
HAL Id: hal-04734061
https://hal.science/hal-04734061v1

Preprint submitted on 13 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolutionary attractors in the chemostat model
Ramsès Djidjou-Demasse, Ousmane Seydi, Alain Rapaport

To cite this version:
Ramsès Djidjou-Demasse, Ousmane Seydi, Alain Rapaport. Evolutionary attractors in the chemostat
model. 2024. �hal-04734061�

https://hal.science/hal-04734061v1
https://hal.archives-ouvertes.fr


Evolutionary attractors in the chemostat model

R. Djidjou-Demasse1,2, O. Seydi2 and A. Rapaport3

Abstract. We consider the evolutive chemostat model with a continuous phenotypic trait of the
micro-organisms that impacts both the specific growth rate and the yield conversion, and whose evolution
is driven by a mutation kernel. We study the evolutionary attractors (EAs) for a general class of non-linear
growth functions, without assuming that the dynamics of the resource is fast compared to the growth.
We generalize the well-known reproduction number as a function of the trait, and show a concentration
of the asymptotic state on values of the trait that maximize the reproduction number. However, in the
case of multiple maxima, we show that the system can have a unique globally stable EA, depending on a
total order defined on the trait values.

Key-words. Chemostat model, mutations, evolutionary attractor, reproduction number.
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1 Introduction

Within the field of mathematical biology, competition modeling stands out as a particularly intricate
area. There is a numerous of works for the mathematical analysis of dynamical systems related to
populations competition and, in particular within the context of the microbial ecology and the ”chemostat
model” [20, 38]. This model describes the growth of one or several microbial species on a single limiting
resource. Differently to more classical population models, this model couples the dynamics of the (biotic)
populations with the one of the (abiotic) resource. Let us recall that the first experiments on species
competition on a resource are attributed to Gause who conducted them on microbial populations [12].
Generally, one of the primary objective involves characterizing, among numerous competitors vying for a
limited resource, which one (or ones) possess better competitive abilities. When there is a finite number of
competitors for a single resource and no direct interaction among them, we often witness the manifestation
of the Competitive Exclusion Principle (later popularized by Hardin as a general principle [19]). Put
simply, one of the competitors will inevitably hold a slight advantage over the others, ultimately resulting
in the extinction of all remaining contenders over the long term. Let us underline that environment is
supposed to be (temporally and spatially) constant in this framework, as stressed in [2]. This principle
has been proved on the mathematical model of the chemostat with several competitors on a single limited
resource, under various assumptions [3, 21, 24, 36, 37, 43]. Interestingly, the possibility of changing
the issue of the competition by modifying the operating conditions has been experimentally verified, as
predicted by the mathematical analysis [18]. However, species mutation is known from a long time to occur
in the chemostat [14, 30]. In [7], conditions for a mutant to invade in the chemostat model are studied,
depending on the conversion efficiency parameter considered as the ”trait” of micro-organisms. Trait
substitution sequences can then be studied, converging to a global ESS (Evolutionarily Stable Strategy)
trait. There is here an implicit assumption of a time scale separation between the (long) evolutionary
time and the (relatively short) period of competitive interaction. However, when species have closed
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characteristics, the time for a better competitor to replace a resident species can be very long [35], and
the assumption of time scale separation might be questionable. On may have then to consider a increasing
number of competitors, which make the prediction of the composition of the ecosystem more challenging.
Here, we consider a model of a chemostat with a continuum (or infinite) number of competitors, as in
[9, 33] but with different hypotheses on the growth functions. The model proposed is subject to a dilution
rate d > 0 with an input concentration of substrate sin, assumed to be constant. The mortality rate of the
biomass is considered to be negligible compared to the removal rate d (as in the classical chemostat model
[20, 38]). We consider that the biomass is composed of a continuum of phenotypic traits represented by a
scalar variable x ∈ R. The variable x can be perceived as a taxonomic label for the competitors. Let s(t)
denote the concentration of substrate at time t and v(t, x) the concentration of microorganisms at time t
with phenotype x ∈ R. The dynamics of s and v is given by the following set of equations

ds(t)

dt
= d(sin − s(t))−

∫
R

µ(s(t), y)

τ(y)
v(t, y)dy,

∂v(t, x)

