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Abstract

The parotid glands are the largest of the major salivary glands and can harbour both benign and malignant
tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools
have low sensitivity and specificity, often leading to surgery for diagnostic purposes. Machine learning methods
along with radiomic features are widely used in the field of medical imaging to help radiologists make a diagnosis.
The aim of this paper is to develop an algorithm based on image characteristics to automatically predict the type
of parotid gland tumours. We then compare this algorithm to the diagnoses of junior and senior radiologists
in order to evaluate its utility in routine practice. To create the algorithm, we enrolled a cohort of 134 patients
treated for benign or malignant parotid tumours. Using radiomics extracted from the MR images of their parotid
tumours, we train a random forest model to classify data into corresponding histopathological subtypes. On the
test set, we obtain a 0.72 accuracy, a 0.86 specificity and a 0.72 sensitivity over all histopathological subtypes,
with an average AUC of 0.838. When considering the discrimination between benign and malignant tumours, the
algorithm results in a 0.76 accuracy and a 0.769 AUC, both on test set. Moreover, the clinical experiment shows
that our model helps to improve diagnostic abilities of junior radiologists as their sensitivity and accuracy raised
by 6 % when using our proposed method. This algorithm may be useful for training of physicians. Radiomics with
a machine learning algorithm may help improve discrimination between benign and malignant parotid tumours,
decreasing the need for diagnostic surgery. Further studies are warranted to validate our algorithm for routine
use.
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Introduction

Parotid gland tumours are benign in 70 to 80 % of cases [1, 2]. Preoperative work-up relies on MRI and fine needle aspiration
cytology (FNAC), but these diagnostic tools lack sensitivity, often leading to surgery for diagnostic purposes. The sensitivity of
FNAC for parotid tumours using the recommended Milan system ranges from 75 to 90 % [3]. Because of the heterogeneity of
parotid gland tumours and their possible location in the deep lobe, FNAC is not always sufficient to come up with a correct
diagnosis [4, 5]. Moreover, diagnostic parotid surgery carries a high risk of morbidity due to the fact that the facial nerve passes
through the gland and dissection of the nerve can lead to physical and aesthetical discomfort, as well as temporary or permanent
facial paralysis.

With the development of computer science, new automatic data processing techniques and machine learning can now be
utilised to achieve numerous tasks such as image classification and segmentation. Usage of machine learning is increasingly
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growing in the healthcare field due to the outstanding results it provides [6, 7].

Radiomics are a field of radio-diagnostics which first appeared in the 2010s. It consists in computing several statistics
from a segmented area of a medical image such as its shape, volume, texture, intensity, or other high-order moments [8, 9].
Radiomics aim at extracting patterns in the data that would be invisible to the human eye. Combined with machine learning
approaches, radiomics have been used by many researchers to automatically analyse MR and CT images [10, 11].

The goal of our study is to introduce a machine learning algorithm for the discrimination of parotid gland tumours into
their respective histopathological subtypes as defined by the World Health Organization (WHO) [12]. Previous works were
conducted on this matter, highlighting the efficiency of such kind of approach [13, 14]. However, they only used at most two
MRI sequences, whereas we decide to sample four to observe whether it improves automatic diagnosis performances. Moreover,
we perform a comparative analysis of our proposed algorithm with radiologists in order to evaluate benefits of machine learning
algorithms combined to relevant experts’ knowledge.

To conduct our research, we create a new dataset coming from a cancer treatment centre. As gathered from an expert
hospital, we believe those data encompass very germane information about parotid cancers. On top of that, as all patients
coming to the centre have previously been examined in community hospitals, we have at our disposal large collections of
images that are not sampled from regular screening, thus resulting in a greater proportion of parotid cancer positives than
observed in the whole population.

This research article is organised as follows. section 1, Materials and methods introduces our data sampling strategy, the
subsequent radiomics extraction, the development of the machine learning algorithm and finally the implemented protocol
for comparison with radiologists. Our findings are then presented in section 2, Results and further analysed in section 3,
Discussion.

1. Materials and methods

1.1 Data acquisition
Patient selection The cohort includes patients that underwent an MRI examination for parotid tumours at Gustave Roussy
Cancer Campus between 2012 and 2021. All the patients subsequently underwent surgery, with histopathologic examination
performed in the same centre. We categorise the histopathological subtypes into pleomorphic adenomas (benign), Warthin’s
tumour (benign) and carcinomas (malignant). Tumours that do not belong to the previous categories are reported as ‘Other type’.
Descriptive statistics are shown in Table 1. As the patients were hospitalised in an institution specialised in cancer treatment,
malignant tumours are over-represented in the studied cohort compared to their frequency in the worldwide population.

This research project was approved by the appropriate institutional board following the General Data Protection Regulation
(GDPR) and was declared to the competent national administrative bodiess, namely the Health Data Hub and the CNIL. All
patients were informed by post and provided their consent to the use of their data within the scope of this study.

MRI protocol Acquisition was performed on three different devices over the study period: a 1.5 T Optima MR450w, a 3 T
Discovery MR750w and a 3 T Signa Premier (GE HealthCare, Milwaukee, USA). Corresponding MRI parameters are reported
in Table 2. Patients were placed in a supine position, with a head and neck antenna. T1-weighted (T1w), contrast-enhanced
T1-weighted (T1ce), T2-weighted (T2w) and diffusion-weighted (DWI) sequences were acquired for each patient. Gadoterate
meglumine (Dotarem, Guerbet, Villepinte, France) was used as the contrast agent in all cases.

Data cleaning To ensure robustness of our machine learning approach, we rely on several data cleaning steps. First, as
lymphomas are under-represented, they were removed from the dataset: they were too few for the machine learning algorithm
to learn to classify them. Tumours that are described as ‘Other type’ were too heterogeneous, as expected, to be gathered into
one meaningfully consistent class, and too few to be broken down into subgroups. Hence, they were also removed from the
dataset. From the 134 patients of the whole cohort, only 111 were kept for the study, after this procedure (see Figure 1).

1.2 Image analysis

Image pre-processing As MR images are very heterogeneous between patients and acquisition devices, a pre-processing
step of harmonisation is often performed in order to compensate the high variability of the data. In many radiomics studies, a
first normalisation is applied at pixel-level on the images [15, 16]. However, as some patients in our cohort were examined with
3 T MRI devices and others with a 1.5 T machine with lower resolution, normalising the images might have resulted in a loss of
information. Consequently, no normalisation was performed in our study.

