built a model from scratch (called the baseline
model). We also employed transfer learning and fine-tuning techniques using different backbone architectures, such
as VGG16 and ResNet50. For hyperparameter optimization, we used a Bayesian search algorithm. Finally, we
concatenated the best-performing models (VGG16 and Xception) and obtained better results than individual models,
recall of 97% and accuracy of 87% on the testing set. Given the well-known black box nature of deep learning
models, we employed a variety of interpretation techniques to highlight the salient features of our models. We
generated explanations for different predictions of our model. By contrasting the explanations produced by various
approaches, we further emphasize the significance of the development of robust interpretation techniques.

Methods

Dataset

Our dataset consists of 1036 images of horses divided into two classes: comfortable (546) and uncomfortable (490),
coming from both public and private sources. We divide the dataset into three distinct subsets: the training set
(70%), the validation set (15%), and the test set (15%). The training set is used to train the machine learning model,
optimizing model parameters to minimize loss. The validation set helps in fine-tuning the model and is typically
used for adjusting hyperparameters. The test set is a part of the dataset that the model has never encountered during
training or validation, it serves as an impartial assessment of the model’s performance.

Annotations

A doctoral student in ethology specialising in the identification of horse emotions and a technician in ethology,
selected the images. The images came either from private sources or from the internet on copyright-free image
sites. Images in the comfortable and uncomfortable category were selected according to features described in
previous studies (2; 3) and depending on the state of these five key points. “Ears forward; erect and parallel with
pinnae facing forward” (3) was considered as a comfortable feature as opposed to both ears backward, which is
commonly considered to be a negative state of the ridden horse (2; 9). Open, round and tension-free eyes, was
considered as a comfortable feature whereas “almond-shaped eyes with tension of musculus levator anguli oculi
medialis” (3) (i.e. tension above the eyes) was considered as an uncomfortable feature as suggested in a study
on the development of ridden horses ethogram focused on the facial expressions (3). The opening of the horses’
mouths was also evaluated. If the mouth was closed, it was considered as comfortable. If the mouth was open, it was
considered as uncomfortable, as studies have shown that horses with more constraints when being ridden or those
with musculoskeletal pain open their mouths more often (9; 10). Head behind the vertical is known as a practice with
negative effects on horses (1; 11). Thus, head behind the vertical was considered as an uncomfortable feature, if not
it was considered as a comfortable feature. Tail swishing is a behaviour that is generally expressed by horses when
they feel uncomfortable when being ridden or as a conflict behaviour (2) so the feature was therefore considered as
part of the uncomfortable category. Basal tail with no swishing was considered as part of the comfortable category.
If horses expressed in images at least 2 features belonging to the category uncomfortable, they were placed in this
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category. Horses in the category comfortable expressed the 5 comfortable features. We summarize different criteria
used in this study for being in comfortable and uncomfortable states in the table 1.

Comfortable Uncomfortable

Forward ears Backward ears

Open eyes without tension

Tension above the eyes
Closed eyes or

Half closed eyes
Sclera exposed

Basal tail Tail swishing
Closed mouth Open mouth

Head not behind the vertical Head behind the vertical

Table 1. Key points for annotating different emotional states in horses.

Image resolution

Our dataset contains both low-resolution and high-resolution images. Image resolution plays an important role in the
accuracy of pattern recognition in neural networks. We verified the impact of higher resolutions on computational
time and accuracy of the model. A smaller image resolution leads to a reduction in training time, while increasing
the resolution allows the model to focus on smaller features (e.g., mouth opening). It has been shown that increasing
the size of the input image can increase the accuracy of the predictions up to a certain point (12). Thus, a higher
resolution does not always lead to better predictions. That is why, we decided to fix the resolution to 256 x 256
which is generally employed in CNN-based methods.

Data augmentation

One of the most common techniques used in machine learning and computer vision for increasing the size and
diversity of a training dataset is data augmentation. This technique applies different transformation methods to the
images to improve the capacity of the model to generalize, i.e., prevent overfitting, and improve its performance on
unseen data (13). There are two main ways to perform data augmentation. One way is to increase the images (by
performing certain transformations) within the dataset, resulting in an increase in the dataset itself. This method
has a number of disadvantages, in particular because we need to determine the number of images that can be
generated from a single image to avoid generating images that are too close semantically and also to separate our
dataset into subsets beforehand to avoid data leaking by finding the same or similar images in several subsets, which
distorts the results. An alternative is to use a second class of methods that apply a random combination of the
transformations to the images during training process. In our study, we employ a second method using the tensorflow
image augmentation function (14).