∂t
=

∫
R
K (x, y)µ(s(t), y)v(t, y)dy − d v(t, x),

(1.1)

where µ(·, x) and τ(x) denote respectively the specific growth rate and yield coefficient of micro-organisms
with trait x. The kernel function K(x, y) represents the probability of mutation from phenotype y to
phenotype x. Initial conditions are such that

s(0) = s0 > 0 and v(0, ·) = v0 ∈ L1
+(R). (1.2)

In the works [9, 29, 33], similar models have been studied with one or several resources, but under the
assumptions that i. the growth functions µ are linear with respect to s and ii. the dynamics of the resource
s is fast compared to the ones of the micro-organisms v. Under these two assumptions, the quasi-static
approximation gives an algebraic formula for s as function of v and the system (1.1) is replaced by the
single p.d.e in v. The aim of the present work is to relax these two hypotheses and to study the whole
system (1.1).

Note that Model (1.1) can be employed to retrieve the chemostat system with a finite number of
consumers, as in [1]. Specifically, denote by {vi}k=1,··· ,n the set of total densities for n competitors. Each
competitor is labeled with a phenotypic trait xi. Letting, v(t, x) =

∑n
i=1 vi(t)δxi(x), we can rewrite Model

(1.1) as follows 
ds(t)

dt
= d(sin − s(t))−

n∑
i=1

µi(s(t))

τi
vi(t),

dvi(t)

dt
=

n∑
j=1

Kijµj(s(t))vj(t)− d vi(t),
(1.3)

where µj(s) = µ(s, xj), τj = τ(xj), Kij = K(xi, xj); with
∑n

j=1Kji = 1.

The primary objective of this study is to characterize the positive steady state of System (1.1). To
achieve this, we will begin by presenting a result regarding the existence and uniqueness of such a steady
state. In this investigation, we will focus on the concentration properties in the space of phenotypic
values of the stationary state. Such a concentration properties of the steady state allows to characterize
the most stronger phenotypic traits, or persistent phenotypic traits at the model steady state. Those
stronger phenotypic traits will be refer as Evolutionary Attractors within the context of adaptive dynamics
[9, 13, 28, 31]. Although the result concerning the existence and uniqueness of the steady state in
Model (1.1) is derived under a relatively general assumption on the mutation kernel K, a more specific
characterization of the steady state in terms of the phenotypic space necessitates a particular form of
the mutation kernel K. More specifically, let us introduce a small positive parameter denoted ε (with
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0 < ε � 1) to represent the mutation variance in the phenotypic space. This dependence on ε can be
characterized using the scaling form of the mutation kernel K, given by

Kε(x, y) =
1

ε
K

(
x− y
ε

)
. (1.4)

It is important to note that the specific form of the mutation kernel (1.4) does not imply that mutations
are rare. On the contrary, mutations occur at each life cycle of the biological process. Depending on the
properties of the growth rate function µ, we will demonstrate that a one-dimensional function defined in
the phenotypic space is sufficient to fully characterize Evolutionary Attractors (EAs) of Model (1.1) in
for some configuration. However, in certain configurations of the growth rate function µ, we will show
that the Pairwise Invasibility Plot (PIP), a two-dimensional function used to study the spread of a new
mutant strain in a resource already colonized by a resident strain, is necessary to accurately characterize
the EAs.

Our approach is closely connected to the results previously developed in [10] within the context of
steady-state concentration of integro-differential systems featuring non-local mutation terms. The work
in [10] likely provides valuable insights and theoretical foundations that contribute to understanding and
characterizing the concentration properties of Evolutionary Attractors in Model (1.1). However, in the
past decade, there has been significant interest in the concentration properties of continuously structured
models with slight mutations in evolutionary dynamics. For instance, in [9], the Hamilton-Jacobi approach
is used to study concentration properties in the phenotypic values space for a resource-consumer problem,
but under the assumptions of linearity of the growth function as mentioned previously. This approach
has been successfully applied to understand concentration points in different scenarios involving small
mutation parameters [6, 29, 34]. Other works, such as [4, 15], have also investigated the effects of small
mutations on the phenotypic evolution of populations in different contexts.

The paper is organized as follows. Section 2 is dedicated to exploring several mathematical properties
of Model (1.1). These properties encompass the examination of the system’s existence, uniqueness, and
positive solutions for System (1.1). Furthermore, we establish the existence and uniqueness of the positive
steady state for System (1.1). Section 3 gives conditions for which the washed-out equilibrium (extinction
of all the species) is globally attractive or on the contrary when there is persistence of the biomass.
In Section 4 we focus on characterizing the EAs of Model (1.1) and in Section 5, we investigate the
concentration property of the positive steady state and discuss it for a particular class of growth functions.
We end by a conclusions section.

