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Abstract. The lack of observations at heights relevant to the wind energy industry constitutes a major challenge for the de-

velopment of the next generation of offshore wind turbines (over 10 MW), which are expected to operate within the first few

tens kilometres from the coast with turbine tips extending more than 250 m. Observations within the coastal zone, which

proves to be complex by its very nature given that the site of sea breezes, low-level jets and land/sea transition are keys to5

both understanding the marine atmospheric boundary layer processes interacting with the turbine and parameterizing the wind

profile well above the surface layer. These needs introduce difficulties associated with measuring wind properties in the region

150-500 m above the sea surface. This paper uses the virtual mast method to reconstruct the 10-min averaged wind profile

1.5 km offshore using a scanning Doppler LiDAR (Light Detection And Ranging) installed on the coastline. A novel method

is proposed herein to increase the vertical resolution to 27 levels, from the sea surface to 500 m above sea level. Being mainly10

based on the homogeneity hypothesis, this method’s sensitivity to wind direction is evaluated, while results are compared with

reanalysis data at several heights. This method is then implemented as part of a 7-month test campaign on the northeastern

Atlantic coast, yielding a dataset of wind profile measurements. An analysis of this dataset shows a 15.4% proportion of low-

level jets, mainly originating from land at night, with a core well inside the rotor area of > 10 MW wind turbines. The power

production is subsequently analysed for 10 MW, 15 MW and 22 MW wind turbines. Wind shear events above the design15

values are observed in 30% of all profiles, accounting for more than a third of the total power production. High shear events are

found to be more probable during low-level jets (56% of the time), compared to no low-level jet events (26%). A description

of low-level jets and high-shear events is thus key since these are situations where the wind profile differs from the standard

values used for wind turbine design and may affect both the load and fatigue predictions.
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been applied by the authors to the present document and will be applied to all subsequent versions up to the Author Accepted Manuscript

arising from this submission.
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1 Introduction

In Europe, between 2020 and 2022, newly connected offshore wind energy capacity accounted for roughly 2.8 GW per year,

yielding a total connected capacity of 30.3 GW. This growth is expected to continue, through 2030, to reach a connected25

capacity of 135 GW (Ramirez, 2022). Over the last three years, newly installed offshore wind farms (whether fixed or floating)

are located, for the most part, within the first 10-50 kilometres from the coast (Díaz and Soares, 2020), at an average distance

from the coast of 44 km in 2020, 26 km in 2021, and 43 km in 2022 (Ramirez, 2022). From a meteorological standpoint, see

(Rogers, 1995), the effects of the sea/land transition are still visible 100 km offshore. Hence, even with the advent of floating

offshore turbines, which tend to increase the average distance to shore, most of these installations can be considered coastal30

rather than offshore. In 2022, 79% of the total offshore capacity was installed in the North Sea, 10% in the Irish Sea, and

9% in the Baltic Sea. Despite the considerable potential offered by the European Atlantic coast, as analysed by its levelized

cost of energy by Martinez and Iglesias (2022), the connection to the grid in 2022 of the first French offshore wind farm at

Saint-Nazaire also represented the first significant commercial wind farm along the entire European Atlantic coast, with 80

turbines installed 12 km from the coast.35

Growing interest in the near offshore resource has led to more studies aimed at describing the physics of the marine at-

mospheric boundary layer (MABL) near the coast. This region, heterogeneous by its nature, combines onshore and offshore

complexitiesk, i.e.: orographic change (coastline), roughness change, variation of the sea-surface temperature, strong contrast

between ocean and land heat capacity, and enhanced dynamic interaction between the water surface and the lower part of the

MABL by means of waves, coastal bathymetry, local currents and tidal dynamics (Rogers, 1995; Garratt, 1994). These multi-40

scale interactions produce complex local atmospheric flow phenomena (Archer et al., 2014), such as the wave boundary layer,

boundary-layer transitions, coastal low-level jets (LLJ), extreme wind shear (EWS), extreme wind veer, and land/sea breezes.

These phenomena, in turn, cause a wide range of wind conditions and a significant deviation from the classical description of

well-mixed ABL conditions (e.g. Monin-Obukhov similarity theory, power law). Offshore field observations, which serve as a

key to both an understanding of complex physical phenomena and model validation in such complex areas, pose a major chal-45

lenge (Hasager et al., 2008; Sempreviva et al., 2008). The advent of fixed and floating profiling LiDAR technology has enabled

an unprecedented step in probing the MABL. However, the measurement range of a profiling LiDAR remains within the first

200-300 m of altitude, which is too restrictive for understanding the aforementionned complex atmospheric flow phenomena

and their interactions with wind turbines featuring increasing rotor diameters. The need for more offshore field data near the

coastline and covering a higher range of altitude remains one of the current major challenges raised by Veers et al. (2019) and50

Shaw et al. (2022).

Previous studies involving field observations (using either LiDAR or metmasts) or simulations, as summarized in Shaw et al.

(2022), point out the presence of LLJs in the coastal zone (Smedman et al., 1993; Mahrt, 1999; Pichugina et al., 2012; Emeis,

2014; Soares et al., 2014; Mahrt et al., 2014; Nunalee and Basu, 2014; Pichugina et al., 2017; Wagner et al., 2019; Kalverla

et al., 2019; Debnath et al., 2021; Djath et al., 2022; Aird et al., 2022; Rubio et al., 2022). LLJs are defined by local velocity55

peaks in the vertical profile near the ground with a core observed at levels between 50 m from the surface up to more than
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500 m. Such a phenomenon often generates high shear and seems to be highly correlated with the stable thermal stratification

and/or the coastal transition (topography, heat capacity, etc.) (Soares et al., 2014; Svensson et al., 2019). The precise physics

of LLJ formation in the coastal environment appear to be multi-factorial and remains unclear in many situations, thus making

it difficult to deduce common characteristics. One common feature observed both in the North Sea (Kalverla et al., 2019) and60

along the east coast of the U.S. (Aird et al., 2022) is the rate of appearance of LLJs at the coast: in most instances, this rate was

found to lie below 15% with a seasonal peak observed at the end of spring. The complexity of modelling an LLJ near the coast

through meso-scale simulations was indicated by Nunalee and Basu (2014) and Svensson et al. (2019), wherein the presence

and intensity of LLJs were found to be underestimated and model dependent. Since LLJs can occur at the operating altitude

of an offshore wind turbine, several consequences, such as a modification of the load distribution on the rotor, wake recovery65

rate, and turbulence level, would be expected to affect both overall wind turbine performance and structural life cycle, thus

making a study of their characteristics significantly important in coastal wind energy projects. To date, offshore and coastal

LLJs have mainly been studied in the North and Baltic Seas, closed seas, and along the northeastern coast of the U.S. Their

presence along the northwestern European Atlantic coast has remained largely unstudied.

The expected height of next generation offshore wind turbines has ushered in a need to measure wind conditions up to70

400-500 m, as these data will be key to the parameterization of offshore wind profiles above the surface layer. Yet such a

challenge is one that current profiling Doppler LiDARs cannot handle. Over the past few years, several test campaigns have

deployed a scanning LiDAR (sLiDAR) to exploit its larger range to measure wind speed at higher altitudes. Wagner et al. (2019)

used a sLiDAR on the FINO1 platform in the North Sea in DBS mode (vertical profiling) to probe up to 518 m. Although data

availability was very low (11.9%) due to time-discontinuous LiDAR measurements and partial instrument failure, these authors75

successfully analyzed LLJ events within a one year period and provided tentative explanations for their generation. At the site,

LLJs were detected 14.5 % of the time and on 64.8% of the days. Cheynet et al. (2021) used an sLiDAR in fixed line-of-

sight (LOS) regime at a fixed elevation angle and discussed the vertical profile of the radial wind speed (RWS) along the

LOS. However, the serious limitation of this approach was that the vertical profile was being measured over a large horizontal

distance (several kilometers) without the possibility of verifying horizontal homogeneity. Shimada et al. (2020) and Shimada80

et al. (2022) successfully validated a method using a sLiDAR from the shore to probe the horizontal wind speed (HWS) at a

single height above the water surface using a PPI (Plane Position Index) scan. Their experiments were promising, yet further

efforts are still needed to measure reliable vertical profiles of the HWS near the coast.