Cropped dataset

Previous results have shown the need to crop the images in the dataset to allow the model to focus on the crucial
elements of the image while reducing the influence of the background on prediction accuracy. In this study, we
cropped the dataset into two sets: 1) horse body dataset, and 2) horse head dataset. We use Yolo and Faster-RCNN
to perform the cropping operation.

Cropped body

To create a horse body cropping dataset, a pipeline was developed using yolov8x (15), to identify and crop only the
horse bodies recognized by the model. However, the dataset contains some images with multiple horses per image,
so to avoid contamination of the future dataset, a selection is made under the assumption that one image corresponds
to one horse. This selection consists of keeping only the image of the horse’s body that has the highest resolution, in
case multiple horses are recognized. After a manual check, no incorrect cropping was detected, and only two images
were not supported by the pipeline (format issues).
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Cropped head

In order to perform a cropping of the horse’s head, we used a pretrained Faster-RCNN model (6) that can crop
the horse’s head from horse’s body. A manual check was then performed, which revealed an error in six images
(incorrect cropping or format errors).

CNN architecture

CNNs are a special type of feed forward neural networks inspired from human vision, and mainly used to perform
image classification, object detection, and clustering similar images. They are based on three layer types (16):
convolutional layers for feature extraction, pooling layers for dimensionality reduction, and fully connected layers
for classification. A convolutional layer basically first performs element-wise multiplications using different filters
or kernels (matrices of numbers) applied to the input data, and then sum the results to generate feature maps. A
pooling layer is used to perform the sampling of the feature maps in order to conserve only important information,
thereby getting rid of noise and redundancy. Pooling enables CNNs to be invariant to small translations; spatial
translation has little effect on the output of the pooling operation (17). Fully connected layer(s) are finally used after
pooling to perform classification or regression tasks (18).

We design the architecture by taking into account various factors such as data representation, network topology,
activation functions, and hyper-parameter tuning (see figure 1). For the feature extraction architecture, we create four
blocks consisting of convolutional layers, batch normalization layer, and max pooling layers. For the classification
architecture, we create 3 blocks composed of fully connected (dense) along with a dropout. A flatten layer is used to
establish links between feature extraction and classification by reducing the values in a single dimensional vector.
To reduce overfitting, we use dropout and L1 or L2 regularization.

Figure 1. Baseline architecture representation

Hyperparameter tuning

Hyperparameter tuning consists of finding the optimal set of hyperparameters for a learning model. This method
works by maximizing the performance of the model according to a desired performance metric. Automated
hyperparameter tuning methods use an algorithm to search for optimal values. In this work, we used Bayesian
optimization with the Hyperopt Python library (19; 20).

Transfer learning and fine tuning

Transfer learning is a machine learning technique that enables the knowledge acquired from training a model on
one classification task, such as classifying one type of class, to be applied to another classification task involving
a different class. Using a transfer learning approach, we decided to test and compare widely used pre-trained
models: ResNet50, ResNet152, VGG16, VGG19, InceptionV3, Xception, and EfficientNetV2L. In our approach, we
removed the classification layers of the different models and added a new classification layer, including a flattening
layer or global average pooling layer (depending on the hyperparameter tuning), a fully connected layer, and a
dropout. Then we kept only the classification part by freezing the weights of the feature extraction layers of the
model, and this allowed us to use the pre-trained weights to learn faster.
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By modifying the pre-trained weights and enhancing prediction performance, fine-tuning can unfreeze specific
feature extraction layers, enabling the model to adapt and specialize in particular horse feature recognition. This is
because training the classification portion of the model alone does not help to create feature maps directly influenced
by the features of interest. Since we know that the final convolution layers hold the high-level semantic information,
these layers will be unfrozen and retrained at the end of each training session (a learning session that ends when the
model is no longer able to learn or is overfitting). On the other hand, because the first few low-level layers have the
best weights for identifying low-level characteristics, they will stay frozen.