2 Mathematical properties of the model

System (1.1) is considered under the following general assumption.

Assumption 2.1 We assume that

(i) The mutation kernel K ∈ L1(R2) ∩ L∞(R2) is almost everywhere strictly positive, symmetric i.e.
K(x, y) = K(y, x) a.e. in R2, and has a unit mass, i.e.

∫
RK(x, y)dy = 1, for all x ∈ R.

(ii) There exist some constants M0 > 0, η0 > 0 and γ0 ∈ (0, 1) such that

0 < K(x, y) ≤M0 exp (−η0|x− y|γ0) , a.e. (x, y) ∈ R2.

(iii) d > 0, sin > 0.

(iv) τ = τ(x) is positive, bounded function on R, and there exists τ0 > 0 such that τ(x) ≥ τ0 for all
x ∈ R.
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(v) µ = µ(s, x), with (s, x) ∈ R+×R is a bounded function such that, µ(0, ·) = 0 and the map s→ µ(s, ·)
is an increasing function.

(vi) For all r > 0 there exists Cµ(r) := Cµ > 0 such that

|µ(s1, x)− µ(s2, x)| ≤ Cµ|s1 − s2|, ∀x ∈ R, 0 ≤ s1, s2 ≤ r.

Note that Assumption 2.1-(ii) is satisfied if K is positive almost everywhere and there exist some constants
η > 0 and γ > 0 such that

sup
(x,y)∈R2

K(x, y) exp (η|x− y|γ) < +∞.

To see that, let γ0 ∈ (0,min(1, γ)), then

sup
(x,y)∈R2

K(x, y) exp (η|x− y|γ0) ≤ sup
(x,y)∈R2

[K(x, y) exp (η|x− y|γ)] sup
(x,y)∈R2

exp (−η|x− y|γ + η|x− y|γ0) < +∞.

Additionally, Assumption 2.1-(ii) is solely required to address the concentration properties of the steady
state in Model (1.1).

2.1 Existence of non-negative of solution, and uniqueness

In this section, we will derive necessary and sufficient condition for the existence of steady state of (1.1).
Let us introduce the linear operator H defined, for all ϕ ∈ L1(R) and s ∈ R+, by

H[s, ϕ](x) =

∫
R
K (x, y)µ(s, y)ϕ(y)dy, ∀x ∈ R. (2.1)

Then, System (1.1) rewrites
ds(t)

dt
= d(sin − s(t))−

∫
R

µ(s(t), y)

τ(y)
v(t, y)dy,

∂v(t, ·)
∂t

= −dv(t, ·) +H[s(t), v(t, ·)],

s(0) = s0 > 0, v(0, ·) = v0 ∈ L1
+(R).

(2.2)

The following result ensures the the well-posedness of System (2.2).

Theorem 2.2 Let Assumption 2.1 be satisfied.

1. There exists a global and unique solution u(·, s0, v0) : [0,∞)→ R+×L1
+(R) of (1.1) with u(0, s0, v0) =

(s0, v0) and u(t, s0, v0) = (s(t), v(t, ·)) for all t > 0.

2. The semi-flow defined by {u(t, s0, v0)}t∈R+ is bounded dissipative and asymptotically smooth, and
hence, it admits a global attractor in R+ × L1

+(R).

Bounded dissipative: there exists a bounded set B ⊂ R+×L1
+(R) such that for any bounded set

U ⊂ R+ × L1
+(R), there exists η = η(U,B) ≥ 0 such that u(t, U) ⊂ B for t ≥ η.

Asymptotically smooth: for any nonempty, closed, bounded set U ⊂ R+ × L1
+(R), there exists

a nonempty compact set J = J(U) such that J attracts the set {ϕ ∈ U : u(t, ϕ) ∈ U,∀t ≥ 0}.
Moreover, we have

lim sup
t→+∞

(
s(t) +

1

τ̄

∫
R
v(t, x)dx

)
≤ sin (2.3)

with τ̄ = supx∈R τ(x).
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We recall that a nonempty set J ⊂ R × L1(R) is said to attract a nonempty set B ⊂ R × L1(R) if
δR×L1(R) (u(t, B), J)) → 0 as t → +∞, where δR×L1(R) (B, J) = supu∈B infv∈J |u − v|R×L1(R) is a semi-
distance on R×L1(R). Moreover, it is worth noting that the term ”asymptotically smooth” here is used
within the terminology of Hale, Lasalle, and Slemrod [17]. However, this is strictly equivalent to the
notion of ”asymptotically compact” within the terminology of Ladyzhenskaya [23].

