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Abstract—Reconfigurable intelligent surface (RIS) is a promis-
ing technique to improve the performance of future wireless
communication systems at low energy consumption. To reap the
potential benefits of RIS-aided beamforming, it is vital to enhance
the accuracy of channel estimation. In this paper, we consider
an RIS-aided multiuser system with non-ideal reflecting elements,
each of which has a phase-dependent reflecting amplitude, and
we aim to minimize the mean-squared error (MSE) of the
channel estimation by jointly optimizing the training signals at
the user equipments (UEs) and the reflection pattern at the RIS.
As examples the least squares (LS) and linear minimum MSE
(LMMSE) estimators are considered. The considered problems
do not admit simple solution mainly due to the complicated
constraints pertaining to the non-ideal RIS reflecting elements.
As far as the LS criterion is concerned, we tackle this difficulty by
first proving the optimality of orthogonal training symbols and
then propose a majorization-minimization (MM)-based iterative
method to design the reflection pattern, where a semi-closed
form solution is obtained in each iteration. As for the LMMSE
criterion, we address the joint training and reflection pattern
optimization problem with an MM-based alternating algorithm,
where a closed-form solution to the training symbols and a semi-
closed form solution to the RIS reflecting coefficients are derived,
respectively. Furthermore, an acceleration scheme is proposed to
improve the convergence rate of the proposed MM algorithms. Fi-
nally, simulation results demonstrate the performance advantages
of our proposed joint training and reflection pattern designs.

Index Terms—Reconfigurable intelligent surface (RIS), channel
estimation, least squares (LS), linear minimum mean-squared
error (LMMSE), reflection pattern, majorization-minimization
(MM).

I. INTRODUCTION

The deployment of reconfigurable intelligent surfaces (RISs)

has drawn a lot of attention as a cost-effective promising

solution for wireless communication networks [1]–[8]. An

RIS usually consists of a large number of low-cost passive

adjustable reflecting elements, each of which can be inde-

pendently controlled to adjust the amplitude and/or the phase

of the reflected signals such that the wireless transmission

channels are sculpted to fulfill various design goals.

Recently, considerable innovative contributions have been

devoted to optimize RIS-aided wireless communications. The
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joint optimization of the transmit beamforming at the transmit-

ter and the reflection beamforming at the RIS has been studied

to maximize the received signal-to-noise ratio (SNR) [9] and

to minimize the total transmit power [10] for a single-user

RIS-assisted multiple-input single-output (MISO) system. In

[11] and [12], the authors considered maximizing the sum rate

and the energy efficiency for a downlink RIS-aided multiuser

MISO system, respectively. The secrecy rate maximization

problem for RIS-assisted multi-antenna communications has

been studied in [13], [14] from the physical-layer security

perspective. In [15], the authors studied the sum rate maxi-

mization problem for RIS-aided full-duplex communications

[16], [17]. Moreover, practical low-resolution RIS phase shifts

were further considered in single-user [18] and multiuser [19]

systems. In [20], the received SNR was maximized for an

RIS-aided single-user system by considering the impact of

practical transceiver hardware impairments. Different from the

above works focusing on flat-fading channels, an RIS-aided

orthogonal frequency division multiplexing (OFDM) system

over frequency-selective channels was studied in [21]–[24].

As revealed in these works, an RIS is proved beneficial for

improving the performance of wireless communications.

To fully achieve the benefits of RIS-aided communications,

it is necessary to obtain accurate channel state information

(CSI), which, however, turns out to be technically challenging

[25], since an RIS cannot transmit or receive pilots to assist

the channel estimation. To overcome this difficulty, a cascaded

channel estimation method was investigated in [26]–[32],

which only requires pilot signals at the transmitter. Concretely,

an “on-off” reflection pattern design, which turns on one RIS

element at a time, was first developed in [26] for the cascaded

channel estimation. Subsequently, it is found that the channel

estimation performance of RIS-aided systems can be enhanced

by turning on all the RIS elements during the training phase

and configuring the reflection pattern appropriately. In this

regard, the authors of [27], [28] optimized the RIS reflection

pattern to minimize the mean-squared error (MSE) of the

least squares (LS) channel estimator. By exploiting the channel

statistics knowledge in RIS-aided systems, the authors of [29]

demonstrated that the linear minimum MSE (LMMSE) chan-

nel estimator can achieve a better MSE performance. Then,

in [30], the joint optimization of the training sequence at the

transmitter and the reflection pattern at the RIS was analyzed

for the LMMSE estimator. In addition, the channel sparsity

was exploited in [31] to assist the cascaded channel estimation.

In [32], a more complex RIS-aided multi-cell system was

considered and the corresponding CSI acquisition method was

http://arxiv.org/abs/2403.19955v1
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investigated. On the other hand, the dimension of the cascaded

channel in RIS-aided systems could be quite high due to

the large number of RIS reflecting elements, thus leading to

excessive training overhead. Several efforts have been made

to address this issue [24], [32]–[35]. For example, the authors

of [24] proposed a group-wise channel estimation method, by

partitioning all the RIS elements into several groups, where

each group consists of a set of neighboring RIS elements

sharing a common reflection coefficient, thus reducing the

effective number of RIS elements and the training overhead.

A novel two-timescale CSI-based protocol was recently pro-

posed [34], [35], where the beamforming at the base station

(BS) was designed based on the instantaneous CSI while the

reflection coefficients at the RIS were optimized based on the

slow time-varying long-term CSI. As a result, given a fixed

RIS reflection pattern that remains unchanged within several

coherence blocks, the dimension of the instantaneous channel

that needs to be estimated in each block is independent of the

number of RIS elements, so that the training overhead can be

significantly reduced.

Most of the existing works on the channel estimation for

RIS-assisted systems assume unit amplitude signal reflection,

i.e., the magnitude of the reflection coefficient of each RIS

element is always one, regardless of the phase shift, so as

to maximize the reflected signal power. However, it was

revealed in [36]–[39] that such assumption is actually ideal

and the magnitude of the reflection coefficient of a practical

RIS element is dependent on the reflection phase [40]. In

other words, one cannot adjust the reflection phase while

maintaining the unit reflection magnitude at the same time.

Motivated by the above facts, we investigate the joint

training and reflection pattern design for channel estimation

in an RIS-aided multiuser system considering the LS and

LMMSE channel estimators, by explicitly taking into account

the characteristics of non-ideal RIS elements. In such cases,

most methods developed in prior related works, e.g., in [27],

[28], [30], that rely on an ideal RIS with unit-modulus reflec-

tion coefficient cannot be applied to the considered problems.

In fact, the considered phase-dependent amplitude configu-

ration makes the corresponding optimization nontrivial and

challenging. To tackle these challenges, our main contributions

are summarized as follows:

• As for the LS channel estimator, we reveal that the opti-

mal training sequences at the user equipments (UEs) are

independent of the reflection pattern at the RIS and are or-

thogonal to each other. Then, we develop a majorization-

minimization (MM)-based iterative algorithm to address

the reflection pattern design, where a semi-closed form

solution is obtained in each iteration.

• As for the LMMSE channel estimator, the corresponding

optimization problem turns out to be more difficult to

solve. To obtain a tractable and also high-quality solution,

we optimize the pilots and the reflection pattern in an

alternating way. In particular, by invoking the MM tech-

nique, we obtain a closed-form solution and a semi-closed

form solution for the pilot sequence and the reflection

pattern, respectively.

• The convergence of the two proposed joint training and

reflection pattern optimization designs is theoretically

proved. Furthermore, we propose an accelerated strategy

for the developed algorithms in order to significantly

reduce the number of iterations required for reaching

the convergence and reduce the overall computational

complexity.

The rest of this paper is organized as follows. In Section II,

the RIS-aided multiuser communication system and the cor-

responding LS and LMMSE channel estimation methods are

introduced. Section III and Section IV present the proposed

MM-based joint training and reflection pattern designs for the

LS and LMMSE channel estimators, respectively. In Section V,

we propose an acceleration scheme to improve the conver-

gence rate of the proposed MM algorithms. Simulation results

are shown in Section VI. Finally, conclusions are provided in

Section VII.

Notations: Vectors and matrices are denoted by boldface

lower-case and boldface upper-case letters, respectively. R and

C denote the sets of real and complex numbers, respectively.

The superscripts (·)T , (·)∗, and (·)H denote the transpose,

the conjugate, and the conjugate transpose operations, respec-

tively. ‖ · ‖F and Tr[·] denote the Frobenius norm and the

trace of a matrix, respectively. ‖ · ‖ denotes the ℓ2 norm of a

vector. | · |, arg(·), and R{·} return the modulus, the phase,

and the real part of the input complex number, respectively. ⊗
and ⊙ stand for the Kronecker product and the Hadamard

product, respectively. [·]i:j,p:q returns the submatrix formed

by the elements from the i-th to the j-th rows and from

the p-th to the q-th columns of the input matrix. vec(·) is

the vectorization operation. E{·} represents the expectation

operation. a ∼ CN (ā,Σ) means that the vector a follows a

circularly symmetric complex Gaussian distribution with mean

ā and covariance matrix Σ. diag{·} returns a diagonal matrix

with diagonal elements being the entries of the input vector. IN
denotes the identity matrix of size N × N . λmax(A) returns

the largest eigenvalue of matrix A. O(·) denotes the big-O

computational complexity notation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the model and the channel

estimation criteria of the considered RIS-assisted multiuser

MISO system, and then introduce the problem formulation

for the joint design of the uplink training symbols and the

RIS reflection coefficients.