Tumour segmentation Parotid gland tumours were manually segmented using the software Olea Sphere version 3.0.18 (Olea
Medical, La Ciotat, France). All patients of the cohort present a single parotid gland tumour except for one who is affected
by two tumours which were both used for this study. Each parotid gland tumour was segmented on the four different MRI
sequences (see section 1.1, MRI protocol). Studied MR images are 3-dimensional, but we choose to segment 2D regions of
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Table 1. Statistics about the studied cohort.

Characteristics Value
Age Years
Mean 63.7
Median 62
Minimum 18
Maximum 92
Sex n (%)
Male 76 (57)
Female 58 (43)
MRI device power n (%)
15T 36 (27)
3T 98 (73)
Tumour malignity n (%)
Benign 73 (54)
Malignant 61 (46)
Tumour histopathological subtype n (%)
Pleomorphic adenoma 36 (27)
Warthin’s tumour 27 (20)
Lymphoma 4(3)
Carcinoma 48 (36)
Other 19 (14)

interest (ROI) using the axial slice with the largest tumour surface area. Within this slice, the entire tumour region is segmented,
including its core and eventual necrosis. Figure 2 presents an example of such segmentation. Output ROIs were double-checked
by an experimented radiologist.

Features extraction Radiomic features are computed from all four considered sequences using Olea Sphere software with
the following settings: 1 mm?> voxel resampling, 64 gray level bins to compute the histogram. A total of 108 radiomics per
sequence are extracted and complied with the IBSI standard [17]. They are sampled as follows: 16 shape-based features, 19
first-order features, 23 gray level co-occurrence matrix (GLCM) features, 16 gray level run length matrix (GLRLM) features,
15 gray level size zone matrix (GLSZM) features, 5 neighbouring gray tone difference matrix (NGTDM) features and 14
gray level dependence matrix (GLDM) features. Appendix A summarises the computed features. Hence, a single tumour is
represented by 4 x 108 = 432 real numbers.

Radiomics are also subject to high heterogeneity. ComBat normalisation [18, 19] can be used to reduce variability across

Device Weighting Sequence TR TE Slice thickness
Optima MR450w, 1.5 T Pre-contrast T1 ~ Fast spinecho 532 ms  Minimal 3mm
Installed in 2016, 70 cm tunnel, ~ Post-contrast TI ~ Fast spinecho 532 ms  Minimal 3 mm
32 channels, 40 cm z-axis FOV, T2 Fast spin echo 9,430 ms 102 ms 5 mm
gradient 40 mT/m, SR 200 T/m/s DWI Spin echo 2,310 ms  Minimal 4 mm
Discovery MR750w, 3 T Pre-contrast T1 ~ Fast spin echo 680 ms 10 ms 3 mm
Installed in 2012, 70 cm tunnel, Post-contrast T1 ~ Fast spin echo 700 ms 11 ms 3 mm
32 channels, 50 cm z-axis FOV, T2 Fast spinecho 9,700 ms 90 ms 3 mm
gradient 44 mT/m, SR 200 T/m/s DWI Spin echo 7,100ms 73 ms 4 mm
Signa Premier, 3 T Pre-contrast T1 ~ Fastspinecho 500 ms  Minimal 3mm
Installed in 2021, 70 cm tunnel, ~ Post-contrast TI ~ Fast spinecho ~ 500 ms  Minimal 3 mm
32 channels, 50 cm z-axis FOV, T2 PROPELLER 8,831 ms 120 ms 3 mm
gradient 80 mT/m, SR 200 T/m/s DWI Spin echo 3,114ms 60 ms 4 mm

Table 2. MRI devices parameters.
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Figure 1. Flowchart showing how relevant data were chosen. The red box indicates malignant tumours, the green ones
correspond to benign tumours.

devices, but several safety checks performed on our data suggests no significant improvement when applying this method to our
problem. Here again, we do not use any pixel-level normalisation technique.

From the medical records of the patients, phenotypic variables age and sex were retrieved, as they are often linked to
different types of tumours [1, 2]. Those two variables are concatenated to the computed radiomic features and used as input to
the machine learning system.

1.3 Machine learning task
Our goal is to discriminate parotid gland tumours according to their histopathological subtype. This corresponds to a
classification task, where each type of tumour is a different class, and inputs are the radiomic features.

Separation into training and test sets The data are divided into a training group and a test group, composed of respectively
86 and 25 patients. Our machine learning model is developed using the training set and its performance assessed on the test
set. The training group comprises data acquired from both 1.5 T Optima MR450w and 3 T MR750w whereas the test group,
which was sampled after the new 3 T Signa Premier was put into operation, comprises data from the three devices. This was
motivated by [13] which uses different MRI devices for training and validation, but keeps the same magnetic field strength
for both. Such a set-up allows us to verify the generalisation to new MRI systems of similar power while avoiding significant
bias. Class distribution of the whole dataset is preserved in a stratified manner while creating both training and test sets: the
frequency of appearance of each histopathological subtype is kept.

Model building Random forests are more robust than other machine learning models when dealing with high-dimensional
feature sets, and are also more polyvalent [20, 21]. Moreover, this family of algorithms is quite often used to classify radiomics
[10, 22, 23] and tends to be less inclined to overfitting [24], a property that could help the algorithm to generalise to MR
images from the new device we considered in the test set. Hence, we decide to use this kind of model in our work. In order to
compensate the imbalanced class repartition, classes are given different weights to increase the influence of the least populated
ones.

Model training A five-fold cross-validation is employed to estimate model performances while keeping an 80:20 ratio
between training and test samples. This method consists in subsampling the training dataset into five folds. A model with
fixed parameters is then used to predict the classes associated with four of them, and further tested on the fold that was kept
aside. The performance metrics are subsequently averaged along those groups, effectively smoothing the high variability of
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Figure 2. Examples of segmentation on the four acquired sequences: T1w, Tlce, DWI and T2w (clockwise).

data. To avoid overfitting, Z-score standardisation and parameters tuning are performed inside the cross-validation loop, as
recommended in [25]. The random forest parameters we analysed are maximum depth of the trees, splitting criterion and
associated splitting method, number of features inputted to the trees, number of samples in a leaf and number of samples to
reach before splitting a node. Classes weights were also fine-tuned. All combinations of selected parameters values are used in
order to find the one most relevant to our problem. Except for the former, all of them are binary-based metrics. We keep track
of five metrics to assess the performance throughout our parameters search procedure: balanced accuracy (takes into account
class imbalance), accuracy, sensitivity, specificity and area under the ROC curve (AUC). Definitions of those metrics are given
in Appendix B, following naming conventions used by Scikit-learn!.