The present paper proposes an original method of assessing a high-altitude (500 m) and high-resolution (27 altitudes) wind

profile above sea level using a sLiDAR. Based on the work of Shimada et al. (2020), who used an sLiDAR installed at the85

shore, the method herein is extended from a single height to multiple heights thanks to several PPI scans at various elevations

as well as to an increased vertical resolution approach relying on a horizontal homogeneity hypothesis. Our new method

employs a selected set of additional measurement gates along each scan, which otherwise had been disregarded during the

raw data processing, in order to both expand the vertical range of the wind profile upwards and refine the measurement grid.

The hypotheses underlying this method, which include statistical convergence and horizontal homogeneity, are also discussed,90

notably in the context of wind direction sensitivity. The method was subsequently implemented during a 7-month measurement
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campaign on France’s west coast, in providing the first dataset and analysis of its kind along the northwest European Atlantic

coast. A statistical analysis of LLJs and shear events is also performed to contribute to better understanding their role in the

scope of local coastal wind resource. This paper addresses several scientific and technical challenges identified in both Veers

et al. (2019) and Shaw et al. (2022) by: (i) proposing an original field experimental method to measure the MABL profile up95

to 500m with high vertical resolution, (ii) providing a unique dataset in a coastal environment along the northeastern European

coast, and (iii) contributing to the quantification of the impacts from LLJs and high shear events for the wind energy sector

within a geographical region never before described.

The method, including the original sLiDAR set-up and data processing, is described in Sect. 2. The results, encompassing

statistics on LLJs, wind shear events, and power production of 10 MW, 15 MW, and 22 MW turbines over the covered period100

are presented in Sect. 3. Sect. 4 discussed the results, and a conclusion is provided in Sect. 5.

2 Methodology

Although several wind turbines will be considered in Sect. 3.6, the IEA 15 MW 240 RWT 1 wind turbine has been chosen as

the reference throughout the analysis herein; it features a 240 m rotor diameter and a hub height of 150 m.

2.1 Field experiment set-up105

During the period between March and September 2020, an sLiDAR (Vaisala WindCube Scanning LiDAR 100S) sourced from

the Research Laboratory in Hydrodynamics, Energetics and Atmospheric Environment was deployed along the coastline of

Le Croisic peninsula, in northwestern France, at a height of 21 m above mean sea level, on the balcony of a seafront villa

(Fig. 1). At 100 m from the coastline, and with a clear view of the Northeast Atlantic Ocean from 135◦ to 260◦, this set-up was

intended to measure wind conditions above the ocean several kilometers offshore (see Fig. 1, left). A detailed description of the110

surroundings of this sLiDAR can be found in Paskin et al. (2022) who performed a field experiment in the same environment.

Pitch and roll angles of the sLiDAR were adjusted using internal inclinometers with an uncertainty of 0.1◦. The hard-target

procedure was performed using a reference vertical pylon situated 550 m from the sLiDAR and equipped with a horizontal

beam. While pointing to the reference pylon, a direct and indirect scan crossing the horizontal and vertical beams revealed no

backlash greater than 0.05◦ for both azimuth and elevation directions. A precise measurement of the position and altitude of115

the pylon, the horizontal beam, and the sLiDAR was carried out using Global Navigation Satellite Systems (GNSS) positioning

with a Real Time Kinematic correction (RTK). This measurement served both to adjust the azimuth (ϕ) angle to the North, with

an uncertainty of 0.5◦, and to estimate the remaining elevation error. For the applicable range of azimuth angles, this error was

computed based on the pitch/roll angles given by the sLiDAR and then double-checked by means of external inclinometers.

The mean offset (-0.07◦) was included in the elevation correction, and the remaining altitude variation along the 45◦-wide120

measuring range was found to equal ±0.07◦, thus corresponding to ±1.1 m per kilometer distance from the sLiDAR (the

correspondence between mean offset and altitude variation within the measurement range remains random). The tide at the site

1https://github.com/IEAWindTask37/IEA-15-240-RWT, last access: 10 jun 2024
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Table 1. Configuration of the PPI scans in the sLiDAR.

Scan Azimuth ϕ Rot. Speed Dir. Rot. Elevation θ Acc. time Duration Distance of the gate center

[◦] [◦s−1] [-] [◦] [s] [s] [m]

PPI1 157.5 - 202.5 3 direct 0 1 15 R = [100 - 3000] each 100 m

PPI2 202.5 - 157.5 3 indirect 0.57 1 15 R/(cosθ)

PPI3 157.5 - 202.5 3 direct 1.72 1 15 R/(cosθ)

PPI4 202.5 - 157.5 3 indirect 4.01 1 15 R/(cosθ)

PPI5 157.5 - 202.5 3 direct 6.32 1 15 R/(cosθ)

PPI6 202.5 - 157.5 3 indirect 13.89 1 15 R/(cosθ)

Rot. Speed: rotation speed; Dir. Rot.: direction of rotation; Acc. time: accumulation time.

(semi-diurnal with a maximum range of +/-2.7 m) was not accounted for in this study; all heights are given above mean sea

level.

The sLiDAR was configured to perform a series of six 45◦ azimuth opening PPI scans at six elevation angles (θ) above the sea125

surface within the southern sector (denoted PPI1 to PPI6 in Table 1). The direction of rotation was alternated between clockwise

and counterclockwise in order to minimize the time between measurements. The total cycle of 6 PPI lasts 96 seconds including

moving time without measurement. For the horizontal scan (PPI1 in Table 1), the radial wind speed (RWS) was measured at

30 gates which had been established evry 100 m from 1000 m to 3000 m along the laser beam. The range location of the other

PPI scans was obtained by dividing the PPI1 ranges by cosθ so as to achieve a vertical alignment of the measurement points130

at prescribed distances from the sLiDAR (see Fig. 3). The gate size was set at 50 m. All configuration details are given in

Table 1. In this work, like in Gryning and Floors (2019) and Paskin et al. (2022), the minimum carrier-to-noise ratio (CNR)

threshold value used to validate an RWS measurement was set at -29dB. No upper CNR threshold was applied. All RWS

measurements over 30 m/s and below -30 m/s were discarded since they exceed the maximum wind speed measurement

given by the manufacturer.135

2.2 Virtual mast reconstruction approach

Shimada et al. (2020) demonstrated the validity of the horizontal wind speed and direction reconstruction at a single point

from a PPI scan through comparison with a fixed profiling LiDAR. Their approach was based on the homogeneity of the wind

within the PPI scan. This section proposes using this same reconstruction method (Sect. 2.2.1) but to extend the methodology

to obtain a profile reaching 500 m with higher vertical resolution. For this purpose, PPI scans were performed at 6 elevation140

angles and repeated 6 times within a 10-min period. A profile reconstruction method, discussed in Sect. 2.2.2 is being proposed

based on horizontal homogeneity, while Sect. 2.2.3 focuses on the statistical convergence of this approach.

5



Figure 1. Position of the sLiDAR (red dot) and scanned area (shown in gray) on the peninsula of Le Croisic, France (left). View of the

sLiDAR facing the Atlantic (right). Definition of the sLiDAR frame with the azimuth (ϕ) and elevation (θ) angles. This figure has been

extracted from Paskin et al. (2022).