Proof. By setting F (s, v) =
(
dsin −

∫
R
µ(s,y)
τ(y) v(y)dy , H[s, v(·)]

)
, with (s, v) ∈ R × L1(R), System

(2.2) becomes
∂t(s(t), v(t, x)) = −d (s(t), v(t, x)) + F (s(t), v(t, ·))(x). (2.4)

By Assumption 2.1 on µ and τ , it comes that for each r > 0 there exists λ = λ(r) > 0 such that

λv +H[s, v] ∈ L1
+(R) and λs+ dsin −

∫
R

µ(s, y)

τ(y)
v(y)dy ≥ 0,

whenever (s, v) ∈ R+ × L1
+(R) such that 0 ≤ s ≤ r and 0 ≤

∫
R v(y)dy ≤ r. Since λ.(s, v) + F (s, v) is

locally Lipschitz, then for any (s0, v0) ∈ R × L1, we can find T0 = T0(s0, v0) > 0 such that (2.2) has a
unique solution (s, v) ∈ C

(
[0, T0)× R,R+ × L1

+

)
∩C1

(
[0, T0)× R,R+ × L1

+

)
. See, for eg., [32] for classical

results. The local well-posedness and positivity of (2.2) holds. To obtain the global existence of the
solution we note that for any fixed x

d

dt

(
s(t) +

1

τ̄

∫
R
v(t, x)dx

)
≤ dsin − d

(
s(t) +

1

τ̄

∫
R
v(t, x)dx

)
, t ≥ 0

with τ̄ = supx∈R τ(x). Therefore, the last inequality ensures that

lim sup
t→+∞

(
s(t) +

1

τ̄

∫
R
v(t, x)dx

)
≤ sin. (2.5)

We show that the semi-flow {u(t, , s0, v0)}t is asymptotically smooth, ie., for any closed, bounded and
positively invariant set B ⊂ R+×L1

+, there exists a compact set Ω ⊂ R+×L1
+ such that γ(u(t,K),Ω)→ 0

as t→∞, where γ is the Hausdorff semi-distance (eg., see [16]). By (2.4) we have

(s(t), v(t, ·)) = e−dt(s0, v0(·)) +

∫ t

0
e−d(t−η)F (s(η), v(η, ·))dη, for t ≥ 0, s0 ≥ 0, v0 ∈ L1

+.

Then, the compactness of F gives that the semi-flow {u(t, ·)}t is asymptotically smooth [41]. Note that
such a compactness of F comes from the compactness of the linear operator H. Furthermore, the last
item of Assumption 2.1 provides a condition on K to ensure the compactness of H (see [10] for more
details).

2.2 Steady states

Let (s, v(·)) ∈ R+ × L1(R) be a steady state of System (1.1). Then, by (2.2) we have d(sin − s) =

∫
R

µ(s, y)

τ(y)
v(y)dy,

0 = −dv +H[s, v].

(2.6)

First, it is easy to see that the washout steady state

E0 = (sin, 0L1) (2.7)

is always a solution of (2.6).
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In the following, we discuss the existence of a positive equilibrium Ē = (s̄, v̄) with s̄ > 0 and v̄ ∈
L1

+(R) \ {0L1}. From the first equation of (2.6), note that a necessary condition for the existence of Ē is
that s̄ ∈ (0, sin). Furthermore, the second equation of (2.6) rewrites

1

d
H[s̄, v̄] = v̄. (2.8)

Let us define the function

T (s) :=
1

d
r (H[s, ·]) , s > 0 (2.9)

where r (H[s, ·]) denotes the spectral radius of the linear operator H[s, ·]. In order to deal with the positive
steady state Ē, we define the generalized break-even concentration of the model (1.1) as the solution s > 0
such that

T (s) = 1, (2.10)

when it exists, and +∞ otherwise.
Note that, since H[s, ·] is a positive bounded linear operator, we know from [40] that

sign (T (s)− 1) = sign (b(H[s, ·]− dId)) , ∀s ∈ [0, sin] (2.11)

with Id the identity operator and b(H[s, ·] − dId) the spectral bound of H[s, ·] − dId. We then introduce
the following result (the proof is given later).

