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Preprint

A post-processing to restore numerical consistency for the most classical multiple
flow direction algorithms

Julien Coatléven ∗†, Benoit Chauveau ∗

Abstract. In a recent paper, a consistency correction for the water flux using multiple flow direction
(MFD) algorithms that account for exchanges between a cell and its neighbors was proposed, thanks to a
reinterpretation of the MFD as a well chosen discretization of the Gauckler-Manning-Strickler continuous
equation. Building on those results, we introduce here a general framework allowing to derive consistent
expressions of the water flux for the most commonly used multiple/single flow direction (MFD/SFD) water
flow routines, including versions in which water is flowing from a node to its neighbors. This general
framework is shown to be sufficiently general to encompass the alternative continuous definition of the unit
catchment area of the literature. Numerical examples illustrate the consistency and convergence of the
proposed water flux reconstructions.

Introduction

A wide variety of mathematical models describing the flow of water could be used in landscape evolution
models (LEMs), depending on the prominent space and time scales considered. The most complete model is
undoubtedly the Navier-Stokes model which allows for very precise but prohibitively costly simulations. The
shallow-water approximation is sometimes used to solve rivers system (e.g. [2]) or to simulate glacial dynamics
[18]. Despite a reduced computational cost compared to the Navier-Stokes model, this model has not often been
explicitly deployed in LEMs. Probably one of the reasons is that computationally efficient water flow routing
algorithms have been developed during the last decades. Those algorithms are built assuming that the water
flow follows the direction of steepest descent (e.g. [33, 22, 20, 41, 28, 42, 40]), and are able to simulate relatively
complex water flow networks despite this inherent simplicity. Multiple flow direction (MFD) and single flow
direction (SFD) algorithms are among the most known water-flow routing families implemented in reference
LEMs such as in SIBERIA([54, 55, 53]), CAESAR-Lisflood ([5, 14]), FastScape ([9]), eSCAPE ([44]), CIDRE
([10]), EROS ([15]) or BadLand ([45]), or in stratigraphic models such as DionisosFlow ([27]). This list being not
exhaustive, the reader is referred to [49, 51, 50, 1, 32] for a complete review. Following the terminology of [1], we
consider two different families of water flow algorithms, based on their representation of the discretized domain.
These are referred to as cell-to-cell and node-to-node algorithms, respectively. The first category includes all
models that only consider interactions between a cell and its neighboring cells, while the second includes those
that focus on interactions between a node and its neighboring nodes. The main differences between the various
algoritms inside each family lie in their representation of the discretized domain (cell-to-cell or node-to-node)
and by the empirical choice made to distribute water among the mesh elements.

The empirical foundations of the MFD/SFD water flow routing and their lack of mathematical framework make
them very difficult to validate. A first behavior known since a long time is not very encouraging: the water flow
distribution Qw is mesh dependent. This is probably the most documented problem of the LEM community
since more than twenty years (e.g. [46, 35, 1]) and one that still disturbs current models. Smart solutions have
been published to minimize this effect without making it completely vanish ([38, 35]). An alternative definition
of the specific catchment area often used as a proxy for water flow was proposed in [24, 8], through the discrete
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solution of an abstract uniform flow equation, which effectively solves the anomalous mesh dependency issue.
Independently and following another path, in [11] the simplest cell-to-cell MFD algorithms family has been
proved to coincide on Cartesian meshes with a classical discretization of the water mass conservation Gauckler-
Manning-Strickler model (GMS). The output of the MFD algorithms is shown to correspond exactly to a
mesh-dependent mean of the water flux associated with the discrete GMS model. This result not only explains
the mesh and numerical dependency since the output of the MFD does not fulfill the consistency criteria, but it
also provides a way to correct it in a post-processing step leading to a consistent discrete approximation of the
GMS water flux. This new discrete water flow is then as mesh independent as possible, in the usual numerical
analysis sense of convergence when the mesh size goes to zero.

The main purpose of this paper is to extend this result to a wider range of classical MFD/SFD algorithms,
including the node-to-node versions. Generalizing the results of [11], they can in fact all be corrected in a post-
processing step, finally solving the grid dependency issue while keeping the diversity of approaches considered in
the literature. To do so, we will need to consider a more general GMS model than that of [11]. This generalized
GMS model being also a generalization of the model proposed in [24, 8], this finally closes the loop between MFD
algorithms and the specific catchment area defined in [24, 8]. We believe that the resulting easy to implement
post-processing step could benefit to numerous existing water flow models built from MFD/SFD algorithms.

The paper will thus be organized as follows: in a first section we recall the continuous specific catchment area
model of [24, 8] and introduce our general GMS model, emphasizing their link. Next, we generalize the results
of [11] detailing the link between the general GMS model and a wider range of cell-to-cell MFD algorithms, and
explain how this allows their correction in a post-processing step. The recovered consistency is then illustrated
through numerical examples. In a third section, we extend those results to node-to-node MFD algorithms,
and again illustrate on numerical examples how the simple post-processing step we propose allows to recover
consistency. We conclude by some remarks on the applicability domain of the GMS model.

1 Gauckler-Manning-Strickler models and multiple flow direction
algorithms

In principle, the output of a MFD algorithm is the historically loosely defined “local discharge of water” Qw.
The practical computation of Qw, when not carefully conducted, is the weak point of many models causing
them to lose any hope of consistency in the mathematical sense of the term. This is one of the main reasons
why we observe mesh dependency is some LEMs. We recall in this section how to define a physically based
“local discharge of water” that maintains consistency. More details can be found in [11, 24, 8]. This discussion
was essentially already conducted in [12], thus no true originality is claimed here. We have chosen to recall this
in full details for the reader’s convenience, as well as to fix some vocabulary and notions. Notice that in [12],
it was furthermore been shown that an inadequate treatment of the coupling between water flow and sediment
transport leads to another kind of artificial mesh dependencies than those we consider here.

Classically, Qw is computed directly from the so-called drainage or catchment area CA (also referred as the
contributing area). For a given outlet of the topography, it corresponds to the area of the projection on Ω of the
part of the topography from which the water flows to the considered outlet ([31, 30, 8]). Despite being a very
intuitive notion, it has evaded for a long time a precise mathematical definition and was only obtained through
some algorithmic procedure. Classical multiple flow direction (MFD) algorithms precisely aim at providing
a practical way to compute a discrete approximation CAεpKq of the catchment area CA for a mesh cell K
(where ε stands for the mesh precision), and in this way a discrete approximation QK of Qw for cell K. As
is well documented ([16, 35, 36, 39]) the classical algorithms provide a discrete catchment area CAεpKq that
depends on the cell size, geometry and orientation with respect to the flow. Several attempts can be found in
the literature to reduce this mesh dependency, defining the discrete water flow discharge QK associated to a
mesh cell K as QK “ pCAεpKq{wpKqq, where wpKq is a normalization factor related to a geometric property
of the cell (cf [16]) or to an estimate of the flow width ([35]) defining the so-called (discrete approximation of
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the) specific or unit catchment area (SCA/UCA).
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Figure 1: Notations for the topography hs, water height hw and domain Ω

Recently, a new definition of the specific catchment area a at the continuous level was proposed in [24, 8] in a
more modern mathematical way. It consists in solving an abstract uniform flow equation:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´div
ˆ

a
∇hs
||∇hs||

˙

“ 1 in Ω,

a
∇hs
||∇hs|| ¨ n “ 0 on BΩin,

(1)

where the considered fixed geographical region (see figure 1) is modeled by means of a bounded connected
domain Ω P R2, hs : Ω ÝÑ R is the function describing the topography , BΩin “ tx P BΩ | ∇hs ¨ n ą 0u is the
part of the boundary that is in going and n denotes the outward normal to Ω. Setting Qw “ a at the continuous
level, this finally leads to compute a consistent discrete approximation aK of a for a mesh cell K. The mesh
dependency of aK is thus reduced to the usual consistency errors of numerical schemes.

Solving (1) instead of resorting to one of the classical MFD algorithms could seem a very different approach at
first sight. Indeed, considering for instance the classical cell-to-cell algorithms of [22, 23, 28], one can see that
the main principle underlying those MFD algorithms is simply to distribute a fictitious water flow of a mesh cell
to the neighboring cells with lower elevation proportionally to a function of the slope, as illustrated in Fig. 2.
The main result of [11] is that such a distributing scheme is in fact unexpectedly closely related to a well-chosen
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discretization of a water flow model. A full proof is given for the most classical cell-to-cell MFD algorithms (for
instance those of [22, 23, 28]) for the following water flow model:

ˇ

ˇ

ˇ

ˇ

ˇ

´div pkmhmw∇hsq “ Sw in Ω,

kmh
m
w∇hs ¨ n “ Bw on BΩin,

(2)

where hw is the water height, m a model parameter, Sw is the domain source, and Bw the boundary influx.
The coefficient km can be thought of as the inverse of a roughness coefficient. It is established in [11] that the
discrete quantity distributed by MFD algorithms is a non-consistent mean of the discrete water flux associated
with a finite volume approximation of (2), as we detail in next section.