2.2.1 Horizontal wind speed estimation

Horizontal wind speed (HWS) can be defined either by its eastward and northward components (u, v) or else by (Uh, DIR),

where Uh =
√
u2 + v2 is the modulus of HWS and DIR is the wind direction. The vertical wind component is denoted by w.145

During a given scan, each RWS value measured by the sLiDAR at a given gate is related to the wind speed vector components

(u, v, w) by

RWS = u cosθ sinϕ + v cosθ cosϕ + w cosθ . (1)

In assuming that w is negligible compared to (u,v), which is likely to be the case above the sea surface, Eq. 1 simplifies to

RWS = u cosθ sinϕ + v cosθ cosϕ . (2)150

In assuming an homogeneous wind field in both space and time during a single PPI scan, the HWS components can be

determined by a linear-least-squares method where θ, ϕ and RWS are the known values and (u, v) the unknowns. Shimada

et al. (2020) successfully validated this method (called velocity volume processing) versus a profiling LiDAR in a very similar

set-up (sLiDAR at the shore measuring over the sea). They reported an accuracy in the HWS estimation at 100m above sea

level of 0.5% with a determination coefficient of 0.998. Additionally, the elevation angle was reported as having no influence155

on accuracy. In the present work, a similar approach has been used except that Eq. 2 has been re-written as

RWS∗ =
RWS

cosθ sinϕ
= u tanϕ + v , (3)

6



so that the fitting is based on a linear regression procedure instead of fitting a sum of sinus functions. In this case, linear

regression will yield u as the slope of the RWS∗ = f(tanϕ) line and v as its intercept. Results were verified against the

original method of Shimada et al. (2020). This approach displays a limitation in that the variables in the denominator possibly160

lie close to zero. However, for the sLiDAR setting used in the measurements (see Table 1) neither of the two functions assumes

near-zero values at any point. Should a different range of azimuth angles ϕ be used, additional steps would be necessary to

avoid division by zero (a simple rotation of the coordinate system before and after fitting could serve this purpose). Moreover,

to ensure adequate performance of the algorithm, it is important for the tanϕ values to be distributed quasi-linearly across the

range, i.e. the range of azimuth angles of the sLiDAR setting must lie within the linear part of the f(x) = tanx graph (which165

is true in our case).

The quality of the data obtained from the linear regression of Eq. 3 has been assessed by means of a customized quality

index (QI), based on the Normalized Root Mean Square Error (NRMSE). NRMSE is obtained by normalizing the ordinary

Root Mean Square Error (the standard deviation of the residuals) by the maximum absolute value of the measured RWS∗. The

quality index is then defined as the difference between unity and NRMSE:170

QI = 1− 1

max(abs(Yi))

√∑N
i=1(Yi − Ŷi)2

N
, (4)

where Yi denotes the measured value of RWS∗, Ŷi the value predicted by the linear regression, and N the total number

of points. The choice of normalization accounts for possible negative or near-zero values of Yi. In this manner, the calculated

wind speed values with a QI close to 1 are considered to be of high quality. Data with QI < 0.75 are considered unreliable and

discarded. After filtering, the u and v values obtained are averaged over 10-minute intervals for each measurement height.175

The location of the current measurements near the land-sea transition raises the question of the effect of wind direction on

the validity of the hypothesis of spatial homogeneity within each individual scan used to compute HWS and DIR, especially

in the case of wind coming from land. Let’s define here and for the remainder of the paper sea wind and land wind to denote

winds coming from the sea [135◦-315◦] and from the land [315◦-135◦], respectively (Fig. 10). In Fig. 2, the evolution in the

QI is given for 15◦ wind direction bins, along with the number of occurrences in each bin. On the whole, QI varies between180

0.94 and 0.98, thus indicating a high level of homogeneity within the scanned area. However, a dependence on wind direction

is indeed visible since we observe a lower QI for land wind (0.96) compared to sea wind (0.97).

Another source of uncertainty in the HWS estimation visible in Fig. 2 pertains to the relative wind direction compared to

the main scan pattern direction: a primary wind direction oriented across the mean LOS of a scan (across-LOS) results in

less accurate measurements due to RWS measurements of near zero, compared to situations in which the wind direction is185

along the mean LOS of the scan (along-LOS), whereby the RWS represents most of the wind speed amplitude. This effect is

expected to lower the quality of the HWS determination as reported in the literature in (Cameron et al., 2014; Shimada et al.,

2020). According to Simon (2015), a scan range wider than 30◦ is expected to limit this problem. For the present study, in

the absence of a reference measurement, this alignment effect has been evaluated in Fig. 2 by comparing the QI for the along-

LOS and across-LOS directions. The effect is visible with, a mean QI of 0.975 and 0.945 for the along-LOS and across-LOS,190
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Figure 2. Quality index as a function of wind direction. The relative direction across or along refers to the mean LOS of the scan. The number

of observations in each bin has been given for information purposes.

respectively. This difference, similar to the results found in Cameron et al. (2014) and Shimada et al. (2020), is expected to

have little effect on the interpretation of our results.

Performing the scans across the most frequent wind directions might appear to be counterintuitive, but the reason for choos-

ing this configuration was to achieve a maximum distance of scanning into the sea, thereby ensuring maximum homogeneity

within each scan. Scanning across the shoreline, with all the inherent complex atmospheric processes, is expected to have a195

strong effect on homogeneity and thus increase measurement uncertainty. Fig. 2 shows that homogeneity is indeed satisfactory

and the measurements can be considered valid.

In the absence of a local wind reference, an analysis of the QI provides relative uncertainty estimates that seem to be

reasonable for analysing the wind profiles.

2.2.2 Vertical profile reconstruction and 10-min averaging200

Throughout the measurement campaign, the six PPI scans defined in Table 1 and displayed in Fig. 3 are performed one after

another in a loop, amounting to a total of 6 scans of each elevation angle within a 10 minute interval. From each scan and for

each useful gate, the instantaneous wind components are extracted through the linear regression algorithm described above,

with the values obtained then being averaged over 10 minutes. Each scan is associated with pre-configured measurement gates,

i.e. distances from the sLiDAR along the scan at which the RWS is recorded (gray circles in Fig. 3). The elevation angles and205

gates are laid out in such a way that at the target distance from the sLiDAR (here 1400 m), the Nth gates of all six scans are

vertically aligned, thereby creating a “virtual met mast” (orange circles in Fig. 3). The six measurement heights of this mast

are 0, 14, 42, 98, 155 and 346 m above the sLiDAR (which is located at 21 m above mean sea level). The choice of distance
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Figure 3. Representation of the elevation of measurement points along the PPI scans (gray dotted lines). The location of the reconstructed

mast is marked in orange. The blue dots denote the additional points taken into account during this reconstruction approach. The purple

squares are comparison points, at the same height, used for validation.

for the virtual mast reconstruction strikes a compromise between being far enough from the shore while maintaining a high

CNR that decreases with distance from the LiDAR.210

The novel part of the methodology presented herein is aimed at ensuring improved height resolution of the vertical profile

by making use of the other measurement gates along each scan, which otherwise would be disregarded. For this purpose, RWS

measurements from the gates adjacent to those forming the virtual met mast are included in the dataset (blue circles in Fig. 3),

thus adding 21 new measurement heights (33, 54, 70, 84, 112, 122, 133, 144, 166, 177, 188, 199, 210, 221, 253, 276, 300,

323, 369, 393 and 416 m above the sLiDAR). These additional heights extend the mast further upwards and provide significant215

grid refinement at altitudes more than 100 m above the sLiDAR. Such an expansion relies on the assumption that variations

in wind properties are much more pronounced with height than with distance from the shore within the new mast “width”. To

validate this assumption, three validation pairs (shown in purple in Fig. 3) were selected, whereby wind speed and direction

are compared at the measurement points with the same height but a different distance to the shore. Pairs 1 and 2 compare the

conditions at the boundaries of the extended mast with those at its core, while Pair 3 spans the entire extended width. The results220

of this comparison are presented in a scatter plot in Fig. 4, which reveals a good correlation in both HWS and DIR for each pair.

Despite the land-sea roughness and thermal transition due to the coast, the evolution in horizontal wind is not significant within

a 1000 m horizontal range centered at the virtual met mast for the tested height, thereby verifying the horizontal homogeneity

(for purposes of this particular study). As a comparison, the horizontal evolution lies on the order of 1% for 1000 m where the

vertical gradient of HWS is about 10% for 100 m. Let’s note that the two measurements in each pair have not been performed225
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Figure 4. Horizontal wind speed and wind direction comparison for three validation pairs. Axis labels provide the distance of each measure-

ment point (left and right) from the virtual mast.

exactly simultaneously, hence the measured wind speeds are not expected to perfectly match in a turbulent flow and, are thus

expected to increase the scatter in Fig. 4. The underlying assumption of the increased height resolution method can therefore be

considered as valid, and the method is employed for the subsequent analysis, allowing for a more detailed vertical description

of the MABL.

