
HAL Id: hal-04734357
https://hal.science/hal-04734357v1

Submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blastocystis occurrence and subtype diversity in
European wild boar (Sus scrofa) from the Iberian

Peninsula
Pamela C. Köster, Ana M. Figueiredo, Jenny G. Maloney, Alejandro Dashti,

Begoña Bailo, Rita T. Torres, Carlos Fonseca, Atle Mysterud, Miguel Á.
Habela, Antonio Rivero-Juarez, et al.

To cite this version:
Pamela C. Köster, Ana M. Figueiredo, Jenny G. Maloney, Alejandro Dashti, Begoña Bailo, et al..
Blastocystis occurrence and subtype diversity in European wild boar (Sus scrofa) from the Iberian
Peninsula. Veterinary Research, 2024, 55 (1), pp.133. �10.1186/s13567-024-01385-9�. �hal-04734357�

https://hal.science/hal-04734357v1
https://hal.archives-ouvertes.fr


Köster et al. Veterinary Research          (2024) 55:133  
https://doi.org/10.1186/s13567-024-01385-9

RESEARCH ARTICLE
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from the Iberian Peninsula
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Abstract 

The ongoing increase in wild boar populations across Europe has fostered human–wildlife conflicts, includ‑
ing the transmission of emerging pathogens with zoonotic importance. Blastocystis is a ubiquitous, faecal-oral 
transmitted protist that can cause gastrointestinal illnesses and is observed in humans and animals worldwide. The 
role of wildlife in the epidemiology of Blastocystis is insufficiently understood. Thus, we investigated the occurrence 
and subtype diversity of Blastocystis in free-ranging wild boars from the Iberian Peninsula using conventional PCR 
and next-generation amplicon sequencing of a fragment of the ssu RNA gene. A total of 459 wild boar faecal samples 
were collected across Spain (n = 360) and Portugal (n = 99) between 2014 and 2021. Blastocystis was present in 15.3% 
(70/459; 95% CI 12.1–18.9) of the wild boars analysed, and its occurrence was significantly higher in Portugal (34.3%, 
34/99; 95% CI 25.1–44.6) than in Spain (10.0%, 36/360; 95% CI 7.1–13.6). Seven Blastocystis subtypes (ST5, ST10b, ST13–
ST15, ST24b, and ST43) were detected among the surveyed wild boar populations, with greater variability detected 
in Portuguese samples. ST5 was identified in all the Blastocystis-positive animals, whereas 14.3% of them harboured 
ST mixed colonisations. Our results demonstrate that Blastocystis ST5 is particularly adapted to infect wild boars. The 
additional identification of zoonotic STs reinforces the role of wild boars as spreaders of zoonotic infections with pub‑
lic health significance.
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Introduction
The wild boar (Sus scrofa) is widely distributed in Eura-
sia, from Europe to the Far East, including Southeast 
Asia, and extends as far as North Africa, South Amer-
ica, and the USA [1]. In Europe, a remarkable increase 
in wild boar populations has been recorded in the past 
four decades as a consequence of its high reproduc-
tive rate, supplementary feeding, lack of large predators, 
land abandonment, shrub encroachment, reduction in 
the number of human residents in rural areas, intensi-
fication of crop production, and changes from harsh to 
milder winters [2, 3]. Wild boars show a remarkable dis-
persion ability (more than 45  km on average) [4], colo-
nising an astonishing variety of habitats ranging from 
the timberline to large cities [5]. Indeed, the wild boar is 
considered the second most abundant wild ungulate spe-
cies in Europe, with more than three million individuals 
estimated [6, 7]. Overabundant and expanding wild boar 
populations increase human‒wildlife conflicts, includ-
ing traffic accidents [8, 9], crop damage [10], threats to 
sensitive areas and species [11, 12], and the transmission 
of pathogens at the sylvatic‒domestic (including live-
stock and human) interface [13–15]. The current world-
wide distribution and apparent population burgeoning 
and geographic expansion of wild boars have prompted 
the consideration of this species as a relevant potential 
source for emerging animal diseases (some of which are 
zoonotic), including animal tuberculosis (TB) [16, 17] 
and re-emerging African swine fever [18], Aujeszky’s dis-
ease virus [19], hepatitis E virus, bacteria (e.g., Brucella 
spp., Erysipelothrix rhusiopathiae), and parasitic infec-
tions [13, 14, 20].

