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CANCER

Metastatic cells exploit their stoichiometric niche in the
network of cancer ecosystems
Simon P. Castillo1*†, Rolando A. Rebolledo2,3, Matías Arim4, Michael E. Hochberg5,6,
Pablo A. Marquet1,6,7,8*

Metastasis is a nonrandom process with varying degrees of organotropism—specific source-acceptor seeding.
Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We
hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To
test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We
found that the topology of the network is nested and modular with scale-free degree distributions, reflecting
organotropism along a specificity/generality continuum. The variation in topology is significantly explained by
the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated
with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in
proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes
at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.
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INTRODUCTION
Migration and successful colonization of a novel organ by tumor
cells from a primary tumor is the leading cause of mortality in pa-
tients with solid tumors (1), representing one of themain challenges
for treatingmany types of cancer (2). Puzzling characteristics of me-
tastasis include organ-to-organ variation in susceptibility to metas-
tasis, and primary tumors can metastasize to different or sometimes
to specific organs—a phenomenon known as organotropism (3). To
explain metastatic diversity, Paget (4) proposed the “seed-and-soil”
hypothesis: Metastasis requires adequate microenvironmental con-
ditions in the acceptor organ or tissue (5). This explanation is anal-
ogous to the Grinnellian niche in ecology, whereby the persistence
of a species in a given habitat is a function of the prevailing environ-
mental conditions, which determine fitness (6). After Paget, Ewing
(7) suggested that metastatic spread is explained by structural
factors related to the vascular system and the proximity between
source and acceptor sites. Ewing’s hypothesis predicts that the prob-
ability of metastasis to a given organ depends on the number of ar-
riving cancer cells (propagule pressure), which depends, in turn, on
the development of primary tumors (8, 9), the pool of circulating
tumor cells (10), and blood flow (11–14) (i.e., connectivity).
Despite research over the intervening decades, it is still unclear
how general Paget’s and Ewing’s hypotheses are to explain observed

metastatic patterns (15) and how they match with the observed mo-
lecular mechanisms, e.g., metabolic reprogramming (16), associated
with metastasis (17, 18).

Colonizing new tissues requires sufficient microenvironmental
nutrients and energy throughout the cell cycle, which, in turn, re-
quires adenosine 50-triphosphate (ATP), ribonucleic acids (RNA)
and ribosomal biogenesis, proteins, and overall, phosphorus (P).
The growth rate hypothesis (19) predicts substantial P requirements
for a growing tumor and success in metastasis (20). Metastasis
would be mediated by the transport and utilization of phosphorus,
for instance, for posttranscriptional protein modification, the gen-
eration of P-rich ribosomal RNA, and ribosomal proteins (21, 22) to
meet the demands of protein synthesis required during prolifera-
tion, as it has been shown in metastatic breast cancer (23). At a mo-
lecular level, the landscape of ribosomal protein transcripts differs
across tissues (24), presenting opportunities to better understand
how phosphorus could mediate cell proliferation, metastatic
success, and organotropism.

In metabolic terms, the higher P metabolism of cancer cells is
associated with a shift from a high ATP yield oxidative phosphory-
lation to aerobic glycolysis with a higher rate of ATP production but
a lower energetic yield (Warburg effect) (25, 26). The P-mediated
enhancement of cell proliferation resulting from faster ATP produc-
tion would present competitive advantages for metastatic propa-
gules, allowing them to evade competitive exclusion from resident
cells with higher ATP yield (26) and successfully metastasize (27).
Cell proliferation is enhanced by redirecting P molecules to the syn-
thesis of phosphatases and the overexpression of enzymes such as
the reduced form of nicotinamide adenine dinucleotide phosphate
oxidase (encoded by the NOX gene family), increasing the number
of transporters and promoting angiogenesis (20, 28). As the primary
tumor grows, access to resources by tumor cells becomes increas-
ingly nonuniform, exacerbating chemical gradients and competi-
tion between cells and potentially leading to dispersal (20, 29).
We hypothesize that competitive stresses lead to both a dispersive
phenotype and the up-regulation of P metabolism for proliferation
in the otherwise unfamiliar habitat at the acceptor organ site (30).
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Furthermore, we ponder that in the source tissue, the metabolic
change associated with the neoplastic phenotype (glycolytic shift)
endows the cancer cells with the ability to invade their home
tissue (26, 31). The up-regulated P metabolism of cancer cells con-
strains metastatic proliferation, which would only be successful in
tissues where the P content is higher than the one associated with
the primary tumor. High P tissues are where the metastatic pheno-
type will still have an advantage in enhancing the metastatic cell’s
fitness. Structural factors of the vascular system affect the incidence
of metastases (11–14) since they affect the connectivity among
organs and the intensity of the flow of metastatic propagules.
Thus, topological connectivity and the varying levels of nutrients
across organs (30) create a gradient in habitat suitability jointly de-
termining the metastatic specificity between donor and acceptor
tissues. We reason that the flow and selection of cancer cells in
the metastatic network of source and acceptor organs will
produce emergent patterns of organotropism based on stoichiomet-
ric niche opportunities (32).

RESULTS
The network structure of metastases
We study large-scale patterns in metastases across 28 organs based
on 9303 published metastatic records (Fig. 1, A and B, and the Sup-
plementary Materials), which allow us to quantify organotropism
and reveal variation in the degree of generality and specificity in
both primary tumors andmetastatic sites. The topological measures
of nestedness of the metastatic network quantify the variability in
organotropism [temperature, 6.46; nestedness based on the
overlap and decreasing fill (NODF2), 47.4; and weighted-interac-
tion nestedness estimator (WINE), 0.84; Fig. 1C], which is signifi-
cantly greater than the null models (fig. S1). Analogous to habitat
patches (33), nestedness can arise as a macroscopic property (34)
when there is a gradient in suitability leading to differences in col-
onization or extinction probabilities (35). In addition, a truncated
power-law degree distribution, especially in the source organ
degree distribution (Fig. 1D and table S1), indicates a large hetero-
geneity in organ connectivity, where some organs are highly con-
nected to others through metastases, as is characteristic of
ecological networks (36), although it should be interpreted careful-
ly, considering the small size of the metastatic network. The
network also shows significant modularity, evidencing densely con-
nected groups of organs (z-score > 55, Fig. 1E and fig. S1). These
modules were observed when primary tumors occur in organs
with high cellular turnover (e.g., skin, stomach, small intestine,
and lung), forming clusters with acceptor organs having lower cel-
lular turnover but among the most metabolically active, such as the
brain, thyroids, or adrenal glands (37). This pattern indicates poten-
tial drivers associated with cell proliferation, competition, and re-
source exploitation (29).