Lemma 2.3 Let Assumption 2.1 be satisfied. Then s 7→ T (s) is continuously increasing in [0, ssin] and
the equation (2.10) has a unique solution in (0, sin) if and only if T (sin) > 1.

Next, since for all s̄ > 0, 1
dH[s̄, ·] is compact and irreducible operator (eg., see [10]), by the equality

(2.8) the Krein-Rutman’s theorem gives that the spectral radius T (s̄) of 1
dH[s̄, ·] must satisfy T (s̄) = 1.

Furthermore, v̄ is a multiple of the normalized positive eigenvector φ̄(s̄, ·) ∈ L1
+(R) of 1

dH[s̄, ·] associated
to the eigenvalue T (s̄). Thus, the positive steady state Ē is such that

v̄ = cφ̄(s̄, ·), with c > 0,

d(sin − s̄) =

∫
R

µ(s̄, y)

τ(y)
v̄(y)dy,

T (s̄) = 1.

(2.12)

Thanks to Lemma 2.3, we have the following result on the steady state of System (1.1)

Theorem 2.4 Let Assumption 2.1 be satisfied.

i) If T (sin) ≤ 1, then System (1.1) has a unique steady state given by E0 = (sin, 0).

ii) If T (sin) > 1, then (1.1) has two steady states E0 = (sin, 0) and Ē = (s̄, v̄) with s̄ ∈ (0, sin) the
unique solution of T (s̄) = 1. Furthermore, v̄ = cφ̄(s̄, ·), where the function φ̄(s̄, ·) ∈ L1

+(R) is the

normalized principal eigenvector of 1
dH[s̄, ·] and c =

d2(sin − s̄)∫
R
µ(s̄,y)
τ(y) φ̄(s̄, y)dy

> 0.

We then complete this section by the proof of Lemma 2.3.
Proof of Lemma 2.3. We first note that the linear operator 1

dH[s, ·] is a positive, bounded,
compact, and irreducible linear operator for each s > 0, eg., see [10]. Therefore, the continuity of the
spectral radius in the space of compact linear operators implies that the map s 7→ T (s) is continuous in
s ≥ 0. Since 1

dH[s, ·] converges to 0 as s → 0 in the operator norm topology, it follows that T (s) → 0
when s→ 0. Next, Assumption 2.1 implies that for s1 > s2 > 0 and v ∈ L1

+(R) \ {0}
1

d
(H[s1, ·]−H[s2, ·]) v > 0.

Thus, by the compactness and the irreducibility of 1
d(H[s, ·]) it comes that s 7→ T (s) is continuously

increasing in [0,+∞) (see [22, Proposition 10.12]). The proof is completed by applying the intermediate
values theorem.
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3 Extinction and uniform persistence of biomass

In this section, our objective is to establish the global asymptotic stability of the washout steady state,
specifically when T (sin) ≤ 1. Furthermore, we will also show that the bacterium not only persists but
achieves uniform persistence when T (sin) > 1. To do this, we first prove the following technical lemma.

Lemma 3.1 Let Assumption 2.1 be satisfied and set λ0 := b(H[sin, ·]−dId). Then there exists φ∗ ∈ L∞+ (R)
such that φ∗(x) > 0 for almost every x ∈ R with the following properties∫

R
φ∗(x)(H[sin, v](x)− dv(x))dx = λ0

∫
R
φ∗(x)v(x)dx, ∀v ∈ L1(R) (3.1)

and ∫
R
φ∗(x)v(x)dx > 0, ∀v ∈ L1

+(R) \ {0L1}. (3.2)

Proof. Let {T (t)}t≥0 denotes the semigroup generated by the bounded linear operator H[sin, ·] − d.
Since H[sin, ·] − d is a bounded linear operator, one has λ0 := b(H[sin, ·] − dId) = ω0(H[sin, ·] − dId) (see
[11, Corollary 3.11]) where ω0(H[sin, ·] − dId) is the growth bound of {T (t)}t≥0. Furthermore, H[sin, ·]
being, compact, and positive irreducible it follows that ω0,ess(H[sin, ·] − dId) ≤ −d and b(H[sin, ·]) > 0.
Consequently

λ0 = ω0(H[sin, ·]− dId) = b(H[sin, ·]− dId) = b(H[sin, ·])− d > −d ≥ ω0,ess(H[sin, ·]− dId).