The wild boar is one of the most hunted species in 
Europe, representing a potential source of zoonotic 
human infections, such as intestinal parasites, that are 
faecal- orally transmitted indirectly via ingestion of water 
or food contaminated with faecal material or directly via 
contact (through carcass handling) with infected ani-
mals. The increasing urbanisation of wild boar popula-
tions may also raise public health concerns about parasite 
cross-species transmission at the wild boar–domestic 
animal–human health interface. Among them, Blasto-
cystis, a member of the Stramenopiles, is a ubiquitous 
protist that infects/colonises a broad range of human 
and nonhuman animal hosts [21]. Although Blastocystis 
is one of the most common microeukaryotes found in 
the human gastrointestinal tract [22], the clinical signifi-
cance of Blastocystis is not fully understood. This protist 
has often been described as an asymptomatic coloniser 
in large human populations [23]. Furthermore, evidence 
from recent metagenomic studies suggests that Blasto-
cystis may be part of the healthy gut microbiota in most 
circumstances [24–27].

Blastocystis is a highly pleomorphic microorganism 
with wide genetic diversity. On the basis of variabil-
ity within the small subunit ribosomal RNA (ssu rRNA) 
gene, Blastocystis can be divided into 44 subtypes (STs) 
(ST1–ST17, ST21, and ST23–ST48) [28–33]. Among 
the 16 subtypes reported in humans, ST1 to ST4 are the 
most common, whereas ST5-ST10, ST12, ST14, ST16, 
ST23, ST35, and ST41 range from relatively uncommon 
to rare [34–39]. All other Blastocystis STs have been doc-
umented in non-human animal species thus far and are 
considered to have limited or negligible zoonotic poten-
tial. Because of the apparent loose host specificity of 
multiple Blastocystis STs, surveys investigating the preva-
lence and molecular diversity of protists from a variety of 
animal species and geographic origins are of interest to 
help disentangle the epidemiology and zoonotic poten-
tial of Blastocystis STs. This need is particularly evident 
for wild and domestic ungulate species, for which recent 
studies have demonstrated complex concomitant colo-
nisation patterns involving up to 18 Blastocystis STs [33, 
40–42] and variable associations between age groups 
and colonisation status [31]. These studies also high-
lighted the occurrence of cross-species transmission 
events of uncertain directionality that deserve further 
investigation.

Of particular interest is assessing intra- and inter-ST 
discrimination in host infection/colonisation and dis-
ease and ascertaining which animal hosts pose a risk to 
human infection and to what extent. Data on the epide-
miology of Blastocystis in wild boar populations are rela-
tively limited (Table 1) [43–57]. In this study, we analysed 
a large panel of faecal samples from free-ranging wild 
boars sampled in a broad Iberian geographic range cover-
ing Spain and Portugal.

Materials and methods
Sampling sites and sample collection
Between autumn 2014 and summer 2021, a retrospective 
survey was performed in the Iberian Peninsula (Spain 
and Portugal). Faecal samples from wild boars collected 
throughout the five bioregions (BRs) of mainland Spain 
and three comparable BRs in Portugal were used for this 
purpose (Figure 1). A thorough description of the Span-
ish BRs can be found elsewhere [58, 59]. The main fea-
tures of the three adapted Portuguese BRs sampled in the 
present study and the corresponding locations (MNP—
Montesinho Natural Park, CPW—Central Portugal West, 
CPE—Central Portugal East and MNR—Malcata Nature 
Reserve) are summarised in Additional file 1 [60].

The sampling sites included hunting estates or game 
reserves, natural parks and other classified areas belong-
ing to the European Union’s Natura 2000 Network sites 
[61]. Faecal samples were collected directly from the 
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rectum of each animal during field necropsies after 
hunting or from the ground by prospecting several well-
distributed transects representative of the different habi-
tats throughout the sampling areas. For the latter case, 
samples were identified based on the morphology (e.g., 
content, shape, size) and deposition site by experienced 
and field-trained personnel. Faecal samples were placed 
in individually labelled sterile tubes, and collection dates 
and sites were recorded. Aliquots of these faecal sam-
ples were stored at −20 °C by each participating institu-
tion responsible for the sampling before being shipped to 
the Spanish National Centre for Microbiology (SNCM), 
Majadahonda (Spain), and the Department of Biology & 
CESAM, University of Aveiro (Portugal), for subsequent 
molecular analyses.