The profiles obtained are further subjected to reliability filtering, whereby a profile is considered reliable if more than 5 valid230

measurements are available within the 10-minute averaging interval for at least 20 heights out of the 27. The unreliable profiles

are not to be used for any further analysis. Overall, 81.4% of all profiles are considered reliable.

Proximity to the coastline again raises the question of the directional influence on homogeneity over the distance used in

the reconstruction methodology. The correlation coefficient R2 between the two measurements at the three comparison heights

of Pairs 1-3 are presented as function of the wind direction in Fig. 5 to serve as a homogeneity indicator. The highest value235

(close to 1) is achieved under sea wind conditions and when the scan is along the wind direction. The correlation drops to

0.97 for the land wind sector and the coefficient becomes height-dependent. The lowest value is found for land wind when the

wind direction is across-LOS; this value proves to be the lowest among all altitudes studies. The height dependency is likely

related to the land/sea transition as well as to the higher shear exponent typically occurring above land. The effect of wind

direction either across or along the LOS is visible, with the same order of magnitude as in Fig. 2. This analysis demonstrates240

the limitation of this method, which is more effective over sea than in the land-sea transitions.
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Figure 5. Correlation coefficient R2 between the two measurements of each pair as a function of wind direction by 30◦ wind sector.

2.2.3 Statistical convergence of the 10-min horizontal wind speed estimation

During a 10-min period, the sLiDAR performs measurements at 6 different heights, thus making it necessary to verify how the

statistical convergence of the final 10-min average is affected. Since it is being calculated from a finite signal, Uh measured

in the field has a statistical convergence error of ϵUh
=±zα/2

σu√
N

, where zα/2 = 1.65 refers to the 90% confidence level, N245

is the number of independent samples, and σU the standard deviation of Uh. The frequency at which the sLiDAR computes

Uh is quite low, i.e. 6 times during a 10-min interval, compared to a one-point measurement such as that using an ultrasonic

anemometer (USA) or a cup anemometer for measuring the HWS at 20 Hz. However, as opposed to a USA, the sLiDAR also

accumulates measurements in space during each PPI, hence time and space are contributing to an increase in N .

In the time domain, following George et al. (1978), the number of independent samples in a time series of duration T is250

estimated by

N =
T

2Tu
, (5)

where Tu is the integral time scale computed from the auto-correlation of the signal. Using the Taylor frozen turbulence

hypothesis, in the space domain, measurements are considered to be independent when spaced by two times the integral length

scale Λu along the wind direction (in this analysis, it is assumed that Λu is homogeneous in the horizontal plane). Λu can be255

estimated by Λu ≈ κz, with κ= 0.4 being the von Karman constant and z the height above the sea surface, and in assuming

Taylor frozen turbulence (although it is not perfect, (Kaimal and Finnigan, 1994)), plus time and length scales being related by
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Figure 6. Evolution of N10min
sLiDAR (left), N10−min

USA (middle) and Rϵ(right) as a function of Uh and β.

Λu = Uh Tu. Here, the maximum number of spatially independent points per scan can be approximated by

NsLiDAR =
LsLiDAR

2Λu
, (6)

where260

LsLiDAR = Lscan −TscanUhsinβ (7)

represents the equivalent length of one scan and

Lscan = 2Rsin

(
∆θ

2

)
(8)

is the cord of a scan (straight-line distance between the start and end of a scan at a given range), with ∆θ being the azimuth

opening of the scan and R the distance to the centre of the gate considered. TscanUhsinβ is the equivalent distance traveled265

by the wind in the direction of the scan during the scan duration Tscan. β is the direction of the sLiDAR beam relative to the

wind (0◦ indicated that the mean azimuth is aligned with the main wind direction). In the tested configuration, each scan is

performed 6 times during a 10-min period leading to a maximum number within a 10-min period of N10−min
sLiDAR = 6LsLiDAR

2Λu
.

In Fig. 6 (left), N10−min
sLiDAR is visualized as a function of β and Uh with z = 100m, σu = 1m/s, R= 1500m, and ∆θ = 45◦.

N10−min
sLiDAR is not highly dependent on Uh and varies slightly with β; the most favourable condition is β = 270◦, at which point270

the scan goes in the direction opposite that of the wind. The value N10−min
sLiDAR = 68, as marked in the figure, refers to the number

of independent points necessary to reach 2% of error a 90% confidence level. For purposes of comparison, a USA placed in

the same flow will collect, in 10 minutes,
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N10−min
USA =

600

2Tu
=

600Uh

2Λu
(9)

independent samples not influenced by the wind direction. Figure 6 (middle) shows that N10min
USA is highly sensitive to275

wind speed variation. Indeed, the statistical convergence of a single point is solely a function of the number of independent

measurements acquired in 10 min under the hypothesis of a time scale independent of wind speed: the higher the wind speed,

the higher the number of points measured over a 10 min time interval. In contrast, the sLiDAR can rely on spatial measurements,

regardless of the wind speed.

Finally, the ratio of the error produced by the sLiDAR compared to a USA, i.e.280

Rϵ =
ϵ10min
sLiDAR

ϵ10−min
USA

=

√
N10−min

sLiDAR√
N10−min

USA

, (10)

shown in Fig. 6 (right), becomes independent of Λu and σu. For low wind speeds, typically Uh < 10 m/s, the sLiDAR

provides (in the present configuration) a lower statistical error compared of that of a USA, while the opposite is observed when

Uh > 10 m/s. Note that these results would be similar when compared to those of a cup anemometer instead of a USA since

only independent samples can be included for to estimate the number of independent points.285

When applied to the configuration used in this work (Table 1), the resolution of the PPI scans (15 points in a 45◦ scanning

sector) is sometimes lower than N10−min
sLiDAR. In this case, the statistical error is estimated using N =min(N10−min

sLiDAR,15). In our

specific distance range, the statistical uncertainty at the 90% confidence level varies within ϵ10−min
sLiDAR = [1.74 - 4.35]%.

2.3 Definition of wind profile characteristics

2.3.1 Shear exponent definition290

Throughout the present analysis, wind shear, also called shear exponent, α has been defined according to the power law:

U = Uref

(
Z

Zref

)α

, (11)

where Uref and Zref denote the reference 10-min wind speed and reference height, respectively. This equation can be

rewritten in logarithmic form as follows:

logU = α · logZ +(logUref −α · logZref ), (12)295

according to which α can be taken as the slope of the U(Z) function in a log-log scale, hence making it possible to determine

the shear exponent value from several wind speed values at different heights using linear regression. The shear exponent is
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derived from the wind speed values within the rotor area only (i.e. between the heights closest to the bottom and the top of the

reference turbine rotor). This definition was chosen to comply with wind energy related application. Note that a higher shear

may be present in the wind profile outside the rotor, such that this choice of definition is tailored to a particular wind turbine.300

In Sect. 3.3, the rotor shear calculation will be performed for each rotor as part of the data processing step for each valid wind

profile.

2.3.2 Low-level jet detection method

In this study, low-level jets are defined as a peak in the vertical wind profile. Atmospheric stability, roughness transition,

possible formation mechanisms and spatial extension are not accounted for in the detection process. Detection is performed305

for every valid 10-minute averaged profile through an algorithm based on the SciPy function find_peaks in following a

four-step process. In the first step, peaks more prominent than 1 m/s and not narrower than 5 height levels (assigned so as to

exclude sharp fluctuations) were detected. If the function returned more than one peak, the profile was considered not to contain

an LLJ. In the second step, both absolute and relative low-level jet criteria were introduced to evaluate the derived maximum,

offering a method similar to that described by Aird et al. (2022). The peak was considered an LLJ if it reached 2 m/s and/or310

a value 20% (in relative terms) higher than the next profile minimum. The third step, treated the time dimension of low-level

jets as a phenomenon. The Boolean array corresponding to LLJ presence or absence was filtered so that an isolated 10-minute

averaged profile with a detected LLJ is not accounted for in the final statistics. On the other hand a non-LLJ case surrounded by

LLJ-cases on the timeline would be counted as such. The fourth and final step sought to improve the LLJ statistics by detecting

low-level jets as a phenomenon spread over time and not just as a feature of isolated profiles. The detection algorithm is able to315

locate the core of the low-level jet at 25 m or higher with at least a 25 m vertical resolution (although it is not even throughout

the profile, Fig. 3).