A. System Model

We consider the RIS-assisted uplink multiuser wireless

communication system in Fig. 1, which consists of a BS with

L receive antennas, an RIS with M reflecting elements, and

K single-antenna UEs. Let G ∈ CL×M , hr,k ∈ CM×1,

hd,k ∈ CL×1 denote the channel between the RIS and the

BS, the channel between the k-th UE and the RIS, and

the channel between the k-th UE and the BS, respectively,

which are assumed to follow the Rayleigh fading model.

Denote the stacked channels of the UEs-RIS link and the

UEs-BS link by Hr , [hr,1, · · · ,hr,K ] ∈ CM×K and

Hd , [hd,1, · · · ,hd,K ] ∈ CL×K , respectively. Moreover, the
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Fig. 1. The considered RIS-aided uplink multiuser communication system.
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Fig. 2. The considered practical phase shift model [40].

reflection coefficient matrix at the non-ideal RIS is denoted by

Φ = diag
{
[φ1, · · · , φM ]T

}
, with φm denoting the reflection

coefficient of the m-th element at the RIS.

To characterize the RIS phase shifts, we utilize the parallel

resonant circuit-based model considered in [40]. More specifi-

cally, the equivalent impedance of the m-th reflecting element,

m ∈M , {1, · · · ,M}, is expressed as

Zm(Cm, Rm) =
jωL1(jωL2 +

1
jωCm

+Rm)

jωL1 + (jωL2 +
1

jωCm
+Rm)

, (1)

where Cm, Rm, L1, and L2 stand for the effective capacitance,

the effective resistance, the bottom layer inductance, and the

top layer inductance of the parallel resonant circuit, respec-

tively, and ω represents the angular frequency of the incident

signal. Then, the reflection coefficient of the m-th element of

the RIS is given by

φm = βme
jθm =

Zm(Cm, Rm)− Z0

Zm(Cm, Rm) + Z0
, (2)

where βm ∈ [0, 1] and θm ∈ [0, 2π] stand for the reflection

amplitude and the phase shift, respectively, and Z0 denotes

the free space impedance. Different from the commonly used

unit modulus phase shift model, the amplitude and the phase

of φm in (2) are coupled. Specifically, according to [40], the

reflection amplitude βm of the m-th element can be expressed

as the following function of the corresponding phase shift θm:

βm(θm) = (1 − βmin)

(
sin(θm − δ) + 1

2

)α

+ βmin, (3)

where the values of the constants βmin ≥ 0, δ ≥ 0, and

α ≥ 0 depend on the specific circuit parameters in (1). Fig. 2

illustrates an exemplified behaviour of the model in (3), where

α = 1.6 and δ = 0.43π.

B. Cascaded Channel Estimation

Let us focus on the channel estimation for the considered

system. An RIS cannot transmit training signals or perform

channel estimation. Therefore, we cannot estimate Hr or G

directly. Nevertheless, it is possible to estimate the cascaded

channel of the reflected link at the BS.

We consider a block fading channel model where each

block is divided into training-based channel estimation and

data transmission stages. By adopting the channel estimation

protocol in [28], [31], as shown in Fig. 3 at the top of the next

page, we further divide the training stage into B subframes,

each of which consists of τ symbols, where τ ≥ K and

B ≥ M + 1. The RIS coefficients are kept fixed within each

subframe and vary for different subframes. The users transmit

the same training signals periodically in different subframes.

Mathematically, in the b-th subframe, b ∈ B , {1, · · · , B}, the

received signals of τ consecutive symbols at the BS, denoted

by Y(b) ∈ CL×τ , is given by

Y(b) = (GΦ(b)Hr +Hd)X+ Z(b)

=

(
M∑

m=1

φm(b)gmhH
r,m +Hd

)
X+ Z(b), (4)

where Φ(b) = diag
{
[φ1(b), · · · , φM (b)]T

}
represents the

fixed RIS reflection coefficients in subframe b and X denotes

the stacked training symbols of K UEs, which is expressed as

X , [x1, · · · ,xK ]
T ∈ C

K×τ . (5)

Here, xk , [xk(1), · · · , xk(τ)]T ∈ Cτ×1 stands for the τ
training symbols of the k-th UE, k ∈ K , {1, · · · ,K}. In

addition, Z(b) ∈ CL×τ is the additive Gaussian white noise

matrix in the b-th subframe, and gm ∈ CL×1 and hr,m ∈
C

K×1 stand for the m-th column of G and HH
r , respectively.

To proceed, by setting φM+1(b) = 1 and defining

Γm ,

{
gmhH

r,m m ∈M
Hd m =M + 1,

(6)

the received signal Y(b) in (4) becomes

Y(b) =

(
M+1∑

m=1

φm(b)Γm

)
X+ Z(b)

, [Γ1, · · · ,ΓM+1](φ(b)⊗ IK)X+ Z(b)

, Γ(φ(b)⊗ IK)X+ Z(b), (7)

where φ(b) , [φ1(b), · · · , φM+1(b)]
T and Γ ,

[Γ1, · · · ,ΓM+1] is the equivalent channel to be estimated in
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Fig. 3. The considered channel estimation protocol.

this work, which consists of the direct and cascaded reflected

channels. Furthermore, by gathering the received signal Y(b)
of all the B subframes, we obtain

Y = ΓS+ Z, (8)

where Y , [Y(1), · · · ,Y(B)] ∈ CL×τB and Z ,

[Z(1), · · · ,Z(B)] ∈ CL×τB denote the received signals and

the noises of the whole training phase, respectively, and S

is relevant to both the training sequence and the reflection

pattern, which is expressed as

S , [(φ(1)⊗ IK)X, · · · , (φ(B)⊗ IK)X] ∈ C
[(M+1)K]×τB.

(9)

Define the reflection pattern of B subframes at the RIS by

V , [φ(1), · · · ,φ(B)] ∈ C
(M+1)×B, (10)

each column of which represents the reflection pattern of the

corresponding subframe. Then, based on the definitions in (9)

and (10), we obtain the following expression for S

S = (V ⊗ IK)(IB ⊗X) , ṼX̃, (11)

where Ṽ , V ⊗ IK and X̃ , IB ⊗ X are of size [(M +
1)K]×BK and KB × τB, respectively.

The goal of channel estimation for the considered RIS-

aided multiuser system is to recover the channel matrix Γ

based on the knowledge of the received signal matrix Y and

a properly designed matrix S. From (8), we obtain the LS and

the LMMSE estimates of Γ as follows [41]:

Γ̂LS = YS†, (12)

Γ̂LMMSE = Y
(
SHRΓS+ σ2LIτB

)−1
SHRΓ, (13)

where S† = SH(SSH)−1 denotes the pseudoinverse of S,

RΓ = E{ΓHΓ} is the correlation matrix of Γ, and σ2 denotes

the noise variance. The estimation errors corresponding to (12)

and (13) are given by

JLS = E

{
‖Γ̂LS − Γ‖2F

}
= σ2LTr

[(
SSH

)−1
]
, (14)

JLMMSE = E

{
‖Γ̂LMMSE − Γ‖2F

}

= Tr

[(
R−1

Γ
+

1

σ2L
SSH

)−1
]
. (15)

In addition, the training overhead of the considered es-

timation scheme is (M + 1)K . There exist some possible

approaches to alleviate this overhead, e.g., by grouping the

RIS elements [24] and by adopting the two-timescale protocol

[34], [35], which will be discussed in Section VI-C.

C. Problem Formulation

In this paper, we aim to design the matrix S, i.e., the training

sequence X at the UE side and the reflection coefficient V at

the non-ideal RIS, such that the channel estimation MSEs JLS

or JLMMSE are minimized. The considered joint optimization

problem is formulated as

minimize
X,V

J(X,V)

subject to ‖xk‖2 ≤ Pk, k ∈ K
[V]m,n ∈ F , m ∈M, n ∈ B
[V]M+1,n = 1, n ∈ B, (16)

where J(X,V) is given by (14) for the LS estimator and

by (15) for the LMMSE estimator. ‖xk‖2 ≤ Pk stands for the

transmit power constraint of UE k and Pk is the corresponding

power budget. [V]m,n ∈ F means that the entry [V]m,n

satisfies the phase shift constraint given in (3). [V]M+1,n = 1
follows from the definition φM+1(b) = 1.

Solving the problem in (16) is difficult due to the coupled

variables X and V in the objective function and the realistic

constraint for the reflection coefficient. We develop efficient

algorithms to tackle the problems for the LS and LMMSE

channel estimators in the following two sections, respectively.
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Remark 1: When considering multi-antenna UEs, we define

X as [XT
1 , · · · ,XT

K ]T ∈ C
N×τ , where Xk ∈ C

Nk×τ denotes

the pilot matrix sent by the k-th UE equipped with Nk

antennas and τ ≥ N ,
∑K

k=1Nk. The optimization problem

can be formulated similarly, where the dimensions of Hr, Hd,

Γ, and S need to be adjusted, and the methods proposed in the

following sections can be modified and applied accordingly.