Stacked model

A stacking model, also known as a stacked ensemble, is a machine learning technique that combines multiple base
models to improve overall predictive performance (21). In our case, we combine the models with best performance
on our dataset (VGG16 and Xception) to create a stacked model. The first step is to train these models separately,
then combine their output to feed it as input to the meta-classifier. Once the stacked model is trained, it can be used
to make predictions on new unseen data.

Performance evaluation

Different metrics can be used evaluate a model’s ability to generalize and effectiveness in making predictions. In
this study, we use accuracy, precision, and recall to gauge model performance. Accuracy describes the overall
performance of the model by calculating the ratio of correct predictions (true positives and true negatives) to the
total number of predictions. (see equation 1).

Acc =
T P + T N

T P + T N + FP + FN
(1)

where TP (true positive) is number of correctly predicted as positive by the model (emotional state is comfortable
and model’s prediction is comfortable), TN (true negative) represent number of correctly predicted as negative
by the model (emotional state is uncomfortable and model’s prediction is uncomfortable), FP (false positives) is
number of incorrectly predicted as positive by the model (emotional state is uncomfortable and model’s prediction is
comfortable), and FN (false negatives) denotes number of incorrectly predicted as negative by the model (emotional
state is comfortable and model’s prediction is uncomfortable).

Precision is calculated as the ratio between the number of positive samples correctly classified and the total
number of samples classified as positive (in our binary case, it is the correct percentage of comfortable prediction
among all comfortable predictions) (equation 2).

Precision =
T P

T P + FP
(2)

Recall is calculated the proportion of actual positives samples that was identified correctly (in our case, the
percentage of correct prediction of comfortable among all comfortable emotional states)(equation 3).

Recall =
T P

T P + FN
(3)

Interpretation methods

Machine learning models have made remarkable progress in recent years, enabling the development of sophisticated
models capable of tackling complex tasks with unprecedented accuracy. The downside is that as these models become
more complex and opaque, their interpretability becomes a key concern. In this study, we use state-of-the-art methods
such as LIME (Local Interpretable Model-Agnostic Explanations) (22), SHAP (SHapley Additive exPlanations)
(23), and Grad-CAM (Gradient-weighted Class Activation Mapping) (24) to provide valuable information about the
inner workings of the proposed models, explaining how they arrive at their predictions by identifying important
features or regions of interest.
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Results

Preprocessing

In our dataset, we have images with high and low resolutions. We may lose information while applying rescaling
operation on low-resolution images. To avoid this problem, we tested different resolution augmentation tools on our
dataset. Manual checking is performed to keep the one that presented the best resolution increase without distorting
the horse’s feature. In figure 2, we show an example of resolution augmentation on one image.

Figure 2. A horse images from our dataset going through the resolution augmentation.

Furthermore, we transform images using various methods such as rotation, scaling, flipping, zooming, channel
shifting, shearing, and filing mode. Since the data augmentation parameters are directly related to the dataset, the
optimal configuration of the parameters was tested and evaluated for each new dataset (cropped body and cropped
head). In figure 3, we show an example of data augmentation on our dataset.

Figure 3. Examples of some data augmentation.

Data augmentation improves model’s performance

We compare the impact of data and resolution augmentation on the baseline model. Results are presented in the
table 2. We divide our dataset into training, validation, and testing sets. We evaluate the model using accuracy,
precision, and recall on the testing set. To obtain robust and reliable performance measures, we use k-fold cross-
validation with k = 10. Our results show a slight increase in performance with the use of data augmentation,
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increasing the accuracy by 3%, whereas resolution augmentation only increase the accuracy by 1%. Taken together,
these preprocessing methods give a final increase of around 4% for the baseline on the horse dataset. Given the small
increase in model performance with the use of resolution augmentation, we apply it only to the uncropped images
and the cropped body datasets.