To completely close the gap between MFD algorithms and (1) as well as to encompass a wider range of MFD
models of the literature, in the present paper we consider the following generalization of (2), which amounts to
a stationary water mass conservation equation with Gauckler-Manning-Strickler (GMS) flux modeling:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´div
´

kmhwηwphwqs´pwref ||∇hs||pw∇hs
¯

“ Sw in Ω,

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ n “ Bw on BΩin,
(3)

where hw is the water height, sref = 1 m.km-1 the reference slope, pw a model parameter and ηw the water
mobility function. For simplicity we assume here that the mobility function has no dimension and is a function
of hw only, and that the domain source Sw is given in m3.s-1km-2 such that its integral over a 2d area measured
in km2 coincides with a discharge in m3.s-1. The boundary influx Bw is measured in m3.s-1km-1. The coefficient
km can be thought of as the Strickler coefficient or the inverse of the Gauckler-Manning coefficient up to a change
of unit (strictly speaking, this identification is truly valid for channels and if the mobility function ηw is equal to
a dimensionless hydraulic radius). For this choice of unit for Sw, km has the unit m.s-1 of a speed. Comparing
(3) with (1), we see that (1) corresponds to the particular case where km “ 1, pw “ ´1 and a “ hwηwphwq,
while comparing (3) and (2) we recover (2) by choosing ηwphwq “ hm´1

w and pw “ 0. In this sense the GMS
model (3) is a generalization of (1) and (2) that allows to include the classical ingredients (non linear slope
dependency and some spatial heterogeneity) of the MFD literature. Closely following [11], we explain in the
remaining of the paper how model (3) can be related to most of the MFD algorithms of the literature and how
it allows to correct them through a simple post-processing step.

Remark 1.1. To say that this model uses Strickler coefficients or the inverse of Gauckler-Manning coeffi-
cients does not necessarily mean that its scope of application is limited to channels: it depends to the specific
choice made on the model parameter values. Steady state analysis ([26, 7]) for channels suggests to use values
ηwphwq “ phw{href q1{2 and pw “ ´1{2, while the classical Gauckler-Manning-Strickler formula would coincide
with ηwphwq “ pRhphwq{href q2{3 with Rhphwq the hydraulic radius and again pw “ ´1{2. When applied to
large time and space scales landscape evolution models, these calibrations are no more valid and at this stage
we suggest considering ηw and pw as modeling parameters that can be tuned for each considered problem.

2 Obtaining consistent cell-to-cell MFD algorithms through a
discretization of the GMS model

As mentioned above, the results of this section are mostly a quite straightforward generalization of the results
of [11] on (2) to the more general GMS model (3). We believe that the node-to-node version will be easier to
understand after detailing the simpler cell-to-cell one, which is the main motivation for this section.

2.1 Mesh description and the classical cell-to-cell MFD algorithms

To make precise statements and establish the correspondence with MFD algorithms, we need to introduce
quite a few notations for describing our meshes. Assume that Ω is a polyhedral bounded connected domain
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of R2, whose boundary is denoted BΩ “ ΩzΩ. We recall the usual finite volume notations describing a mesh
M “ pT ,Fq of Ω. The set of the cells of the mesh T is a finite family of connected open disjoint polygonal
subsets of Ω, such that Ω “ YKPTK. For any K P T , we denote by |K| the measure of K, by BK “ KzK
the boundary of K, by ρK its diameter and by xK its barycenter. The set of faces of the mesh F is a finite
family of disjoint subsets of R2 included in Ω such that, for all σ P F , its measure is denoted |σ|, its diameter
hσ and its barycenter xσ . For any K P T , the faces of cells K corresponds to the subset FK of F such that
BK “ YσPFKσ. Then, for any face σ P F , we denote by Tσ “ tK P T | σ P FKu the cells of which σ is a
face. Next, for all cell K P T and all face σ P FK of cell K, we denote by nK,σ the unit normal vector to
σ outward to K, and dK,σ “ |xσ ´ xK |. The set of boundary faces is denoted Fext, while interior faces are
denoted Fint. Finally for any σ P Fint, whenever the context is clear we will denote by K and L the two cells
forming Tσ “ tK,Lu, as well as dKL “ |xK ´xL|. This for instance allows when looping over the faces σ of cell
K to denote by L the other face of σ without resorting to a too heavy notation. To avoid any confusion with
the water height and the topography, ε “ maxKPT ρK will denote the mesh size. For any continuous quantity
u, its discrete counterpart will be denoted uT “ ppuKqKPT , puσqσPFextq where for any K P T uK is the constant
approximation of u in cell K while for any σ P Fext uσ is the constant approximation of u over face σ.

In the following we will assume that the mesh is orthogonal, i.e. there exists a family of centroids pxKqKPT
such that:

xK P K̊ @K P T and
xL ´ xK
|xL ´ xK | “ nK,σ for σ P Fint, σ “ tK,Lu (4)

and let us denote xσ the orthogonal projection of xK to the hyperplane containing σ for any σ P FK and any
K P T with dK,σ “ |xK ´xσ|, as well as dKL “ |xK ´xL|. Then, one can use a two-point finite volume scheme
to discretize diffusion operators with scalar diffusion coefficients (no tensors).

In the literature, multiple flow direction algorithms are often considered as purely algorithmic ways of dis-

Figure 2: Basic principle of the simplest cell-to-cell MFD algorithm: water is distributed to lower neighboring
cells proportionally to the slope (reproduced from [11])

tributing water from one region to another. Thus, they are generally described in a purely algorithmic fashion,
although they admit a reformulation as a linear system (first mentioned by [43] although without exhibiting an
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explicit formula). Here, we have chosen to introduce the most classical MFD algorithm illustrated on figure (2)
following the algebraic formulation of [11] where it is detailed how to obtain it from its algorithmic description.
Denoting hs,K “ hspxKq for any K P T and hs,σ “ hspxσq for any σ P Fext, from [11] we know that this
cell-to-cell MFD algorithm is equivalent to solving the following linear system for the unknown prqKqKPT

rqK “ |K|Sw,K `
ÿ

σPFKXFint,hs,Kăhs,L

|σ|rqL
dKLsL

phs,L ´ hs,Kq @K P T (5)

using an ordering for the cells of T based on decreasing topography hs,K and a lower triangular solver, where
Sw,K is the source term in cell K, the discrete slope sKL is given by

sKL “ |σ|
dKL

phs,K ´ hs,Lq “ ´sLK

and the total positive slope sK of cell K is given by

sK “
ÿ

σPFKXFint,hs,Kěhs,L

|σ|
dKL

phs,K ´ hs,Lq

Indeed, the principle of the most classical distribution formula is simply to distribute the “flow” rqL in cell L
to the lower, neighouring cells K proportionally to the ratio sKL{sL of the discrete slope sLK between the
high cell L and the low cell K regarding the total positive slope sL of the high cell L. This is precisely the
meaning of formula (5) but in a reverse fashion, since it says that the total “flow” rqK in cell K is equal to
the local source terms and the flow coming from the higher neighboring cells L. Notice that in many cases of
the literature, since the MFD algorithm is applied on a uniform Cartesian mesh with the same space step in
each direction, the face measure |σ| is simply omitted (see for instance [22, 23, 28]), with no effect on the ratio
sKL{sK . It is not difficult to generalize the algebraic formulation (5) to more advanced MFD algorithms, for
instance those using a power of the slope. Here we recover such generalizations through the equivalence with
a discretization of the general GMS model. When the water source Sw,K is chosen constant equal to one, the
unknown rqK of the MFD algorithms is used to defined a discrete catchment area CAεpKq for cell K by setting
CAεpKq “ rqK . As explained in the previous section, the discrete “local discharge of water” QK associated is
computed by normalizing as rqK i.e. setting QK “ rqK{wpKq, where wpKq is a normalization factor. Two very
common normalizations are the diameter of the cell wpKq “ ρK ([16]) or the effective flow length in the cell,
which is defined as the length of segment defined by the intersection between the cell and the line going through
the center of the cell and oriented following the slope ∇hs ([35]).

2.2 Cell-to-cell MFD algorithms and the GMS model

The starting point of a finite volume discretization is to integrate equation (3) over each cell K:

´
ż

K

div
´

kmhwηwphwqs´pwref ||∇hs||pw∇hs
¯

“
ż

K

Sw.

Denoting Sw,K “ SwpxKq and using Stokes’ formula, this leads to:

´
ÿ

σPFK

ż

σ

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nK,σ “ |K|Sw,K .