III. LS CHANNEL ESTIMATION

In this section, we focus on the optimization problem in

(16) for the LS channel estimator. Firstly, we prove that the

optimal training matrix is independent of the reflection pattern

and has an interesting orthogonal property. Then, we propose

an efficient MM-based algorithm to optimize the RIS reflection

pattern under the considered circuit model for the RIS element,

where a semi-closed form solution is derived in each iteration.

A. Closed-Form Optimal Training Matrix

Although the training matrix and the reflection pattern are

coupled in the objective function JLS in problem (16), as

stated in the following theorem, we can determine the optimal

training matrix in a closed form for the LS channel estimator.

Theorem 1: The optimal training matrix for the LS channel

estimator of the considered non-ideal RIS-assisted system

satisfies the condition:

XXH = diag{P1, · · · , PK}. (17)

Proof: See Appendix A.

It follows from Theorem 1 that any orthogonal training

matrix is optimal for the LS channel estimator, which con-

forms to the results in MIMO communications [41] and ideal

RIS-assisted communication systems [27]. Herein, we adopt a

simple discrete Fourier transform (DFT)-based training matrix

for estimating the uplink multiuser channel. Specifically, the

training sequence of each UE is expressed as

xk =

√
Pk

‖dk‖
dk, k ∈ K, (18)

where dk denotes the k-th column of the τ × τ DFT matrix.

B. Optimization of RIS Reflection Pattern

In this subsection, we consider the optimization with re-

spect to the RIS reflection pattern under the considered non-

ideal phase shift constraint, which, according to the proof of

Theorem 1, takes the form:

minimize
V

Tr
[(
VVH

)−1
]

subject to [V]m,n ∈ F , m ∈ M, n ∈ B
[V]M+1,n = 1, n ∈ B. (19)

Although the variable X has been eliminated, it is still nontriv-

ial to find the optimal solution of problem (19) mainly due to

the intricate phase shift constraint. In fact, although it has been

proved in [27] that the optimal reflection pattern minimizing

the MSE of the LS channel estimator is an orthogonal matrix,

e.g., the DFT matrix or the Hadamard matrix, for ideal unit-

modulus RIS phase shifts, this conclusion does not necessarily

hold for the non-ideal phase shift constraints considered in this

work. Hence, to design the non-ideal RIS reflection pattern for

the LS channel estimator, we develop an MM-based algorithm.

The basic idea of the MM algorithm is to find a series

of simple surrogate problems whose objective functions are

locally approximated to the original objective function in each

iteration, and then iteratively solve the surrogate problems until

convergence [42]. To do this, we first derive an appropriate

surrogate function with a more tractable form to locally

approximate the objective function of problem (19), as given

in the following proposition.

Proposition 1: For the objective function Tr[(VVH)−1], a

surrogate upper bound for the i-th iteration is

f (V;V0) = λ1Tr
[
VVH

]
+ 2R{Tr [A0V]}+ Const(V0),

(20)

where V0 denotes the solution to V in the (i− 1)-th iteration

of the MM algorithm, and λ1, A0, and Const(V0) are defined

as follows:

λ1 , 3Tr
[(
V0V

H
0

)−1
]2
,

A0 , −VH
0

(
V0V

H
0

)−2 − λ1VH
0 ,

Const(V0) = Tr
[(
V0V

H
0

)−1
]
+ λ1Tr

[
V0V

H
0

]

+ 2Tr
[
VH

0

(
V0V

H
0

)−2
V0

]
. (21)

Proof: See Appendix B.

The major advantage of constructing the surrogate function

in (20) is that the intractable inversion operation in the

objective function of (19) is removed and we can perform

the minimization of (20) by optimizing each entry of V

simultaneously. Specifically, replacing the objective function

in (19) with f (V;V0), we obtain the following problem

minimize
V

λ1Tr
[
VVH

]
+ 2R{Tr [A0V]}

subject to [V]m,n ∈ F , m ∈M, n ∈ B
[V]M+1,n = 1, n ∈ B. (22)

In particular, we show that the optimal solution to problem

(22) can be determined in an element-wise manner.

Proposition 2: The element-wise optimal solution of prob-

lem (22) in the i-th iteration is obtained by

[V]m,n =

{
β(θ̄m,n)e

jθ̄m,n m ∈ M, n ∈ B
1 m =M + 1,

(23)

where θ̄m,n = argmin
θ∈[0,2π]

f̄m,n(θ) and f̄m,n(θ) is given by

f̄m,n(θ)

= λ1
(
ξ2(sin(θ−δ)+1)2α+β2

min+2ξβmin(sin(θ−δ)+1)α
)

+2|[A0]n,m|(ξ(sin(θ−δ)+1)α+βmin) cos(arg([A0]n,m)+θ)
(24)

with ξ , (1 − βmin)
(
1
2

)α
. The minimization of f̄m,n(θ) can

be obtained by performing a one-dimensional search over θ ∈
[0, 2π].

Proof: See Appendix C.
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Algorithm 1 Proposed Algorithm for LS Channel Estimator

1: Initialization: Set the initial point V(0), iteration index

i = 0, and convergence accuracy ǫ.
2: Obtain the optimal X according to (18).

3: repeat

4: Set i = i+ 1.

5: Calculate V(i) according to (23);

6: until convergence.

7: Output the optimal V(i).

With the solution of the RIS reflection pattern given in (23),

the proposed MM-based algorithm for the LS channel estima-

tor is summarized in Algorithm 1. Moreover, we show the

convergence of the MM algorithm in the following theorem.

Theorem 2: The proposed MM algorithm always converges

to a stationary point of the problem in (19).

Proof: See Appendix D.

Remark 2: In Proposition 2, we address the element-wise

optimization of [V]m,n by performing the one-dimensional

search over θ ∈ [0, 2π] based on the equivalent model in

(3). In fact, the reflection coefficient can be modeled by the

formulation in (2) directly, and the optimization of [V]m,n can

also be obtained by searching for the effective capacitance Cm.

IV. LMMSE CHANNEL ESTIMATION

In this section, we address the optimization problem in (16)

for the LMMSE channel estimator, which can be applied if

the channel correlation matrix is known. To begin with, we

utilize the matrix inversion lemma [43] and transform JLMMSE

as follows:

JLMMSE = Tr

[(
R−1

Γ
+

1

σ2L
SSH

)−1
]

= Tr
[
RΓ −RΓS

(
SHRΓS+ σ2LIτB

)−1
SHRΓ

]
.

(25)

As a result, the corresponding MSE minimization problem is

equivalently reformulated as

minimize
X,V

− Tr
[
RΓS

(
SHRΓS+ σ2LIτB

)−1
SHRΓ

]

subject to ‖xk‖2 ≤ Pk, k ∈ K
[V]m,n ∈ F , m ∈ M, n ∈ B
[V]M+1,n = 1, n ∈ B. (26)

Compared to the LS channel estimator, the objective function

of problem (26), denoted as g(S), is more complex, thus

making it harder to optimize X and V separately. Hence, in

order to address the considered problem, we propose an MM-

based alternating algorithm.

We first construct a tractable surrogate function, as shown

in the subsequent lemma, to iteratively upper bound g(S).
Lemma 1: For problem (26), g(S) is upper bounded by

g(S;S0) given as follows:

g(S;S0) , Tr
[
ΞH

0 SHRΓSΞ0

]
− 2R{Tr [Ξ0RΓS]}

+ σ2LTr
[
Ξ0Ξ

H
0

]
, (27)

where Ξ0 =
(
SH
0 RΓS0 + σ2LIτB

)−1
SH
0 RΓ and S0 is an

arbitrary feasible solution to S.

Proof: See Appendix E.

We observe that g(S;S0) in (27) only consists of a quadratic

term and a linear term with respect to S, which makes it

much easier to be handled than the original g(S). Based on

Lemma 1, we address the minimization of g(S) by iteratively

minimizing g(S;S0), where the variables X and V are opti-

mized in an alternating manner.

A. Optimization of the Training Matrix

We first perform the optimization of X with a fixed V.

Substituting S = ṼX̃ into g(S;S0) and omitting the constant

terms, the training sequence design under the per-UE trans-

mitter power constraints is formulated as

minimize
X

Tr
[
ΞH

0 X̃HṼH
0 RΓṼ0X̃Ξ0

]

− 2R
{

Tr
[
Ξ0RΓṼ0X̃

]}

subject to ‖xk‖2 ≤ Pk, k ∈ K, (28)

where Ṽ0 = V0 ⊗ IK and V0 represents the fixed reflection

pattern. Problem (28) can be formulated into a convex problem

with respect to the block-diagonal matrix X̃, as follows:

minimize
X̃

Tr
[
ΞH

0 X̃HṼH
0 RΓṼ0X̃Ξ0

]

− 2R
{

Tr
[
Ξ0RΓṼ0X̃

]}

subject to X̃ = IB ⊗X,

‖[X]Tk,1:τ‖2 ≤ Pk, k ∈ K, (29)

and then solved. However, directly solving (29) can be com-

putationally inefficient due to the large dimension of X̃.

Therefore, we propose an MM-based solution for problem

(28), which only requires calculating closed-form expressions

iteratively and results in a lower computational complexity.