DNA extraction and purification
Genomic DNA was isolated from approximately 200 mg 
of each wild boar faecal sample using the QIAamp DNA 
Stool Mini Kit (Qiagen, Hilden, Germany) according to 
the manufacturer’s instructions, except that samples 
mixed with InhibitEX buffer were incubated for 10 min 
at 95  °C. The extracted and purified DNA samples were 
eluted in 200 µL of PCR-grade water and stored at 4  °C 
until further molecular analysis. The DNA samples from 
the extractions carried out at the Department of Biology 
& CESAM facilities were then shipped to the SNCM for 
subsequent molecular testing.

Molecular detection and characterisation of Blastocystis 
using Sanger sequencing
Blastocystis was initially identified via a direct PCR pro-
tocol targeting a fragment of the ssu rRNA gene of the 
parasite [62]. The assay uses the pan-Blastocystis barcode 
primer pair BhRDr (5ʹ-GAG​CTT​TTT​AAC​TGC​AAC​
AACG-3ʹ) and RD5 (5ʹ-ATC​TGG​TTG​ATC​CTG​CCA​
GT-3ʹ) to amplify a PCR product of ~ 600 bp. The ampli-
fication reactions (25 µL) included 5 µL of template DNA 
and 0.5 µM of each primer. The amplification conditions 
consisted of one step at 95  °C for 3 min, followed by 30 
cycles of 1 min each at 94  °C, 59  °C and 72  °C, with an 
additional 2 min final extension at 72 °C.

Amplicons of the expected size were sequenced in 
both directions by capillary DNA sequencing electro-
phoresis using BigDye® Terminator chemistry on an ABI 
PRISM 3130 automated DNA sequencer (Applied Bio-
systems, Foster City, CA, USA). The obtained consensus 
sequences were analysed using the Basic Local Align-
ment Search Tool (BLAST) for Blastocystis confirmation 
and subtype calling.

Subtype identification using next‑generation amplicon 
sequencing
Subsets of Blastocystis DNA samples whose ssu-PCR 
amplicons yielded bands of the expected size on aga-
rose gels (regardless of Sanger sequencing confirmation) 

Table 1  Prevalence and molecular diversity of Blastocystis reported in wild boars (Sus scrofa) globally.

Subtypes previously reported in humans (regardless of their true zoonotic potential) are in bold.

CM: Conventional microscopy, ND: Not determined, NGS: Next-generation sequencing, PCR: Polymerase chain reaction, SS: Sanger sequencing.

Country Population status Prevalence (no. 
pos/total)

Detection method Subtype(s) (n) Mixed ST’s 
detected?

References

Brazil Captive 13 (10/79) CM – – [43]

Brazil Captive 77 (30/39) PCR, SS ST1 (3), ST4 (1), ST5 (14), ST8 (1) No [44]

China Wild 0 (0/4) PCR, SS – – [45]

Iran Wild 25 (3/12) CM – – [46]

Iran Wild 44 (11/25) CM – – [47]

Italy Wild 62 (26/42) PCR, SS, NGS ST3(1), ST5 (10), ST15 (21) Yes [48]

Poland Wild 50 (1/2) PCR, SS ST5 (1) No [49]

Poland Captive 80 (8/10) PCR, SS ST5 (8) No [50]

Portugal Wild 29 (42/144) PCR, SS ST5 (42) No [51]

Portugal Wild 34 (34/99) PCR, NGS ST5 (34), ST10a (1), ST13 (1), ST14 
(1), ST15 (1), ST24b (1), ST43 (2)

Yes This study

Slovakia Captive 50 (1/2) PCR, SS ST12 (1) No [52]

Slovakia Wild ND PCR, SS ST15 (4), ST10 (1) ND [53]

South Korea Wild 10 (45/433) PCR, SS ST5 (45) No [54]

Spain Wild 0.7 (1/142) PCR, SS ST5 (1) No [55]

Spain Wild 10 (36/360) PCR, NGS ST5 (22), ST15 (1) Yes This study

UK Captive 50 (1/2) PCR, SS ST5 (1) No [56]