Feature selection Feature selection is applied inside the cross-validation loop performed on the training set to compensate
for the large number of features acquired and the relatively small number of patients selected (‘curse of dimensionality’).
Radiomics are often strongly correlated due to the high number of tweakable parameters used for their computation. They are
very generic and can be used on various problems, but some of these features may be redundant for certain applications and
not for others [26]. A selection of a feature subset used to train the algorithm was therefore required to avoid overfitting [27].
An F-test-based filter method was preferred because of its ability to sort out variables that are independent of the target while
keeping a low computational cost [27, 28]. The best features are the ones with lowest p-value. As part of our approach, we test
several values for the number of features to retain using the previously mentioned cross-validation procedure. The set of the
best features is then used to subsample the test set and evaluate the metrics.

1.4 Comparison to the analysis of radiologists

Once we have the best performing model, we are able to compare the machine learning algorithm to radiologists’ analyses
of the same image sets. First, nine patients were randomly sampled from the test set, keeping the class distribution intact: 3
pleomorphic adenomas, 2 Warthin’s tumours and 4 carcinomas. Seven in-training radiologists (‘juniors’) that just attended a
lesson on parotid gland tumours and two professionals (‘seniors’ with 5 and 15 years of experience respectively) participated
in the study. For each patient whose data were used in the experiment, all nine radiologists were shown the same four MRI
sequences as the ones used as basis to extract our radiomic features (i.e., T1w, T2w, T1ce and DWI sequences). Following
this procedure ensured that both radiologists and machine learning model were using the same input information to diagnose
the patients. The images were displayed to physicians on a same screen, using a single software with fixed settings for every
viewing. Directly after making their diagnosis, the radiologists were shown the algorithm’s prediction and were asked whether
they would change their mind given the machine’s diagnosis. The true performance of the algorithm was never disclosed during
the experiment.

2. Results

2.1 Machine learning algorithm

Type classification Among all the combinations of parameters tested, the best one reached an accuracy of 0.720 and a
mean AUC of 0.838 on test set when considering all classes. The same model presented an OvR accuracy of 0.840 for both
pleomorphic adenomas and Warthin’s tumours. For carcinomas, this score was 0.760. Metrics results are available in Table 3.

Uhttps://scikit-learn.org



Using machine learning on MRI radiomics to diagnose parotid tumours before comparing performance with
radiologists. — 6/15

The best model hyperparameters are as follows: 22 as maximum depth of trees, 3 as minimum number of samples in leaves,
and 43 estimators. On average, the machine learning classifier has a worse sensitivity than specificity, which means that it is
less able to tell a tumour belongs to a specific category than to tell it does not. Table 4 is the corresponding confusion matrix.
The approach we used relies on random forests, which are not too CPU consuming on modern computers and hence could be
deployed easily. For instance, our model trains in 39.5 + 0.2 ms and predicts in 5.6 £ 0.1 ms on a computer equipped with 32
GB of RAM and an Intel Core i7-10610U (durations were averaged over 1000 runs).

Class Balanced accuracy Accuracy Specificity Sensitivity OvR AUC
All classes 0.702 0.720 0.860 0.720 0.838
Pleomorphic adenomas 0.724 0.840 0.947 0.500 0.860
Warthin’s tumours 0.845 0.840 0.833 0.857 0.889
Carcinomas 0.760 0.760 0.769 0.750 0.769

Table 3. Results on test set for several metrics computed across all classes and by class. Metrics definitions are available in
appendix B. Overall OvR AUC is the mean of each class score.

Predicted diagnosis

Pleomorphic adenomas | Warthin’s tumours | Carcinomas
2 - | Pleomorphic adenomas 3 1 2
2 E Warthin’s tumours 0 6 1
O Carcinomas 1 2 9

Table 4. Confusion matrix of test set: histopathological subtype classification.
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Figure 3. OVR ROC curves calculated from the algorithm predictions for each histopathological subtype class represented in
the experiment, along with points corresponding to the metrics of the 9 radiologists. Some points are coinciding, resulting in
only 6 of them being distinguishable on the graph (their corresponding overlapping symbols are displayed).

Selected features As previously described in section 1.3, Feature selection, we used an F-test to reduce the dimension of our
feature space. This method computes p-values representing the importance of each feature in relationship to the desired output,
which is the histopathological type in our case. Five relevant features were selected during the training phase, all extracted from
the T2w sequence. More information can be found in Table 5. Figure 4 shows the distribution of the five selected features as
box plots. We can observe that for each of these features, we can roughly discriminate the histopathological subtypes directly
on the graph. This implies that those features are statistically different as per the associated class: there is a strong relationship
between the selected features and the output class found by the algorithm.
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IBSI category Feature name F-test p-value
First Order Skewness 3.88 x 1073
First Order Median 5.83x 107
Gray Level Run Length Matrix Long Run High Gray Level Emphasis  7.21 x 1073
First Order Root Mean Squared 12.07 x 1073
Gray Level Co-occurrence Matrix ~ Autocorrelation 12.32x 1073

Table 5. Relevant radiomics features selected during the pre-processing step.

—T— . . Histological type
T2 First Order Skewness — T 1 I Pleomorphic adenomas
' TS ' I warthin's tumours
. [ carcinomas
— }
T2 First Order Median T 1

T2 GLRLM LRHGLE -_— T
— L
— .
T2 First Order Root Mean Squared e —[ T1—— .