Specifically, we employ the following upper bound to the

first term in the objective function, according to [42, eq. (26)]:

Tr
[
ΞH

0 X̃HṼH
0 RΓṼ0X̃Ξ0

]

= vecH(X̃)
((

Ξ0Ξ
H
0

)T ⊗ ṼH
0 RΓṼ0

)
vec(X̃)

≤ λ2‖X̃‖2F − 2R
{

Tr
[
λ2X̃

H
0 X̃−Ξ0Ξ

H
0 X̃H

0 ṼH
0 RΓṼ0X̃

]}

+ vecH(X̃0)
(
λ2I−

(
Ξ0Ξ

H
0

)T ⊗ ṼH
0 RΓṼ0

)
vec(X̃0),

(30)

where λ2I � (Ξ0Ξ
H
0 )T ⊗ ṼH

0 RΓṼ0 and X̃0 is the solution

of X̃ in the previous iteration. For simplicity, the value of

λ2 can be set to λ2 = λmax((Ξ0Ξ
H
0 )T ⊗ ṼH

0 RΓṼ0) =
λmax(Ξ0Ξ

H
0 )λmax(Ṽ

H
0 RΓṼ0).

By substituting (30) and removing the constant terms, we

transform problem (28) into

minimize
X

λ2Tr
[
X̃X̃H

]
− 2R

{
Tr
[
B0X̃

]}

subject to ‖xk‖2 ≤ Pk, k ∈ K, (31)
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where B0 = λ2X̃
H
0 − Ξ0Ξ

H
0 X̃H

0 ṼH
0 RΓṼ0 + Ξ0RΓṼ0. By

invoking the definition X̃ = IB ⊗ X in (5), we can readily

decompose the problem in (31) into K subproblems, with

respect to the training sequence design at each UE. Concretely,

each subproblem is given by

minimize
xk

λ2B‖xk‖2 − 2R
{

Tr
[
bH
k xk

]}

subject to ‖xk‖2 ≤ Pk, (32)

where bk ,
∑B

b=1 [B0]
∗
(b−1)τ+1:bτ,(b−1)K+k. Note that (32) is

a convex quadratic optimization problem which can be readily

tackled. In fact, there exists a closed-form optimal solution as

shown in the following proposition.

Proposition 3: The optimal solution to problem (32) can be

expressed in a closed form as follows:

xk =

{ √
Pk

‖bk‖bk if ‖bk‖ >
√
Pkλ2B,

bk

λ2B
if ‖bk‖ ≤

√
Pkλ2B.

(33)

Proof: See Appendix F.

By invoking (33) for all the K UEs, we accomplish the

optimization of X with a low computational cost.

B. Optimization of the RIS Reflection Pattern

Now we fix X and focus on the optimization of the RIS

reflection pattern. According to the upper bound g(S;S0) in

(27), we formulate the subproblem with respect to V as

minimize
V

Tr
[
ΞH

0 X̃H
0 ṼHRΓṼX̃0Ξ0

]

− 2R
{

Tr
[
X̃0Ξ0RΓṼ

]}

subject to [V]m,n ∈ F , m ∈ M, n ∈ B
[V]M+1,n = 1, n ∈ B. (34)

Similar to the optimization of the training matrix tackled in

the previous subsection, by employing the upper bound given

in [42, eq. (26)], we obtain

Tr
[
ΞH

0 X̃H
0 ṼHRΓṼX̃0Ξ0

]

≤λ3‖Ṽ‖2F − 2R
{

Tr
[
λ3Ṽ

H
0 Ṽ− X̃0Ξ0Ξ

H
0 X̃H

0 ṼH
0 RΓṼ

]}

+ vecH(Ṽ0)

(
λ3I−

(
X̃0Ξ0Ξ

H
0 X̃H

0

)T
⊗RΓ

)
vec(Ṽ0),

(35)

and transform problem (34) into

minimize
V

λ3Tr
[
ṼṼH

]
− 2R

{
Tr
[
C0Ṽ

]}

subject to [V]m,n ∈ F , m ∈ M, n ∈ B
[V]M+1,n = 1, n ∈ B, (36)

where C0 = λ3Ṽ
H
0 −X̃0Ξ0Ξ

H
0 X̃H

0 ṼH
0 RΓ+X̃0Ξ0RΓ, Ṽ0 is

the solution of Ṽ in the previous iteration, and λ3 is calculated

as λmax(X̃0Ξ0Ξ
H
0 X̃H

0 )λmax (RΓ).
By substituting Ṽ , V ⊗ IK into the objective

function of the problem in (36), we obtain∑
m

∑
n(λ3K|[V]m,n|2 − 2R{cm,n[V]m,n}), where

cm,n =
∑K

k=1 [C0](n−1)K+k,(m−1)K+k. Hence, we can solve

Algorithm 2 Proposed MM-Based Alternating Algorithm for

LMMSE Channel Estimator

1: Initialization: Set the initial point V(0), X(0), iteration

index i = 0, and convergence accuracy ǫ.
2: repeat

3: Set i = i+ 1.

4: Obtain X(i) according to (33);

5: Obtain V(i) according to (37);

6: until convergence.

7: Output the optimal V(i) and X(i).

problem (36) in an element-wise manner. In particular, the

solution to each entry of V in the i-th iteration can be

obtained according to

[V]m,n =

{
β(θ̄m,n)e

jθ̄m,n m ∈ M, n ∈ B
1 m =M + 1,

(37)

where θ̄m,n = argmin
θ∈[0,2π]

gm,n(θ) is derived by performing a

one-dimensional search and gm,n(θ) is calculated by substitut-

ing the equivalent phase shift model in (3) into λ3K|β(θ)|2−
2R{cm,nβ(θ)e

jθ}, whose expression is given by

gm,n(θ)

= λ3K
(
ξ2(sin(θ−δ)+1)2α+β2

min+2ξβmin(sin(θ−δ)+1)α
)

−2|cm,n|(ξ(sin(θ−δ)+1)α+βmin) cos(arg(cm,n)+θ). (38)

Based on the two proposed solutions, the LMMSE channel

estimation algorithm is summarized in Algorithm 2. Regarding

the convergence, it can be verified that the algorithm generates

a non-increasing sequence based on the alternating optimiza-

tion method that is utilized. Moreover, the objective value

of the problem in (26) has a finite lower bound. Therefore,

Algorithm 2 always converges.

V. ACCELERATED MM ALGORITHM

When utilizing MM algorithms, the convergence speed

usually depends on the tightness of the majorization functions.

In the previous sections, in order to solve the channel estima-

tion problems and reduce the computational complexity, the

coefficients of the quadratic term, e.g., λ1, in the proposed

majorization functions were relaxed and the original objective

function was majorized twice successively for the LMMSE

estimation. These operations result in a slow convergence

speed of the MM method due to the loose surrogate function.

In this section, we employ the squared iterative method

(SQUAREM) [44] to accelerate the convergence of the pro-

posed MM-based algorithms. SQUAREM was originally pro-

posed in [44] to accelerate the convergence speed of the

expectation-maximization (EM) algorithms. Since MM is a

generalization of EM [42], SQUAREM can also be easily

applied to MM algorithms [45], [46].

Without loss of generality, we focus on the acceleration

of Algorithm 1 for the LS channel estimation problem. The

acceleration schemes of Algorithm 2 for the LMMSE channel

estimator can be obtained in a similar way. Specifically, given

V0 denoting the solution obtained in the (i − 1)-th iteration,
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Algorithm 3 Accelerated MM Algorithm to Optimize V for

the LS Channel Estimator

1: Initialization: set the initial point V(0), iteration index i =
0, and convergence accuracy ǫ.

2: repeat

3: Set i = i+ 1;

4: V1 = MMupdate (V0);
5: V2 = MMupdate (V1);
6: L1 = V1 −V0;

7: L2 = V2 −V1 − L1;

8: Compute the step-length l = − ‖L1‖F

‖L2‖F
;

9: Vtemp = P
(
V0 − 2lL1 + l2L2

)
;

10: while MSE(Vtemp) > MSE(V0) do

l ← (l − 1)/2
Vtemp = P

(
V0 − 2lL1 + l2L2

)

end while

11: V(i) = Vtemp;

12: until convergence.

13: Output the optimal V(i).

we denote the update of V in step 5 of Algorithm 1 by

V(i) = MMupdate(V0). Then, the proposed SQUAREM-

based accelerated MM scheme is given in Algorithm 3. Note

that the updated variable V0 − 2lL1 + l2L2 in step 9 may

violate the constraints, i.e., [V0−2lL1+ l
2L2]m,n /∈ F , which

needs to be projected back to the feasible region (denoted by

P(·)). For the element-wise practical circuit model constraint

of V, the projection can be readily addressed by adjusting the

reflection amplitude of each element according to its phase

shift based on the equivalent relationship in (3). Moreover, the

step length l is chosen based on the Cauchy-Barzilai-Borwein

(CBB) method, and a back-tracking based strategy is adopted

to guarantee the monotonicity of the algorithm.