Moreover, to study the role of the vascular system in defining
spatial relationships between organs in the sense of Ewing’s struc-
tural hypothesis, we assembled a binary vascular matrix represent-
ing spatial relationships between organs as a function of shared
main blood vessels. We tested the statistical association between
the vascular matrix and the metastatic incidence matrix (Kendall’s
rank correlation). The correlation between the matrices of metastat-
ic incidence and vascularity for 19 source/acceptor organs with
defined local vascular topology is significant but small inmagnitude

(Kendall’s rank correlation, tau = 0.126, z = 2.7, P = 0.007). These
network patterns provide evidence of a connection between physi-
ological and metastatic attributes.

Macronutrient heterogeneity, primary tumors, and
successful metastases
Successful colonization emerges from the compatibility of the met-
astatic cell’s niche and the acceptor’s microenvironmental condi-
tions (38). To test the P-driven metastatic colonization
hypothesis, we reason that a higher likelihood of colonization
would be possible in organs with resources to support higher
energy production based on the metastatic cell’s requirements
needed to fulfil the demands of a fast proliferative strategy (17, 18,
39, 40). The P content is a measure of phosphate-rich molecules,
such as high-energy molecules (ATP), membrane phospholipids,
signaling pathways, and RNA/DNA phosphodiester backbones
(21, 22), and it could give clues about an organ’s conditions to
support a demandingmetabolism. Assumingmetabolic constraints,
phosphorus content is predicted to be correlated with the incidence
of primary tumors and with metastatic potential. Specifically, in
organs with low habitat quality (low tissue P content), cancer cells
forming a primary tumor have stronger advantages due to their
metabolic shift; hence, a negative association between age-adjusted
cancer incidence rates and organ P content is expected, in a general
sense, regardless of the organ being source or acceptor of metasta-
ses. In addition, a negative relationship between tissue P content
and its number of links as a source (source degree, kS), a positive
association with acceptor degree (kA), and the P difference
(source-acceptor, ΔP) negatively correlated with the metastatic rel-
ative occurrences (number of occurrences for a source-acceptor pair
over the total number of records). To assess the habitat quality of
organs, we use literature estimates of phosphorus (P) content per
gram of organ/tissues (41) for the source and acceptor organs.
This information was available for 19 organs, involving 4934 met-
astatic records in the present database. The age-adjusted cancer in-
cidence rates in primary tumors [from (42)] have a significant
negative correlation with the organ’s P content (N = 11, Pearson’s
ρ = −0.78, 95% confidence interval: −0.941 to –0.346, P = 0.0044;
fig. S2). Regarding the metastatic cases, we found that primary
tumors in low-P organs are more invasive in terms of the number
of acceptor organs they reach, and this is manifested in a significant
negative effect of P on kS [negative binomial regression, effect esti-
mate (1,16) = −593.99, z = −2.72, P = 0.007], while no significant
effect of P content on kAwas detected [negative binomial regression,
effect estimate (1,16) = 95.03, z = 0.74, P = 0.46]. The larger the
phosphorus content in acceptor tissues in comparison to the
source (negative ΔP), the higher the relative occurrence of metasta-
sis [zero-inflated regression, R2 = 0.96, occurrences (Poisson): effect
estimate of ΔP = −0.42, SE = 0.013, z = −32.13, P < 0.001; absences
(binomial): effect estimate of ΔP = 0.61, SE = 0.103, z = 5.96, P =
2.47 × 10−9] (Fig. 2). Together, these results indicate that P limits
both primary tumor incidence and metastatic spread. In particular,
supporting the P hypothesis, a low P in the source relative to an ac-
ceptor organ may be necessary to generate metastases.

Phosphorus diversity across organs and structural
properties of the metastatic network
Last, we sought to test whether the observed phosphorus variability
across organs (Fig. 2) could contribute to explaining the
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macroscopic patterns observed in the metastasis network (Fig. 1).
We simulated six scenarios of metastases in which the probability
of metastasis depends on a subset of the observed organ’s attributes:
stem cell divisions of the source organ, blood flow through the
organ, topological-vascular constraints producing propagules filter-
ing in the liver in the case of gastrointestinal (GI) tumors, filter flow
analysis sensu (13, 14), and the source-acceptor difference in P (ΔP)
(Fig. 3A). We include stem cell divisions (cumulative stem cell di-
visions per lifetime) as a driver of the probability of having a
primary tumor in a particular organ (43) because it is a necessary
condition for a metastatic occurrence. All the other variables are
linked to the acceptor organ. Consistently, including ΔP in the sim-
ulation produces a significantly higher correlation between ob-
served and simulated metastatic relative occurrences (Fig. 3B). In
addition, the simulation scenarios with ΔP as a codeterminant of
metastasis generate nested and modular metastatic networks

similar to the observed values (Fig. 3C, figs. S3 and S4, and table
S4). This suggests that the observed phosphorus difference as a
proxy of habitat quality across organs contributes to generating ob-
served macroscopic patterns of the network, along with the com-
bined effect of stem cell divisions or propagule pressure mediated
by blood flow.

DISCUSSION
Ecological constraints and the stoichiometric niche of
metastatic cancer cells
Analogies from ecology (44, 45) can bring new perspectives to un-
derstanding metastasis. Hence, the seed and soil hypothesis has
guided our conceptual understanding of metastasis (5, 46) but at
the cost of focusing on single source-acceptor links and overempha-
sizing the attributes of the acceptor “soil” organ relative to the

Fig. 1. Themetastatic network. (A) The process of metastasis starts with tumorigenesis in a source organ andmay continuewithmetastatic growth in a distant acceptor
organ. A metastatic network recapitulates this complexity across source and acceptor organs. (B) Each entry in this illustrative metastatic network represents the number
of occurrences of successful metastases from a source to an acceptor organ. We observed that the metastatic network (N = 28 organs, 9303 records of metastases) is
nested (C), has a strongly asymmetric degree distribution (D) (lines represent a truncated power-law fit on the probability density function for kS and kA), and is modular
(E). (A) and (B) were made using BioRender (www.biorender.com).
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source organ. By integrating the structural, seed-and-soil, and
growth rate hypotheses powered by a network perspective, we
provide a more general statistical assessment emphasizing the
vital role played by tissue stoichiometry (20) in priming metastatic
propagules and defining suitable conditions for metastasis. These
microscopic molecular and cellular phenomena produce observed
macroscopic patterns of metastasis.

Analogous to findings on the influence of nutrients in species
invasions (47), our results indicate that phosphorus content is deci-
sive for metastatic progression. The difference in phosphorus
content between source and acceptor organs may act as an environ-
mental filter, with metastatic propagules being more successful in
habitats/organs with higher P content (16). Tumor cells from
low-P organs will have better chances of survival and proliferation
in acceptor tissues due to their low basal P requirements, having
substantial competitive advantages in P-rich organs due to their
faster phosphorus metabolism (29, 48, 49). Cancer onset may
emerge by chance (9), but the stoichiometric landscape could con-
figure tumor progression from the primary site and potential met-
astatic cascades and the habitat suitability present in the acceptor
tissue such as nutrients or amino acids (30), where metabolic flex-
ibility and plasticity are associated with the premetastatic niche (50).
However, the link between the metabolic shift of cancer cells and P
requirements may be more complex than we think. Recent evidence
from murine models suggests that although cancer cells in primary

Fig. 2. The phosphorus niche of metastatic cells.Metastases tend to be success-
ful when neoplastic cells migrate to an organ where P content is higher than in the
source organ (excluding from/to bone metastases; see Materials and Methods).
Metastatic relative occurrences are estimated for the 19 organs for which P
content information was available (4934 cases). Point labels are the acceptor
organ and the circle size metastatic relative occurrences. Lines are nonlinear quan-
tile regressions for the first (bottom dashed line), fifth (solid line), and ninth (top
dashed line) deciles. See an interactive plot at https://simonpcastillo.github.io/
metastaticdiaspora.