UK Captive 50 (2/4) PCR, SS ST5 (2) No [57]
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were shipped to the Environmental Microbial and Food 
Safety Laboratory, United States Department of Agricul-
ture (Beltsville, Maryland, USA) for subsequent analy-
ses. A next-generation amplicon sequencing (NGS) 
strategy was used to identify Blastocystis subtypes as 
previously described [40]. Briefly, a PCR using prim-
ers ILMN_Blast505_532F (5ʹ-TCG​TCG​GCA​GCG​TCA​
GAT​GTG​TAT​AAG​AGA​CAG​GGA​GGT​AGT​GAC​
AAT​AAA​TC-3ʹ) and ILMN_Blast998_1017R (5ʹ-GTC​
TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​
TGC​TTT​CGC​ACT​TGT​TCA​TC-3ʹ (adapter sequences 
underlined) was used to amplify a fragment of the ssu 
rRNA gene (ca. 500  bp). These primers were identical 
to Blast505_532F/Blast998_1017R [63], except that they 
contained Illumina overhang adapter sequences at the 
5′ end. The final libraries were quantified via Qubit fluo-
rometric quantitation (Invitrogen, Carlsbad, CA, USA) 
before normalisation. A final pooled library concentra-
tion of 8  pM with a 20% PhiX control was sequenced 
using an Illumina MiSeq and a 600 cycle v3 kit (Illumina, 
San Diego, CA, USA). Paired-end reads were processed 

and analysed with an in-house pipeline as previously 
described [40]. The raw FASTQ files were submitted to 
the NCBI sequence read archive under project number 
PRJNA1022431. The nucleotide sequences obtained in 
this study have been deposited in GenBank under the 
accession numbers OR730909–OR730919, OR730924, 
OR730933, OR730938, and OR730943–OR730947.

Data analysis
Parasite prevalence was estimated using a binomial test 
in R software [64], establishing confidence limits with 
95% intervals (CI) and χ2 values with the chi-square test 
function.

Results
Occurrence of Blastocystis
A total of 459 faecal samples were collected across Spain 
(n = 360) and Portugal (n = 99) between 2014 and 2021 
(Additional file 2). Overall, 15.3% (70/459; 95% CI 12.1–
18.9) of the faecal samples from the wild boar analysed 
were confirmed to be positive for Blastocystis by Sanger 

Figure 1  Map of the Iberian Peninsula showing the sampled areas in Spain and Portugal and the geographical distribution of 
Blastocystis  detected in wild boar (Sus scrofa). BR2 encompasses Montesinho Natural Park (MNP), BR1 Central Portugal West (CPW), 
and BR3 Central Portugal East (CPS) and Malcata Nature Reserve (MNR).



Page 5 of 12Köster et al. Veterinary Research          (2024) 55:133 	

sequencing and/or next-generation sequencing (NGS). 
Samples that yielded PCR amplicons of the expected size 
but could not be confirmed by Sanger sequencing and/or 
NGS were conservatively considered negative. Wild boars 
from Portugal presented higher Blastocystis carriage 
rates (34.3%, 34/99; 95% CI 25.1–44.6) than those from 
Spain did (10.0%, 36/360; 95% CI 7.1–13.6), and this dif-
ference was statistically significant [χ2 (1, n = 459) = 22.1, 
P < 0.001].

Table  2 shows the distribution of Blastocystis in wild 
boars from Spain according to the sampling variables 
considered. The occurrence of protists varied greatly 
among bioregions [χ2 (4, n = 360) = 23.0, P < 0.001], with 
animals from BR1 (38.1%) and BR2 (23.1%) having the 
highest prevalence. All eight animals available from BR4 
tested negative for Blastocystis. At the sampling site, wild 
boars from game reserves were more likely to harbour 
Blastocystis [χ2 (3, n = 360) = 16.8, P < 0.001]. Blastocystis 
presence was significantly greater (34.6%) in wild boars 
sampled in 2014 [χ2 (4, n = 360) = 18.9, P < 0.001], all from 
the province of Álava in BR2 (Additional file 2).

Table  3 shows the distribution of Blastocystis in wild 
boars from Portugal according to the sampling vari-
ables considered. All the investigated animals were 
from naturally classified areas. Neither the bioregion [χ2 

(2, n = 99) = 1.3, P = 0.515] nor the sampling year [χ2 (2, 
n = 99) = 2.0, P = 0.373] influenced the occurrence of the 
protist in the investigated wild boar subpopulation.

Molecular characterisation of Blastocystis
Among the 36 confirmed Blastocystis samples from 
wild boars in Spain, 31 were identified as ST5 by Sanger 
sequencing. Seventeen of them, plus five dubious sam-
ples (i.e., samples for which no Sanger sequencing data 
were obtained due to insufficient or poor-quality DNA), 
were subsequently analysed by NGS. Two Blastocystis 
subtypes (ST5 and ST15) were found by NGS among the 
22 Blastocystis-positive samples analysed (Table  2 and 
Additional file 2). ST5 was the most prevalent Blastocys-
tis ST identified (100%, 22/22) in this wild boar subpopu-
lation, whereas ST15 was found in a single (4.5%, 1/22) 
isolate as a mixed coloniser with ST5 (Additional file 2).