T2 GLCM Autocorrelation —{O— .
)
-2 -1 0 1 2 3 4

Standardised value

Figure 4. Distribution of selected radiomics features values in the training set.
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2.2 Comparison to radiologists

Radiologists performances To assess the performances of the radiologists, we resort to the same metrics as described in
section 1.3, Model training, allowing us to compare their results to the ones of the machine learning model. As we did not
ask radiologists to evaluate their diagnoses with a probability estimate, AUC could not be computed. Table 6 and Figure 3
feature the results of the experiment. It is interesting to observe that senior radiologists seem to have worse performances than
both the algorithm and the juniors. This can be explained by the fact that seniors use a lot more information than just four
MRI sequences to make their diagnosis, like apparent diffusion coefficient (ADC) or patient symptoms. Radiomics cannot be
extracted from such data, hence we decided not to use them in our study, since its purpose is to assess efficiency of those image
statistics for tumour classification. Furthermore, experienced radiologists are used to see a wide variety of different tumours
every day and thus have much more doubts than juniors that make use of their knowledge acquired in a lesson given just a few
minutes before the experiment. When given access to complete patient files including other information than the four MRI
sequences used for this study, radiologists’ assessment of tumours is almost perfectly accurate.

Impact of the algorithm on metrics From Table 6, we can see that average performance of both groups improves similarly
with the help of the algorithm: 8 % for balanced accuracy, 6 % for accuracy, 3 % for specificity and 6 % for sensitivity.

Candidate Balanced accuracy Accuracy Specificity Sensitivity
Algorithm 0.806 0.778 0.889 0.778
1 0.833/0.917 (+ 0.083) 0.778/0.889 (+0.11)  0.889/0.944 (+ 0.05)  0.778/0.889 (+ 0.11)
12 0.72270.722 (+ 0.000)  0.667 /0.667 (+ 0.00)  0.833/0.833 (+ 0.00)  0.667/0.667 (+ 0.00)
I3 0.556/0.722 (+ 0.166)  0.667/0.778 (+ 0.11)  0.833/0.889 (+ 0.06)  0.667/0.778 (+ 0.11)
J4 0.389/0.556 (+ 0.167)  0.444/0.556 (+0.12)  0.722/0.778 (+ 0.06)  0.444/0.556 (+ 0.12)
J5 0.722/0.889 (+ 0.167)  0.778/0.889 (+ 0.11)  0.889/0.944 (+ 0.05)  0.778/0.889 (+ 0.11)
J6 0.722/0.722 (+ 0.000)  0.667/0.667 (+0.00)  0.833/0.833 (+ 0.00)  0.667/0.667 (+ 0.00)
7 0.556/0.556 (+ 0.000)  0.556/0.556 (+0.00)  0.778 /0.778 (+ 0.00)  0.556/0.556 (+ 0.00)
Mean 0.643/0.726 (+ 0.083) 0.651/0.714 (+ 0.063) 0.825/0.857 (+ 0.032) 0.651/0.714 (+ 0.063)
S1 0.556/0.722 (0.166)  0.556/0.667 (+ 0.111)  0.778 /0.833 (+ 0.055) 0.556/0.667 (+ 0.111)
S2 0.639/0.639 (+ 0.000) 0.667/0.667 (+ 0.000) 0.833/0.833 (+ 0.000) 0.667 /0.667 (+ 0.000)
Mean 0.597/0.681 (+ 0.084) 0.611/0.667 (+ 0.056) 0.806/0.833 (+ 0.027) 0.611/0.667 (+ 0.056)

Table 6. Performance metrics of junior and senior radiologists on 9 sub-sampled patients for the histopathological subtype
classification task, first without, then with the help of our machine learning algorithm (difference between brackets). Results
are given for each participant to the experiment. J1 to J7 are junior radiologists, S1 and S2 are seniors.

Table 7 shows results of the same experiment but class-wise. In this paragraph, we will consider balanced accuracy as
reference metrics. On the subset, our algorithm performs best on Warthin’s tumours, which is consistent with the results on the
test set. Juniors benefit from the machine learning model for all histopathological subtypes. A sensitivity gain of 21.5 % is
obtained on Warthin’s tumours diagnosis when using the algorithm, which results in a nearly 12 % increase of corresponding
balanced accuracy. Seniors profit from a rise of specificity for both Warthin’s tumours and carcinomas (25 % and 10 %
respectively) when trusting the model. However, they decided not to follow the machine’s predictions concerning pleomorphic
adenomas, resulting in a stagnancy of corresponding metrics.

Limited model influence on radiologists Predictions were followed by juniors in only 8 % of cases, but when they did, the
algorithm was correct in 80 % of the cases. Moreover, when juniors kept their diagnosis despite the model estimations, they
were mistaken 92 % of the time. As for senior radiologists, they only trusted the algorithm when they were hesitating between
two diagnoses, and in 85 % of those cases, the decision was right. When seniors were mistaken in their diagnosis and the model
suggested changing their mind, they never did it.

3. Discussion

3.1 Interpretations

The results confirm that an appropriate machine learning algorithm can be used to discriminate parotid gland tumours by means
of basic radiomic features extraction from MR images. The deployed random forest model reaches a 0.838 AUC, a 0.860
specificity, and a 0.720 sensitivity over all considered classes on the test set. Warthin’s tumours are however easier to classify
than other types of tumours, as shown in Table 3.
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Histopathological subtype Balanced accuracy Accuracy Specificity Sensitivity
Algorithm
Pleomorphic adenomas 0.834 0.889 1.000 0.667
Warthin’s tumours 0.929 0.889 0.857 1.000
Carcinomas 0.775 0.778 0.800 0.750
Juniors
Pleomorphic adenomas 0.750/0.774 (+ 0.024)  0.762/0.794 (+ 0.032)  0.786/0.833 (+ 0.047) 0.714/0.714 (+ 0.000)
Warthin’s tumours 0.745/0.863 (+0.118)  0.841/0.905 (+ 0.064) 0.918/0.939 (+0.021) 0.571/0.786 (+ 0.215)
Carcinomas 0.693/0.725 (+ 0.032)  0.698/0.730 (+ 0.032) 0.743/0.771 (+ 0.028)  0.643/0.679 (+ 0.036)
Seniors
Pleomorphic adenomas 0.709/0.709 (+ 0.000)  0.722/0.722 (+ 0.000)  0.750/0.750 (+ 0.000)  0.667 / 0.667 (+ 0.000)
Warthin’s tumours 0.750/0.875 (+ 0.125)  0.889/0.944 (+ 0.055) 1.000/1.000 (+ 0.000)  0.500/0.750 (+ 0.250)

Carcinomas

0.613 /0.663 (+ 0.050)

0.611/0.667 (+ 0.056)

0.600/0.700 (+ 0.100)

0.625 /0.625 (+ 0.000)

Table 7. Performance metrics of junior and senior radiologists on 9 sub-sampled patients for the histopathological subtype
classification task, first without, then with the help of our machine learning algorithm (difference between brackets). Results
are given for each considered class.