Furthermore, one can prove by standard arguments that {T (t)}t≥0 is positive irreducible. The result now
follows from [42, Proposition 4.5] or [5, Theorem 8.10, Theorem 9.10,Theorem 9.11].

Theorem 3.2 Let Assumption 2.1 be satisfied. If T (sin) ≤ 1 then the washout steady state E0 = (sin, 0)
is globally asymptotically stable in [0,+∞)× L1

+(R).

Proof. Assume that T (sin) ≤ 1. To prove that the washout equilibrium is globally asymptotically stable,
we show that the global attractor A of (1.1) is given by A = {(sin, 0L1)}. To this end, let us first note
that due to (2.11) we have λ0 := b(H[sin, ·] − dId) ≤ 0. Let t ∈ R 7→ (s(t), v(t, ·)) be a complete orbit in
the global attractor. Thanks to (2.3) we have

0 ≤ s(t) ≤ sin, ∀t ∈ R. (3.3)

Next, we note that using the v-equation in (1.1) and Lemma 3.1 one has

d

dt

∫
R
φ∗(x)v(t, x)dx = λ0

∫
R
φ∗(x)v(t, x)dx+

∫
R

(H[s(t), v(t, ·)]−H[sin, v(t, ·)]), ∀t ∈ R. (3.4)

Recalling that for each y ∈ R, the map s→ µ(s, y) is increasing, it follows from (3.3) and (3.4) that

d

dt

∫
R
φ∗(x)v(t, x)dx ≤ 0, ∀t ∈ R. (3.5)

If λ0 < 0 then the equality (3.5) is achieved if and only if s(t) ≡ sin and v(t, ·) ≡ 0L1 . If λ0 = 0 then
equality (3.5) is achieved if and only if s(t) ≡ sin so that v(t, ·) ≡ 0L1 for all t ∈ R. This implies that the
global attractor consists on the washout equilibrium (sin, 0L1).

We now prove the uniform persistence of the bacteria when T (sin) > 1. To this end, we consider the
following sets

Γ :=

{
(s0, v0) ∈ R+ × L1

+(R) :

∫
R
v0(x)dx > 0

}
and

∂Γ :=

{
(s0, v0) ∈ R+ × L1

+(R) :

∫
R
v0(x)dx = 0

}
.

The uniform persistence of the bacteria is precisely stated as follows.
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Theorem 3.3 Let Assumption 2.1 be satisfied, and assume T (sin) > 1. Then there exists ξ0 > 0 such
that for each (s0, v0) ∈ Γ we have

lim inf
t→+∞

∫
R
v(t, x)dx ≥ ξ0.

Proof. Thanks to Assumption 2.1 and the form of (2.2), it can be easily proved that Γ and ∂Γ are
positively invariant with respect to the semi-flow generated by (2.2). Since the semi-flow generated by
(2.2) has a compact global attractor, we infer from [27] that the uniform persistence of the bacteria is
obtained from the ejectivity of ∂Γ. Before proceeding, we note that the continuity of the map s 7→ T (s)
in [0,+∞) and (2.11) imply that there exists η ∈ (0, 1) small enough such that

sign (b(H[s−η, ·]− dId)) > 0, with s−η := (1− η)sin. (3.6)

Next, we argue by contradiction to obtain the ejectivity of ∂Γ. To this end, let ξ > 0 be small enough
such that

1

1 + ξ
> 1− η. (3.7)

Let (s0, v0) ∈ Γ. Since t 7→ s(t) is bounded, we infer from items (iv), (v) and (vi) of Assumption 2.1 that
there exists C0 > 0 such that

0 ≤ µ(s(t), y)

τ(y)
≤ C0s(t), ∀t ≥ 0, ∀y ∈ R.

Next, assume that ∫
R
v(t, x)dx ≤ 1

C0
d ξ, ∀t ≥ 0 (3.8)

so that ∫
R

µ(s(t), y)

τ(y)
v(t, y)dy ≤ d ξs(t), ∀t ≥ 0.