Among the 34 confirmed Blastocystis samples from 
wild boars from Portugal, 24 were identified by Sanger 
sequencing as ST5. All of them, plus ten dubious sam-
ples for which no Sanger sequencing data were obtained, 
were subsequently analysed by NGS. Seven STs (ST5, 
ST10a, ST13, ST14, ST15, ST24b, and ST43) were identi-
fied among the 34 Blastocystis-positive samples (Table 3 
and Additional file 2). Similar to the wild boar population 

Table 2  Prevalence of Blastocystis subtypes in Spanish wild boars (n = 360) according to the bioregion of origin, type of 
sampling site, and sampling year.

95% confidence intervals (95% CI) are included. The values in bold represent statistical significance and subtypes previously reported in humans (regardeless of their 
true zoonotic potential).
a Samples were considered positive when Blastocystis was identified after Sanger and next-generation sequencing.
b Subtype information is only included for the 22 samples in which next-generation amplicon sequencing was conducted.
c Four samples from unknown sampling years, with one of the samples positive for Blastocystis ST5.

Variable Samples (n) Blastocystis-
positive (n)a

Blastocystis-
positive (%)

95% CI (%) P value Subtypes detectedb (n)

Bioregion < 0.001
BR1 21 8 38.1 18.1–61.6 ST5 (8)

BR2 39 9 23.1 11.1–39.3 ST5 (7), ST5/ST15 (1)

BR3 150 13 8.7 4.7–14.4 ST5 (2)

BR4 8 0 0.0 – –

BR5 142 6 4.2 1.6–9.0 ST5 (4)

Type of sampling site < 0.001
Hunting state 197 22 11.2 7.1–16.4 ST5 (9), ST5/ST15 (1)

Game reserve 21 8 38.1 18.1–61.6 ST5 (8)

Natural protected area 97 4 4.1 1.1–10.2 ST5 (4)

Urban/suburban 45 2 4.4 0.5–15.2 Not available

Sampling yearc < 0.001
2014 26 9 34.6 17.2–55.7 ST5 (7), ST5/ST15 (1)

2018 148 6 4.1 1.5–8.6 ST5 (4)

2019 52 6 11.5 4.3–23.4 ST5 (2)

2020 70 5 7.1 2.4–15.9 Not available

2021 60 9 15.0 7.1–26.6 ST5 (7)



Page 6 of 12Köster et al. Veterinary Research          (2024) 55:133 

from Spain, ST5 was the most prevalent ST identified 
in this subpopulation (100%, 34/34), followed by ST43 
(5.9%, 2/34). The remaining STs identified (ST10a, ST13, 
ST15, ST15, and ST24b) were only rarely found (2.9% 
each, 1/34) and were always a mixed colonisation with 
ST5 (Table 3 and Additional file 2).

Blastocystis intra‑subtype diversity by NGS
Intra-subtype diversity was observed in only two STs, 
ST5 and ST15, the latter found in both Spain and 

Portugal, infecting one specimen each. No intra-sub-
type variability was detected within ST10a, ST13, ST14, 
ST24b, or ST43, where a single genetic variant was 
identified (Table 4). ST5 had the highest intra-subtype 
diversity, with eight unique genetic variants among 
the 56 Blastocystis-positive samples belonging to this 
ST. Four of them represented genetic variants shared 
between the Spanish and Portuguese populations. 
The remaining four were exclusively found circulating 

Table 3  Prevalence of Blastocystis in Portuguese wild boars (n = 99) according to the bioregion of origin and sampling year.

All the samples were collected from naturally classified areas. 95% confidence intervals (95% CI) are included. BR1 encompasses Central Portugal West (CPW), BR2 
Montesinho Natural Park (MNP), and BR3 Central Portugal East (CPE) and Malcata Nature Reserve (MNR). Subtypes previously reported in humans (regardless of their 
true zoonotic potential) are in bold.
a Samples were considered positive when Blastocystis was identified after Sanger and next-generation sequencing.
b Subtype information obtained from all positive samples via next-generation amplicon sequencing.