Preprocessing / Metrics Accuracy (%) Precision (%) Recall (%)

Baseline 60.84 ± 4.54 60.34 ± 8.74 60.34 ± 6.54

Baseline + data
augmentation

63.12 ± 6.54 64.34 ± 7.54 59.34 ± 5.56

Baseline + resolution
augmentation

61.40 ± 7.25 59.12 ± 8.49 59.59 ± 6.10

Baseline + data
and resolution augmentation

63.92 ± 5.54 62.03 ± 6.42 62.64 ± 6.98

Table 2. Baseline model results on resolution and data augmentation with 10-fold validation

Models based on cropped head dataset show superior performance

Here, we present the results of a CNN baseline models built using three different datasets: 1) cropped head dataset,
cropped body dataset, and uncropped dataset. The goal is to investigate which dataset provides the best performance
for the baseline model. From table 3, we can see that the baseline CNN model achieved the highest accuracy and
precision on the cropped head dataset, followed by the cropped body and the uncropped dataset. The superior
performance of the model on the cropped head dataset can be attributed to its ability to focus on key features related
to facial recognition or head pose estimation. Similarly, the cropped body dataset provides additional features, such
as the tail, that are not present in the cropped head dataset, contributing to the improved performance compared to
the horses dataset, which contains a lot of unhelpful information that can hinder learning.

Dataset / Metrics Accuracy (%) Precision (%) Recall (%)

Uncropped 63.59 ± 4.57 62.44 ± 8.54 58.70 ± 5.95

Cropped body 66.65 ± 8.26 63.85 ± 8.77 62.19 ± 7.40

Cropped head 70.48 ± 4.26 74.35 ± 4.67 61.84 ±4.75

Table 3. Baseline model results on horse, cropped body and cropped head dataset with 10-fold validation

Transfer learning improves the model’s performance

We further improve the accuracy of the model by applying transfer learning and fine-tuning. We employed several pre-
trained models ResNet50, ResNet152, VGG16, VGG19, InceptionV3, Xception and EfficientNetV2L as backbone
architecture. The best models are obtained using VGG16 and Xception as pre-trained models.

Image resolution has an important impact on model performance: We tested two models to compare the
impact of image resolution, i.e., Xception and VGG16, on 7 different resolution sizes in table 4. These models are
built using horse dataset without any cropping operation. The results show that below 128x128 and above 320x320
the 2 models no longer increase their accuracy. Peak of the performance is reached at 128x128 for VFF16 and at
256x256 for Xception. Hence, we set the resolution for the models at 256x256. Note that, we are increasing the
resolution mainly on images below this value.
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Resolution /
Models

(48*48) (64*64) (128*128) (224*224) (256*256) (320*320) (360*360)

VGG16 65.71 66.99 70.83 66.98 69.55 70.51 68.65

Xception 57.67 61.99 66.96 71.19 76.97 76.92 73.43

Table 4. Impact of image resolution in terms of accuracy on testing dataset using VGG16 and Xception.

Fine-tuning improves the model’s performance: We compare the performance of the fine-tuning models on the
cropped body dataset in table 5. The evaluation parameters used for the comparison are accuracy, precision, and
recall (on the test dataset). A total of eight models were evaluated, and the results show that the Xception model
achieved the best overall performance. The Xception model achieved an accuracy of 78%, which indicates that the
Xception model succeeded in classifying the horse’s body with a high level of accuracy. On the other hand, the
Xception model achieved a precision rate of 72%, which is lower than the VGG16 result. Furthermore, the model
achieved a recall rate of 70%.

Model / Metrics Acc (%) Precision (%) Recall (%)

Baseline 66.65 63.85 62.19

VGG16 72.44 76.81 66.25

VGG19 71.79 76.47 65.00

ResNet50 61.54 63.89 57.50

ResNet152 62.82 64.86 60.00

InceptionV3 60.90 64.62 52.50

Xception 78.010 72.13 69.84

EfficientNetV2L 61.544 66.137 51.25

Table 5. Fine-tuning models on the body crop dataset (testing set).

Stacked models outperform individual models: Here, we create a stacked model by combining the best models
obtained through the previous analysis as discussed above, i.e., VGG16 and Xception. The accuracy curves for the
stacked model are shown in figure 4. We show confusion matrix in figure 5a and ROC curve in figure 5b. We obtain
AUC score of 0.99 on the training set, AUC of 0.85 on the validation set, and AUC of 0.93 on the testing set.