To handle boundary terms, if one further assumes that hs,σ ě hs,K for any σ P Fext and K P Tσ which
amounts to assuming that water cannot leave the computational domain and is generally what is done in usual

6
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presentation of MFD algorithms, then for σ P FKFext we get:

´
ż

σ

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ n « ´|σ|Bw,σ,

with Bw,σ “ 1
|σ|

ş

σ
Bw if hs,σ ą hs,K and 0 otherwise. Choosing a finite volume scheme then simply amounts to

choosing how to approximate each term appearing in the face integrals. The most natural and classical finite
volume scheme consists in choosing constant approximate values km,σ and Gs,σ for km and ||∇hs||pw along each
face σ and to use an upwind scheme hupw,σ for the true unknown hwηwphwq:

´
ż

σ

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ n « ´km,σs´pwref ||Gs,σ||pwhupw,σ
ż

σ

∇hs ¨ n.

Finally, thanks to our hypothesis on mesh orthogonality we can use the two-point flux approximation (TPFA)
to compute

ş

σ
∇hs ¨n. The TPFA consists in noticing that for a linear function hs, the gradient being constant

and satisfying ∇hs ¨ nK,σ “ 1
dKL

phspxLq ´ hspxKqq, the following formula:

´
ż

σ

∇hs ¨ n “ ´∇hs ¨
ż

σ

n “ |σ|
dKL

phspxKq ´ hspxLqq,

is exact since 1
dKL

pxL ´ xKq “ nK,σ and will thus be a first order approximation of the flux. More precisely,

denoting hw,K for any K P T the discrete water height value associated to cell K, for any K P T the proposed
finite volume scheme rewrites:

ÿ

σPFKXFint

τKLh
up
w,σ phs,K ´ hs,Lq “ |K|Sw,K `

ÿ

σPFKXFext,hs,Kăhs,σ
|σ|Bw,σ,

where the upwind value is given by hw,σup “ hw,Kηwphw,Kq if hs,K ě hs,L and hw,σup “ hw,Lηwphw,Lq if hs,K ă hs,L,
the transmissivity τKL is given by:

τKL “ |σ|km,σ
dKLs

´pw
ref

||Gs,σ||pw ,

and where Gs,σ “ 1
2 pGs,K `Gs,Lq and Gs,K is a discrete approximation of the gradient of hs in cell K. If the

gradient is known, we can simply take:
Gs,K “ ∇hspxKq

If only the pointwise values of hs are known, we use a discrete reconstruction of the gradient. To derive it, we
use:

Id “
ÿ

σPFK
|σ|pxσ ´ xKqnK,σ, (6)

with Id the identity matrix in dimension d, leading to

Gs,K “
ÿ

σPFK
|σ|Gs,K ¨ nK,σpxσ ´ xKq,

and thus on the orthogonal meshes we consider here as by consistency |σ|Gs,K ¨ nK,σ «
ş

σ
∇hs ¨ nK,σ, Gs,K is

naturally given by:

Gs,K “ 1

|K|
ÿ

σPFKXFint

|σ|
dKL

phs,L ´ hs,Kqpxσ ´ xKq

` 1

|K|
ÿ

σPFKXFext

|σ|
dKσ

phs,σ ` bσ ´ hs,Kqpxσ ´ xKq.
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From the mathematical point of view, a natural choice for the face value km,σ is the harmonic mean:

km,σ “ dKLkm,Kkm,L

km,KdL,σ ` km,LdK,σ
with for instance km,K “ 1

|K|
ż

K

km @K P T ,

but many other choices are possible. Let us now recall the elementary proof given in [11]: gathering the faces
by upwinding kind, we get:

ÿ

σPFKXFint,hs,Kěhs,L
τKLhw,Kηwphw,Kq phs,K ´ hs,Lq´

ÿ

σPFKXFint,hs,Kăhs,L
τKLhw,Lηwphw,Lq phs,L ´ hs,Kq “ |K|Sw,K `

ÿ

σPFKXFext,hs,Kăhs,σ
|σ|Bw,σ. (7)

Setting
sK “

ÿ

σPFKXFint,hs,Kěhs,L
τKL phs,K ´ hs,Lq ,

and noticing that sL ą 0 as soon as there exists σ P FL X Fint such that hs,L ą hs,K , we see that equation (7)
can be rewritten:

sKhw,Kηwphw,Kq ´
ÿ

σPFKXFint,hs,Kăhs,L
τKLhw,Lηwphw,Lq phs,L ´ hs,Kq “ |K|Sw,K .

Defining the water outflux by rqK “ sKhw,Kηwphw,Kq, we thus obtain:

rqK ´
ÿ

σPFKXFint,hs,Kăhs,L
τKL

rqL
sL
phs,L ´ hs,Kq “ |K|Sw,K `

ÿ

σPFKXFext,hs,Kăhs,σ
|σ|Bw,σ. (8)

Using the definition of τKL, we clearly recover (5) if we choose km “ 1, pw “ 0 and Bw “ 0, and this shows the
equivalence between the MFD algorithms and the GMS model is established.

This equivalence between the classical MFD and the two-point flux approximation of the GMS allows to give a
continuous interpretation and generalization CApOq for any region O of the discrete CAεpKq that is computed
by MFD algorithms only for mesh cells K. Indeed, from rqK “ sKhw,Kηwphw,Kq and the consistency of the
two-point formula, we see that rqK approximates:

CAεpKq “ rqK «
ÿ

σPFK

ż

σ

hwηwphwq
´

´kms´pwref ||∇hs||pw∇hs ¨ nK,σ
¯`

.

This naturally leads us to define a continuous catchment area CApOq for any region O by setting:

CApOq “
ż

BO
hwηwphwq

´

´kms´pwref ||∇hs||pw∇hs ¨ n
¯`

, (9)

where hw is the solution of (3) with Sw “ 1 and where we have denoted v` the positive part of v (i.e.
v` “ maxp0, vq). As a by-product, we see that we can indeed interpret the discrete catchment area CAεpKq
computed through the classical cell-to-cell MFD algorithms as the total flux leaving cell K of a fictitious water
flow with a uniform water source Sw “ 1. Unfortunately, we also see that even at the continuous level, CApOq
strongly depends on the geometry of O and its orientation with respect to the flow. As a result when the
discrete catchment area CAεpKq computed from MFD algorithms computing is used to estimate the discrete
“local discharge of water” QK , it produces cell and thus mesh dependency in the simulated surface water
distribution. To overcome this mesh dependency, since CApOq is the total flux leaving O, it is natural to
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try to define a specific catchment area (SCA) by rescaling the CA. The correct scaling would be to set the
normalization factor w to the length of the portion of BO along which the fictitious water flow is leaving O. A
corrected definition of the specific catchment at the continuous level in the spirit of [16, 35, 36] area would thus
be to use:

SCApOq “
ˆ
ż

BO
χ´kms´pwref ||∇hs||pw∇hs¨ną0

˙´1 ż

BO
hwηwphwq

´

´kms´pwref ||∇hs||pw∇hs ¨ n
¯`

, (10)

where χ is the indicator function (i.e. the function with value 1 when the condition is satisfied and 0 otherwise).
Depending on the orientation of the flow, the discrete counterpart

SCAεpKq “
¨

˝

ÿ

σPFKXFint,hs,Kěhs,L
|σ|

˛

‚

´1

rqK ,

of such a normalization will sometimes match the choices of [16] or [35, 36] explaining their partial success. This
continuous SCA scales as an approximation of the continuous water flux magnitude:

qw “ |kmhwηwphwq| s´pwref ||∇hs||pw`1, (11)

(in m3s-1km-1) but is not equal to it. The SCA defined by (10) is in fact a mean of qw along the outflow portion
of BO, and thus still retains some dependency in the geometry of O and its orientation with respect to the flow.
Thus, to obtain a mesh independent quantity it is much simpler and more natural to consider directly the water
flow magnitude qw rather than the SCA. This is precisely the consistency correction proposed in [11]: to use a
discrete version of qw instead o CAεpKq or SCAεpKq. Another strong argument for doing so is to notice that
the specific catchment area a of model (1) can be reinterpreted through (3) as computing qw since:

qw “ |kmhwηwphwq| s´pwref ||∇hs||pw`1 “ |a| ||∇hs||´1`1 “ a,

as we have set a “ hwηwphwq ě 0, pw “ ´1, km “ 1 and sref “ 1 to merge (1) inside (3). In this way, the
consistency correction of [11] for MFD algorithms is another path to recover the conclusions of (1), since qw is
a generalization of a to more complex water flow models.