3 Results

This section presents relevant results describing the wind resource at the coastal site. After a comparison with reanalysis data

for validation purposes, the focus squarely placed on LLJ (occurrence, height, core speed, direction, etc.) and extreme wind320

shear (occurrence, level, direction, etc.) given that these phenomena can be viewed as deviations from the classical wind profile

description used for wind turbine design. The 15 MW turbine will be used as a reference in this section except in Sec. 3.6,

where several turbines will be used to analyze the energy production statistics.

3.1 Comparison with reanalysis data

In the absence of direct reference measurements nearby, the AROME hourly reanalysis dataset has been used as an independent325

datasetfor comparison with the HWS and DIR profiles deduced from the sLiDAR measurements. AROME is a reanalysis

product of MeteoFrance 2 with wind data available at 24 heights between 20 m and 3000 m above ground level and with a

2https://donneespubliques.meteofrance.fr
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Figure 7. Wind rose and Weibull distribution at 150 m (a, b, c) and 375 m (d, e, f) for the sLiDAR and AROME reanalysis data.

horizontal grid spacing of 0.025◦ (approx. 2.5 km in the area of interest). This dataset was chosen for its good spatial resolution,

which is of particular benefit in our complex coastal area. For starters, two AROME heights, 150 m and 375 m, were selected

to draw a comparison of HWS and DIR with the nearest sLiDAR data (154 m and 367 m). Scanning LiDAR data were then330

resampled to one hour in order to match the reanalysis data time resolution. Figure 7 (a, b, d, e) shows a high level of agreement

between the wind roses based on the sLiDAR and AROME data. Figure 7(c, and e), presents the wind speed distributions of

both AROME and sLiDAR for the entire measurement period. The Weibull distribution fit is expressed by:

PDF (Uhub) =
k

c

(
Uhub

c

)k−1

e
−
(

Uhub
c

)k

, (13)

where c is the scale parameter and k the shape parameter, as calculated from the measured data using the empirical formulae335

offered by Justus et al. (1978). Both heights show good agreement and very similar Weibull coefficients. Nevertheless, some

differences are visible in the wind speed distribution at 150 m, where the 5-7 m/s range is more probable in the AROME

dataset than in sLiDAR observations. In contrast, within ranges 1-5 m/s and 10-15 m/s, more sLiDAR observations are drawn

than with the AROME data. At 375 m, the distributions more closely matched with another. To draw a more quantitative

comparison, scatter plots for HWS (a and b) and DIR (c and d) are presented in Fig. 8. Generally speaking, the results show340

a high level of scatter, which would be expected when comparing local measurements at a complex site in order to reanalyse
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data. For the HWS, the correlation coefficient is lower at 150 m (0.8) versus 375 m (0.84), yet the fitting slopes are close to

unity at both heights. The DIR scatter plots (Fig. 8 c and d) show a high level of correlation, i.e. 0.97 and 0.96 at 150 m and

375 m, respectively, with a slope of one.

Figure 8. Scatter plot of sLiDAR data vs AROME reanalysis data at 150 m and 375 m above sea level for wind speed (a,b) and wind

direction (c,d)

Furthermore, monthly AROME profiles within the first 500 m are compared to the sLiDAR monthly profiles displayed345

in Fig. 9. The mean AROME profiles have been derived for periods when sLiDAR data were available. For all months, the

AROME and sLiDAR profiles appear to be very similar, including September and July, when the mean profile does not resemble

a conventional monotonically-increasing wind speed curve. The largest discrepancies are observed locally during summer, in

August, when wind speed is at its lowest.

All comparison results show a good level of correlation between sLiDAR data and AROME reanalysis. More discrepancies350

are observed at the lowest level, which can be explained by the very high complexity of the coastline. Given their spatial

resolution and the coastline complexity, AROME reanalysis data have not been adopted herein as a strict reference, but rather as

an independent comparative basis to more globally verify that the sLiDAR set-up, measurements and post-processing procedure

are not systematically biased.
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Figure 9. Comparison of the monthly mean profiles of sLiDAR data vs AROME reanalysis data.

Figure 10. (a) Histogram of the 10-min wind speed at hub height for the entire measurement period with a Weibull fitting (red line); (b)

Wind rose of the 10-min wind direction at hub height superimposed on the local coastline with a 15◦ resolution. The colors correspond to

hub height velocity ranges.
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Mar Apr May Jun Jul Aug Sep Overall

Reliable profiles [%] 91.8 92.5 85.8 94.5 64.0 60.6 81.0 81.4

Maximum wind speed [m/s] 24.0 21.4 19.1 20.8 15.0 20.4 17.1 24.0

Mean wind speed [m/s] 9.7 7.3 8.4 7.3 7.6 5.9 6.9 7.7

Maximum shear exponent 1.38 1.65 1.09 1.46 1.05 1.39 1.24 1.65

Minimum shear exponent -1.43 -1.58 -1.68 -1.12 -1.35 -1.42 -1.40 -1.68

Mean shear exponent 0.15 0.11 0.13 0.09 0.10 0.07 0.13 0.11

LLJ occurrence [%] 9.0 13.1 18.8 8.0 14.8 16.8 31.3 15.4

LLJ cases 370 524 719 324 424 454 999 3814

Mean LLJ core speed [m/s] 9.5 8.2 10.0 10.1 10.1 8.5 9.3 9.4

Mean LLJ core height [m] 171.6 150.8 157.8 180.3 186.3 177.0 166.8 167.9

Table 2. Monthly and global wind statistics from 10-min data: wind speed at hub height, shear exponent, and LLJs.

3.2 Global wind statistics355

Monthly and overall wind statistics, including those on LLJs and wind shear, from the period of the test campaign are given in

Table 2. Data availability of the vertical profiles, defined as the ratio between the number of valid profiles and the total possible

number of profiles, exceeds 80% for most months. The availability in July and August below 65% is due to periods when

the sLiDAR was used for other purposes than the test campaign, as described in this article. Consequently, the statistics for

these months should not be taken as fully statistically representative of the period (mean wind speed, number of LLJs detected,360

etc.). Also, the total database does not cover a full year. For these two reasons, the overall statistics in Table 2 and Fig. 10 are

not representative of yearly statistics. The LLJ occurrence rate is calculated as a percentage relative to the number of reliable

(valid) profiles. The monthly mean wind speed at hub height (Uhub) varies from 5.9 m/s in August to 9.7 m/s in March

when the site is typically subjected to a series of low-pressure cells generating storms. Fig. 10a presents the 10 min averaged

wind speed distribution for the entire measurement period along with the fitting by a Weibull distribution (Eq. 13). The wind365

rose of 10 min-averaged wind speed at 150 m (Fig. 10b) shows a clear dominance of two wind sectors: western winds in the

[200◦-315◦] sector, likely resulting from Atlantic cyclonic depressions; and northeastern winds in the [0◦ - 90◦] sector. This

pattern is typical for the given area, yet should not be considered as an annual statistical representation since the entire winter

season and a large part of the autumn are not included in the dataset. Western winds may be underrepresented in the dataset.

In the following sections, sea wind and land wind will be used to denote winds originating from the sea [135◦-315◦] and land370

[315◦-135◦], respectively.