Fig. 3. Phosphorus gradients recapitulate macroscopic network properties.
(A) Six scenarios to simulate the metastatic process with the probability of metas-
tasis based on the organ’s physiological attributes (cumulative lifetime stem cell
divisions, blood flow, and phosphorus difference ΔP) and filtering of blood flow. (B)
Spearman’s correlation between observed and simulated metastatic relative oc-
currences where scenarios considering ΔP as a driver (w ΔP) have a significantly
higher correlation with the observed metastatic relative occurrences compared
to those without ΔP (w/o ΔP). ***P < 0.001, two-tailed z test. (C) Topological
metrics of nestedness and modularity for the simulated networks. Thick horizontal
lines in the boxplots indicate themedian value of 5000 simulated networks (details
in Materials and Methods). The first and third quartiles are represented by the box
edges, and vertical lines indicate 1.5 times the interquartile range. The segmented
horizontal red line in each plot corresponds to the indices calculated from the ob-
served metastatic network in each case. (A) was made using BioRender (www.
biorender.com).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Castillo et al., Sci. Adv. 9, eadi7902 (2023) 13 December 2023 4 of 9

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 13, 2024

https://simonpcastillo.github.io/metastaticdiaspora
https://simonpcastillo.github.io/metastaticdiaspora
http://www.biorender.com
http://www.biorender.com


orthotopic breast tumors showed the expected reduction in oxida-
tive metabolism, this was increased in lung metastases (51). Further
experimental studies exploring the energetic landscape across
organs, under different health and neoplastic conditions, are re-
quired to further advance our understanding of the mechanisms
underlying ATP production and its relation to P requirements in
cancer cells.

A legacy effect, however, seems to be in action such that the
priming of the stoichiometric niche of the pioneer migrant diaspora
acquired in the source tissue affects its future success of invading a
secondary organ (16), such as has been suggested for lung cancer
(17) and shown for metastatic breast cancer (39, 40). This is analo-
gous to a maternal effect, as known in evolutionary ecology,
whereby there is a causal influence of the maternal genotype or phe-
notype (i.e., the primary organ) on the offspring phenotype (i.e., the
primary tumor and its metastatic propagules). In the case of cancer,
since the original healthy cell already grows under a given phospho-
rus availability, that basal nutrient requirement is passed on, as a
constraint, to the tumor cells and their metastases.

Phosphorus dynamics have been associated with overall cancer
risk in the Swedish population (52), in lung cancer (53, 54), and
with an increased risk of lethal and high-grade prostate cancer
(55, 56). Consequently, phosphorus could be a marker for tumor
progression (22, 57, 58), and the expression of phosphorus-associ-
ated genes, e.g., ABCC11, could serve as biomarkers of metastasis.
Phosphates are also involved in protein phosphorylation (59) and
act as a mitogenic factor inducing proliferation and activating cel-
lular growth (60). Inorganic phosphate may promote the establish-
ment of cancer cells via cell-mediated angiogenesis, dependent on
the forkhead box protein C2, osteopontin, and vascular endothelial
growth factor α (61). Moreover, the vitamin D–dependent regula-
tion of cell morphology could be associated with phosphorus me-
tabolism (62, 63) and coupled with the effect of chemokines, such as
CXCL8, regulating the epithelial-mesenchymal transition (EMT)
and immune infiltration (64). Although the mechanistic pathway
between phosphorus and EMT is still unknown, the ecological stoi-
chiometry of P may contribute to an integrative framework for un-
veiling epigenetic mechanisms underpinning EMT (65, 66) and the
discovery of novel biomarkers and therapeutic targets.

Nutrient availability may affect not only growth dynamics at
metastatic sites but also the migration process (31). Cell migration
and invasion are the energy-intensive processes, requiring changes
in cytoskeleton organization, synthesis of metalloproteinases, and
microtubular remodeling during migration across the extracellular
matrix from the primary tumor microenvironment and in the ac-
ceptor organ (67–70). These increased energetic costs are reflected
in a positive correlation between migration potential and intracel-
lular ATP:adenosine 50-diphosphate ratio (68) and the selection of
migration paths that require less energy (71). Thus, it is expected
that migrating cells will follow resource gradients (70). In this
context, our data suggest that cell migration could, in particular,
be affected by gradients in key resources for ATP synthesis and
growth, such as phosphorus. Nevertheless, our data are limited,
and further tests of our predictions together with a comprehensive
understanding and prediction of metastatic routes will come once
we are able to produce systematic data on the human body ecosys-
tem, from cells, as well as organs, to epidemiological and macroeco-
logical patterns.

Ecological insights have proven helpful in the study of cancer dy-
namics (72, 73). A network approach coupled with an ecological
framework provides new insights into metastatic phenomena (74)
by studying macroscopic attributes (nestedness, degree distribution,
and modularity), which are common in other complex systems (75–
77). Harnessing niche and stoichiometric ecological theories (19,
29, 32) show that the emerging macroscopic patterns of metastatic
incidence result from local ecologies orchestrating the habitat suit-
ability for metastatic spread. Thus, ecological analysis of individuals
as ecosystems could be essential to understanding tumor biology,
evolution, and clinical progression, providing a framework for po-
tential therapeutic targets.

MATERIALS AND METHODS
All statistical analyses were made in R (version 4.1.0) using the in-
dicated packages. A comprehensive and interactive coding guide for
the full reproducibility of this work is available at https://
simonpcastillo.github.io/metastaticdiaspora. Source files are public-
ly available at Zenodo (https://doi.org/10.5281/zenodo.8408295).

Metastatic records
We studied the metastatic network by constructing a bipartite
network between organs as nodes where a primary neoplasm in a
source organ generated metastasis in an acceptor organ. In opera-
tional terms, the metastatic link is quantified as the number of me-
tastases from a source to an acceptor organ. We included 9303
metastatic occurrences from five different sources (78–82). These
medical records are from the United States, Switzerland,
Germany, and Slovenia, taken between 1885 and 2009 (view refer-
ences for years and occurrences). On the basis of Disibio and French
(78), 33 anatomical zones (hereafter,“organs”) were initially record-
ed, maintaining most of the organs present in (78). Given the con-
straints of the data, we were unable to filter by sex or other
demographic categories, but we decided to exclude organs com-
monly associated with sex (breast, prostate, penis, testicles, uterus,
vulva, vagina, and ovaries). In addition, we grouped organs as
follows to reconcile contrasting terminology between studies:
large intestine (colon, rectum, and anus), small intestine (appendix,
duodenum, and small intestines), and head and neck (neck, lip,
pharynx, salivary glands, and tonsil). After this data filtering, a
total of 28 organs and 9303 occurrences were included in the anal-
ysis on the basis of autopsies and tomographies in the case of mus-
cular cancers.