The MFD formulation allows in turn some interesting observations for the Gauckler-Manning-Strickler model:
it is indeed clear that the choice of the water mobility function ηw has no influence on the water flux strength
qw, as it appears nowhere in (8) and (12). In the same way, only the contrasts of the coefficient km will impact
qw, as only ratios τKL{sK are appearing in (8) and (12).

2.3 Consistency post-processing for cell-to-cell MFD algorithms

To effectively compute an accurate discrete water flux magnitude qK for each cell K P T , from [11] we know
that we can reconstruct cellwise the water flux vector using (6) by setting:

QK “
ÿ

σPFKXFint,hs,Kąhs,L

τKLrqK
|K|sK phs,K ´ hs,Lqpxσ ´ xKq´

ÿ

σPFKXFint,hs,Kăhs,L

τKLrqL
|K|sL phs,L ´ hs,Kqpxσ ´ xKq, (12)

and simply deduce a consistent water flux magnitude by setting

qK “ ||QK ||. (13)
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The convergence of the consistent water flux magnitude qK was rigorously established and illustrated in [11] for
the simpler model (2), up to providing error estimates. A straightforward although rather involved adaptation
of the proof in [11] would undoubtedly provide the convergence of qK to the continuous flux when the mesh size
ε goes to zero. In the present paper we limit ourselves to numerical confirmations of the convergence of qK in
the general setting.

We believe that the use of rqK or its approximately normalized versions instead of qK in the literature is the
main reason why such a strong mesh dependency was observed, without any significant improvement with mesh
refinement. Thus, it is important to use qK instead of rqK as is the correct output of a MFD algorithm, i.e.
using QK “ qK and not rqK or rqK{wpKq. Notice that from (12) and (13), it is obvious that computing qK can
certainly be considered as a post-processing consistency correction for rqK , that should be easy to implement in
legacy software.

For completeness let us finally mention that the assumption that hs,σ “ hs,K for any σ P Fext and K P Tσ
is not mandatory and was done only to exactly match the MFD linear system and simplify the presentation.
For open boundaries, since this assumption corresponds to assuming that water cannot leave the computational
domain, it suffices to modify the value of sK :

sK “
ÿ

σPFKXFint,hs,Kěhs,L
τKL phs,K ´ hs,Lq `

ÿ

σPFKXFext,hs,Kěhs,σ
τKσ phs,K ´ hs,σq ,

as well as the definition of QK :

QK “
ÿ

σPFKXFint,hs,Kąhs,L

τKLrqK
|K|sK phs,K ´ hs,Lqpxσ ´ xKq

`
ÿ

σPFKXFext,hs,Kąhs,σ

τKσrqK
|K|sK phs,K ´ hs,σqpxσ ´ xKq

´
ÿ

σPFKXFint,hs,Kăhs,L

τKLrqL
|K|sL phs,L ´ hs,Kqpxσ ´ xKq, (14)

with of course in both cases:

τKσ “ |σ|km,σ
dKσs

´pw
ref

||Gs,σ||pw .

2.4 Numerical results for the corrected cell-to-cell MFD algorithms

The consistency post-processing (12)-(13) for MFD algorithms precisely coincides with the replacement of the
computation of rqK or rqK{wpKq for a mesh cell K by a consistent discrete reconstruction qK of qw in each cell K.
Thus, apart from the usual discretization error no anomalous mesh dependency should remain in qK in practice,
contrary to what is observed for rqK{wpKq (i.e. SCAεpKq) given by MFD algorithms. On the contrary, since the
quantity rqK approximates the outflux of a cell it is proportional to the perimeter of a cell, the only convergence
that can be expected for rqK is to zero, while the behavior of rqK{wpKq will strongly depend on the choice of
the normalization wpKq. The main purpose of this subsection is to illustrate the behavior of those quantities
through some easy to analyze numerical examples. Since it has no impact on the water flux qw which is the
main target of MFD algorithms, for simplicity we consider only the case of constant water mobility ηwphwq “ 1.
We consider two reference configurations. On the first one we focus on the consistency and convergence of qK
while illustrating that rqK even rescaled by the attempted values of wpKq from the literature cannot be a good
approximation of the flux. Simultaneously, we show that the method can easily handle heterogeneous speed
coefficients km. The second configuration allows us to assess the robustness of the method even when the slope
is non-linear (pw ą 0). To study the mesh dependency of the results, we consider three sequences of meshes,

10
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all satisfying the orthogonality requirement (4). Namely we use two sequences of Cartesian meshes, the first
one with square cells and the second one with rectangular cells, and a sequence of Voronöı meshes. Those three
sequences are illustrated on figure 3.

(a) Cartesian mesh: square cells (b) Cartesian mesh: rectangular cells (c) Voronoi mesh

Figure 3: Three sequences of meshes designed to study the mesh dependency within the numerical analyses
presented in section 2.4

2.4.1 First test configuration: Gaussian topography and Gaussian water height

The domain Ω is the square Ω “s0, Lrˆs0, Lr, the exact topography is given by

hspx, yq “ hs,0 exp
`´δ `px´ x0q2 ` py ´ y0q2

˘˘

where x0 “ y0 “ L{2 and the exact water height is given by

hwpx, yq “ hw,0 exp
`´α `px´ x0q2 ` py ´ y0q2

˘˘

In practice we will set L “ 1, hs,0 “ 1 and hw,0 “ 1. For this first configuration, we will consider three different
values of the speed coefficient km, with increasing order of difficulty. The first one is simply the constant case
km “ 1, the second one is a sinusoidal case:

km “ 1` β sinpωπxq sinpωπyq
with β “ 0.1 and ω “ 3, and the final one is a Perlin noise perturbation :

km “ 1` β θpx, yq
where the function θpx, yq is a Perlin noise [37] and the resulting coefficient km is depicted on figure 4. Since
qw depends on km, using these heterogeneous speed coefficients is a simple way to obtain not overly simplistic
values for the water flux magnitude qw. Finally, we fix the slope exponent pw to zero for this configuration.

From [11], we know that qK should converge towards qw in L2 norm. We display on figure 5 the corresponding
convergence curves, which confirm that we recover the expected convergence. To further emphasize the interest
of using qK instead of rqK{wpKq, on figures 6 to 14 we display for each combination of mesh sequence and value

11
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Sinusoidal km Perlin noise km

(a) (b)

Figure 4: The sinusoidal and perlin noised-based speed coefficients km
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Figure 5: Convergence curves for qK towards qw for the first test configuration, for each mesh sequence and
each choice for km

of km, the exact water flux magnitude qw, the discrete water flux magnitude qK , and rqK{wpKq for the two
choices of normalization wpKq. We display those four values for the finest mesh of each sequence.
We clearly see that qK is a good approximation of qw. However, the mesh dependency of rqK{wpKq appears
on each of those example. The normalization wpKq “ ρK leads to the correct value range for rqK{wpKq when
compared to qK or qw. The effective length normalization gives the correct order of magnitude, but not exactly
the correct value range. The normalization wpKq “ ρK leads to a very strong mesh dependency, and a value
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(a) (b)

(c) (d)

Figure 6: Water flux (top view) obtained for constant km on the finest Cartesian mesh with square cells. (a) -
Exact solution - (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with wpKq
equal to the cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the effective
flow length in the cell.

rqK{wpKq very far from the correct one. On the two Cartesian mesh sequences for each value of km (figures
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(a) (b)

(c) (d)

Figure 7: Water flux (top view) obtained for constant km on the finest Cartesian mesh with rectangular cells.
(a) - Exact solution - (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with
wpKq equal to the cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the
effective flow length in the cell.