Furthermore, we compare the performance of different model, i.e., baseline, fine-tuning on models, and staked
model. The results are shown in table 6. These models are built using cropped head and body dataset. The stacked
model achieved excellent results, with an accuracy of 87%. In addition, it achieved a precision of 79% and a recall
rate of 97%, suggesting that the model is confident in predicting comfortable horses. These results highlight the
superior performance of the stacked model, which outperforms individual models.

Different interpretation methods highlight different parts of the image

In this section, we discuss different region of interest in relation to what the model finds relevant utilizing the LIME,
SHAP, and GRAD-CAM approaches, as well as the main features used by experts for deciphering emotional states.
In tables 7 and 8, we compare explanations based on accurate predictions of the model on both comfortable and
uncomfortable emotional states. Features that correspond to comfortable and uncomfortable emotional states are
highlighted in the green and red colors. We employ a model constructed with a cropped head dataset to derive
these explanations. We display explanations when the original and predicted labels are comfortable in table 7. We
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Figure 4. Training and validation accuracy on the cropped head dataset.

(a) Confusion matrix. (b) ROC curve.

Figure 5. Performance on cropped head dataset

can observe that the mouth and nostril are the main focus of the LIME explanation in both images. In the first
image, the SHAP highlights the chamfer and ears, whereas in the second image, it emphasizes the neck. Grad-CAM
emphasizes the neck in the first picture, while in the second, it concentrates on the chamfer and background. The
features that the expert has underlined in the images are highlighted in the column True features. We note that while
each method reveals distinct regions of interest, these regions are consistent with some of the expected features. It’s
interesting to see that for the explanation for comfortable prediction with true comfortable label, the only negative
component is the horse’s chamfer behind the vertical. However, it should be noted that there are different degrees
of hyperflexion, and the further back the chamfer is, the greater the discomfort, creating breathing problems (11).
Here, the prediction still put him in a state of comfort, and you can see on the image that the hyperflexion is very
slight. The degree of hyperflexion may have been taken into account when generating the prediction, which would
resemble the reasoning used to assess a horse’s state of comfort by a human expert.

We present explanations in table 8 where the horse is predicted to be in an uncomfortable state by our model

9/14



Model / Metrics Acc (%) Precision (%) Recall (%)

Baseline (Body) 66.65 63.85 62.19

Baseline (Head) 70.59 74.14 58.90

VGG16 (Body) 72.44 76.81 66.25

VGG16 (Head) 83.33 79.27 87.84

Xception (Body) 78.01 72.13 69.84

Xception (Head) 84.23 84.66 83.91

Stacking(Xc+VG)
(Head)

86.54 79.12 97.30

Table 6. Comparison of different model on testing dataset.

and it is actually in an uncomfortable state. In the first row, we can observe that LIME emphasizes the mouth and
nostrils, while SHAP emphasizes the background and Grad-CAM emphasizes the neck. The second image shows
that Grad-CAM concentrates on the neck, SHAP emphasizes the mouth, edge, and ears, while LIME concentrates
on the mouth and ears. While there are some interesting aspects in the interpretation methods, most of the important
points are in the background.

LIME SHAP Grad-CAM Explanation True features

LIME: Mouth and nostril
SHAP: Chamfer and ears
Grad-CAM: Neck

Forward ears
Open eyes
Closed mouth
Head behind vertical

LIME: Mouth and nostril
SHAP: Neck
Grad-CAM: Background
and chamfer

Forward ears
Open eyes
Closed mouth
Head not behind vertical

Table 7. Explanation for comfortable prediction with true comfortable label.

Our findings show how the explanation approaches successfully detected some keypoints, such as the mouth,
nostrils, and chamfer, even when certain background elements are also present. It’s interesting to note that some
images (first row in both tables 7 and 8) include contradictory keypoints, like a closed mouth signifying a comfortable
condition or a head behind vertical indicating an uncomfortable state. Although these opposing keypoints are included
in both tables, it is unclear how this element affects the final prediction. We also see that the key points of each
method differ, even if they are applied to the same images and model. Furthermore, when compared to experts’
annotation methods, LIME identified more accurate regions of interest than Grad-cam and SHAP.