As a consequence, the s-equation satisfies

ds(t)

dt
≥ d(sin − s(t))− d ξs(t), ∀t ≥ 0. (3.9)

Recalling that t 7→ s(t) is bounded on [0,+∞), we infer from the method of fluctuation in [39, Proposition
A.14] that there exists a sequence tn → +∞ such that

lim
n→+∞

ds(tn)

dt
= 0 and lim

n→+∞
s(tn) = lim inf

t→+∞
s(t) := s∞. (3.10)

Combining (3.7), (3.9), and (3.10) it comes

lim inf
t→+∞

s(t) := s∞ ≥
sin

1 + ξ
> (1− η)sin = s−η

from where we deduce that there exits t0 > 0 such that

s(t) ≥ s−η, ∀t ≥ t0.

Hence, using the v-equation of (2.2) and the monotony of s 7→ H[s, ·] it follows that

dv(t, ·)
dt

≥ −dv(t, ·) +H[s−η, v(t, ·)], ∀t ≥ t0. (3.11)

Next, noting that H[s−η, ·] − dId is a bounded linear operator, one knows that the growth bound of the
semigroup generated by H[s−η, ·]−dId is b(H[s−η, ·]−dId) > 0 (see [11, Corollary 3.11]). Therefore, (3.11)
and the comparison principles in [26] imply that

lim
t→+∞

∫
R
v(t, x)dx = +∞

which contradicts (3.8).
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4 Evolutionary attractors

In general, finding the Evolutionary Attractors (EAs) of dynamical systems is mostly based on properties
of the invasion fitness on an adaptive landscape [9, 13, 28, 31]. The invasion fitness is a two dimensional
function allowing to study the spread of a new mutant strain y in a resource already colonized by a
resident strain x. Here, we show that in some situation, a one dimensional function is enough to completely
characterize EAs of the system. Furthermore, from the classical Adaptive Dynamics point of view, several
EAs may exist. We will show how the analysis presented here allow to go further steps by determining
among EAs which one will persists.

Recall that by Theorem 2.4 the positive steady state Ē of System (1.1) is primarily dependent on
the principal eigenfunction of the linear operator H[s̄, ·] when the given probability kernel K satisfies
Assumption 2.1. However, if we introduce a small positive parameter (denoted as 0 < ε� 1) to represent
the mutation variance in the phenotypic space, the profile of the endemic steady state Ē with respect to
x ∈ R can be precisely described. This dependence on ε can be characterized using the scaling form of
the mutation kernel K, given by (1.4).

4.1 Invasion fitness

Taking formally the limit when ε→ 0 in (1.1) it comes
ds(t)

dt
= d(sin − s(t))−

∫
R

µ(s(t), y)

τ(y)
v(t, y)dy

∂v(t, x)

∂t
= −dv(t, x) + µ(s(t), x)v(t, x), x ∈ R.

(4.1)

Assume that the population reaches a mono-morphic steady state Ex with trait x such that Ex =
(s̄x, v̄xδx(·)). Since v̄x > 0, we have

d(sin − s̄x)− µ(s̄x, x)

τ(x)
v̄x = 0, (4.2)

µ(s̄x, x)

d
= 1. (4.3)

Let us posit the generalized reproduction number as a function of the trait

R0(x) =
µ(sin, x)

d
. (4.4)

By Assumption 2.1 on the monotony of the function µ, it comes that the mono-morphic steady state Ex
characterized by (4.2)-(4.3) exists (and is unique) if and only if R0(x) > 1. Indeed, the solution (s̄x, v̄x) of
(4.2)-(4.3) can be interpreted as the intersection in the (s, v) plane of the lines s+v/τ(x) = sin and s = s̄x
(where s̄x is the unique solution of µ(s, x) = d). This intersection lies in the positive domain exactly when
condition s̄x < sin is fulfilled, that is for R0(x) > 1. Next, assume that an invader with trait y introduces
a perturbation in (1.1) where a resident population with trait x has reached a mono-morphic steady state
Ex. The initial growth of the invader is then governed by the linearized system of (1.1) around Ex. Let
s(t) = s̄x + u(t) and v(t, ·) = v̄xδx(·) + vy(t)δy(·), then

v′y(t)δy(·) = µ(s̄x, y)K(·, y)vy(t)− dδy(·)vy(t),

which gives by integration

v′y(t) =

[
µ(s̄x, y)

∫
R
K(z, y)dz − d

]
vy(t).