6, 7, 9, 10, 12, 13), we see that rqK{wpKq is strongly biased in the main directions of the mesh (the two axis
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(a) (b)

(c) (d)

Figure 8: Water flux (top view) obtained for constant km on the finest Voronöı mesh. (a) - Exact solution -
(b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the cell
diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the effective flow length in
the cell.

x and y), and comparing the two sequences we clearly obtain different solutions despite the fact that the two
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(a) (b)

(c) (d)

Figure 9: Water flux (top view) obtained for sinusoidal km on the finest Cartesian mesh with square cells. (a) -
Exact solution - (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with wpKq
equal to the cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the effective
flow length in the cell.

mesh sequences only slightly differ by the shape of the cells. On the Voronöı mesh sequence (figures 8, 11, 14),
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(a) (b)

(c) (d)

Figure 10: Water flux (top view) obtained for sinusoidal km on the finest Cartesian mesh with rectangular cells.
(a) - Exact solution - (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with
wpKq equal to the cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the
effective flow length in the cell.

since the mesh is much less biased towards any specific direction, we start to see the correct solution shape
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(a) (b)

(c) (d)

Figure 11: Water flux (top view) obtained for sinusoidal km on the finest Voronöı mesh. (a) - Exact solution -
(b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the cell
diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the effective flow length in
the cell.

appear, however rqK{wpKq is very noisy and influenced by the mesh cells shape, and in any case it is not a good
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(a) (b)

(c) (d)

Figure 12: Water flux (top view) obtained for Perlin noised km on the finest Cartesian mesh with square cells.
(a) - Exact solution - (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with
wpKq equal to the cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the
effective flow length in the cell.

approximation of qw or any continuous quantity. The observations are almost the same for the other choice of
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(a) (b)

(c) (d)

Figure 13: Water flux (top view) obtained for Perlin noised km on the finest Cartesian mesh with rectangular
cells. (a) - Exact solution - (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq
with wpKq equal to the cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to
the effective flow length in the cell.

normalization where wpKq is the effective length, with the main difference that one Cartesian meshes, rqK{wpKq
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(a) (b)

(c) (d)

Figure 14: Water flux (top view) obtained for Perlin noised km on the finest Voronöı mesh. (a) - Exact solution
- (b) - Simulated water flux qK - (c) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the
cell diameter - (d) - Simulated normalized water outflux rqK{wpKq with wpKq equal to the effective flow length
in the cell.

is much less biased towards the Cartesian directions. Those experiments confirm our theoretical observation
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on rqK{wpKq and qK : the former cannot be a good discrete approximation since it is strongly mesh dependent,
while the later is a consistent approximation of qw, which converges well to qw even on Voronöı meshes for the
difficult case of the Perlin noised speed coefficient.

2.4.2 Second test configuration: perturbed mono-dimensional topography

rs = 1, ps = 0 rs = 3/2, ps = 1 rs = 2, ps = 0

Figure 15: The three topographies hs of the second test configuration

The domain Ω is the rectangle Ω “s0, Lxrˆs0, Lyr with Lx “ 1 and Ly “ 5, and the topography hs and
water height hexw take the form:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

hspx, yq “ hs,xpxq `
Nb
ÿ

p“1

gb

ˆ

x´ xp
δx

,
y ´ yp
δy

˙

,

hexw px, yq “ hw,xpxq,

The topography hs incorporates Nb small smooth bumps randomly positioned at points pxp, ypq chosen such
that they do not interfere with the boundaries of the domain, with the smooth bump function given by:

gbpx, yq “ gbpr2q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Hpert exp

ˆ ´γ
1´ r2

˙

exppγq for r2 “ x2 ` y2 ď 1,

0 otherwise .

In we use practice Nb = 8, Hpert = 0.03, γ = 10 and δx=δy = 0.25. For the mono-dimensional functions
phs,x, hw,xq we have chosen to re-use some of the stationary solutions proposed in [12]. Those functions are
parametrized by six parameters rs, ps, kg, kw, Ss,x and Sw,x. In the following test case, we will restrict
ourselves to the configuration kg “ kw “ 5 as well as Ss,x “ 10 and Sw,x “ 1, while the couple prs, psq
will take the values p1, 0q, p3{2, 1q and p2, 0q to change the curvature of the topography. The corresponding
mono-dimensional functions hs,x are such that hs,xp´x, yq “ hs,xpx, yq, and they are given for x ě 0 by:
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. In the case prs, psq “ p1, 0q:

hs,x “ hs,xp0q ´ Ss,x
ˆ

x

kwSw,x
´ kg
k2wS

2
w,x

ln |kg ` kwSw,xx| ` kg
k2wS

2
w,x

ln |kg|
˙

,

. In the case prs, psq “ p3{2, 1q:

hs,x “ hs,xp0q ´ ps ` 1

psrs

S
1

ps`1
s,x

kwS
rs
w,x
ppkg ` kwSrsw,xxrsqps{pps`1q ´ kps{pps`1q

g q

. In the case prs, psq “ p2, 0q:

hs,x “ hs,xp0q ´ Ss,x
2kwS2

w,x

pln `kg ` kwS2
w,xx

2
˘´ ln pkgqq.

In all cases the value for hs,xp0q is such that hs,xpLx{2q “ 0. To avoid some numerical truncation errors for
higher values of pw, for the water height we do not exactly follow [12] and use instead the simpler function:

hw,x “ pSw,xxqpkg ` kwpSw,xxqrsq
pw`1
ps`1 ,

For this second configuration, we consider the three values 0, 1 and 2 for the slope exponent pw. We restrict
ourselves to the case of a constant speed coefficient km “ 1 and the Cartesian mesh sequence with square cells.
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Figure 16: Convergence curves for qK towards qw for the second test configuration, for each value of pw and for
each value of the couple prs, psq

On figure 16, we show the convergence curves for this second test configuration for each value of pw and each
choice of the couple prs, psq. We clearly recover the expected convergence, confirming the ability of qk to
approximate qw for various values of pw.
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3 A consistency post-processing for the classical node-to-node MFD/SFD
algorithms

The objective of this section is to explain how to recover consistency by a simple post-processing step for the
most classical node-to-node flow routing algorithms, again through establishing a link with a discretization of
the continuous Gauckler-Manning-Strickler model. Such an explicit interpretation seems to be absent from the
literature, so at least to the author’s knowledge the results of this section are completely new. For simplicity
we restrict ourselves in this section to uniform Cartesian meshes, and we adopt the usual Cartesian index pi, jq
notation for designating its nodes (see Fig. 17) as well as ∆x and ∆y for the Cartesian cell side lengths. This is
by no means a restriction but simply a more convenient way to explain how to link node-to-node flow routing
with Gauckler-Manning-Strickler models.

3.1 Node-to node MFD/SFD algorithms and the GMS model

In order to reinterpret the node-to-node flow routing algorithms as finite volume schemes, we must associate a
volume to each node. The easiest way to do so is to consider the dual mesh, formed by joining the centers of
the cells of the primal mesh (see again Fig. 17, where the dual mesh corresponds to the dashed lines). On the
dual mesh, the node pi, jq of the primal mesh becomes the center of the dual cell Ki,j .

Figure 17: The Cartesian mesh (plain lines) and its dual (dashed lines)

In Fig. 18, we propose a decomposition of the boundary of the dual Cartesian cell Ki,j centered on the primal
internal node pi, jq into 12 faces pσlq1ďlď12. The faces σj˘1 are of length γx∆x, and the faces σi˘1

j˘1 of length
1´γx

2 ∆x. In the same way, faces σi˘1 are of length γy∆y and the faces σj˘1
i˘1 of length

1´γy
2 ∆y. Using those
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Figure 18: Decomposition and notations for the dual Cartesian cell boundaries

notations, we integrate (3) over the dual cell Ki,j to get:

´
12
ÿ

l“1

ż

σl

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nKi,j “ |Ki,j |Sw,Ki,j .

On the four faces σi´1, σi`1, σj´1 and σj`1, we use the same finite volume discretization than before:
ż

σj´1

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nKi,j «
γx∆x

spwref∆y
km,σj´1 ||Gs,σj´1 ||pwhupw,σj´1

phs,i,j´1 ´ hs,i,jq,

and
ż

σi´1

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nKi,j «
γy∆y

spwref∆x
km,σi´1

||Gs,σi´1
||pwhupw,σi´1

phs,i´1,j ´ hs,i,jq,

and
ż

σj`1

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nKi,j «
γx∆x

spwref∆y
km,σj`1

||Gs,σj`1
||pwhupw,σj`1

phs,i,j`1 ´ hs,i,jq,

and
ż

σi`1

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nKi,j «
γy∆y

spwref∆x
km,σi`1

||Gs,σi´1
||pwhupw,σi`1

phs,i`1,j ´ hs,i,jq,

while for the remaining height cells, we gather the faces to form the corners illustrated in Fig. (18). More
precisely, we denote:

σi´1,j´1 “ σj´1
i´1 Y σi´1

j´1,
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σi´1,j`1 “ σj`1
i´1 Y σi´1

j`1,

σi`1,j´1 “ σj´1
i`1 Y σi`1

j´1,

σi`1,j`1 “ σj`1
i`1 Y σi`1

j`1,

those four corners, σi˘1,j˘1 thus being the corner corresponding to the neighboring cell Ki˘1,j˘1. On those
corners, we perform the same discretization than before considering the whole corner as if it was a single face:
in other words we use constant values km,σ and ||Gs,σ||pw for km and ||∇hs||pw along the corner, an upwind
scheme for the unknown hwηwphwq and the a two-point flux formula for in the average normal direction to the
corner. Denoting p∇hsqσi˘1,j˘1 the equivalent constant gradient exact for linear function underlying the TFPA
along the corner, this leads to the following approximation:

ż

σi˘1,j˘1

kmhwηwphwqs´pwref ||∇hs||pw∇hs ¨ nKi,j «

km,σi˘1,j˘1s
´pw
ref ||Gs,σi˘1,j˘1 ||pwhupw,σi˘1,j˘1

p∇hsqσi˘1,j˘1 ¨
ż

σi˘1,j˘1

nKi,j .

where along each σi˘1,j˘1 we have again used a constant approximate value km,σi˘1,j˘1 and Gs,σi˘1,j˘1 for km
and ||∇hs||pw along each face σ and to use an upwind scheme hupw,σi˘1,j˘1

for the true unknown hwηwphwq. By
construction, we have:

ż

σi˘1,j˘1

nKi,j “ ˘
p1´ γyq

2
∆yex ˘ p1´ γxq

2
∆xey.