Network analysis
We define the metastatic process as a graph G = (S, A, E), where S
and A denote the set of source and acceptor organs, respectively,
and E identifies the links connecting them, which, in this case, rep-
resents occurrences. We studied the weighted network W = G = (S,
A, E) of source-acceptor organ interactions S × Awith S = A = {si, aj,
…, N}, with i, j ∈ N and N corresponds to the 28 organs. The
network is studied as a matrix where each entry represents the met-
astatic process quantified by ni,j corresponding to the number of oc-
currences of the metastatic pair source-acceptor, i.e., the number of
reported secondary growth metastases in an acceptor organ i that
originated from a primary tumor in a source organ j. For network
calculations, each cell value ni,j was transformed to a metastatic
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relative occurrence value, calculated as wi,j = ni,j/T, with T being the
total number of cases (9303 cases).

We quantify three main macroscopic attributes of the metastatic
incidence network: nestedness (76, 83), the distribution of metastat-
ic links (degree distribution) (84), and modularity (85). All indices
to estimate these attributes are available in the R package bipartite
(86). We quantify nestedness using the nestedness temperature,
NODF2, and the WINE (87). For the degree distribution, we used
a modified version of the bipartite::degreedistr() function to find
the best fit among exponential, power-law, and truncated power-
law distributions based on R2, Akaike’s information criterion, and
the Bayesian information criterion. For modularity, we compute
modularity and module detection based on the Beckett algorithm
as suggested for the case of weighted bipartite networks (85)
method available in bipartite.

To discard spurious macroscopic attributes resulting from sam-
pling effects, we compared the observed estimates against two types
of null models with 1000 replicates each [package vegan (88)]. The
first and second null models, in addition to maintaining the total
number of occurrences, keep the marginal sum of source
(method “r0_ind”) and acceptor organ (method “c0_ind”) occur-
rences, respectively. In fig. S1, we present the raw values of nested-
ness and modularity and the corresponding z-score for each model.
To compare the observed network metrics (nestedness, degree dis-
tribution, and modularity) with null models, we performed a z test
between the observed raw estimators against the estimators calculat-
ed from the null networks.

Vascular, physiological, and stoichiometric data
As an approach to evaluating Ewing’s structural hypothesis, we as-
sembled a binary vascular matrix representing spatial relationship
between organs where an occurrence denotes the existence of a
sharedmain blood vessel, hence both organs coexisting in a vascular
territory. For example, the adrenal glands share blood supply with
the esophagus and the diaphragm through the inferior phrenic ar-
teries.We tested the statistical association between the resulting vas-
cular matrix and the metastatic incidence matrix using Kendall’s
rank correlation.

Physiological data were only available for 21 of the 28 organs
(table S2). We evaluate the hypothesis that cancer metastatic inci-
dence of primary tumors in source organs and the source organ
degree are associated with the cumulative number of stem cell divi-
sions in a lifetime. In the case of acceptor organs, we evaluated
whether the blood flux (in milliliters per minute per gram) could
have a significant effect on the success of neoplastic propagules in-
vading acceptor tissue, i.e., explaining acceptor metastatic incidence
and the acceptor organ degree.

To assess the seed and soil hypothesis and unveil the effect of
stoichiometry (organ nutrient composition) on metastatic inci-
dence, we obtained literature-based estimates of macronutrient
content (in grams) for a subset of organs adjusted by organ size,
hereafter organ’s mass-adjusted P content, abbreviated as P.g
(grams of P over grams organ’s mass; n = 19; table S3). Hence, we
built an n × n subnetwork with the source-acceptor difference in the
nutrients in each entry (ΔP = P.gsource – P.gacceptor). To quantitative-
ly assess the pattern, we performed binomial regressions between
the source or acceptor organ’s degree as a function of the organ’s
mass-adjusted P content. In addition, we evaluated the effect of
ΔP on occurrences and absences of metastases using a zero-inflated

regression model with a Poisson distribution (log link) for occur-
rences and a binomial distribution (logit link) for absences,
package pscl (89). For visualization, we computed nonlinear quan-
tile regression for the first, fifth, and ninth deciles.

Incidence of primary tumors data
To evaluate the association between phosphorus content and the
incidence of primary tumors, we matched the organ’s P.g records
with age-adjusted cancer incidence for N = 11 organs obtained
from the Surveillance, Epidemiology, and End Results Program
for the years 1999 to 2003, including males and females (42).
After logarithmic transformation on both variables, we used Pear-
son’s correlation to test the strength of the association.

Simulated metastases and emerging properties
To evaluate whether the observed physiological and stoichiometric
relationships could reproduce the observed network structure in
terms of nestedness andmodularity, we simulate four different met-
astatic scenarios (see below), with 1000 replicates for each scenario.
The number of organs in each scenario corresponds to the data
availability (table S3). For each simulated metastatic network, we
run 10,000 random metastatic events. A metastatic link is defined
by the probability of metastasis Pj,i from a source organ i ∈ S to
an acceptor organ j ∈ A depending on the following:

Scenario I: The lifetime cumulative number of stem cell divisions
in the source organ i (cumlscdi)

Prj;i ¼
cumlscdi

XS

i¼1
cumlscdi

Scenario II: Scenario I multiplied by the normalized difference in
phosphorus content between the corresponding source and accep-
tor pair

Prj;i ¼
cumlscdi

XS

i¼1
cumlscdi

�
ΔPj;i

XA

i¼1
ΔPj;i

Scenario III: The blood flow (flow) to an acceptor organ j

Prj;i ¼
flowj

XA

j¼1
flowj

Scenario IV: Scenario III multiplied by the difference in normal-
ized phosphorus content between the corresponding source and ac-
ceptor pair

Prj;i ¼
flowj

XA

j¼1
flowj

�
ΔPj;i

XA

i¼1
ΔPj;i

To account for blood filtering in the liver coming from GI
organs, two other scenarios consider that when by chance a GI
primary tumor and nonliver organs are chosen during the simula-
tion, the probability of metastasis Prj,i is halved [filter flow sensu
(13)]. Then, scenarios V and VI are the same as scenarios III and
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IV, respectively, except for primary gastric tumors which Pj,i is
halved because of a filtering of blood in the liver.

Since P can take negative values, we transformed it by adding the
absolute value of min(ΔP). The ratio ΔPj;i

XA

i¼1
ΔPj;i

was then calculated

across acceptor organs for each source. We did not simulate a
network scenario with all three factors (lscdcum, flow, and ΔP) in-
cluded because of only five organs with records for all these
parameters.