Discussion

In this work, we present an original strategy based on various updates to the baseline architecture to predict
emotional states in horses, including data augmentation, different training strategies, annotation strategies, and
cropping datasets, with the aim of improving the overall performance and generalizability of the model. First,
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LIME SHAP Grad-CAM Explanation True features

LIME : Nostril and mouth
SHAP : Background
Grad-CAM : Neck

Backward ears
Tension above the eyes
Half closed eyes
Head not behind vertical
Closed mouth

LIME : Mouth and ears
SHAP : Mouth, ears, and
edges
Grad-CAM : Neck

Backward ears
Tension above the eyes
Half closed eyes
Head behind the vertical

Table 8. Explanation for uncomfortable prediction with true uncomfortable label.

our annotation strategy to construct the datasets combines the knowledge from two annotation methods. The
incorporation of several pre-processing and model-building techniques, such as resolution augmentation, horse body
cropping, and stacking model construction, gave the model an overall boost in performance. Finally, we implemented
various interpretation methods to explain our models by highlighting the important features and comparing the
explanations proposed by these methods.

With an accuracy of 87% in classifying an image of a ridden horse in the right category (Comfortable/Comfortable),
our model performs well. It’s worth further discussing two additional points: firstly, the discovery of a new compo-
nent by the model for classification, and secondly, the model’s lack of consideration for the position of the horse’s
muzzle, which is a key factor in correctly categorizing ridden horses. First, it seems that the model also takes into
account a key point that was not initially included. We can see that the area around the rider’s hands and reins is
an area of interest for the model in order to predict that the horse is in a state of discomfort. This finding seems
perfectly logical, given that the rider’s hand actions can have an impact on the horse. In particular, one study has
shown that the rider has an effect on the tension in the reins, which can lead to a change in heart rate and an increase
in the horse’s cortisol levels (25). In addition, it has been shown that short reins generate more conflict behaviour
from the horse as tail swishing and more backward ears (9), features that were taken into account when annotating
the different images in the uncomfortable category. The model not only classified the images according to the
expected key points, but also found a new component to take into account. Second, one of the features that our
model underestimated to classify ridden horses in a comfortable state was the chamfer behind the vertical. The
chamfer behind the vertical is one of the head neck positions widely known to have detrimental physiological
effects (26; 27; 28; 29) such as vascularization issues (30). However, it should be noted that there are different
degrees of head and neck position when the chamfer is behind the vertical and these parameters were not taken into
account when selecting the images. A study showed that the more the head neck position was in hyperflexion, the
higher the cortisol rate was (1). Also, it is known that the head and the neck position can affect independently the
pharyngeal diameter (11), creating different degrees of discomfort in the ridden horse. The model classified the
images as comfortable despite a chamfer slightly behind the vertical. The degree of hyperflexion may have been
taken into account when generating the prediction. As it’s complicated for the human eye to perceive these nuances
of chamfer behind the vertical, our model could therefore be improved and used to detect in ambiguous head neck
positions.

Nonetheless, there are a few limitations to this study: 1) The dataset is obtained from private as well as public
sources, which hinders our ability to share it publicly; 2) the size of the dataset is small, around 1000 images to
build a machine learning model; and 3) the models are non-interpretable. In the future, we plan to work on resolving
some of these issues. First, we want to create a larger and more diverse dataset by automatically exploiting the video
dataset to generate horse images. Even after this, we will still need to manually annotate these images in order to
enrich the training dataset. Furthermore, we plan to work more on interpreting the models, as currently we only use a
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few images to generate explanations, which hinders our ability to draw general conclusions regarding the regions of
interest in the images. In our current pipeline, we have identified that different methods generate diverse explanations.
In the future, we want to identify a global set of explanations per category for different explanation methods. These
explanations will be discussed with the experts to compare the key regions of interest on the images identified by
the model, which may lead to the identification of new regions of interest or the validation of explanation methods.
Finally, we plan to develop a user-friendly interface that, after due validation, can then be used by experts in their
work to avoid the manual interpretation of emotions.

Conclusion

In this work, we have demonstrated how deep learning models can be used to predict emotional states in horses. We
show how model built on cropped dataset has higher performance thanks to being able to focus on crucial features.
Different updates in architecture or training strategies improve the overall performance of the proposed model.
Further, we demonstrated how different interpretation methods can be applied to identify the important features of
the model. Lastly, we demonstrated the requirement for a reliable interpretation method by highlighting differences
in explanations across various interpretation approaches.
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