Variable Samples (n) Blastocystis 
positive 
(n)a

Blastocystis 
positive 
(%)

95% CI (%) P value Subtypes detectedb (n)

Bioregion 0.515

 BR1 12 3 25.0 5.5–57.2 ST5 (3)

 BR2 39 9 23.1 11.1–39.3 ST5 (6), ST5/ST10a (1), ST5/ST14 (1), ST5/ST43 (1)

 BR3 48 22 45.8 31.4–60.8 ST5 (18), ST5/ST13 (1), ST5/ST15 (1), ST5/ST24b (1), ST5/ST43 (1)

Sampling year 0.373

 2019 64 18 28.1 17.6–40.8 ST5 (14), ST5/ST10a (1), ST5/ST14 (1), ST5/ST24b (1), ST5/ST43 (2)

 2020 21 8 38.1 18.1–61.6 ST5 (8)

 2021 14 8 57.1 28.9–82.3 ST5 (6), ST5/ST13 (1), ST5/ST15 (1)

Table 4  Diversity of Blastocystis subtypes and unique genetic variants observed using next-generation amplicon 
sequencing (NGS) among Blastocystis-positive wild boars from Spain (n = 22) and Portugal (n = 34).

Subtypes previously reported in humans (regardless of their true zoonotic potential) are in bold.
a  For unique variants identified in Spain and Portugal, two sequences were submitted to GenBank. The country in which the sequences were identified is denoted in 
parentheses by the GenBank accession number. P and S denote Portugal and Spain, respectively.

Subtype Subgroup Samples (n) Unique genetic 
variants (n)

Frequency of positive 
simples (%)

GenBank accession number(s)a

ST5 56 8 100 OR730909(P)/OR730910(S)

OR730911(P)/OR730912(S)

OR730916(P)/OR730917(S)

OR730918(P)/OR730919(S)

OR730933(S)

OR730938(S)

OR730943(S)

OR730947(P)

ST10 ST10a 1 1 1.8 OR730914(P)

ST13 1 1 1.8 OR730913(P)

ST14 1 1 1.8 OR730946(P)

ST15 2 2 3.6 OR730944(S)

OR730945(P)

ST24 ST24b 1 1 1.8 OR730915(P)

ST43 2 1 3.6 OR730924(P)
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within the Spanish or Portuguese subpopulations (two 
each; Table 4 and Additional file 2).

Mixed ST colonisations discriminated by NGS
Among the 56 positive samples sequenced in the present 
study via NGS, only 8 (14.3%) contained a co-colonisation 
encompassing ST5 with another Blastocystis ST. Mixed 
colonisations in wild boars from Spain were found in only 
one sample (4.5%, 1/22; Table  2 and Additional file  2), 
whereas they appeared to be more common in wild boars 
from Portugal (20.6%, 7/34; Table 3 and Additional file 2). 
Blastocystis colonisation by a single ST always involved 
ST5 regardless of the origin of the sampled animal (Addi-
tional file 2). The only wild boar from Spain harbouring 
a Blastocystis mixed ST colonisation presented ST5 and 
ST15. The seven Portuguese wild boars harbouring Blas-
tocystis mixed ST colonisations presented up to seven 
distinct STs (ST5, ST10a, ST13, ST14, ST15, ST24b, and 
ST43) in six combinations (Table 3 and Additional file 2). 
However, in both countries, mixed colonisations encom-
passing two subtypes primarily carry ST5 (99.6–99.8%), 
whereas the remaining six STs were detected at residual 
(0.1–0.4%) carriage rates (Table 5).

Discussion
This survey represents the largest attempt to assess the 
occurrence, molecular diversity, and zoonotic poten-
tial of Blastocystis subtypes in wild boars conducted 
in the Iberian Peninsula to date. Our study has several 
strengths, including a large sample size, broad geographic 
coverage, the use of highly sensitive molecular methods 
for detecting and discriminating Blastocystis genetic vari-
ants, and the assessment of the presence of mixed STs 
within a sample. The survey is also timely because infor-
mation on the contribution of wild boar to Blastocystis 
epidemiology is scarce [21, 65] (Table 1). This ubiquitous 
protist has been detected in a wide range of domestic and 

wild animals, suggesting the potential for zoonotic trans-
mission events in both directions (animal → human and 
human → animal) [66–71]. In Europe, prevalence rates in 
wild boars have been reported, ranging from 1–62% in 
free-living animals and 50–80% in captive animals. Glob-
ally, most of the Blastocystis cases documented in wild 
boars reported ST5 (79.7%, 184/231) (Table  1). ST5 is 
also the most widely reported ST in surveys conducted 
domestically [21], suggesting that this subtype is par-
ticularly well adapted to colonise members of the Suidae 
family. Our data revealed an overall Blastocystis colonisa-
tion rate of 15.3% in wild boars, with higher rates in wild 
boars from Portugal (34.3%) than in their counterparts 
from Spain (10.0%). These figures align with those esti-
mated in a recent national study conducted in Portugal 
(29.0%, 42/144) [51]. However, a lower presence of Blas-
tocystis (0.7%, 1/142) was detected in wild boar faeces in 
southern Spain [55].