3.3 Wind shear statistics

Monthly averages of α range from 0.07 to 0.15 (Table 2); the average value for the dataset, α= 0.11, lies below the values used

for offshore (0.14) and onshore (0.2) wind turbine design (IEC, 2009, 2005). However, very large variations are also observed
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Figure 11. Statistics of the wind shear exponent α. (a) Histograms of α comparing daytime and nighttime. (b) Wind rose of α. (c) Histograms

of α comparing wind direction sectors (sea wind and land wind). (d) Monthly averages of α in different categories.

over the entire period, extending to levels above 1 and below -1, as seen in Fig. 11a. The overall wind shear distribution,375

shown as a black contour, exhibits considerable scattering around the mean value with a thicker tail towards higher values. The

sub-distribution corresponding to daytime (orange in the figure) is more symmetrical with a sharp peak around a lower shear

value (α≈ 0.06), while the nighttime distribution (blue in the figure) is shifted towards higher values (α≈ 0.2) with more

spreading, thereby creating the thick tail in the overall distribution. Daytime and nighttime are defined by the astronomical

sunrise and sunset times, respectively.380

Figure 11b presents histograms of α with a wind direction filtering. We observe that land winds are associated with higher

wind shear than sea wind. Since the shear coefficient over land is higher than at sea, results indicate that for land wind, at the

LiDAR location, the wind shear displays characteristics resembling the land.

Figure 11c provides the distribution of α broken down by 15◦ wind direction sectors in a wind rose format. This distribution

shows that land winds tend to bring higher wind shears compared to sea winds. A high α is clearly associated with onshore385

conditions meaning that some inland wind characteristics persist out from the shore, at least up to 1.5 km.
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Figure 11d presents the monthly average values of α all the four categories (sea wind, land wind, nighttime and daytime).

Once again, a significant difference is observed between categories, with daytime and sea winds values lying well below the

IEC offshore shear reference of 0.14, and for the most part below 0.1, in heading down into to negative values in May. Their

nighttime and land wind counterparts are much higher and, in some cases, lie above the IEC onshore shear reference of 0.2.390

NWS LWS MWS HWS EWS

Ranges α⩽ 0 0< α⩽ 0.14 0.14< α⩽ 0.2 0.2< α⩽ 0.4 α > 0.4

Time share 14.2% 45.6% 10.9% 23.0% 6.3%
Table 3. Definition of the wind shear ranges and proportion of time spent in each range.

Five ranges of α are given in Table 3 for the purpose of defining the wind shear, namely: negative wind shear (NWS),

representing situations where the wind speed is monotonically decreasing with height; low wind shear (LWS), with positive

values below the IEC reference for offshore; medium wind shear (MWS), with values between the offshore and onshore IEC

references; high wind shear (HWS) when α surpasses the IEC onshore reference; and lastly extreme wind shear (EWS), where

α is more than twice the onshore IEC reference.It can be seen in Table 3, which lists the shares of time spent in each range, the395

LWS and MWS ranges, both in agreement with IEC standards, when combined, represent approximately 56.5% of the total

observation time. Higher shear is observed for nearly 30% of the time (HWS and EWS), including over 6% of extreme wind

shear. NWS events are not negligible, with a 14% share.

3.4 Low-level jet statistics

For illustration purposes, an LLJ event that took place during the night of May 26th and 27th, May 2020 is shown in Fig. 12400

in the form of a color map, where time (with 10 min steps) and height above sea level are shown on the horizontal and vertical

axes, respectively, and the color scale depicts wind speed. The narrow strip under the color plot marks daytime (white) and

nighttime (blue) periods, while the hatched area corresponds to the reference wind turbine rotor (15 MW). The LLJ can be

clearly seen as a yellowish formation starting at sunset with a core moving down to a height of 200 m above the MSL around

the middle of the night and rising back during the early morning. On the right side, the wind profile presented exhibits high405

wind shear in the rotor area, a small peak near 200 m high and a flatter profile above.

In examining global statistics, LLJs detected using the method introduced in Sect. 2.3.2 are observed 15.5% of the time

during the experiment (based on valid profiles). Their mean core speed equals 9.4 m/s and their mean core height is 168 m.

As illustrated in Table 2 and in Fig. 13, their occurrence, height and strength vary by month, wind direction and time of day.

Figure 13a presents the number of occurrences of LLJ-featuring profiles as a function of time of the day; it can be seen that410

the occurrence rate reaches a peak at night, very low between 10 am and 3 pm, and increasing after 3 pm towards the evening

in a clear diurnal pattern. The graph confirms that low-level jets are more prevalent in the nighttime during the observed period.
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Figure 12. Illustration of a low-level jet event during the night of May 26th to 27th, 2020. The hatched area represents the rotor area. On the

left, horizontal wind speed is depicted in the form of a color map as function of time and height above mean sea level. On the right, a 10-min

profile at 01:00 illustrating a LLJ is shown.

Figure 13b shows the distribution of LLJs by wind direction, while the color scale indicates wind speed at the LLJ core.

Most of the LLJs (58.4%) are coming from the [15◦ - 90◦] wind sector, thus corresponding to a land wind. A significantly

smaller proportion (19.7%) originates from the northwest direction, roughly blowing along the coastline.415

Figure 13c offers the distribution of LLJ core speed for the entire dataset (black line) and two sub-distributions corresponding

to daytime and nighttime occurrences of LLJs (orange and blue histograms, respectively). The nighttime distribution displays a

significantly wider spread than that of the daytime and is shifted towards higher speeds. In the plot, the gray histogram reflects

the hub height wind speed distribution, like in Fig. 10a, for comparison purposes. Note that this histogram has a different

vertical scale (on the right), because LLJ events are only detected in a small portion of all profiles. It can also be seen that420

the general distribution is similar, in shape, to the daytime LLJ core speed distribution; however, the nighttime LLJ core speed

histogram is shifted to the right by about 3-4 m, meaning that wind speeds in LLJ cores are, on average, higher than those at

the hub height (at least for this reference turbine during the experiment).

Figure 13f illustrates the monthly variability of LLJ core speed in the form of a boxplot, with the width of the boxplots

proportional to the LLJ occurrence for each month (as a visual reference, see Table 2 for the exact values). The structure of the425

boxes follows a classical boxplot approach widely used in statistics, whereby, the notched “waist” corresponds to the median

value of the set, the box itself extends from the first to the third quartile, the whiskers reach the furthest data points within

1.5x of the inter-quartile range, and the circles represent the remaining data points (outliers). The monthly mean wind speed is
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Figure 13. Low-level jet statistics. (a) Occurrence of LLJ events by time of day, with the purple background denoting nighttime (averaged).

(b) Wind rose of LLJ events. (c) Histogram of wind speed at the core of all detected LLJs (black contour), at night (blue), during the

day (orange) compared to the histogram of wind speed at the hub height (gray). (d) Statistical monthly variability of LLJ core speed. (e)

Distribution of LLJ core heights over the entire period (black contour) at night (blue) and during the day (orange). (f) Statistical monthly

variability of LLJ core height.

indicated by a gray dashed line for comparison and its spread is indicated by the two gray areas according to the percentiles,
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as explained in the legend. Once again, LLJ core speeds are, on average, higher than hub height speeds yet roughly follow the430

same monthly trend.

Similarly to Fig. 13c and d, Fig. 13e and f present statistics on the height of the LLJ detected. The histograms of LLJ

core height for daytime and nighttime in Fig. 13e, do not show any significant differences in shape. LLJ core heights range

from 50 to 350 m above sea level, although most observations lie between 100 and 250 m. The hatched area in both figures

corresponds to the wind turbine rotor and moreover indicates that most LLJ cores reach the upper half of the rotor area. The435

monthly evolution in LLJ height (Fig. 13f) does not exhibit any pronounced trend but nonetheless confirms once again that in

most instances time low-level jet cores lie well inside the rotor area. A slight increase in both core speed and core height is

nevertheless observed in June, which is also the month with the lowest number of LLJ cases. In April and May, LLJ cores are

observed at slightly lower altitudes than in the other months of the dataset, but not to a very significant extend. However, these

observations are to be analysed with care as the spread of values for each month revealed by the boxplots is rather high.440

3.5 LLJ and high wind shear: cross-referenced statistics

Given that an LLJ is by definition a low-altitude maximum in a wind profile, its presence often implies high wind shear values

from the core down to the ground or sea. The shear caused by LLJs is not alawys high, though the link between these two

phenomena can be explored by relating the number of LLJ observations to the shear values. In Fig. 14, histograms of the shear

exponent for all valid profiles (black) and profiles with and without LLJs (orange and blue, respectively) clearly indicate that445

LLJs are associated with higher shear. Calculations show an average shear value of 0.21 for LLJ-featuring profiles, versus 0.11

for all profiles and 0.09 for non-LLJ profiles only. In the studied dataset, profiles with α > 0.2 account for 30.3% of all the

time share. In the non-LLJ subset, this ratio drops to 25.7%, while in the LLJ-subset it rises to 56.2%.