For each simulated network, metastatic relative occurrences were
calculated as the number of successful metastatic links for a source-
acceptor pair over the total number of links. In addition, topological
descriptors of nestedness (temperature, NODF, and WINE) and
modularity were calculated for each simulated network. We com-
pared these metrics from the simulated metastases with the ob-
served topological descriptors recalculated on the basis of the
organs considered in the simulation. We computed Pearson’s cor-
relation between the twomatrices to compare the observed and sim-
ulated metastatic incidence matrix for each case. Last, we compared
the observed nestedness and modularity indices with values calcu-
lated for the simulated networks between scenarios for which we
obtained mean/median values and the range.

Supplementary Materials
This PDF file includes:
Fig. S1 to S4
Tables S1 to S4
References

REFERENCES AND NOTES
1. H. Dillekås, M. S. Rogers, O. Straume, Are 90% of deaths from cancer caused bymetastases?

Cancer Med. 8, 5574–5576 (2019).
2. D. Hanahan, R. A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000).
3. Y. Gao, I. Bado, H. Wang, W. Zhang, J. M. Rosen, X. H.-F. Zhang, Metastasis organotropism:

Redefining the congenial soil. Dev. Cell 49, 375–391 (2019).
4. S. Paget, The distribution of secondary growths in cancer of the breast. The Lancet. 133,

571–573 (1889).
5. A. E. de Groot, S. Roy, J. S. Brown, K. J. Pienta, S. R. Amend, Revisiting seed and soil: Ex-

amining the primary tumor and cancer cell foraging in metastasis. Mol. Cancer Res. 15,
361–370 (2017).

6. J. Grinnell, Field tests of theories concerning distributional control. Am. Nat. 51,
115–128 (1917).

7. J. Ewing, Neoplastic diseases, a treatise on tumors. Can. Med. Assoc. J. 14, 466 (1924).
8. J. Massagué, K. Ganesh, Metastasis-initiating cells and ecosystems. Cancer Discov. 11,

971–994 (2021).
9. C. Tomasetti, R. Durrett, M. Kimmel, A. Lambert, G. Parmigiani, A. Zauber, B. Vogelstein,

Role of stem-cell divisions in cancer risk. Nature 548, E13–E14 (2017).
10. J. Massagué, A. C. Obenauf, Metastatic colonization by circulating tumour cells. Nature

529, 298–306 (2016).
11. I. J. Fidler, The organ microenvironment and cancer metastasis. Differentiation 70,

498–505 (2002).
12. F. Font-Clos, S. Zapperi, C. A. M. La Porta, Blood flow contributions to cancer metastasis.

iScience 23, 101073 (2020).
13. J. G. Scott, A. G. Fletcher, P. K. Maini, A. R. A. Anderson, P. Gerlee, A filter-flow perspective of

haematogenous metastasis offers a non-genetic paradigm for personalised cancer
therapy. Eur. J. Cancer 50, 3068–3075 (2014).

14. J. Scott, P. Kuhn, A. R. A. Anderson, Unifying metastasis— Integrating intravasation, cir-
culation and end-organ colonization. Nat. Rev. Cancer 12, 445–446 (2012).

15. A. S. Azevedo, G. Follain, S. Patthabhiraman, S. Harlepp, J. G. Goetz, Metastasis of circu-
lating tumor cells: Favorable soil or suitable biomechanics, or both? Cell Adh. Migr. 9,
345–356 (2015).

16. T. Schild, V. Low, J. Blenis, A. P. Gomes, Unique metabolic adaptations dictate distal organ-
specific metastatic colonization. Cancer Cell 33, 347–354 (2018).

17. C. Martínez-Ruiz, J. R. M. Black, C. Puttick, M. S. Hill, J. Demeulemeester, E. Larose Cadieux,
K. Thol, T. P. Jones, S. Veeriah, C. Naceur-Lombardelli, A. Toncheva, P. Prymas, A. Rowan,
S. Ward, L. Cubitt, F. Athanasopoulou, O. Pich, T. Karasaki, D. A. Moore, R. Salgado,
E. Colliver, C. Castignani, M. Dietzen, A. Huebner, M. Al Bakir, M. Tanić, T. B. K. Watkins,
E. L. Lim, A. M. Al-Rashed, D. Lang, J. Clements, D. E. Cook, R. Rosenthal, G. A. Wilson,
A. M. Frankell, S. de Carné Trécesson, P. East, N. Kanu, K. Litchfield, N. J. Birkbak,
A. Hackshaw, S. Beck, P. Van Loo, M. Jamal-Hanjani; TRACERx Consortium, C. Swanton,
N. McGranahan, Genomic–transcriptomic evolution in lung cancer and metastasis. Nature
616, 543–552 (2023).

18. M. Al Bakir, A. Huebner, C. Martínez-Ruiz, K. Grigoriadis, T. B. K. Watkins, O. Pich, D. A. Moore,
S. Veeriah, S. Ward, J. Laycock, D. Johnson, A. Rowan, M. Razaq, M. Akther, C. Naceur-
Lombardelli, P. Prymas, A. Toncheva, S. Hessey, M. Dietzen, E. Colliver, A. M. Frankell,
A. Bunkum, E. L. Lim, T. Karasaki, C. Abbosh, C. T. Hiley, M. S. Hill, D. E. Cook, G. A. Wilson,
R. Salgado, E. Nye, R. K. Stone, D. A. Fennell, G. Price, K. M. Kerr, B. Naidu, G. Middleton,
Y. Summers, C. R. Lindsay, F. H. Blackhall, J. Cave, K. G. Blyth, A. Nair, A. Ahmed, M. N. Taylor,
A. J. Procter, M. Falzon, D. Lawrence, N. Navani, R. M. Thakrar, S. M. Janes, D. Papadatos-
Pastos, M. D. Forster, S. M. Lee, T. Ahmad, S. A. Quezada, K. S. Peggs, P. Van Loo, C. Dive,
A. Hackshaw, N. J. Birkbak, S. Zaccaria; TRACERx Consortium, M. Jamal-Hanjani,
N. McGranahan, C. Swanton, The evolution of non-small cell lung cancer metastases in
TRACERx. Nature 616, 534–542 (2023).

19. J. J. Elser, M.M. Kyle, M. S. Smith, J. D. Nagy, Biological stoichiometry in human cancer. PLOS
ONE 2, e1028 (2007).

20. C. C. C. R. de Carvalho, M. J. Caramujo, Tumour metastasis as an adaptation of tumour cells
to fulfil their phosphorus requirements. Med. Hypotheses 78, 664–667 (2012).

21. N. Hernando, K. Gagnon, E. Lederer, Phosphate transport in epithelial and nonepithelial
tissue. Physiol. Rev. 101, 1–35 (2021).

22. M. A. Lacerda-Abreu, T. Russo-Abrahão, R. de Queiroz Monteiro, F. D. Rumjanek, J. R. Meyer-
Fernandes, Inorganic phosphate transporters in cancer: Functions, molecular mechanisms
and possible clinical applications. Biochim. Biophys. Acta Rev. Cancer 1870,
291–298 (2018).