The model proposed in our work rely on classical machine learning techniques, namely F-test feature selection and random
forests. Besides, radiomics can be quickly computed with modern software. The combination of those characteristics allows
for a fast, memory efficient diagnosis workflow that could be easily deployed on any computer while ensuring satisfactory
predictive performances.

When senior radiologists are exposed to predictions made by the algorithm and have the chance to change their decision,
their diagnosis accuracy ameliorates by 5.6 % on average. Accuracy is marked with an improvement of 6.3 % for junior
radiologists in the same conditions. Tables 6 and 7 show that seeing the output of our model indeed helps radiologists, as it
never mislead them in our experiment: when they followed the predictions of our model, the diagnosis accuracy improves. This
may indicate a high degree of confidence in our algorithm from the radiologists who took part in the experiment.

Concerning the input data, most studies on parotid glands imaged with MR devices rely on T1w and T2w sequences with
sometimes alterations (e.g., contrast enhancement or fat saturation) [13, 14, 29, 30]. Nevertheless, the use of DWI is rather
rare, but studies such as [31] demonstrated that it could be useful for parotid gland tumours characterisation. Xia et al. in
[30] observed that increasing the number of sampled sequences might output better results. Four sequences (T1w, Tlce, T2w
and DWI) are given as input to our system. However, all the features automatically selected to compute the predictions of the
proposed algorithm are extracted from T2w only. This nuances the statements made in those aforementioned works. It seems
that the more different sequences we use, the more possible optimisation paths there are, though all sequences might not be
useful to an algorithm to make reliable predictions.

Some works on parotid tumours [13, 14, 29, 30, 32] propose to gather all malignant tumours subtypes into a single class.
Nonetheless, as medical treatment differs largely between the different types of malignant tumours we discarded, it was then
more practical for our centre’s radiologists to get precise insights about histopathological subtypes rather than broader malignity
assessment.

Concerning the classification task, we make use of radiomic features, whose main role is to sum up multiscale information
contained in images. Radiomics can be extracted from 2-dimension surfaces or from 3-dimension volumes. Here, we chose
to compute the features on MR image slices with the largest tumour area. The use of 2D radiomics, while it might not be
as efficient as 3D features [10], spares doctors a very time-consuming task as segmentation would have to be carried out
on each tumour slice otherwise. As an example, the segmentation and radiomics computation from the largest 2-dimension
surface of a 6,038 mm?> tumour on all 4 considered sequences took us around 7 minutes, as opposed to 12 minutes using a 3D
volume. Moreover, further feature analysis and selection can be manually performed as in [13, 14, 33]. Here, we preferred to
embed these steps in our algorithm. This makes iterative fine-tuning of the process possible before inputting the features to our
machine learning model. Those procedures can however be avoided using deep learning methods that directly extract important
information from the MR images, at the cost of a loss of interpretability [29, 30, 32]. Authors of [14, 32] observed that Warthin
tumours are easier to discriminate than other histopathological subtypes. Table 3 illustrates the same findings, as our machine
learning model gets higher accuracy for this kind of affliction. Junior and senior radiologists as well identify Warthin’s tumours
more accurately than other types (see Table 7) thanks to a high specificity.

Matsuo et al. [29] proposed to gather the information of both T1w and T2w into a single image considering them as two
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colour channels, thus creating pseudo-coloured pictures. This method allows to quickly compare signal intensities which is
certainly a good take since Warthin’s tumours are hyper-intense on T1w [34], while pleomorphic adenomas are hypo-intense on
T1w and hyper-intense on T2w [35]. However, the whole process needs co-registered MR images, which were not available at
the time of writing.

Regarding the trust placed in artificial intelligence (Al) by radiologists, our study is in line with previous findings. A survey
conducted by the European Society of Radiology (ESR) in 2018 [36] suggested that radiologists tend to trust AL They see it as
a way to save time, allowing a significant improvement of interaction with their patients or other clinicians. As explained in
section 2.2, Comparison to radiologists, junior and senior radiologists participating in our experiment followed the predictions
of our algorithm in the cases where they were more uncertain, which shows confidence in the Al-based approach. Nevertheless,
according to the same research work from ESR, around a half of doctors think that patients do not consider Al reliable enough
to make a diagnosis without confirmation from a physician. We then believe that junior radiologists would largely benefit from
the use of machine learning during their training period. Indeed, it could help them to learn new ways of making their diagnosis,
for instance focusing on previously overlooked patterns in MR images, while in the end improving their overall accuracy. This
would as well constitute a good way to get used to these new techniques as part of their future job. Moreover, radiologists in
general could employ such algorithms as a complement to their daily diagnosis routine.

3.2 Limitations
In the following, we summarise the limitations of this work, highlighting ideas for future research.

First, the cohort enrolled in our research is not large enough to acquire a substantial amount of MR images. While we aspire
to reduce the number of patients even more as it would mean that fewer persons are suffering from parotid tumours, insufficient
data usually results in high variability and low generalisation capacities.

We could have gathered all malignant lesions in a single class, including carcinomas, lymphomas and other types we did
not consider and preferred to exclude from analysis. Doing so would have included 23 images of malignant tissues, which
might have increased the discrimination performances of our algorithm.

In order to characterise the sampled MR images and sum up the information contained within it, we used of radiomic
features. However, the robustness of this method may be dependent on the application, as stated in [26]. This property is crucial
to ensure stability of the results, but there is no consensus regarding how to assess it [37]. Thus, we cannot guarantee the
prospective abilities of our algorithm.

Also, it is rather unexpected that all features automatically selected with our approach come from T2w, while radiologists
tend to prefer Tlce to make their diagnosis. Gabelloni et al. [14] however got appealing results using only T2w radiomics.

Eventually, we provided an experiment to assess the impact of our algorithm on radiologists’ decisions. Nonetheless, it
should be noted that since we compare a machine to humans, their respective training datasets are different. Indeed, experience
of the physicians can be considered as a form of pre-training, but it conveys a bias as they consequently know about the
frequency of occurrence of each histopathological subtype. Moreover, radiomics given as input to our machine learning model
do not encompass the same information as a radiologist’s eyes. For instance, the algorithm has no data about the spatial location
of the tumour within the head (e.g., deep lobe of the parotid gland, contact with surrounding nerves, etc.). Last but not least, we
enrolled nine radiologists in our experiment, which is surely not enough to draw definitive conclusions or perform meaningful
statistical tests.