Figure 14. Wind shear histograms for LLJ and non-LLJ subsets
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3.6 Application to the production of 10 MW, 15 MW, and 22 MW wind turbines

10 MW 15 MW 22 MW

Rotor diameter [m] 198 241 283

Hub height [m] 119 150 170

Cut-in speed [m/s] 4 3 3

Cut-out speed [m/s] 25 25 25

Rated speed [m/s] 11.0 10.65 10.94

Operating rate 84.5% 84.5% 84.6%

Capacity factor 52% 51.9% 49.5%

Mean power [MW] 5.2 7.8 10.9

Mean wind speed at the hub [m/s] 7.43 7.68 7.78

REWS [m/s] 7.44 7.70 7.80
Table 4. Characteristics of the turbines studied and key production results.

This section analyses the potential power production based on the 10-min data at the site for three large-scale wind turbines:450

IEA 10MW 198 RW 3, IEA 15 MW 240 RWT 4, and IEA 22 280 RWT 5.

Power is computed for each turbine using the rotor equivalent wind speed (REWS) method proposed by Wagner et al. (2009)

and adapted by Murphy et al. (2020) to account for shear across the rotor. The method used herein employs all measurement

heights available within the rotor area of each turbine. This simple approach does not take into account all the complexity of

wind energy harvesting (e.g. turbulence intensity, maintenance) but does provide perspective for the observations conducted.455

Note that the dataset does not cover the whole year and moreover some months are underrepresented, thereby limiting the

generalization of a month-to-month statistical analysis.

The analysis of global power production metrics, as summarized in Table 4, shows that over the studied period, the operating

rate of all studied turbines is high (>84%) with a slight advantage for the 22 MW turbine. The observed capacity factor slightly

decreases with turbine rated power: 52%, 51.9%, 49.5% for 10 MW, 15 MW, and 22 MW, respectively. This result is high460

compared with capacity factors typically encountered offshore Costanzo et al. (2023). The average 10-min power production

equals 5.2 MW, 7.8 MW, and 10.9 MW; these remarkable performances could be obtained, at least partly, thanks to a rated

power reached at 11 m/s for the chosen reference turbines.

Over the studied period, which mainly consists of spring and summer 2020, daytime and nighttime represent 59% and 41%

of the total time, respectively. However, considering that the production rate is higher at night than during the day (see Fig. 15b),465

overall production is distributed differently: 51% of the total electricity is produced during the day and 49% at night. Over a

3https://github.com/IEAWindTask37/IEA-10.0-198-RWT, last access: 10 June 2024
4https://github.com/IEAWindTask37/IEA-15-240-RWT, last access: 10 June 2024
5https://github.com/IEAWindTask37/IEA-22-280-RWT, last access: 10 June 2024
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Figure 15. Participation of each shear exponent range to (a) total production time and (b) total production (amount of electricity produced).

full year, it is likely that the nighttime will contribute more to total electricity production (in considering the longer nights

during autumn and winter). Additionally, stronger winds are expected during wintertime at Le Croisic.

Low-level jets are observed in 15.5% of all profiles and 17.6% of cases when electricity production is possible. However, for

these three turbines, the mean production during LLJs (Fig. 16b) is slightly lower than the overall mean production. Having a470

production share that exceeds the share of time spent producing at a lower mean power rate might appear counterintuitive. One

explanation for this finding is that within the LLJ subset the production rate is over 93%, as compared to the non-LLJ subset

(with a production rate of 83%). This higher rate makes LLJs globally profitable in terms of energy production and moreover

compensates for a mean production slightly below average.

Mean production time (i.e. time when the wind is between cut-in and cut-out speed) and total production (in terms of475

produced energy) are given in Fig. 15a and b for the 5 shear conditions set forth in Table 3. For all turbines tested, the addition

of LWS and MWS events (as defined in the IEC recommendations of IEC (2009)) represent most of the production time (around

60%) and most of the total production during the period (60%). Higher shear events (including HWS and EWS) account for

nearly 30% of the time and almost 35% of total production. NWS represents 8% to 15% of the total production time and 4%

to 6% of total electricity production. As the wind turbines increase in diameter, more time is spent in NWS and slightly more480

energy is produced. This outcome can be correlated with a higher hub height which in turn is associated with a higher REWS.

Also suggested here is that NWS events mostly appear during low wind speed events. The mean energy production during

NWS events (Fig. 16b), i.e. over 55% less than the overall mean production, confirms this hypothesis. These results are not

very sensitive to the wind turbine choice, but larger turbines do tend to produce more at high and negative wind shear.

The cumulative sum of the production times, sorted in descending order, in Fig. 16a, shows that the 26% best production485

times account for half the total power production, while the 50% best production times represent 80% of total production.

These results underscore the fact that most energy is produced during a small number of high production periods; they are not

significantly affected by the choice of turbine type.
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Figure 16. (a) Cumulative sum of 10-min production periods sorted in descending order and (b) percentage of difference between mean

10-min production in each shear category and overall mean 10-min production for the three turbines considered: 10 MW (blue), 15 MW

(orange), and 22 MW (green).

Figure 16b illustrates the ratio between the mean power production of each type of event relative to the overall mean 10-min

production. It is clear once again that the shear exponent strongly influences the power production, along with the day/night490

distribution, but LLJs constitute a less significant factor. These results are only slightly affected by the choice of turbine, except

for HWS and EWS, whereby larger rotors tend to perform better than for smaller turbines.

4 Discussion

The methodology described in Sec.2 shows how both time and space information compiled from a limited number of PPI scans

can be used to increas vertical resolution. This approach relies mainly on horizontal homogeneity within the volume used for495

wind profile reconstruction, i.e. more than a 1 km extension in the present case. The validation process for the homogeneity

hypothesis is twofold: within each scan, as evaluated by the quality index; and between two horizontally-spaced measurements,

as evaluated by the correlation coefficient R2.

The analysis herein reveals that wind speed reconstruction is more accurate for sea wind, thus indicating greater homogeneity

compared to land wind. However, the scan orientation relative to wind direction (along or across LOS) is found to have an equal500

or sometimes stronger effect on accuracy, suggesting that horizontal homogeneity within each scan is not a major concern in

the tested configuration. This result may be invalid if a smaller azimuth range is used for HWS reconstruction.
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Concerning the homogeneity between horizontally-spaced measurements, the correlation is clearly affected by wind direc-

tion, with R2 being lower under sea wind conditions than land wind conditions. The scan orientation relative to wind direction

would seem to play a secondary role in this case. The correlation also clearly increases with increasing altitude.505

This result is likely to be valid above a smooth surface such as the sea, but care should be taken closer to the shore or in

the presence of obstacles such as islands. In the absence of local reference measurements, the homogeneity study is based

on relative fitting indicators that do not provide absolute error quantification. However, the observed multiple correlations are

considered to be strong enough evidence for validity of the proposed approach.

The 10-min statistical convergence analysis (Sec. 2.2.3) assumes that the integral turbulent scale is proportional to height,510

which is a commonly adapted approach for wind speed measurements, including those with ultrasonic anemometers. The tur-

bulent scale is also assumed to be uniform regardless of the sLiDAR direction with respect to the wind direction. In reality, such

is not the case in the atmosphere as turbulent structures are elongated in the streamwise direction. The approach implemented

for the analysis is therefore expected to be conservative.