23. R. Y. Ebright, S. Lee, B. S. Wittner, K. L. Niederhoffer, B. T. Nicholson, A. Bardia, S. Truesdell,
D. F. Wiley, B. Wesley, S. Li, A. Mai, N. Aceto, N. Vincent-Jordan, A. Szabolcs, B. Chirn,
J. Kreuzer, V. Comaills, M. Kalinich, W. Haas, D. T. Ting, M. Toner, S. Vasudevan, D. A. Haber,
S. Maheswaran, D. S. Micalizzi, Deregulation of ribosomal protein expression and trans-
lation promotes breast cancer metastasis. Science 367, 1468–1473 (2020).

24. J. M. Dolezal, A. P. Dash, E. V. Prochownik, Diagnostic and prognostic implications of ri-
bosomal protein transcript expression patterns in human cancers. BMC Cancer 18,
275 (2018).

25. P. Vaupel, H. Schmidberger, A. Mayer, The Warburg effect: Essential part of metabolic
reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 95,
912–919 (2019).

26. T. Pfeiffer, S. Schuster, S. Bonhoeffer, Cooperation and competition in the evolution of ATP-
producing pathways. Science 292, 504–507 (2001).

27. J. Chen, K. Sprouffske, Q. Huang, C. C. Maley, Solving the puzzle of metastasis: The evo-
lution of cell migration in neoplasms. PLOS ONE 6, e17933 (2011).

28. W. Lu, Y. Hu, G. Chen, Z. Chen, H. Zhang, F. Wang, L. Feng, H. Pelicano, H. Wang,
M. J. Keating, J. Liu, W. McKeehan, H. Wang, Y. Luo, P. Huang, Novel role of NOX in sup-
porting aerobic glycolysis in cancer cells withmitochondrial dysfunction and as a potential
target for cancer therapy. PLoS Biol. 10, e1001326 (2012).

29. K. Kim, H. Huang, P. K. Parida, L. He, M. Marquez-Palencia, T. C. Reese, P. Kapur, J. Brugarolas,
R. A. Brekken, S. Malladi, Cell competition shapes metastatic latency and relapse. Cancer
Discov. 13, 85–97 (2023).

30. G. Bergers, S.-M. Fendt, The metabolism of cancer cells during metastasis. Nat. Rev. Cancer
21, 162–180 (2021).

31. I. J. Bettum, S. S. Gorad, A. Barkovskaya, S. Pettersen, S. A. Moestue, K. Vasiliauskaite,
E. Tenstad, T. Øyjord, Ø. Risa, V. Nygaard, G. M. Mælandsmo, L. Prasmickaite, Metabolic
reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett.
366, 71–83 (2015).

32. A. L. González, O. Dézerald, P. A. Marquet, G. Q. Romero, D. S. Srivastava, The multidi-
mensional stoichiometric niche. Front. Ecol. Evol. 5 10.3389/fevo.2017.00110, (2017).

33. J. E. Keymer, P. A. Marquet, The complexity of cancer ecosystems, in Frontiers in Ecology,
Evolution and Complexity, M. Benitez, O. Miramontes, A. Valiente-Banuet, Eds. (CopIt-
arXives, 2014), p. 21.

34. M. S. Mariani, Z.-M. Ren, J. Bascompte, C. J. Tessone, Nestedness in complex networks:
Observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Castillo et al., Sci. Adv. 9, eadi7902 (2023) 13 December 2023 7 of 9

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 13, 2024

https://doi.org/10.3389/fevo.2017.00110


35. B. D. Patterson, On the temporal development of nested subset patterns of species
composition. Oikos 59, 330–342 (1990).

36. P. Jordano, J. Bascompte, J. M. Olesen, Invariant properties in coevolutionary networks of
plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).

37. D. M. Richardson, P. Pyšek, Plant invasions: Merging the concepts of species invasiveness
and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).

38. J. E. Keymer, P. A. Marquet, J. X. Velasco-Hernández, S. A. Levin, A. E. L. Fahrig, Extinction
thresholds and metapopulation persistence in dynamic landscapes. Am. Nat. 156,
478–494 (2000).

39. M. Fiorillo, B. Ózsvári, F. Sotgia, M. P. Lisanti, High ATP production fuels cancer drug re-
sistance and metastasis: Implications for mitochondrial ATP depletion therapy. Front.
Oncol. 11, 740720 (2021).

40. M. B. Jekabsons, M. Merrell, A. G. Skubiz, N. Thornton, S. Milasta, D. Green, T. Chen, Y.-
H. Wang, B. Avula, I. A. Khan, Y.-D. Zhou, Breast cancer cells that preferentially metastasize
to lung or bone are more glycolytic, synthesize serine at greater rates, and consume less
ATP and NADPH than parent MDA-MB-231 cells. Cancer Metab. 11, 4 (2023).

41. “Report of the task group on reference man,” ICRP Publication (no. 23), (Pergamon
Press, 1975.

42. M. J. Hayat, N. Howlader, M. E. Reichman, B. K. Edwards, Cancer statistics, trends, and
multiple primary cancer analyses from the surveillance, epidemiology, and end results
(SEER) program. Oncologist 12, 20–37 (2007).

43. C. Tomasetti, B. Vogelstein, Variation in cancer risk among tissues can be explained by the
number of stem cell divisions. Science 347, 78–81 (2015).

44. S. R. Amend, K. J. Pienta, Ecology meets cancer biology: The cancer swamp promotes the
lethal cancer phenotype. Oncotarget 6, 9669–9678 (2015).

45. S. R. Amend, R. A. Gatenby, K. J. Pienta, J. S. Brown, Cancer foraging ecology: Diet choice,
patch use, and habitat selection of cancer cells. Curr. Pathobiol. Rep. 6, 209–218 (2018).

46. R. R. Langley, I. J. Fidler, The seed and soil hypothesis revisited—The role of tumor-stroma
interactions in metastasis to different organs. Int. J. Cancer 128, 2527–2535 (2011).

47. A. L. González, J. S. Kominoski, M. Danger, S. Ishida, N. Iwai, A. Rubach, Can ecological
stoichiometry help explain patterns of biological invasions? Oikos 119, 779–790 (2010).

48. S. Jones, W.-D. Chen, G. Parmigiani, F. Diehl, N. Beerenwinkel, T. Antal, A. Traulsen,
M. A. Nowak, C. Siegel, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, J. Willis, S. D. Markowitz,
Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl. Acad. Sci.
U.S.A. 105, 4283–4288 (2008).

49. S. Yachida, S. Jones, I. Bozic, T. Antal, R. Leary, B. Fu, M. Kamiyama, R. H. Hruban,
J. R. Eshleman, M. A. Nowak, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, C. A. Iacobuzio-
Donahue, Distantmetastasis occurs late during the genetic evolution of pancreatic cancer.
Nature 467, 1114–1117 (2010).