Denoting

|σi˘1,j˘1| “ p1´ γxq
2

∆x` p1´ γyq
2

∆y “ δ,

we seek γx and γy such that:

p1´ γxq
2δ

∆x “ ∆y

p∆2
x `∆2

yq1{2
and

p1´ γxq
2δ

∆y “ ∆x

p∆2
x `∆2

yq1{2
,

leading to:

γx “ 1´ 2δ∆y{∆x

p∆2
x `∆2

yq1{2
and γy “ 1´ 2δ∆x{∆y

p∆2
x `∆2

yq1{2
, (15)

which can be achieved with γx ě 0 and γy ě 0 provided δ satisfies:

0 ď δ ď 1

2
min

ˆ

∆x

∆y
,

∆y

∆x

˙

p∆2
x `∆2

yq1{2. (16)

With this choice for γx and γy, for all δ satisfying (16) we get that

ż

σi˘1,j˘1

nKi,j “
˘∆x

p∆2
x `∆2

yq1{2
ex ` ˘∆y

p∆2
x `∆2

yq1{2
ey,

and thus the average normal at the corner σi˘1,j˘1 is precisely pointing from xKi,j to xKi˘1,j˘1
. Thus it is

natural to use the two point flux formula:

p∇hsqσi˘1,j˘1
¨
ż

σi˘1,j˘1

nKi,j «
δ

p∆2
x `∆2

yq1{2
phs,i˘1,j˘1 ´ hs,iq.
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The upwinding is done exactly as before, following the sign of the difference in elevation hs` b between the two
value forming the TPFA. This gives for the non-corners:

hupw,σi˘1
“
ˇ

ˇ

ˇ

ˇ

ˇ

hw,i,jηwphw,i,jq if hs,i,j ě hs,i˘1,j ,

hw,i˘1,jηwphw,i˘1,jq if hs,i,j ă hs,i˘1,j ,

hupw,σj˘1
“
ˇ

ˇ

ˇ

ˇ

ˇ

hw,i,jηwphw,i,jq if hs,i,j ě hs,i,j˘1,

hw,i,j˘1ηwphw,i,j˘1q if hs,i,j ă hs,i,j˘1,

and for the corners:

hupw,σi˘1,j˘1
“
ˇ

ˇ

ˇ

ˇ

ˇ

hw,i,jηwphw,i,jq if hs,i,j ě hs,i˘1,j˘1,

hw,i˘1,j˘1ηwphw,i˘1,j˘1q if hs,i,j ă hs,i˘1,j˘1.

For the gradient, we use for the non-corners:

Gs,σi˘1
“ 1

2
pGs,Ki˘1,j

`Gs,Ki,j q and Gs,σj˘1
“ 1

2
pGs,Ki,j˘1

`Gs,Ki,j q

and for the corners:

Gs,σi˘1,j˘1
“ 1

2
pGs,Ki˘1,j˘1

`Gs,Ki,j q
In the same way, for the face value of km we use the following harmonic means for the non-corners:

km,σi˘1
“ dKi,jKi˘1,jkm,Ki,jkm,Ki˘1,j

km,Ki,jdKi˘1,j ,σi˘1
` km,Ki˘1,j

dKi,j ,σi˘1

“ 2km,Ki,jkm,Ki˘1,j

km,Ki,j ` km,Ki˘1,j

and

km,σj˘1
“ dKi,jKi,j˘1

km,Ki,jkm,Ki,j˘1

km,Ki,jdKi,j˘1,σj˘1 ` km,Ki,j˘1dKi,j ,σj˘1

“ 2km,Ki,jkm,Ki,j˘1

km,Ki,j ` km,Ki,j˘1

and for the corners:

km,σi˘1,j˘1 “
dKi,jKi˘1,j˘1

km,Ki,jkm,Ki˘1,j˘1

km,Ki,jdKi˘1,j˘1,σi˘1,j˘1 ` km,Ki˘1,j˘1dKi,j ,σi˘1,j˘1

“ 2km,Ki,jkm,Ki˘1,j˘1

km,Ki,j ` km,Ki˘1,j˘1

where dKi,j ,σi˘1,j˘1 “
b

∆2
x `∆2

y is the distance between Ki,j and the corner point belonging to σi˘1,j˘1. To

get more compact notations, let us denote

N pi, jq “ tpm,nq P ti´ 1, i, i` 1u ˆ tj ´ 1, j, j ` 1u | pm,nq ď pi, jqu ,
the neighbors of node pi, jq, and define the transmissivities:

τm,ni,j “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

γx∆x

spwref∆y
km,σj˘1

||Gs,σj˘1
||pw if pm,nq “ pi, j ´ 1q or pi, j ` 1q,

γy∆y

spwref∆x
km,σi˘1

||Gs,σi˘1
||pw if pm,nq “ pi´ 1, jq or pi` 1, jq,

δ

spwref p∆2
x `∆2

yq1{2
km,σi˘1,j˘1

||Gs,σi˘1,j˘1
||pw otherwise,

assuming for simplicity that the gradients Gs,σ are obtained on the dual mesh in the same way as in the
cell-to-cell case (of course, a reconstruction formula using also the diagonal neighbors is possible). Using those
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notations, we get gathering by upwind kind as in the case of the cell-to-cell flow routing the following expression
for the proposed finite volume scheme on the dual mesh:

hw,i,jηwphw,i,jq
¨

˝

ÿ

pm,nqPN pi,jq,hs,i,jąhs,m,n
τm,ni,j phs,i,j ´ hs,m,nq

˛

‚

´
¨

˝

ÿ

pm,nqPN pi,jq,hs,i,jăhs,m,n
τm,ni,j hw,m,nηwphw,m,nqphs,m,n ´ hs,i,jq

˛

‚“ |Ki,j |Sw,i,j .

Proceeding as in the cell-to-cell case, denoting:

si,j “
ÿ

pm,nqPN pi,jq,hs,i,jąhs,m,n
τm,ni,j phs,i,j ´ hs,m,nq and rqi,j “ hw,i,jηwphw,i,jqsi,j ,

we finally get:

rqi,j ´
¨

˝

ÿ

pm,nqPN pi,jq,hs,i,jăhs,m,n
τm,ni,j

rqm,n
sm,n

phs,m,n ´ hs,i,jq
˛

‚“ |Ki,j |Sw,i,j . (17)

The flow sharing formula common to all flow routing algorithms of the literature identifies in this context with
the ratios:

1

sm,n
τm,ni,j phs,m,n ´ hs,i,jq,

for pm,nq P N pi, jq, hs,i,j ă hs,m,n, which expresses how node pi, jq receives water from other nodes. Reversing
the point of view, it rewrites in probably more familiar fashion by expressing how node pi, jq distributes water
to its neighbors through the flow sharing formula (noticing that τm,ni,j “ τ i,jm,n):

τm,ni,j maxp0, hs,i,j ´ hs,m,nq
ÿ

m1 ,n1PN pi,jq
τm

1
,n
1

i,j maxp0, hs,i,j ´ hs,m1 ,n1 q
. (18)

Notice that several attempts of the literature at improving the behavior of the flow routing consider powers q
of the two point slope instead of the slope in the flow sharing formula, which with our notations rewrites:

τm,ni,j maxp0, hs,i,j ´ hs,m,nqq
ÿ

m1 ,n1PN pi,jq
τm

1
,n
1

i,j maxp0, hs,i,j ´ hs,m1 ,n1 qq
. (19)

Another important consequence of the formal identification of cell-to-cell flow routing algorithms with a numer-
ical scheme for the stationary Gauckler-Manning-Strickler model is the fact that if one wants to incorporate
powers of the slope in the flow distribution procedure, then one should not use powers of the directional slope
1

dKL
phs,L ´ hs,Kq but rather use powers of ||Gs,σ|| to remain consistent with a continuous model incorporating

powers of ||∇hs||. Otherwise, the consistency of the flow routing algorithm will be lost again. In [42] it is even
suggested to choose different values of q for different grid sizes, emphasizing this non-consistency. However, the
sought flow concentration effect can be achieved in a consistent manner by (18) through the use of pw with value
pw “ q´1: the full gradient and not only the directional gradient being used this way, this does not compromise
consistency and a value independent of the mesh should be chosen according to physical considerations. An
option that we do not consider here is to make the value of pw spatially variable, as was suggested in [40] but
still on the non-consistent formulation (19).
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Although (19) clearly leads to some non consistency, this expression is useful to derive a classification of the
most prominent flow routing algorithms of the literature. To exactly match the definitions of most node-to-
node flow routing schemes of the literature, we now consider the special case of square cartesian cells for which
∆x “ ∆y “ ∆xy. In this case we get from (15) that γx “ γy “ 1´ p2δq{p?2∆xyq. It remains to choose a value
for δ. The most natural choice is choose to enforce δ “ γx∆x “ γy∆y and thus balance the contribution to each
neighbor. This immediately leads to:

δ “
?