3.3 Perspectives
Based upon the experience acquired while carrying out this research work, we would like to advocate some tactics to conduct
future experiments on parotid gland tumours and MR radiomics.

First, radiomics normalisation techniques applied to machine learning should be further studied. Here, we tried to employ
an MRI-adjusted ComBat [18], but it yielded poor standardisation results. This method should actually be adapted to suit
machine learning tasks, i.e., modified so that it could be calibrated on a training set before being applied to test data. Moreover,
as previously observed in [10], one should consider 3D volumes segmentation as direction of tumour growth is an indication
of its histopathological subtype. Correlation is high between radiomics characteristics extracted from those volumes, but
redundancy can be diminished thanks to intra-class correlation (ICC) and concordance index computations as proposed in
[38]. Regarding the experiment performed with radiologists, new investigations could take advantage of a larger number of
physicians involved, as well as the implementation of a method to evaluate the level of confidence into their own diagnosis.
This kind of assessment could easily be interpreted as class probabilities in order to assess doubts and compute new metrics. In
this work, radiologists had no input on the probability of the algorithm’s predictions. Uncertainty quantification would surely
help professionals to assess the quality of the Al-based diagnosis.
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Conclusion

In this research paper, we propose an easy workflow to predict the histopathological subtype of parotid gland tumours using
radiomics. Thanks to the analysis of the results gave by the algorithm, we strongly believe that our method could be used as a
mean of training junior radiologists. Moreover, the procedure we offer may also help physicians settle doubts when diagnosing
parotid tumours.

Author contributions

Conceptualisation, S.A., A.Q. and E.C.; methodology, A.Q., V.E. and E.C.; data collection, S.A., FB., G.G., D.H.; data curation,
S.A. and A.Q.; software, A.Q.; supervision, E.C., N.L. and C.B.; formal analysis, A.Q., V.E. and E.C.; writing — original draft,
A.Q.; writing — review & editing, A.Q., V.E. and E.C.

Acknowledgements

The authors would like to thank the patients who gave their agreement to the use of their MR images in the scope of this study.
E.C. and A.Q. received funding from the European Research Council Starting Grant MAJORIS ERC-2019-STG850925. The
work of V.E. is supported by ARL/ARO under grant W911NF-22-1-0235.

References

[1] Marco Guzzo et al. “Major and Minor Salivary Gland Tumors”. In: Critical Reviews in Oncology/Hematology 74.2 (May
2010), pp. 134-148. 1SSN: 10408428. DO1: 10.1016/j.critrevonc.2009.10.004.

[2] Ronald H. Spiro. “Salivary Neoplasms: Overview of a 35-Year Experience with 2,807 Patients”. In: Head & Neck
Surgery 8.3 (Jan. 1986), pp. 177-184. 1SSN: 01486403, 19302398. DO1: 10.1002/hed.2890080309.

[3] Sam T. H. Reerds et al. “Accuracy of Parotid Gland FNA Cytology and Reliability of the Milan System for Reporting
Salivary Gland Cytopathology in Clinical Practice”. In: Cancer Cytopathology 129.9 (Sept. 2021), pp. 719-728. 1SSN:
1934-662X, 1934-6638. DOI: 10.1002/cncy.22435.

[4] Inés Correia-Sé et al. “Fine-Needle Aspiration Cytology (FNAC): Is It Useful in Preoperative Diagnosis of Parotid Gland
Lesions?” In: Acta Chirurgica Belgica 117.2 (Mar. 2017), pp. 110-114. 1SSN: 0001-5458. DO1: 10.1080/00015458.
2016.1262491.

[5] T. Tartaglione et al. “Differential Diagnosis of Parotid Gland Tumours: Which Magnetic Resonance Findings Should Be
Taken in Account?” In: Acta Otorhinolaryngologica Italica 35.5 (Oct. 2015), pp. 314-320. 1SSN: 0392-100X, 1827-675X.
DOI: 10.14639/0392-100X-693.

[6] El-Sayed A. El-Dahshan et al. “Computer-Aided Diagnosis of Human Brain Tumor through MRI: A Survey and a
New Algorithm”. In: Expert Systems with Applications 41.11 (Sept. 2014), pp. 5526-5545. 1SSN: 09574174. DOI:
10.1016/j.eswa.2014.01.021.

[7] Jenna Wiens and Erica S Shenoy. “Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare
Epidemiology”. In: Clinical Infectious Diseases 66.1 (Jan. 2018), pp. 149-153. 1SSN: 1058-4838, 1537-6591. DOI:
10.1093/cid/cix731.

[8] Philippe Lambin et al. “Radiomics: Extracting More Information from Medical Images Using Advanced Feature
Analysis”. In: European Journal of Cancer 48.4 (Mar. 2012), pp. 441-446. 1SSN: 09598049. DOI: 10.1016/j.ejca.
2011.11.036.

[9] Virendra Kumar et al. “Radiomics: The Process and the Challenges”. In: Magnetic Resonance Imaging 30.9 (Nov. 2012),
pp. 1234-1248. 1SSN: 0730725X. DO1: 10.1016/3.mri.2012.06.010.

[10] Rafael Ortiz-Ramén et al. “Classifying brain metastases by their primary site of origin using a radiomics approach based
on texture analysis: a feasibility study”. In: European Radiology. Vol. 28. Springer-Verlag, Nov. 2018, pp. 4514-4523.
DOI: 10.1007/s00330-018-5463-6.

[11] Ji Zhang et al. “Differentiating the Pathological Subtypes of Primary Lung Cancer for Patients with Brain Metastases
Based on Radiomics Features from Brain CT Images”. In: European Radiology 31.2 (Feb. 2021), pp. 1022-1028. ISSN:
1432-1084. DO1: 10.1007/s00330-020-07183~z.