50. G. Doglioni, S. Parik, S.-M. Fendt, Interactions in the (pre)metastatic niche support me-
tastasis formation. Oncology 9, 219 (2019).

51. C. R. Bartman, D. R. Weilandt, Y. Shen, W. D. Lee, Y. Han, T. TeSlaa, C. S. R. Jankowski,
L. Samarah, N. R. Park, V. da Silva-Diz, M. Aleksandrova, Y. Gultekin, A. Marishta, L. Wang,
L. Yang, A. Roichman, V. Bhatt, T. Lan, Z. Hu, X. Xing, W. Lu, S. Davidson, M. Wühr,
M. G. Vander Heiden, D. Herranz, J. Y. Guo, Y. Kang, J. D. Rabinowitz, Slow TCA flux and ATP
production in primary solid tumours but not metastases. Nature 614, 349–357 (2023).

52. W.Wulaningsih, K. Michaelsson, H. Garmo, N. Hammar, I. Jungner, G. Walldius, L. Holmberg,
M. Van Hemelrijck, Inorganic phosphate and the risk of cancer in the Swedish AMORIS
study. BMC Cancer 13, 257 (2013).

53. H. Jin, C.-X. Xu, H.-T. Lim, S.-J. Park, J.-Y. Shin, Y.-S. Chung, S.-C. Park, S.-H. Chang, H.-J. Youn,
K.-H. Lee, Y.-S. Lee, Y.-C. Ha, C.-H. Chae, G. R. Beck, M.-H. Cho, High dietary inorganic
phosphate increases lung tumorigenesis and alters Akt signaling. Am. J. Respir. Crit. Care
Med. 179, 59–68 (2009).

54. C. Friedrich, S. Schallenberg, M. Kirchner, M. Ziehm, S. Niquet, M. Haji, C. Beier, J. Neudecker,
F. Klauschen, P. Mertins, Comprehensive micro-scaled proteome and phosphoproteome
characterization of archived retrospective cancer repositories. Nat. Commun. 12,
3576 (2021).

55. K. M. Wilson, I. M. Shui, L. A. Mucci, E. Giovannucci, Calcium and phosphorus intake and
prostate cancer risk: A 24-y follow-up study. Am. J. Clin. Nutr. 101, 173–183 (2015).

56. J. M. Drake, E. O. Paull, N. A. Graham, J. K. Lee, B. A. Smith, B. Titz, T. Stoyanova,
C. M. Faltermeier, V. Uzunangelov, D. E. Carlin, D. T. Fleming, C. K. Wong, Y. Newton,
S. Sudha, A. A. Vashisht, J. Huang, J. A. Wohlschlegel, T. G. Graeber, O. N. Witte, J. M. Stuart,
Phosphoproteome integration reveals patient-specific networks in prostate cancer. Cell
166, 1041–1054 (2016).

57. A. A. Bobko, T. D. Eubank, B. Driesschaert, I. Dhimitruka, J. Evans, R. Mohammad,
E. E. Tchekneva, M. M. Dikov, V. V. Khramtsov, Interstitial inorganic phosphate as a tumor
microenvironment marker for tumor progression. Sci. Rep. 7, 41233 (2017).

58. S. Venturelli, C. Leischner, T. Helling, O. Renner, M. Burkard, L. Marongiu, Minerals and
cancer: Overview of the possible diagnostic value. Cancer 14, 1256 (2022).

59. H. C. Harsha, A. Pandey, Phosphoproteomics in cancer. Mol. Oncol. 4, 482–495 (2010).
60. R. B. Brown, M. S. Razzaque, Phosphate toxicity and tumorigenesis. Biochim. Biophys. Acta

Rev. Cancer 1869, 303–309 (2018).
61. Y. Lin, K. E. McKinnon, S. W. Ha, G. R. Beck, Inorganic phosphate induces cancer cell me-

diated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteo-
pontin expression. Mol. Carcinog. 54, 926–934 (2015).

62. G. Jacquillet, R. J. Unwin, Physiological regulation of phosphate by vitamin D, parathyroid
hormone (PTH) and phosphate (Pi). Pflugers Arch. 471, 83–98 (2019).

63. A. Fernández-Barral, P. Bustamante-Madrid, G. Ferrer-Mayorga, A. Barbáchano, M. J. Larriba,
A. Muñoz, Vitamin D effects on cell differentiation and stemness in cancer. Cancer 12,
2413 (2020).

64. S. Singh, A. P. Singh, B. Sharma, L. B. Owen, R. K. Singh, CXCL8 and its cognate receptors in
melanoma progression and metastasis. Future Oncol. 6, 111–116 (2010).

65. Y.-T. Lin, K.-J. Wu, Epigenetic regulation of epithelial-mesenchymal transition: Focusing on
hypoxia and TGF-β signaling. J. Biomed. Sci. 27, 39 (2020).

66. R. C. J. D’Souza, A. M. Knittle, N. Nagaraj, M. van Dinther, C. Choudhary, P. ten Dijke,
M. Mann, K. Sharma, Time-resolved dissection of early phosphoproteome and ensuing
proteome changes in response to TGF-β. Sci. Signal. 7, rs5 (2014).

67. L. A. Liotta, W. G. Stetler-Stevenson, Metalloproteinases and cancer invasion. Semin. Cancer
Biol. 1, 99–106 (1990).

68. M. R. Zanotelli, Z. E. Goldblatt, J. P. Miller, F. Bordeleau, J. Li, J. A. VanderBurgh, M. C. Lampi,
M. R. King, C. A. Reinhart-King, Regulation of ATP utilization during metastatic cell mi-
gration by collagen architecture. Mol. Biol. Cell 29, 1–9 (2018).

69. M. R. Zanotelli, J. Zhang, C. A. Reinhart-King, Mechanoresponsivemetabolism in cancer cell
migration and metastasis. Cell Metab. 33, 1307–1321 (2021).

70. L. Liu, G. Duclos, B. Sun, J. Lee, A. Wu, Y. Kam, E. D. Sontag, H. A. Stone, J. C. Sturm,
R. A. Gatenby, R. H. Austin, Minimization of thermodynamic costs in cancer cell invasion.
Proc. Natl. Acad. Sci. 110, 1686–1691 (2013).

71. M. R. Zanotelli, A. Rahman-Zaman, J. A. VanderBurgh, P. V. Taufalele, A. Jain, D. Erickson,
F. Bordeleau, C. A. Reinhart-King, Energetic costs regulated by cell mechanics and confi-
nement are predictive of migration path during decision-making. Nat. Commun. 10,
4185 (2019).

72. M. E. Hochberg, R. J. Noble, A framework for how environment contributes to cancer risk.
Ecol. Lett. 20, 117–134 (2017).