In our study, NGS analyses confirmed the occurrence 
of seven distinct Blastocystis STs, including subgroup 
variants of ST10 and ST24 (ST5, ST10a, ST13, ST14, 
ST15, ST24b, and ST43), which circulate within the 
surveyed wild boar populations, with greater variabil-
ity (in terms of genetic diversity and mixed STs coloni-
sation rates) in wild boars from Portugal than in those 
from Spain. In addition to ST5, the remaining subtypes 
were missed by Sanger sequencing. While in Spain, only 
4.5% (1/22) of the Blastocystis-positive wild boars iden-
tified by NGS harboured mixed colonisations, a much 
higher co-colonisation rate (20.6%, 7/34) was observed 
in their Portuguese counterparts. The reason for the 
higher prevalence and genetic variability rates observed 
in Portugal is unclear. Cross-species transmission involv-
ing other wildlife species (e.g., cervids) does not seem to 
be a plausible explanation, as no differences in the dis-
tribution of free-living species and management prac-
tices of natural protected/classified areas exist between 

Table 5  Prevalence of Blastocystis subtype/subgroups and the means and ranges of subtype/subgroups detected in wild 
boars from Spain (SP) (n = 22) and Portugal (PT) (n = 34) using next-generation amplicon sequencing (NGS) in the present 
study.

Subtypes previously reported in humans (regardless of their true zoonotic potential) are in bold.

Subtype Subtype prevalence (%) Subtype reads (mean, %) Subtype reads (range, %)

SP wild boar PT wild boar SP wild boar PT wild boar SP wild boar PT wild boar

ST5 100 100 100 100 99.6–100 99.8–100

ST10a 0 2.9 – 0.2 – 0.2

ST13 0 2.9 – 0.1 – 0.1

ST14 0 2.9 – 0.1 – 0.1

ST15 4.5 2.9 0.4 0.1 0.4 0.1

ST24b 0 2.9 – 0.1 – 0.1

ST43 0 5.9 – 0.2 – 0.1–0.2
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the surveyed Spanish and Portuguese regions. However, 
free-roaming livestock herds can potentially act as local 
sources of Blastocystis in areas where sylvatic and domes-
tic transmission cycles overlap. Indeed, in a parallel study 
targeting the same areas sampled in the present study, 
Blastocystis prevalence rates ranging from 56–80% were 
reported among cattle, sheep, and goats, and 22 distinct 
Blastocystis STs (including the ST10, ST24, and ST42 
subgroups) were identified: ST1–ST3, ST5–ST7, ST10/b, 
ST13, ST14, ST21, ST23, ST24a/b/c, ST25, ST26, ST30, 
ST42a/b, ST43, and ST44 [42]. Similarly, cattle from 
Spain have been demonstrated to harbour up to 10 Blas-
tocystis subtypes, including ST1, ST3, ST5, ST10, ST14, 
ST21, ST23, ST24, ST25, and ST26 using also NGS [41]. 
Taken together, these data might indicate that the pres-
ence (at low or very low rates) of Blastocystis STs other 
than ST5 in Iberian wild boars is the direct consequence 
of sporadic spillover events from livestock (primarily cat-
tle) sharing habitats, most likely through environmental 
faecal contamination of water or grass fields. In fact, in 
addition to ST15 (also reported in Spanish wild boars), all 
Blastocystis STs identified in Portuguese wild boars were 
previously reported in livestock species from Portugal 
[42]. Cross-species transmission at the domestic‒wild-
life interface has been previously demonstrated for other 
pathogens, such as Coxiella burnetii [72]. Additionally, 
supplemental feeding is a common practice in hunting 
states and game reserves in Mediterranean habitats and 
is usually related to the maintenance of artificial high 
population densities. This practice is known for increas-
ing disease transmission risk in wildlife due to aggrega-
tion behaviours. However, it can also be used as a wildlife 
disease management option by delivering vaccines or 
anti-parasitic agents throughout the feed [73], which 
could explain the low Blastocystis prevalence and genetic 
diversity found in Spanish wild boars.