[12] Organisation mondiale de la santé and Centre international de recherche sur le cancer, eds. WHO Classification of Head
and Neck Tumours. 4th ed. World Health Organization Classification of Tumours 9. Lyon: International agency for
research on cancer, 2017. ISBN: 978-92-832-2438-9.


https://doi.org/10.1016/j.critrevonc.2009.10.004
https://doi.org/10.1002/hed.2890080309
https://doi.org/10.1002/cncy.22435
https://doi.org/10.1080/00015458.2016.1262491
https://doi.org/10.1080/00015458.2016.1262491
https://doi.org/10.14639/0392-100X-693
https://doi.org/10.1016/j.eswa.2014.01.021
https://doi.org/10.1093/cid/cix731
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1007/s00330-018-5463-6
https://doi.org/10.1007/s00330-020-07183-z

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

Using machine learning on MRI radiomics to diagnose parotid tumours before comparing performance with
radiologists. — 12/15

Ying-mei Zheng et al. “MRI-Based Radiomics Nomogram for Differentiation of Benign and Malignant Lesions of the
Parotid Gland”. In: European Radiology (Nov. 2020). 1SSN: 1432-1084. DO1: 10.1007/s00330-020-07483~-4.

Michela Gabelloni et al. “Can Magnetic Resonance Radiomics Analysis Discriminate Parotid Gland Tumors? A Pilot
Study”. In: Diagnostics 10.11 (Nov. 2020), p. 900. DOI: 10.3390/diagnostics10110900.

Russell T. Shinohara et al. “Statistical Normalization Techniques for Magnetic Resonance Imaging”. In: Neurolmage:
Clinical 6 (Jan. 2014), pp. 9-19. ISSN: 2213-1582. D01: 10.1016/j.nicl.2014.08.008.

Lasz16 G. Nyil and Jayaram K. Udupa. “On Standardizing the MR Image Intensity Scale”. In: Magnetic Resonance
in Medicine 42.6 (1999), pp. 1072—1081. ISSN: 1522-2594. DOI: 10.1002/ (SICI) 1522-2594(199912)42:
6<1072::AID-MRM11>3.0.C0O;2-M.

Alex Zwanenburg et al. “The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for
High-Throughput Image-based Phenotyping”. In: Radiology 295.2 (Mar. 2020), pp. 328-338. 1SSN: 0033-8419. DOTI:
10.1148/radiol.2020191145.

Fanny Orlhac et al. “How Can We Combat Multicenter Variability in MR Radiomics? Validation of a Correction
Procedure”. In: European Radiology (Sept. 2020). ISSN: 1432-1084. DO1: 10.1007/s00330-020-07284-9.

Joanne C. Beer et al. “Longitudinal ComBat: A Method for Harmonizing Longitudinal Multi-Scanner Imaging Data”. In:
Neurolmage 220 (Oct. 2020), p. 117129. 1SSN: 1053-8119. DO1: 10.1016/Jj.neuroimage.2020.117129.

Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. “An Empirical Evaluation of Supervised Learning in
High Dimensions”. In: Proceedings of the 25th International Conference on Machine Learning. ICML ’08. New
York, NY, USA: Association for Computing Machinery, July 2008, pp. 96—103. ISBN: 978-1-60558-205-4. DOI:
10.1145/1390156.13901609.

Manuel Fernandez-Delgado et al. “Do We Need Hundreds of Classifiers to Solve Real World Classification Problems?”
In: The Journal of Machine Learning Research 15.1 (Jan. 2014), pp. 3133-3181. 1SSN: 1532-4435.

Helge C. Kniep et al. “Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type”. In: Radiology 290.2
(Dec. 2018), pp. 479—-487. 1SSN: 0033-8419. DO1: 10.1148/radiol.2018180946.

Hexiang Wang et al. “Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish
Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study”. In: Journal of Magnetic Resonance Imaging
52.3 (2020), pp. 873—-882. ISSN: 1522-2586. DOI: 10.1002/jmri.27111.

Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5-32. 1SSN: 1573-0565. DO1: 10.1023/A:
1010933404324.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Second Edition. Second. Springer Series in Statistics. New York: Springer-Verlag, 2009. 1SBN: 978-0-
387-84857-0. DO1: 10.1007/978-0-387-84858-7.

Philippe Lambin et al. “Radiomics: The Bridge between Medical Imaging and Personalized Medicine”. In: Nature
Reviews Clinical Oncology 14.12 (Dec. 2017), pp. 749-762. 1SSN: 1759-4782. DOI: 10.1038/nrclinonc.2017.
141.

Max Kuhn and Kjell Johnson. “An Introduction to Feature Selection”. In: Applied Predictive Modeling. New York,
NY: Springer New York, 2013, pp. 487-519. 1SBN: 978-1-4614-6848-6 978-1-4614-6849-3. DOI: 10.1007/978-1—
4614-6849-3_109.

Max Kuhn and Kjell Johnson. Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC
Press, July 2019. 1SBN: 978-1-351-60947-0.

Hidetoshi Matsuo et al. “Diagnostic Accuracy of Deep-Learning with Anomaly Detection for a Small Amount of
Imbalanced Data: Discriminating Malignant Parotid Tumors in MRI”. In: Scientific Reports 10.1 (Dec. 2020), p. 19388.
ISSN: 2045-2322. DO1: 10.1038/s41598-020-76389-4.

Xianwu Xia et al. “Deep Learning for Differentiating Benign From Malignant Parotid Lesions on MR Images”. In:
Frontiers in Oncology 11 (June 2021), p. 632104. 1SSN: 2234-943X. DO1: 10.3389/fonc.2021.632104.

Hidetake Yabuuchi et al. “Characterization of Parotid Gland Tumors: Added Value of Permeability MR Imaging to
DWI and DCE-MRI”. In: European Radiology 30.12 (Dec. 2020), pp. 6402—-6412. 1SSN: 0938-7994, 1432-1084. DOI:
10.1007/s00330-020-07004-3.