For the optimization of X, a similar approach as Algo-

rithm 3 can be applied, while only changing the projec-

tion function P(·) in step 9. Specifically, the projection of

X0 − 2lL1 + l2L2 onto the per-UE transmit power constraint

set can be expressed as [Xtemp]k,1:τ =
√
Pk

‖x′

k
‖x

′
k, ∀k ∈ K, where

x′
k , [X0 − 2lL1 + l2L2]k,1:τ .

VI. SIMULATION RESULTS AND COMPLEXITY ANALYSIS

A. Simulation Setup

In this section, the performance of the proposed channel

estimation algorithms is evaluated via numerical simulations.

Under practical size limitations, the distance between adjacent

elements at the RIS cannot be excessively large. Hence, the

channels of the RIS elements are also usually spatially cor-

related [47]. We denote the spatial correlation matrices at the

UEs, RIS, and BS by [Ψ]i,j = ψ|i−j|, ∀i, j, where 0 ≤ ψ < 1
stands for the spatial correlation coefficient. The correlation

coefficients at the UEs, RIS, and BS are denoted as ψUE,

ψRIS, and ψBS, respectively. The expression of the cascaded

channel correlation matrix RΓ for the LMMSE estimator is

given in Appendix G. The number of training subframes B
and the number of training symbols in each subframe τ are

set to M + 1 and K , respectively. The noise variance σ2 is

TABLE I
SIMULATION PARAMETERS

Notation Parameter Value

K Number of UEs 4

M Number of RIS reflecting elements 20

L Number of BS antennas 16

ψUE Correlation coefficient at the UEs 0.2

ψRIS Correlation coefficient at the RIS 0.4

ψBS Correlation coefficient at the BS 0.6

βmin Minimum reflection amplitude in (3) 0.2

α Steepness of the function curve in (3) 2.0

δ Horizontal distance between −π/2 and βmin in (3) 0.43π
ǫ Algorithm convergence accuracy 10−3
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Fig. 4. Normalized MSE of the LS channel estimator with respect to the
number of iterations and the running time in each iteration.

normalized and the system SNR is defined as Pk

σ2 = Pk, where

Pk is identical for all the K UEs for simplicity. The parameters

in (3) for modeling the practical phase shift constraints are

set according to [40]. The simulation parameters are given in

Table I unless otherwise specified.

B. Normalized MSE Performance Comparisons

We first validate the effectiveness of the utilized MM-based

algorithms. We show the normalized MSE, i.e., JLS/[LK(M+
1)], of the LS channel estimation algorithm with respect to

the number of iterations in the first subfigure of Fig. 4. The

alternating optimization method proposed in [48] is also used

to solve problem (19) for comparison, which optimizes each

element of V in an alternating manner, by performing a one-

dimensional search with the other B(M + 1) − 1 variables

being fixed. It is found that the convergence speed of the

MM algorithm is significantly enhanced by utilizing the pro-

posed acceleration scheme, and the accelerated MM algorithm

achieves almost the same MSE performance as the alternating

scheme with a similar convergence speed. Moreover, as shown

in the second subfigure, the MM-based algorithm has a much

shorter running time than the alternating scheme.

For performance comparisons, we consider the following

baseline schemes:

1) Ideal RIS: This corresponds to an ideal RIS, where the

amplitude of the reflection coefficient of each element is fixed



9

0 2 4 6 8 10

SNR (dB)

10-2

10-1

100

N
or

m
al

iz
ed

 M
SE

Ideal RIS
Proposed scheme
Ideal RIS projection
Naive scheme
On-off scheme

Fig. 5. Normalized MSE of the LS channel estimator versus the SNR.

to 1 while the phase shift can take any values from 0 to 2π.

In this case, the solution to V in each iteration becomes

[V]m,n = e−j arg(−[A0]n,m) m ∈ M, n ∈ B, (39)

for the LS channel estimator, and becomes

[V]m,n = e−j arg(cm,n) m ∈M, n ∈ B, (40)

for the LMMSE channel estimator. The training matrix X

is determined via the proposed solutions, i.e., an orthogonal

X is used for the LS channel estimator and an alternating

optimization algorithm based on (40) and Algorithm 2 is

utilized for the LMMSE channel estimator.

2) Ideal RIS projection: This corresponds to projecting

the reflection coefficients obtained by the “Ideal RIS” strat-

egy onto the practical constraints in (3), i.e., V̂m,n =
β(θ⋆m,n)e

jθ⋆
m,n , m ∈M, n ∈ B, where V̂m,n is the projected

reflection coefficient and θ⋆m,n denotes the phase shift of the

“Ideal RIS” scheme. The training symbols are also obtained

utilizing the proposed algorithms.

3) Naive scheme: This corresponds to computing an or-

thogonal training matrix according to (18), and to deriving

a reflection pattern V̄ by projecting each entry of a B × B
DFT matrix onto the practical constraints in (3), i.e., V̄m,n =
β(dm,n)e

jdm,n , m ∈ M, n ∈ B, where dm,n denotes the

phase shift of the (m,n)-th entry of the considered DFT

matrix. This naive scheme avoids the optimization process,

and it is also utilized as the initial point for the proposed

iterative algorithms.

4) On-off scheme: This corresponds to turning one RIS

element with unit amplitude reflection coefficient and to esti-

mating the associated effective channel at a time [26].

Fig. 5 shows the channel estimation error of the LS

estimator versus the SNR. It is seen that the normalized

MSEs of all the schemes decrease when increasing the SNR.

Compared to the “On-off scheme”, the other schemes, where

all the RIS elements are turned on during the training phase

and the reflection pattern is appropriately configured, achieve

much better channel estimation performances. Moreover, the

proposed scheme outperforms the “Ideal RIS projection”

scheme, since the proposed scheme optimizes the reflection
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Fig. 6. Normalized MSE of the LS channel estimator under different βmin.
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Fig. 7. Normalized MSE of the LMMSE channel estimator versus the SNR.

coefficients of the RIS by incorporating the practical phase

shift model directly, while the “Ideal RIS projection” scheme

cannot guarantee any optimality when the practical phase shift

model is considered. On the other hand, we observe that the

performance achieved by “Ideal RIS projection” and “Naive

scheme” is similar at various SNRs. This is because a DFT-

based reflection pattern is already optimal for the LS channel

estimator under the ideal unit-modulus coefficient constraints

[27]. Fig. 6 illustrates the impact of βmin for the practical phase

shift model. As βmin decreases, the phase shift model in (3)

deviates from the ideal one, so that the channel estimation

performance degrades. Additionally, when βmin increases, the

performance gap between the “Ideal RIS projection” and

“Proposed scheme” becomes smaller, since the considered

phase shift model approaches the ideal one for large βmin.

Fig. 7 evaluates the estimation error of the LMMSE channel

estimator, from which similar conclusions can be drawn as in

Fig. 5, except that there exists a performance gap between the

“Ideal RIS projection” and “Naive scheme” in Fig. 7. This

is due to the fact that, in contrast to the LS criterion, a DFT-

based orthogonal reflection pattern is no longer optimal for the

LMMSE channel estimator even under the ideal unit-modulus

coefficient constraint.

Finally, we compare the normalized MSE performance of
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Fig. 9. Normalized MSEs of the LS and LMMSE channel estimators versus
the number of reflecting elements at the RIS (SNR = 0 dB).

the LS and LMMSE channel estimators for the considered

RIS-aided multiuser system, as illustrated in Fig. 8 and Fig. 9.

We observe that, by using some prior knowledge of the

channel correlation, the LMMSE channel estimator is capable

of achieving a lower MSE than the LS estimator. In particular,

compared to the ideal phase shift model, the performance

gap between the LS and LMMSE channel estimators becomes

larger when considering the non-ideal phase shift model (see

Appendix H for a more detailed explanation). In addition, we

find from Fig. 9 that the normalized MSE of the considered

system decreases when increasing the number of RIS reflect-

ing elements. This is because the reflection pattern is well

designed and the RIS can be fully exploited, which, however,

requires a longer pilot sequence and leads to a higher training

overhead. Finally, a more notable performance gap between

the LMMSE and LS channel estimators can be observed when

the number of RIS reflecting elements is relatively small.

C. Impact of Channel Estimation Training Overhead

In this subsection, we evaluate the impact of the channel

estimation training overhead. Without loss of generality, we

consider a block fading channel model where the instantaneous

CSI remains static within each coherence block of T slots

and the long-term CSI, i.e., the channel correlation, remains

unchanged during U coherence blocks. For comparisons, we

consider two low-overhead schemes: the grouping scheme

[24] and the two-timescale scheme [34], [35]. In the former

scheme, ρ ≥ 1 neighboring RIS elements are grouped, and

they share a common reflection coefficient. Accordingly, the

channel estimator provides estimates for the combined channel

of each group. In this way, the effective dimension of the RIS

is reduced to M/ρ. In the latter scheme, the reflection pattern

at the RIS is designed and fixed within U coherence blocks

and the effective instantaneous BS-UE channel is estimated in

each coherence block, with training overheadK , and then used

for BS beamforming. We summarize and compare the training

overhead and the implementation cost of these schemes in

Table II. It can be seen that the training overhead of the

proposed method can be reduced via the RIS element grouping

and the two-timescale scheme has the lowest training overhead

and implementation cost.