73. C. C. Maley, A. Aktipis, T. A. Graham, A. Sottoriva, A. M. Boddy, M. Janiszewska, A. S. Silva,
M. Gerlinger, Y. Yuan, K. J. Pienta, K. S. Anderson, R. Gatenby, C. Swanton, D. Posada, C.-
I. Wu, J. D. Schiffman, E. S. Hwang, K. Polyak, A. R. A. Anderson, J. S. Brown, M. Greaves,
D. Shibata, Classifying the evolutionary and ecological features of neoplasms. Nat. Rev.
Cancer 17, 605–619 (2017).

74. L. L. Chen, N. Blumm, N. A. Christakis, A.-L. Barabási, T. S. Deisboeck, Cancer metastasis
networks and the prediction of progression patterns. Br. J. Cancer 101, 749–758 (2009).

75. A.-L. Barabási, Scale-free networks: A decade and beyond. Science 325, 412–413 (2009).
76. M. Cantor, M. M. Pires, F. M. D. Marquitti, R. L. G. Raimundo, E. Sebastián-González,

P. P. Coltri, S. I. Perez, D. R. Barneche, D. Y. C. Brandt, K. Nunes, F. G. Daura-Jorge, S. R. Floeter,
P. R. Guimarães Jr., Nestedness across biological scales. PLOS ONE 12, e0171691 (2017).

77. M. A. Fortuna, D. B. Stouffer, J. M. Olesen, P. Jordano, D. Mouillot, B. R. Krasnov, R. Poulin,
J. Bascompte, Nestedness versus modularity in ecological networks: Two sides of the same
coin? J. Anim. Ecol. 79, 811–817 (2010).

78. G. Disibio, S. W. French, Metastatic patterns of cancers: Results from a large autopsy study.
Arch. Pathol. Lab. Med. 132, 931–939 (2008).

79. J. K. Patel, M. S. Didolkar, J. W. Pickren, R. H. Moore, Metastatic pattern of malignant
melanoma. Am. J. Surg. 135, 807–810 (1978).

80. H. L. Abrams, R. Spiro, N. Goldstein, Metastases in carcinoma. Analysis of 1000 autopsied
cases. Cancer 3, 74–85 (1950).

81. A. B. Shinagare, N. H. Ramaiya, J. P. Jagannathan, F. M. Fennessy, M.-E. Taplin, A. D. Van den
Abbeele, Metastatic pattern of bladder cancer: Correlation with the characteristics of the
primary tumor. Am. J. Roentgenol. 196, 117–122 (2011).

82. E. S. Nussbaum, H. R. Djalilian, K. H. Cho, W. A. Hall, Brainmetastases: Histology, multiplicity,
surgery, and survival. Cancer 78, 1781–1788 (1996).

83. B. D. Patterson, W. Atmar, Nested subsets and the structure of insular mammalian faunas
and archipelagos. Biol. J. Linn. Soc. 28, 65–82 (1986).

84. A. Clauset, C. R. Shalizi, M. E. J. Newman, Power-law distributions in empirical data. SIAM
Rev. 51, 661–703 (2009).

85. S. J. Beckett, Improved community detection in weighted bipartite networks. R. Soc. Open
Sci. 3, 140536 (2016).

86. C. Dormann, B. Gruber, J. Fründ, Introducing the bipartite package: Analysing ecological
networks. R News. 8, 8–11 (2008).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Castillo et al., Sci. Adv. 9, eadi7902 (2023) 13 December 2023 8 of 9

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 13, 2024



87. J. Galeano, J. M. Pastor, J. M. Iriondo, Weighted-interaction nestedness estimator (WINE): A
new estimator to calculate over frequency matrices. Environ. Model. Software 24,
1342–1346 (2009).

88. J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O’hara, G. L. Simpson,
P. Solymos, M. H. H. Stevens, H. Wagner, Vegan: Community Ecology Package, version. 2,
(2013) p. 1–295; https://cran.r-project.org/web/packages/vegan/index.html.

89. A. Zeileis, C. Kleiber, S. Jackman, Regression models for count data in R. J. Stat. Softw. 27,
1–25 (2008).

90. J. Valentin, Basic anatomical and physiological data for use in radiological protection:
Reference values: ICRP Publication 89. Ann. ICRP 32, 1–277 (2002).

Acknowledgments: Several people provided discussion, pointed out dataset sets and
provided statistical advice. Among them, we thank C. Maley, D. Gordon, J. Tylianakis, N. Roth,
E. Tomas-Bort, and M. Yilales. We thank the constructive criticism made by the reviewers. The
corresponding authors thank the space provided by The Santa Fe Institute to complete this
work. Funding: This work was supported by National Agency of Research and Development of
Chile ANID-Chile, grant PFCHA/DocNac/21170089 (to S.P.C.); the Fondation ARC pour la
recherche sur le cancer: programmes labellisés 2021, grant ARCPGA12021010002850_3574 (to
M.E.H.); National Agency of Research and Development of Chile ANID-Chile, Fondo de
Desarrollo Científico y Tecnológico (FONDECYT), “The emergence of ecologies through

metabolic cooperation and recursive organization,” grants AFB 17008 and ANID-1200925 (to P.
A.M.); National Agency of Research and Development of Chile ANID-Chile, BASAL funds for
centers of excellence from ANID-Chile, Centro de Modelamiento Matemático (CMM), grants
ACE210010 and FB210005 (to P.A.M.); National Agency of Research and Development of Chile
ANID-Chile Centres of Excellence, grant ACE210010 (to P.A.M.). Author contributions:
Conceptualization: S.P.C., P.A.M., and ME.H. Methodology: S.P.C., P.A.M., and R.A.R. Analyses: S.P.
C., P.A.M., M.A., M.E.H., and R.A.R. Visualization: S.P.C. Biomedical advice: R.A.R. Writing—initial
draft: S.P.C. and P.A.M. Writing—final draft: All authors. Competing interests: The authors
declare that they have no competing interests. Data and materials availability: All data
needed to evaluate the conclusions in the paper are present in the paper and/or the
Supplementary Materials. Source files and codes are publicly available at Zenodo (https://doi.
org/10.5281/zenodo.8408295). A comprehensive and interactive coding guide for the
complete reproducibility of this work is available https://simonpcastillo.github.io/
metastaticdiaspora.

Submitted 17 May 2023
Accepted 10 November 2023
Published 13 December 2023
10.1126/sciadv.adi7902

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Castillo et al., Sci. Adv. 9, eadi7902 (2023) 13 December 2023 9 of 9

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 13, 2024

https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.5281/zenodo.8408295
https://doi.org/10.5281/zenodo.8408295
https://simonpcastillo.github.io/metastaticdiaspora
https://simonpcastillo.github.io/metastaticdiaspora

	INTRODUCTION
	RESULTS
	The network structure of metastases
	Macronutrient heterogeneity, primary tumors, and successful metastases
	Phosphorus diversity across organs and structural properties of the metastatic network

	DISCUSSION
	Ecological constraints and the stoichiometric niche of metastatic cancer cells

	MATERIALS AND METHODS
	Metastatic records
	Network analysis
	Vascular, physiological, and stoichiometric data
	Incidence of primary tumors data
	Simulated metastases and emerging properties

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