In Fig. 11b, where wind shear exponents are sorted into land wind and sea wind categories, the sea wind distribution largely515

resembles the daytime distribution while the land wind distribution is very similar to the nighttime distribution. However, a

day/night filtering does not directly correspond to a directional prevalence. Even though a systematic link between the pairs

cannot be established based solely on the similarity of histograms, a connection can still be made. On the one hand, nighttime

over land is often associated with a stable thermal stratification that leads to a higher shear exponent compared to the unstable

conditions often observed during daytime and associated with lower shear exponents. On the other hand, sea wind, due to lower520

surface roughness, is associated with a lower power exponent compared to land wind. Therefore, both sea wind and daytime

are associated with a low shear, while both nighttime and land wind are associated with a high shear, as an explanation of the

similarities observed. Further similar observations of the influence of thermal stability and surface roughness on the wind shear

have been reported in Hanafusa et al. (1986) and Irwin (1979).

Low-level jets (LLJs) observed near the coast and described in Sec.3.4 can be caused by multiple physical processes. At the525

studied site, LLJs were mostly observed to come from land (northeastern direction) and at night, with a monthly observation

rate within the range of 8-30%. Even though the deployed measurement set-up allows for measurements as high as 500 m above

sea level, LLJ cores were primarily observed between 100 and 250 m. These observations do not fit the description of coastal

LLJs provided by Parish (2000); Nunalee and Basu (2014) or by Rijo et al. (2018): these authors observed, at several places

around the world, synoptic-driven coastal jets blowing parallel to the coast and intensified by mesoscale forcing, especially by530

a cross-coast barocline due to temperature gradients and/or a topography change at the sea/land transition. In their studies, the

core height range of these coastal LLJs was on the order of the marine boundary-layer (300-500 m), which is considerably

greater than that in the present study. The observed LLJs are therefore likely to be caused by other processes. Svensson et al.

(2019) observed LLJs near the coast of the Baltic Sea blowing normal to the coastline. They suggested that these nighttime LLJs

may be formed by warm air advection over the sea or by the advection of nighttime land-generated LLJs across the coastline535

into the sea. The latter possibility seems to agree well with the observations, whereby nocturnal LLJs, typically observed over

land at night (see for example Mitchell et al. (1995)), would persist for a number of kilometers offshore. Similar observations
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have been reported by (Kalverla et al., 2019). In addition, when wind blows from the land, the coastline becomes the site

of a rough-to-smooth surface transition that is likely to favor an acceleration of the wind close to the surface. At night, the

streamwise surface temperature gradient imposed by the coastline may also play a role. The data available during the present540

test campaign are too limited to either achieve full clarity regarding the origins of the observed LLJs or to explain the condition

of persistence of land-generated LLJs further offshore. In particular, no evaluation of the thermal stability of the air mass was

performed, since it is expected that classical evaluation, from covariance or Richardson bulk, will yield erroneous results in a

transitional zone.

5 Conclusions545

This paper has presented an original method for measuring a well-resolved vertical profile of horizontal wind speed above

the sea in a coastal area. Using a scanning Doppler wind LiDAR configured to produce PPI scans from the shore at just 6

elevation angles above the sea surface, the vertical wind profile can be probed from 20 m to 450 m above sea level with 27

intermediate altitudes, in relying on a horizontal homogeneity hypothesis within a prescribed horizontal range. Homogeneity

has been evaluated in this study within each scan and between horizontally spaced reconstruction measurements. Despite the550

presence of the coast, the homogeneity hypothesis could be successfully validated, although slightly more uncertainty was

observed close to the sea surface in the case of wind coming from the land. The described configuration makes it possible to

reach altitudes not available with conventional profilers, which may be valuable both for the design of increasingly tall offshore

wind turbines and for a better understanding and parameterization of the ABL at high altitude, especially in the coastal zone.

By taking into account the spatial resolution of each single PPI scan, the statistical error associated with the convergence of555

the 10-min horizontal wind speed estimation from the proposed method is determined to be of the same order of magnitude as

that of an ultrasonic anemometer or a wind vane placed under the same conditions. The error shows a dependence on the angle

between wind direction and sLiDAR line of sight; it is found to be slightly lower than that of an ultrasonic anemometer for

wind speeds below 10 m/s and slightly higher for wind speeds above, thus indicating good reliability of the approach being

implemented.560

The AROME reanalysis database has been used to evaluate the coherence of these results at multiple levels. The comparison

tools include wind speed distributions, wind roses at several heights and monthly means of the vertical profiles. In consider-

ing the uncertainties involved, good agreement has been reached between the sLiDAR results and the reanalysis data, hence

validating the method and its set-up within the tested configuration. Further work will consist of testing the methodology un-

der different conditions versus reference measurements (e.g. other LiDAR set-ups, metmasts) in order to better document the565

conditions of validity and method limitations. A possible further improvement would be to evaluate the method’s ability to

estimate the turbulence level.

Using a sLiDAR mounted at the shore has the advantage of eliminating the need for stabilization and/or compensation for

wave-induced motion, which is a non-trivial problem for a floating LiDAR. However, the range of the device, here 3 km,

and the homogeneity requirements do limit the distance from the shore where the wind profile can be reconstructed, therefore570
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restricting the application to offshore situations. A longer-range scanning wind LiDAR installed at the shore or on a fixed

platform might be needed to measure vertical wind profiles further from the shore.

After validation, the proposed method was applied to a 7-month test campaign conducted on France’s Atlantic coast in

March-September 2020, generating a unique dataset for use in assessing the wind resource and documentating of the presence

of LLJs and high wind shear events heretofore never reported along the northeastern Atlantic coast. In the observation data,575

periods with a shear exponent greater than the IEC reference values for onshore and offshore wind turbines were observed

more than 30% of the time, which would correspond to 33% of the total energy production of a 15 MW wind turbine placed at

the observation site. This analysis was conducted on the potential production of 10 MW, 15 MW, and 22 MW wind turbines;

the differences were found to be limited from one turbine type to another. During high wind shear periods, the wind turbine

might be subjected to loads above its design load, potentially leading to fatigue and other structural damage.580

During the test campaign, low-level jets were observed in about 15% of all 10-minute averaged profiles, in contributing

17% of the production of a 15 MW wind turbine installed at the site. Even if the LLJs are not part of the strongest recorded

production events, it is to be noted that during the studied period, energy was produced 93% of the time when LLJs were

observed, which is higher than the average production time without LLJs (below 80%). Another observation is that LLJs are

often associated with high and extreme wind shear, when considering that in 56.2% of LLJ observations the across-the-rotor585

shear exponent was greater than α= 0.2, versus 25.7% of the time when considering only non-LLJ cases and 30.3% if all

cases are taken into account.

The presence of LLJs within the rotor area of a multi-megawatt wind turbine (mainly in the range 150-250 m above mean sea

level) entails major consequences for the wind energy industry. Such installations they may be beneficial for total production

mainly as a result of their regularity and above average wind speeds, yet they are also associated with shear exponents above the590

reference design values. These observations are of significant importance in understanding the coastal wind resource, especially

since the presence of LLJs is often underestimated by mesoscale models (Nunalee and Basu, 2014).

During the test campaign, LLJs were mostly observed when the wind was coming from the land (northeast wind) as well

as at night, thereby suggesting that they are generated inland, cross the coastline and persist in reaching the observation site

located 1.5 km offshore. The origin of the observed LLJs remains uncertain, as the discrete profiles provided by the sLiDAR are595

insufficient to fully verify any hypothesis. This work leads to questionning the dynamic evolution of land-generated nocturnal

LLJs that cross the coastline and extend further offshore; also yet to be revealed is the role played by the strong roughness and

thermal land-sea transition. The need exists for further investigation into the land-sea micro-meteorology, which impacts both

the wind shear and wind veer (beyond the scope of this study) tens of kilometers offshore, where wind farms operate. This

work is expected to help pave the way to a clearer understanding of the variability of the offshore wind resource close to the600

coast, where the dynamics of complex processes remain largely understudied.

Data availability. The raw data used herein can be made accessible upon request.
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