Next, we compare the average transmission rate of the

schemes in Table II. Note that the two-timescale design for a

multiuser system in the presence of spatially correlated chan-

nels and a non-ideal phase-shift response is very challenging

to analyze and, to the best of the authors’ knowledge, it has

not been studied in the existing literature. Hence, we focus

on a single-UE scenario for this performance comparison.

Specifically, we denote the BS-RIS channel, the RIS-UE

channel, and the BS-UE channel in the u-th coherence block

by G(u), hr(u), and hd(u), respectively. According to [34,

Section III], the optimization of the phase shift matrix Φ based

on long-term statistics is formulated by

maximize
Φ

E
{
‖G(u)Φhr(u) + hd(u)‖2

}

subject to φm ∈ F , m ∈M, (41)

where the expectation is taken over the instan-

taneous CSI {G(u),hr(u),hd(u)}. By noting

E
{
‖G(u)Φhr(u) + hd(u)‖2

}
= LTr[ΦHΨRISΦΨRIS] + L

and exploiting the first-order Taylor expansion:

Tr[ΦHΨRISΦΨRIS] ≥ 2R
{

Tr
[
ΨRISΦ

H
0 ΨRISΦ

]}
−

Tr[ΦH
0 ΨRISΦ0ΨRIS], we address problem (41) by iteratively

maximizing R
{

Tr
[
ΨRISΦ

H
0 ΨRISΦ

]}
under the phase-shift

constraint in (3), where Φ0 denotes the solution obtained in

the previous iteration. In each iteration, the problem has an

element-wise optimal solution φm = β(θm)ejθm , m ∈ M,

where θm is obtained by performing a one-dimensional search

over θ ∈ [0, 2π] to maximize |[ΨRISΦ
H
0 ΨRIS]m,m|(ξ(sin(θ −

δ) + 1)α + βmin) cos(arg([ΨRISΦ
H
0 ΨRIS]m,m) + θ). After

determining the optimal Φ, which is kept fixed within U
coherence blocks, a pilot symbol is transmitted from the

UE to estimate the instantaneous effective BS-UE channel

in each coherence block, and, subsequently, the maximum

ratio transmission strategy is utilized at the BS for data

transmission. As a result, the average transmission rate during

U coherence blocks is given by
(
1− 1

T

)
1
U

∑U

u=1Rtts(u),
where Rtts(u) denotes the transmission rate in the u-th

coherence block. As for the proposed scheme, in each

coherence block a pilot sequence of length M + 1 is
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TABLE II
TRAINING OVERHEAD AND IMPLEMENTATION COST COMPARISON AMONG DIFFERENT SCHEMES

Scheme Estimated channel Training overhead Implementation cost of configuring the reflection pattern

Proposed w/o grouping [Γ1, · · · ,ΓM+1] K(M + 1) Training: Calculated once every U blocks; Adjusted once every K slots

Proposed w/ grouping [Γ̄1, · · · , Γ̄M/ρ+1] K(M/ρ+ 1) Transmission: Calculated once and kept fixed within each coherence block

Two-timescale GΦHr +Hd K Calculated once and kept fixed within U coherence blocks
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Fig. 10. Average transmission rate of different schemes.

transmitted from the UE to estimate the cascaded channel,

by using the proposed channel estimation method, based

on which the reflection coefficient matrix at the RIS and

the beamforming at the BS are optimized using the method

proposed in [40] for data transmission. Denoting the resulting

transmission rate in the u-th coherence block by Rprop(u),
the average rate of the proposed scheme is given by(
1− M+1

T

)
1
U

∑U
u=1 Rprop(u).

The average transmission rates of the schemes in Table II

are compared in Fig. 10, where U = 50, T = 196, and the

SNRs for channel estimation and data transmission are both

set to 5 dB. It is seen that, compared to the two-timescale

scheme, the proposed scheme achieves a higher rate when

M is relatively small, since the RIS reflection matrix in the

two-timescale scheme is predetermined and fixed within U
blocks while the proposed scheme adjusts the RIS reflection

matrix based on the instantaneous CSI. By increasing M , the

rate of the proposed scheme without grouping first increases

and then decreases, and finally becomes worse than that of

the two-timescale scheme, which is due to the larger training

overhead. Nevertheless, the training overhead of the proposed

scheme can be reduced by utilizing the grouping scheme. In

particular, the larger M , the better the grouping scheme.

D. Complexity Analysis

As for the LS channel estimator, V is iteratively updated

by employing Algorithm 1. In each iteration, the main compu-

tational complexity lies in calculating the surrogate function

f(V;V0) in (20). The associated complexity is O(M2B)
and O(M3) in terms of matrix multiplications and matrix

inversions, respectively, and O(MBD) in terms of performing

the element-wise one-dimensional search for MB elements

according to (23), where D denotes the complexity of the one-

dimensional search. Hence, the overall complexity of the LS

channel estimator is O(ILS(M
3+M2B+MBD)), where ILS

denotes the number of iterations required for convergence. As

for the LMMSE channel estimator, the matrices X and V

need to be updated in each iteration of Algorithm 2. The

process of updating X involves the calculation of matrix

multiplications, with complexity O(B2τ2MK +M2K2Bτ),
and matrix inversions, with complexity O(B3τ3), as well as

the largest eigenvalue of a BK × BK matrix, which can be

handled via the efficient power iteration method [49] with

complexityO(B2K2). Hence, the total complexity of updating

X is O(B3τ3+B2K2+B2τ2MK+M2K2Bτ). The update

of V has an additional computational cost of O(MBD)
because of the element-wise phase search. Hence, the overall

complexity of the LMMSE channel estimator is given by

O(ILMMSE(B
3τ3+B2K2+B2τ2MK+M2K2Bτ+MBD)),

where ILMMSE denotes the number of iterations required for

convergence. Considering a typical setup, where B = M + 1
and τ = K , the total complexities of the LS and the LMMSE

channel estimation schemes are O(ILS(M
3 + M2D)) and

O(ILMMSE(M
3K3+M2D)), respectively. Hence, the LMMSE

channel estimator has a higher computational complexity than

the LS channel estimator.

VII. CONCLUSION

A joint design for training symbols and reflection pattern

for RIS-assisted multiuser communication systems with a

realistic phase-amplitude reflection model was investigated in

this paper. We considered the MSE minimization problem

for both LS and MMSE channel estimators, subject to the

transmit power constraint at the UEs and a practical phase

shift model at the RIS. For the LS criterion, we proved the

optimality of the orthogonal training signals and developed an

MM-based algorithm to address the reflection pattern design

with a semi-closed form solution in each iteration. As for the

LMMSE criterion, we proposed to iteratively optimize the

training symbols and the reflection pattern, whose optimal

solutions in each iteration were obtained in a closed form

and a semi-closed form, respectively. The SQUAREM method

was further utilized to accelerate the convergence speed of

the proposed MM algorithms. Simulation results confirmed

that the proposed design can effectively improve the channel

estimation performance of RIS-aided channel in the presence

of practical phase-amplitude reflection models. In addition,

compared to the two-timescale design scheme, the proposed

instantaneous channel estimation-based scheme demonstrates

superior transmission rates for a low-to-medium size of the

RIS, while a grouping strategy is needed when considering a

large-size RIS.
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APPENDIX A

PROOF OF THEOREM 1

Based on the expression of S in (11), we have

SSH = [(V ⊗ IK)(IB ⊗X)][(IB ⊗XH)(VH ⊗ IK)]

= (V ⊗X)(VH ⊗XH)

=
(
VVH

)
⊗
(
XXH

)
. (42)

Substituting (42) into JLS, we have

Tr
[(
SSH

)−1
]
= Tr

[((
VVH

)
⊗
(
XXH

))−1
]

= Tr
[(
VVH

)−1 ⊗
(
XXH

)−1
]

= Tr
[(
VVH

)−1
]

Tr
[(
XXH

)−1
]
. (43)

Therefore, given an arbitrary reflection pattern V, the opti-

mization of X amounts to

minimize
X

κTr
[(
XXH

)−1
]

subject to ‖xk‖2 ≤ Pk, k ∈ K, (44)

where κ = σ2LTr[(VVH)−1] is independent of X. It can be

readily shown by contradiction that the inequality constraints

in (44) must be active at the optimality. Moreover, the optimal

solution must have orthogonal rows. Hence, we obtain (17) and

the proof is completed.

APPENDIX B

PROOF OF PROPOSITION 1

Denote the objective function of problem (19) by f(V) ,
Tr[(VVH )−1]. To find a proper surrogate function of f(V),
we utilize the following upper bound [42, Eq. (25)]

f(x) ≤ f(y) +∇f(y)T (x − y) +
1

2
(x − y)TM(x− y),

(45)

where the matrix M must satisfy M � ▽2f(x) for all

x. According to (45), we are ready to calculate the first-

order and the second-order differentials of f(V). By applying

dA−1 = −A−1(dA)A−1 [50], we first compute the first-

order differential of f(V) as

df(V) =− Tr
[(
VVH

)−2
d
(
VVH

)]

=− Tr
[
VH

(
VVH

)−2
dV +

(
VVH

)−2
VdVH

]
.