2

2`?2
∆xy and γx “ γy “

?
2

2`?2
,

implying that:

δ

p∆2
x `∆2

yq1{2
“ 1

2`?2
and

γx∆x

∆y
“

?
2

2`?2
and

γy∆y

∆x
“

?
2

2`?2
,

thus the diagonal transmissivities differ from the non-diagonal ones by the factor 1{?2 which corresponds to
the D8, Rho8 and most MFD algorithms. To recover the FD8/TOPMODEL noticing that the L1 and L2 non

diagonal and diagonal “face measures” of this MFD algorithm satisfy L1 “ ∆xy{2 and L2 “
?
2
4 ∆xy, we recover

the same weighting within our notations by setting

δ “
?

2

4
∆xy and γx “ γy “ 1

2
,

which is compatible with (15) as in this case:

p1´ γxq
2δ

∆x “ p1´ γyq
2δ

∆y “ 1?
2
“ ∆x

p∆2
x `∆2

yq1{2
“ ∆y

p∆2
x `∆2

yq1{2
.

Finally denoting:
∆Hm,n

i,j “ maxp0, hs,i,j ´ hs,m,nq,
in table 1 we recast the most classical MFD algorithms using our notations, with pw “ 0 for all the presented
methods. For the Rho8 method ([20]), the ρ8 parameter is a random number generated for each face, while for
the MFD-md ([40]), the parameter e is the maximum downslope gradient and fpeq “ 8.9 minpe, 1q ` 1.1.

We see from table 1 that many classical MFD/SFD schemes can be reinterpreted in the context of the GMS
model. In particular, the MFD (Freeman 1989) and the FD8 algorithms exactly correspond to the quantity rqK
obtained from a coherent discretization of the GMS model, since they set q “ 1. Meanwhile, notice that MFD
(Freeman 1991) and MFD (Holmgren 1994) are attempts to correct rqi,j obtained given by (Freeman 1989) by
using a value of q not equal to one, and the same holds for TOPMODEL and MFD-md with respect to FD8.
For those scheme, before reconstructing qi,j from rqi,j as we will detail in next subsection, one must first go back
to the correct value q “ 1 to recover a consistent approximation of qw. The sought flow concentration effect of
those schemes can be recovered in a consistent fashion by increasing the value of pw instead of introducing q.

Finally, it is clear that the chosen value for km,σ should be a discretization of an inverse of a continuous
roughness with a more or less physical interpretation. Apart from the unavoidable sampling induced by the
mesh, it should be as mesh independent as possible and in particular should not depend on cell orientations.
The single flow direction D8 and Rho8 methods reinterpreted this way introduce a coefficient km,σ that is clearly
mesh dependent and not the discretization of a continuous coefficient. This will consequently increase the mesh
dependency of the overall method. Again, to recover the flow concentration/monodirectional effect sought by
SFD algorithm, on should instead resort to a continuous speed coefficient map km that presents high contrasts
with narrow zone with high values. The flow will then preferentially follow those regions creating the desired
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Table 1: A possible classification of MFD algorithms using (19)

Method δ{∆xy γx “ γy q km,σm,n

D8 (O’Callaghan et al. 1984 [33])
?
2

2`?2

?
2

2`?2
1

ˇ

ˇ

ˇ

ˇ

ˇ

1 σm,n has largest ∆Hm,n
i,j

0 otherwise

MFD (Freeman 1989 [22])
?
2

2`?2

?
2

2`?2
1 1

MFD (Freeman 1991 [23])
?
2

2`?2

?
2

2`?2
1.1 1

Rho8 (Fairfield 1991 [20])
?
2

2`?2

?
2

2`?2
1

ˇ

ˇ

ˇ

ˇ

ˇ

1 σm,n has largest ρ8∆Hm,n
i,j

0 otherwise

FD8 (Quinn et al. 1991 [41])
?
2
4

1
2 1 1

MFD (Holmgren 1994 [28])
?
2

2`?2

?
2

2`?2
P r1,8r 1

TOPMODEL (Quinn et al. 1995 [42])
?
2
4

1
2 P r1´ 100s 1

MFD-md (Qin et al. 2007 [40])
?
2
4

1
2 fpeq 1

channelization effect (see [12]).

The two point flux approximation (TPFA) is of course not the only possible approximation for the terms

p∇hsqσi˘1,j˘1
¨ ş
σi˘1,j˘1

n. In particular, if one reconstructs an approximation Ĝs,σ of the full topographic

gradient along each face σ, then it can be used to compute an approximation of the flux. We denote it Ĝs,σ to
distinguish it from the reconstruction Gs,σ used to approximate the non-linear dependency in the slope, as the
two can be different. In this case, (19) becomes:

|σm,n|p∆Hm,n
i,j qq

ÿ

m1 ,n1PN pi,jq
|σm1 ,n1 |p∆Hm

1
,n
1

i,j qq
and ∆Hm,n

i,j “ max

˜

0, Ĝs,σm,n ¨
ż

σm,n

nKi,j

¸

. (20)

Then, more flow routing algorithms of the literature can be rewritten this way. In particular, choosing γx “
γy “ 0 or 1 we can easily recover the flux decomposition method (Desmet et al. 1996 [16]) and a variation of the

MD8 method (Seibert et al. 2007 [47]). The flux decomposition method chooses a single value for Ĝs,Ki,j for

each cell, and then loop over cells and set Ĝs,σ “ Ĝs,Ki,j for the faces of the current cell that have not already

been handled through a previous cell in the loop. The MD8 methods computes Ĝs,σ for each face using a

triangular reconstruction of the slope: to be precise, with our notations Ĝs,σ is for face σm,n half the sum of
the two triangular gradients computed in [47] that can contribute to σm,n. We refer to this as a variation of
[47] as it is unclear whether they use the normal component of the gradient as we do here or the full norm of
the gradient in their flow sharing formula.

Other flow routing algorithms that do not easily fit into this mathematical framework are also available in the
literature. We mention in particular the ANSWERS ([6]), DEMON ([13]) and Lea’s method ([29]), that are
all based on a local planar approximation of the topography and use either a multiple or single direction flow
sharing formula based on purely geometric considerations. The D8 method (Tarboton 1997 [48]) strongly looks
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Table 2: A classification of some flow routing algorithms using (20)

Method δ{∆xy γx “ γy q km,σl

Flux decomposition (Desmet et al. 1996 [16]) 0 1 1 1

MD8 (Seibert et al. 2007, [47])
?
2

2`?2

?
2

2`?2
1 1

like the SFD method at first sight, however because the flow sharing formula used when the steepest direction is
not aligned with mesh direction is based on angular considerations similar to those of ANSWERS and DEMON,
it is not immediately obvious how to relate the D8 method to a continuous model. Finally, let us mention that
many variations around the classical algorithms have been explored since their first publications leading for
instance to some generalization to triangular meshes [3, 57]. We refer the reader to [19, 56, 34] and references
therein for a broader review on flow routing algorithms and their numerical behavior.

3.2 Consistency post-processing for node-to-node MFD algorithms

The node-to-node situation is no better than the cell-to-cell one: rqi,j will be as non consistent, non convergent
and thus strongly mesh dependent than its cell-to-cell counterpart. The node-to-node routing is indeed simply
a cell-to-cell routing on a dual mesh, with a more involved cell boundary decomposition. Again, the quantity
rqi,j should not be used to couple with sediment evolution, one should instead reconstruct a consistent water
flux vector Qi,j for instance by setting:

Qi,j “
ÿ

pm,nqPN pi,jq,hs,i,jąhs,m,n

τm,ni,j rqi,j

|Ki,j |si,j phs,i,j ´ hs,m,nqpx
m,n
i,j ´ xKi,j q´

ÿ

pm,nqPN pi,jq,hs,i,jăhs,m,n

τm,ni,j rqm,n

|Ki,j |sm,n phs,m,n ´ hs,i,jqpx
m,n
i,j ´ xKi,j q (21)

where:

xm,ni,j “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2
pxKi,j ` xKm,nq if pm,nq P tpi, j ´ 1q, pi, j ` 1q, pi´ 1, jq, pi` 1, jqu

1

|σnm| ` |σmn |
`|σnm|xσnm ` |σmn |xσmn

˘

otherwise

and then use
qi,j “ ||Qi,j || (22)

which again can be considered as an easy to implement post-processing consistency correction step. Again, this
should be done in conjunction with q “ 1 and a mesh independent km map.