Our results revealed that wild boars in the Iberian 
Peninsula are suitable reservoirs for seven distinct Blas-
tocystis STs (ST5, ST10a, ST13, ST14, ST15, ST24b, 
and ST43), of which ST5, ST10, and ST14 are poten-
tially zoonotic. ST5 is the most prevalent ST reported in 
wild boar and domestic pigs worldwide, suggesting that 
swine are its natural host. Thus, ST5 has been detected 
in all but two of the studies that conducted Blastocystis 
subtyping in wild boars (Table  1). ST5 in wild boar has 
been documented in Brazil, Italy, Poland, Portugal, South 
Korea, Spain, and the United Kingdom (Table  1). Sub-
types other than ST5 have also been detected in this host, 
including ST15 in wild boar faecal samples from Italy and 
Slovakia, as well as potentially zoonotic STs, including 
ST1, ST3, ST4, ST8, and ST10 [65] (Table 1). The pres-
ence of genetically diverse subtypes, representing dif-
ferences in parasite-host preference, zoonotic potential, 

pathogenesis, and probably clinical manifestations, is 
another important issue associated with Blastocystis car-
riage. Human cases are primarily due to infection/colo-
nisation by ST1–ST4; however, at least 12 additional STs 
(ST5–ST10, ST12, ST14, ST16, ST23, ST35, and ST41) 
have also been reported in human samples with varying 
frequencies [34–39]. From the “One Health” perspective, 
which links human, animal, and environmental health, a 
threat to any of the components of this triad can substan-
tially impact the others [74]. Consequently, the probable 
presence of potential zoonotic Blastocystis STs in wild 
boars can influence humans and other animal species 
that share the same habitat.

This study had potential limitations that may have 
biased, at least partially, the results obtained. First, its 
retroactive nature required that some of the analysed 
faecal samples be stored at −20 °C for up to seven years 
before DNA extraction and molecular testing. Long-term 
storage may have altered the quantity/quality of parasite 
DNA, compromising the performance of the PCRs used 
for diagnostic and genotyping purposes. Second, owing 
to the legal hunting periods, our opportunistic sampling 
strategy limited our ability to capture potential seasonal 
variations in Blastocystis occurrence in wild boars. Third, 
the conventional PCR used for screening purposes lacks 
inhibition control. It is possible that an unknown num-
ber of our allegedly Blastocystis-negative samples indeed 
inhibited the PCR. Fourth, even though the sampling car-
ried out in Spain was conducted nationwide, in Portugal, 
it was carried out only in the northeast and central areas 
of the country, taking advantage of ongoing projects, 
meaning that the results may not reflect the whole Por-
tuguese scenario. Clearly, more research with a proper 
design should be conducted to disentangle how environ-
mental, host, and management factors can modulate the 
risk of exposure of wild boar to Blastocystis.

This is the largest molecular epidemiological study 
investigating the presence and genetic diversity of Blas-
tocystis in wild boars conducted in the Iberian Peninsula 
to date. Overall, the presence of Blastocystis was rela-
tively low (10%) in wild boars from Spain and was caused 
mainly by swine-adapted ST5. The opposite scenario 
was found in Portugal, with a much higher prevalence 
(34.3%) and genetic diversity (up to 7 STs), indicative of 
possible cross-species transmission or contamination 
from free-ranging livestock animals that share habitats. 
Our results show that wild boars, which are most likely 
in contact with domestic ungulates and possibly other 
wild animals, are important reservoirs of Blastocystis in 
the Iberian Peninsula. However, spurious infections (e.g., 
those expected in highly anthropized environments such 
as agricultural and peri-urban areas) cannot be ruled out. 
In this sense, adopting regular monitoring programs, 
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encompassing the sampling of both wild and domes-
tic animals, with more extensive national coverage and 
sampling sites, involving hunting associations and other 
partners (universities, national labs) to increase sample 
collection and storage, may help us obtain a better pic-
ture of the Blastocystis epidemiological scenario in the 
Iberian Peninsula, as well as a wide array of other protists 
and zoonoses, and its potential transmission risks for the 
human compartment.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13567-​024-​01385-9.

 Additional file 1. Summary of the sampling sites in Portugal accord‑
ing to bioregion with an emphasis on environmental, wildlife and 
flora features, adapted from PNVSFS (2020) and Muñoz et al. [58]. 
The numbers of wild boar faecal samples collected at each location 
are indicated.

Additional file 2. Full dataset showing the epidemiological data used 
in the analyses conducted in this study, as well as the diagnostic and 
molecular results obtained.
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