(46)

Then, according to [50] and Tr(AB) = vecT (AT )vec(B), we

obtain the second-order differential of f(V) by

d2f(V) = − dvecT
((

VVH
)−2T

V∗
)
dvec (V)

− dvecT
((

VVH
)−2

V
)
dvec (V∗) . (47)

Subsequently, we manipulate the first term of (47) as follows:

− dvecT
((

VVH
)−2T

V∗
)
dvec (V)

= −
[
vecT

(
d
(
VVH

)−T (
VVH

)−T
V∗
)

+vecT
((

VVH
)−T

d
(
VVH

)−T
V∗
)

+vecT
((

VVH
)−2T

dV∗
)]
dvec (V)

=
[
vecT

((
VVH

)−T
(V∗dVT+dV∗VT )

(
VVH

)−2T
V∗
)

+vecT
((

VVH
)−2T

(V∗dVT+dV∗VT )
(
VVH

)−T
V∗
)

−vecT
((

VVH
)−2T

dV∗
)]
dvec (V)

, dvecT (V∗)Pdvec (V)+dvecT (V)KTQdvec (V) , (48)

where the last equality holds based on the relationship

vec (ABC) = (CT ⊗ A)vec (B), K is the unique [(M +
1)B]× [(M+1)B] permutation matrix satisfying Kvec (A) =
vec
(
AT
)

for an arbitrary matrix A ∈ C(M+1)×B , and P and

Q are defined as follows:

P , VT
(
VVH

)−2T
V∗ ⊗

(
VVH

)−1

+VT
(
VVH

)−T
V∗ ⊗

(
VVH

)−2 − IB ⊗
(
VVH

)−2

Q ,
(
VVH

)−2T
V∗ ⊗VH

(
VVH

)−1

+
(
VVH

)−T
V∗ ⊗VH

(
VVH

)−2
. (49)

Similar to (48), the second term of (47) can be written as

dvecT (V)PTdvec(V∗)+dvecT (V∗)QHKdvec(V∗) . (50)

Combining the results in (48) and (50), we reexpress the

second-order differential of f(V) as

d2f(V) =
[
dvecT (V∗) dvecT (V)

]
HV

[
dvec (V)
dvec (V∗)

]
, (51)

where HV ,

[
P QHK

KTQ PT

]
. The remaining step is to find

a matrix M such that M � HV holds for all feasible V.

For convenience, we simply choose M = ηI2(M+1)B with

η ≥ λmax(HV). To determine η, we first obtain the following

upper bound to λmax(HV):

λmax(HV)
(a)

≤ λmax

([
P 0

0 PT

])
+ λmax

([
0 QHK

KTQ 0

])

(b)
= λmax(P) + λ0.5max(QQH), (52)

where the inequality (a) follows from λmax(A + B) ≤
λmax(A) + λmax(B) with A and B being Hermitian matrices

and the equality (b) follows from λmax([0 AH ;A 0]) =
λ0.5max(AAH) [51]. Since the three terms in P are Hermitian

matrices, we can further upper bound λmax(P) as

λmax(P) ≤ λmax

(
VT

(
VVH

)−2T
V∗ ⊗

(
VVH

)−1
)

+λmax

((
VT

(
VVH

)−T
V∗−IB

)
⊗
(
VVH

)−2
)

= λ2max

((
VVH

)−1
)
, (53)

where the equality follows from λmax(A ⊗ B) =
λmax(A)λmax(B), λmax(AB) = λmax(BA), and λmax(A) =
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λmax(A
T ). With similar procedures, λ0.5max(QQH) can be up-

per bounded by 2λ2max((VVH)−1). Thus, we conclude that

λmax(HV) ≤ 3λ2max((VVH)−1).
However, it is still hard to determine the largest eigenvalue

of (VVH)−1 for every feasible solution V, since there exist

cases where VVH tends to be a singular matrix and thus the

largest eigenvalue of (VVH)−1 tends to be infinite. Fortu-

nately, we can handle this difficulty by fully exploiting the

specific form of the considered problem. Specifically, we im-

pose an additional constraint Tr[(VVH)−1] ≤ Tr[(V̂V̂H)−1]
to problem (19) with V̂ denoting an arbitrary feasible solution,

which yields

minimize
V

Tr
[(
VVH

)−1
]

subject to [V]m,n ∈ F , m ∈ M, n ∈ B
[V]M+1,n = 1, n ∈ B

Tr
[(
VVH

)−1
]
≤ Tr

[(
V̂V̂H

)−1
]
. (54)

It can be readily shown that problems (19) and (54) have the

same global optimal solution. Based on the additional imposed

constraint, we can relax the largest eigenvalue of (VVH)−1

as Tr[(V̂V̂H)−1] and accordingly set η to 3Tr[(V̂V̂H)−1]2.

Moreover, we judiciously update η = 3Tr[(V0V
H
0 )−1]2 in

each iteration with V0 being the obtained solution in the

previous iteration for facilitating a tighter bound. Note that

the above operations will not affect the convergence of the

MM algorithm [46].

By substituting the first-order differential in (46) and M =
3Tr[(V0V

H
0 )−1]2I into (45), we finally obtain the surrogate

function of f(V) by (20) in Lemma 1.

APPENDIX C

PROOF OF PROPOSITION 2

Note that the objective function of problem (22)

can be rewritten as
∑M+1

m=1

∑B
n=1 fm,n([V]m,n), where

fm,n([V]m,n) , λ1|[V]m,n|2 + 2R{[A0]n,m[V]m,n}. For a

fixed (m,n), the value of fm,n([V]m,n) depends on [V]m,n

and is independent of the other elements in V. Together with

the fact that the constraints in problem (22) are imposed on

each element of V independently, we conclude that problem

(22) can be solved for each element of V independently, i.e., in

an element-wise manner. Without loss of generality, replacing

[V]m,n with φ = β(θ)ejθ and plugging the equivalent phase

shift model in (3), fm,n([V]m,n) is equal to

λ1|φ|2 + 2R{[A0]n,mφ}
= λ1β(θ)

2 + 2R
{
|[A0]n,m|β(θ)ej(arg([A0]n,m)+θ)

}

= λ1
[
ξ2(sin(θ−δ)+1)2α+β2

min+2ξβmin(sin(θ−δ)+1)α
]

+2|[A0]n,m|(ξ(sin(θ−δ)+1)α+βmin)cos(arg([A0]n,m)+θ)

= f̄m,n(θ), (55)

where the second equality follows from Euler’s formula.

This implies that the minimization of fm,n([V]m,n) can be

addressed by performing a one-dimensional search over the

phase shift θ ∈ [0, 2π].

APPENDIX D

PROOF OF THEOREM 2

Denote the constraint set of problem (19) by S. We prove

the convergence of Algorithm 1 by verifying the following

four conditions according to [52, Sec. III]:

1) f (V) ≤ f (V;V0) , ∀V ∈ S;

2) f (V0) = f (V0;V0);
3) ∇f (V0) = ∇f (V0;V0);
4) f (V;V0) is continuous in both V and V0.

In particular, the first two conditions guarantee the conver-

gence of the proposed MM algorithm while conditions 3) and

4) guarantee that the algorithm converges to a stationary point.

Clearly, the considered f (V;V0) in (20) is a continuous

function and thus condition 4) holds. Next, the utilized bound

f (V;V0) is obtained according to (45) as shown in Appendix

B, where the original function f(x) is upper bounded by its

second-order Taylor expansion, which is in the right-hand side

of (45) and denoted as f(x;y). It is readily verified from (45)

that f(y) = f(y;y) and ∇f(y) = ∇f(y;y) and thus we

conclude that the conditions 1), 2), and 3) hold for f (V) and

f (V;V0). Therefore, the four conditions hold and the proof

is completed.

APPENDIX E

PROOF OF LEMMA 1

Let us introduce U , SHRΓS + σ2LIτB and rewrite

the objective function g(S) in problem (26) as g(U,S) ,

−Tr
[
RΓSU

−1SHRΓ

]
. Then, based on the fact that the

matrix function h(A,B) = Tr
[
BA−1BH

]
is jointly convex

in {A,B} [53], we can lower bound h(A,B) by its first-order

Taylor expansion as

Tr
[
BA−1BH

]

≥ 2R
{

Tr
[
A−1

0 BH
0 B
]}
− Tr

[
A−1

0 BH
0 B0A

−1
0 A

]
, (56)

where A0 and B0 denote arbitrary feasible points. By substi-

tuting {A,B} with {U,RΓS}, we obtain an upper bound for

g(S) by

− Tr
[
RΓS

(
SHRΓS+ σ2LIτB

)−1
SHRΓ

]

≤− 2R
{

Tr
[
(SH

0 RΓS0 + σ2LIτB)
−1SH

0 RΓRΓS
]}

+ Tr
[
(SH

0 RΓS0 + σ2LIτB)
−1SH

0 RΓRΓS0

×(SH
0 RΓS0 + σ2LIτB)

−1(SHRΓS+ σ2LIτB)
]
,

(57)

which is equal to g(S;S0) given in Lemma 1.