3.3 Boundary terms

For the sake of completeness, let us briefly and graphically explain how to handle boundary terms. One first
needs to distinguish between corner boundary points and other boundary points. For a corner boundary point
pi, jq, we use the decomposition of the boundary of the dual cell presented on figure 19 while for a non corner
boundary point pi, jq we use the decomposition of the boundary of the dual cell presented on figure 20. The
principle is exactly the same as for an interior node pi, jq, but with a reduced set of neighbors and with a
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σj´1

σi`1
j´1

σi`1

σj´1
i`1

pi` 1, j ´ 1q

pi` 1, jq

pi` 1, j ´ 2q

pi, j ´ 1q

pi, jq

pi, j ´ 2q

pi` 2, j ´ 1q

pi` 2, jq

pi` 2, j ´ 2q

Figure 19: Decomposition and notations for the dual corner cartesian cell boundaries

σj´1

σi`1
j´1

σj`1

σi`1
j`1

σi`1

σj´1
i`1

σj`1
i`1

pi` 1, jq

pi` 1, j ` 1q

pi` 1, j ´ 1q

pi, jq

pi, j ` 1q

pi´ 1, j ´ 1q

pi` 2, jq

pi` 2, j ` 1q

pi` 2, j ´ 1q

Figure 20: Decomposition and notations for the non-corner cartesian cell boundaries

half reduction of the face length and thus of τm,ni,j for non-diagonal neighbors. For the source terms associated
with those cells, one must also reduce by one fourth the magnitude of the cell size for a corner boundary point
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and on half for a non corner boundary point, and those sources should be taken at the center of mass of the
corresponding boundary dual cells. Finally, one needs to add to the source term the integral of Bw along the
part of the boundary of the cells that belong to BΩin.

3.4 Numerical results for the corrected node-to-node MFD algorithms

MFD Freeman 1989 FD8

MFD Freeman 1991 MFD Holmgren 1994 MFD TOPMODEL

(a) (b)

(c) (d) (e)

Figure 21: Results for constant km on the finest Cartesian mesh with square cells sequence for the node-to-node
MFD algorithms

We consider the same two test configurations than in the cell-to-cell case, and only the Cartesian mesh sequence
with square cells. For the first test configuration, we start by presenting on figure 21 in the case of constant
km the reconstruction qij for five MFD schemes: MFD (Freeman 1989), FD8, MFD (Freeman 1991), MFD
(Holmgren 1994) and TOPMODEL, chossing a value q “ 10 for MFD (Holmgren 1994) and TOPMODEL. As
expected, the two schemes with q “ 1, namely MFD (Freeman 1989) and FD8 lead to the correct solution. For
the three others, because q ‰ 1 we see that we do not get the expected result, thus confirming our theoretical
observations. Of course, the same can be observed for the sinusoidal km or the Perlin noised km. Since MFD
(Freeman 1991), MFD (Holmgren 1994) are identical to MFD (Freeman 1989) and TOPMODEL and MFD-md
are identical to FD8 if we take q “ 1, for our remaining experiments we restrict ourselves to MFD (Freeman
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1989) and FD8.
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Figure 22: Convergence curves for qi,j towards qw for the first test configuration, for each choice for km

On figure 22, we present the convergence curves for those two schemes on the first test configuration for the
three choices of speed coefficient km. We clearly recover the expected convergence, confirming the quality of
the post-processing qi,j for node-to-node algorithms.
On figure 23, we present the convergence curves for those two schemes on the second test configuration for the
three values of pw and the three choices of couple prs, psq. Again, those curves confirm the good behavior of qi,j .
Notice that the convergence curves are almost impossible to distinguish for this second test case configuration
between the two schemes, indicating that they produce almost identical results.

4 Limitations of the GMS model

The application domain of the GMS model is limited by some additional requirements on the topography hs.
Because of the equivalence of MFD algorithms with the GMS model, they will suffer from the same limitations.
Mathematically, systems (1) and (3) are stationary transport problems for a or hw. Their well-posedness,
i.e. existence and uniqueness in a suitable function space and continuity with respect to data, is rigorously
established only under some condition on the topography, all introducing some positivity requirement in the
zero order part of the differential operators applied to a or hw (see [11, 4, 52, 17, 21, 25]). In particular, among
the possible assumptions on the topography the simplest ones are undoubtedly:

´∆hs ą 0 or ´ div
´

kms
´pw
ref ||∇hs||pw∇hs

¯

ą 0, (23)

They both ensure that model (3) is well-posed by enforcing that a downflow direction exists everywhere, at
the price of introducing quite stringent restrictions on the admissible topographies. Moreover, the convergence
theory of [11] is established assuming such a condition on the topography. Notice that they are sufficient con-
ditions, and not necessary ones: this implies that solutions to (1) and (3) can still exist for some topographies
not fulfilling one of the sufficient conditions, and numerical convergence of the consistent water flux can still
be observed. In particular, saddle-point or valley-like topographies will not easily fulfill those conditions, while
it seems reasonable to assume that a solution will exist in such configurations since water can find a downflow
direction. This being said, those probably too strong mathematical requirement should act as a warning, as it
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lo
g
||q

K
−
q w
|| L

2

−4 −3 −2 −1

−4

−2

0

2

log ε

rs = 1, ps = 0

pw = 0
pw = 1
pw = 2

−4 −3 −2 −1

−6

−4

−2

0

log ε

rs = 3/2, ps = 1

pw = 0
pw = 1
pw = 2

−4 −3 −2 −1

−4

−2

0

2

log ε

rs = 2, ps = 0

pw = 0
pw = 1
pw = 2

MFD Freeman 1989

lo
g
||q

K
−
q w
|| L

2

−4 −3 −2 −1

−4

−2

0

2

log ε

rs = 1, ps = 0

pw = 0
pw = 1
pw = 2

−4 −3 −2 −1

−6

−4

−2

0

log ε

rs = 3/2, ps = 1

pw = 0
pw = 1
pw = 2

−4 −3 −2 −1

−4

−2

0

2

log ε

rs = 2, ps = 0

pw = 0
pw = 1
pw = 2

FD8

Figure 23: Convergence curves for qi,j towards qw for the second test configuration, for each value of pw and
for each value of the couple prs, psq

clearly reveals that not all topographies may be admissible for model (1) and its generalization (3).

Using the notations of section 2.2, this is reflected at the discrete level by the cancellation of sK for certain con-
figurations. Coefficient sK will cancel for a cell K such that all its neighboring cells L are such that hs,L ě hs,K .
Since sK “ 0, it prevents us from distributing water outside of K. For such a cell K, the MFD will lead to an
abrupt stop of the water flow in cell K. Moreover this prevents to recompute a correct approximation of hw,K
from the intermediate unknown rqK used in MFD algorithms, since we cannot invert rqK “ sKhw,Kηwphw,Kq.
Such configurations correspond mostly to flat areas as well as accumulation areas. We can infer that this is a
discrete indicator of what could be the weakest theoretical requirements on the topography for models (1) and
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(3) to be well posed: the absence of flat or accumulation areas. One way to circumvent those limitations is to
resort to more involved non-linear water flow models such as the one proposed in [12].

Conclusion

After introducing a general Gauckler-Manning-Strickler model, we have generalized the results of [11] to a larger
family of cell-to-cell MFD algorithms showing that their output coincides to an intermediate discrete quantity
rqK occurring when applying the TPFA finite volume scheme to discretize the GMS model. Thanks to this
reinterpretation, we have shown that following the idea of [11] one can reconstruct a consistent discrete water
flux magnitude qK from this intermediate quantity in a post-processing step. Numerical examples illustrate
that the discrete water flux magnitude is as mesh independent as one could hope for and successfully converges
to the continuous water flux magnitude. This discrete water flux magnitude qK should thus be considered as
the correct output of a MFD algorithm, instead of rqK or normalized versions of it. Then, we have extended
those results to node-to-node MFD algorithms, presenting a classification of most classical algorithms of the
literature using the GMS model as basis. The same post-processing correction was presented and numerical
example illustrate that it again successfully solve the anomalous mesh dependency issues. Finally, we have
recalled the main limitations of the GMS model, emphasizing in particular through our reinterpretation of the
MFD algorithms that flat or accumulation areas require special treatments beyond the MFD algorithms. We
believe that the post-processing correction presented here can benefit existing software/models relying on MFD
algorithms.
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