Yi-Ju Chang et al. “Classification of Parotid Gland Tumors by Using Multimodal MRI and Deep Learning”. In: NMR in
Biomedicine 34.1 (Jan. 2021). 1SSN: 0952-3480, 1099-1492. DOI: 10.1002/nbm.4408.


https://doi.org/10.1007/s00330-020-07483-4
https://doi.org/10.3390/diagnostics10110900
https://doi.org/10.1016/j.nicl.2014.08.008
https://doi.org/10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1007/s00330-020-07284-9
https://doi.org/10.1016/j.neuroimage.2020.117129
https://doi.org/10.1145/1390156.1390169
https://doi.org/10.1148/radiol.2018180946
https://doi.org/10.1002/jmri.27111
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1007/978-1-4614-6849-3_19
https://doi.org/10.1007/978-1-4614-6849-3_19
https://doi.org/10.1038/s41598-020-76389-4
https://doi.org/10.3389/fonc.2021.632104
https://doi.org/10.1007/s00330-020-07004-3
https://doi.org/10.1002/nbm.4408

[33]

[34]

[35]

(36]

[37]

[38]

Using machine learning on MRI radiomics to diagnose parotid tumours before comparing performance with
radiologists. — 13/15

Chih-Wei Wang et al. “JOURNAL CLUB: The Warthin Tumor Score: A Simple and Reliable Method to Distinguish
Warthin Tumors From Pleomorphic Adenomas and Carcinomas”. In: American Journal of Roentgenology 210.6 (June
2018), pp. 1330-1337. 1SSN: 0361-803X, 1546-3141. DOI: 10.2214/AJR.17.18492.

Mitsuaki Ikeda et al. “Warthin Tumor of the Parotid Gland: Diagnostic Value of MR Imaging with Histopathologic
Correlation”. In: AJNR. American journal of neuroradiology 25.7 (Aug. 2004), pp. 1256-1262. 1SSN: 0195-6108.

Mika Okahara et al. “Parotid Tumors: MR Imaging with Pathological Correlation”. In: European Radiology 13.S06
(Dec. 2003), pp. L25-L.33. 1SSN: 0938-7994, 1432-1084. DOI: 10.1007/s00330-003-1999-0.

European Society of Radiology (ESR). “Impact of Artificial Intelligence on Radiology: A EuroAIM Survey among
Members of the European Society of Radiology”. In: Insights into Imaging 10.1 (Dec. 2019), p. 105. ISSN: 1869-4101.
DOI: 10.1186/s13244-019-0798-3.

Alex Zwanenburg et al. “Assessing Robustness of Radiomic Features by Image Perturbation”. In: Scientific Reports 9.1
(Dec. 2019), p. 614. 1SSN: 2045-2322. DOI: 10.1038/s41598-018-36938-4.

Renee Cattell, Shenglan Chen, and Chuan Huang. “Robustness of Radiomic Features in Magnetic Resonance Imaging:
Review and a Phantom Study”. In: Visual Computing for Industry, Biomedicine, and Art 2.1 (Dec. 2019), p. 19. ISSN:
2524-4442. D0O1: 10.1186/542492-019-0025-6.


https://doi.org/10.2214/AJR.17.18492
https://doi.org/10.1007/s00330-003-1999-0
https://doi.org/10.1186/s13244-019-0798-3
https://doi.org/10.1038/s41598-018-36938-4
https://doi.org/10.1186/s42492-019-0025-6

Using machine learning on MRI radiomics to diagnose parotid tumours before comparing performance with
radiologists. — 14/15

A. Extracted radiomic features

IBSI Feat Number of
category catures features

Volume, Surface area, Surface area to volume ratio, Sphericity, Compactness 1,
Compactness 2, Spherical disproportion, Maximum 3D diameter, Maximum 2D
diameter slice, Maximum 2D diameter column, Maximum 2D diameter row, Major
axis, Minor axis, Least axis, Elongation, Flatness

Shape 16

Energy, Total energy, Entropy, Minimum, 10th percentile, 90th percentile, Maximum,
Mean, Median, Interquartile range, Range, Mean absolute deviation, Robust mean
absolute deviation, Root mean squared, Standard deviation, Skewness, Kurtosis,
Variance, Uniformity

First order 19

Autocorrelation, Joint average, Cluster prominence, Cluster shade, Cluster tendency,
Contrast, Correlation, Difference Average, Difference entropy, Difference variance,
Joint energy, Joint entropy, Informal measure of correlation 1, Informal measure of
correlation 2, Inverse difference moment, Inverse difference moment normalized,
Inverse difference, Inverse difference normalized, Inverse variance, Maximum
probability, Sum average, Sum entropy, Sum of squares

GLCM 23

Short run emphasis, Long run emphasis, Gray level non uniformity, Gray level non
uniformity normalized, Run length non uniformity, Run length non uniformity
normalized, Run percentage, Gray level variance, Run variance, Run entropy, Low
gray level run emphasis, High gray level run emphasis, Short run low gray level
empbhasis, Short run high gray level emphasis, Long run low gray level emphasis, Long
run high gray level emphasis

GLRLM 16

Small area emphasis, Large area emphasis, Gray level non uniformity, Gray level non
uniformity normalized, Size zone non uniformity, Size zone non uniformity
normalized, Zone percentage, Gray level variance, Zone variance, Zone entropy, Low
gray level zone emphasis, Small area low gray level emphasis, Small area high gray
level emphasis, Large area low gray level emphasis, Large area high gray level
emphasis

GLSZM 15

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength 5

Small dependence emphasis, Large dependence emphasis, Gray level non uniformity,
Dependence non uniformity, Dependence non uniformity normalized, Gray level
variance, Dependence variance, Dependence entropy, Low gray level emphasis, High
gray level emphasis, Small dependence low gray level emphasis, Small dependence
high gray level emphasis, Large dependence low gray level emphasis, Large
dependence high gray level emphasis

GLDM
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B. Metrics definitions

Let TP, FP, TN and FN denote the true/false positives and true/false negatives.
* Accuracy: Defined as the ratio of samples that are correctly identified, no matter the class.

TP+TN
TP+FP+TN+FN

¢ Specificity: Also called true negative rate. Defined as the ratio of negatives that are correctly identified.

TN
TN+FP

When not in used in a binary or OvR context, specificity is computed with overall total TN and FP (i.e., across all classes).
* Sensitivity: Also called true positive rate. Defined as the ratio of positives that are correctly identified.

TP
TP+FN

When not in used in a binary or OVR context, sensitivity is computed with overall total TP and FN (i.e., across all classes).

* Balanced accuracy: Defined as the mean of sensitivity and specificity.

1 TP L TN
2\TP+FN TN+FP
When not in used in a binary or OVR context, balanced accuracy is the average of sensitivity for each class.

* Area under ROC curve (AUC): The receiver operating characteristic (ROC) curve plots the TP rate against the FP
rate. AUC corresponds to the area between this curve and the x-axis. An AUC greater than 0.5 means that the algorithm
predicts better than random. An AUC of 1 maximizes both specificity and sensitivity.
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