APPENDIX F

PROOF OF PROPOSITION 3

The Karush-Kuhn-Tucker (KKT) conditions of problem (32)

are given as follows:

‖x⋆
k‖2 − Pk ≤ 0, (58)

µ⋆ ≥ 0, (59)

µ⋆(‖x⋆
k‖2 − Pk) = 0, (60)

2λ2Bx⋆
k − 2bk + 2µ⋆x⋆

k = 0, (61)



14

where x⋆
k is the optimal solution to xk and µ⋆ is the optimal

dual variable associated with the constraint ‖xk‖2 ≤ Pk. We

now analyze the KKT conditions to find x⋆
k and µ⋆.

1) Case 1: If µ⋆ > 0, we obtain ‖x⋆
k‖2 = Pk from (60).

Substituting this into (61), we have ‖x⋆
k‖2 = ‖bk‖2

(λ2B+µ⋆)2 = Pk,

which yields µ⋆ + λ2B = ‖bk‖√
Pk

. Then, the optimal x⋆
k is

x⋆
k =

bk

λ2B + µ⋆
=

√
Pk

‖bk‖
bk. (62)

To guarantee a positive µ⋆, we must have ‖bk‖ >
√
Pkλ2B.

2) Case 2: If µ⋆ = 0, it follows from (61) that

x⋆
k =

bk

λ2B
. (63)

By substituting this equality into (58), we have ‖x⋆
k‖2 =

‖bk‖2

(λ2B)2 ≤ Pk. Combining these two cases, we derive the

optimal solution in (33).

APPENDIX G

EXPRESSION OF THE CASCADED CHANNEL CORRELATION

For the purpose of modeling the cascaded channel corre-

lation matrix RΓ, we consider the Kronecker channel model

[54]: Hr = Ψ
1
2

RIS,Hr
H̄rΨ

T
2

UE,Hr
, G = Ψ

1
2

BS,GḠΨ
T
2

RIS,G, and

Hd = Ψ
1
2

BS,Hd
H̄dΨ

T
2

UE,Hd
. The elements of the matrices H̄r,

Ḡ, and H̄d are independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean and unit variance.

The positive definite matrices ΨBS,G ∈ CL×L and ΨBS,Hd
∈

CL×L with unit diagonal entries denote the spatial correlation

matrices at the BS seen from the reflected link G and the

direct link Hd, respectively. Similar definitions are employed

for the correlation matrices at the UEs, i.e., ΨUE,Hr
∈ CK×K

and ΨUE,Hd
∈ CK×K , and the correlation matrices at the RIS,

i.e., ΨRIS,Hr
∈ C

M×M and ΨRIS,G ∈ C
M×M . For simplicity,

we set ΨBS,G = ΨBS,Hd
= ΨBS, ΨUE,Hr

= ΨUE,Hd
= ΨUE,

and ΨRIS,Hr
= ΨRIS,G = ΨRIS. Then, we have vec (Hr) ∼

CN (0MK ,ΨUE ⊗ΨRIS), vec (G) ∼ CN (0LM ,ΨRIS ⊗ΨBS),
and vec (Hd) ∼ CN (0LK ,ΨUE ⊗ ΨBS) [55]. To proceed,

based on the definition in (6), we have

E
{
ΓH
i Γj

}
= E

{
hr,ig

H
i gjh

H
r,j

}

= E
{
gH
i gj

}
E
{
hr,ih

H
r,j

}

= L[ΨRIS]i,j [ΨRIS]i,jΨUE

= L[ΨRIS ⊙ΨRIS]i,jΨUE, i ≤M, j ≤M. (64)

On the other hand, it is easily seen that E
{
ΓH
M+1ΓM+1

}
=

E
{
HH

d Hd

}
= LΨUE and E

{
ΓH
i Γj

}
= 0K×K when only

one of i and j is equal to M + 1 since H̄d is independent of

H̄r and Ḡ. Therefore, the correlation matrix of the cascaded

channel Γ is calculated as

RΓ = E








ΓH
1
...

ΓH
M+1


 [Γ1, · · · ,ΓM+1]





=

[
L (ΨRIS ⊙ΨRIS)⊗ΨUE 0KM×K

0K×KM LΨUE

]
. (65)

APPENDIX H

EXPLANATION ON THE MSE PERFORMANCE GAP

BETWEEN LS AND LMMSE CHANNEL ESTIMATORS

To explain the MSE performance gap in Figs. 8 and 9 in

mathematical terms, we focus on a scenario with a single

UE and assume an uncorrelated channel model, i.e., RΓ =
LIM+1. In this case, considering an RIS with a unit amplitude

response, it can be readily found that an orthogonal reflection

pattern, i.e., VVH = (M + 1)IM+1, is optimal for both the

LS and LMMSE channel estimators. The corresponding MSEs

are given by

JLS = LTr
[
(γ(M + 1)IM+1)

−1
]
,

JLMMSE = LTr
[
(IM+1 + γ(M + 1)IM+1)

−1
]
, (66)

respectively, where γ , P
σ2 denotes the SNR. As for the case

with the phase reflection model in (3), on the other hand,

analytical solutions for V become elusive due to the intricate

constraints imposed by the realistic model for the reflection

coefficient. In this case, we denote the optimized V obtained

through the proposed iterative algorithms using the LS and

LMMSE channel estimation criteria, by V⋆
LS and V⋆

LMMSE,

respectively. Accordingly, the MSEs are given by

J ′
LS = LTr

[(
γV⋆

LS(V
⋆
LS)

H
)−1
]
,

J ′
LMMSE = LTr

[(
IM+1 + γV⋆

LMMSE(V
⋆
LMMSE)

H
)−1
]
. (67)

In the sequel, we prove
J′

LS

J′

LMMSE

> JLS

JLMMSE
mathematically.

To begin with, we consider the following relationship:

J ′
LS

J ′
LMMSE

=
Tr
[(
γV⋆

LS(V
⋆
LS)

H
)−1
]

Tr
[
(IM+1 + γV⋆

LMMSE(V
⋆
LMMSE)

H)
−1
]

>
Tr
[(
γV⋆

LS(V
⋆
LS)

H
)−1
]

Tr
[
(IM+1 + γV⋆

LS(V
⋆
LS)

H)
−1
]

,
Tr
[
Ω−1

]

Tr
[
(IM+1 +Ω)−1

] , (68)

where Ω , γV⋆
LS(V

⋆
LS)

H . The inequality is established since

V⋆
LMMSE is the optimized solution for the LMMSE estima-

tion and V⋆
LS lacks optimality under the LMMSE criterion.

Next, we recall that better channel estimation performance

is obtained if the RIS has a unit-amplitude response, i.e.,

J ′
LS > JLS. Without loss of generality, we define t ,

J′

LS

JLS
> 1

and re-express J ′
LS = Tr

[
Ω−1

]
as

Tr
[
Ω−1

]
= tJLS = tTr

[
(γ(M + 1)IM+1)

−1
]

= Tr
[
(γ/t(M + 1)IM+1)

−1
]
. (69)

To proceed, we need the following lemma.

Lemma 2: For an arbitrary N ×N positive definite matrix

A ≻ 0 where Tr[A−1] = a = Tr[(N
a
IN )−1], it holds that

Tr[(IN +A)−1] ≤ Tr

[(
IN +

N

a
IN

)−1
]
=

Na

N + a
. (70)
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The equality holds if A = N
a
IN .

Proof: Denote the eigenvalues of A−1 by {tn > 0}Nn=1,

which satisfy
∑N

n=1 tn = Tr[A−1] = a. Then, we have

Tr[(IN +A)−1] =
N∑

n=1

1

1 + 1
tn

= N −
N∑

n=1

1

1 + tn
. (71)

By employing the Jensen’s inequality to the convex function

f(x) = 1
1+x

, we further have

1

N

N∑

n=1

1

1 + tn
≥ 1

1 +
∑

N
n=1

tn
N

=
N

N + a
. (72)

Substituting (72) into (71) yields the following relationship:

Tr[(IN +A)−1] ≤ N − N2

N + a
=

Na

N + a
. (73)

The proof is completed.

By applying the Lemma 2 to (69), we obtain

Tr
[
(IM+1 +Ω)−1

]
< Tr

[
(IM+1 + γ/t(M + 1)IM+1)

−1
]

= tTr
[
(tIM+1 + γ(M + 1)IM+1)

−1
]
.

(74)

Accordingly,
Tr[Ω−1]

Tr[(IM+1+Ω)−1]
fulfills the following properties:

Tr
[
Ω−1

]

Tr
[
(IM+1 +Ω)

−1
] =

tTr
[
(γ(M + 1)IM+1)

−1
]

Tr
[
(IM+1 +Ω)

−1
]

>
tTr
[
(γ(M + 1)IM+1)

−1
]

tTr [(tIM+1 + γ(M + 1)IM+1)−1]

>
Tr
[
(γ(M + 1)IM+1)

−1
]

Tr [(IM+1 + γ(M + 1)IM+1)−1]

=
JLS

JLMMSE

, (75)

where the first equality is obtained by substituting (69), the

second inequality follows from (74), and the third inequality

holds since t > 1. Finally, by combining (68) and (75), we

obtain
J′

LS

J′

LMMSE

> JLS

JLMMSE
. Together with the fact J ′

LMMSE >

JLMMSE, we conclude that, compared to the case study with

an ideal unit amplitude reflection coefficient, the performance

gap between the LS and LMMSE channel estimators becomes

larger in the presence of a realistic model for the RIS reflection

coefficient.
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