Since
∫
RK(z, y)dz = 1, it comes

v′y(t) =

[
µ(s̄x, y)

d
− 1

]
µv(y)vy(t). (4.5)
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By (4.5), the growth rate fx(y) of the initial invasion of mutant strategy y into a resident x-population is
given by

fx(y) =
µ(s̄x, y)

d
− 1. (4.6)

The growth rate fx(y) is the so-called invasion fitness (or invasion exponent) of the invader of trait
y in the environment generated by the resident of trait x (eg., see [9, 13, 28]). Thus, the invader initiate
an exponentially growing clan of y individuals if and only if fx(y) > 0.

4.2 Singular points

Based on above notations, the evolution of a trait x is then governed by the selection gradient defined by

r(x) =
∂fx
∂y

∣∣∣∣
y=x

.

Steady states of the adaptive dynamics (also called singular strategies or singular points) are trait x at
which the selection gradient vanishes, i.e., r(x) = 0. The classification of singular points is the corner stone
of Adaptive Dynamics theory as much information about the dynamics can be derived once all singular
points and their character are known [9, 13, 28]. This classification involves second-order derivatives of
the invasion fitness, namely, we have to compute below coefficients:

c22 :=
∂2fx
∂y2

∣∣∣∣
y=x

, c12 = c21 :=
∂2fx
∂x∂y

∣∣∣∣
y=x

, c11 :=
∂2fx
∂x2

∣∣∣∣
y=x

.

According to [8, 13, 28], a singular point x is called Evolutionary Stable Strategy (ESS) if c22 < 0 and
Convergent Stable Strategy (CSS) if c12 + c22 < 0. Evolutionary Attractor (EA) is then a strategy that is
both ESS and CSS. Finally, a branching point is a CSS which satisfies c12 < 0.

Returning to Model (1.1), we can demonstrate that computing the invasion fitness and the coefficients
cijs is not always essential for fully characterizing singular points. More precisely, by (4.4) and (4.3), we

have R0(y) = µ(sin,y)
d and µ(s̄x,x)

d = 1. Therefore, the invsasion fitness fx(y) defined by (4.6) rewrites

fx(y) =
µ(s̄x, y)

µ(sin, y)
R0(y)− µ(s̄x, x)

d

µ(s̄x, y)

µ(sin, y)
R0(y)− µ(s̄x, x)

µ(sin, x)
R0(x).

Hence, assume that for all x and y, we can find a constant c = c(x, y) such that

µ(·, x) = c(x, y)µ(·, y). (4.7)

Therefore, under (4.7) we have

µ(s̄x, y)

µ(sin, y)
=
c(x, y)µ(s̄x, x)

c(x, y)µ(sin, x)
=
µ(s̄x, x)

µ(sin, x)
.

Consequently, under (4.7), let us introduce the function χ such that

χ(s) :=
µ(s, x)

µ(sin, x)
, for all (s, x) ∈ R+ × R, (4.8)

then one has
fx(y) = χ(s̄x) (R0(y)−R0(x)) . (4.9)

Note that in this case the dynamics of v simply writes

∂v(t, x)

∂t
= dv(t, x)

(
χ(s)R0(x)− 1

)
, x ∈ R. (4.10)
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In such a case, an optimization principle based on the function R0 holds and the model’s evolutionary
attractors coincide with the local maximum points of R0 (eg., see [25] for more discussion). Indeed, by
(4.9), a straightforward computation gives

r(x) = χ(s̄x)R′0(x), c22 = χ(s̄x)R′′0(x), c12 = R′0(x)
∂

∂x
(χ(s̄x)) .

From this, we deduce the properties

i. a singular point x is a ESS if and only if x is a local maximum of the map r. A sufficient condition
is to have R′0(x) = 0 and R′′0(x) < 0.

ii. a singular point x is a CSS if and only if the map x 7→ ∂fx
∂y (y) is decreasing at y = x. A sufficient

condition is to have R′0(x) = 0 and χ(s̄x)R′′0(x) + ∂
∂x [χ(s̄x)]R′0(x) < 0, that is R′0(x) = 0 and

R′′0(x) < 0.

iii. model (1.1) has no branching points, because c12 = 0.

As a result, EAs of Model (1.1) correspond to local maximum points of R0 when condition (4.8)
is satisfied. An example of a such condition is when the growth functions take the well-known Monod
expression

µ(s, x) = µmax(x)
s

ν + s
, (4.11)

where ν is the half-saturation constant for uptake, which is assumed to be independent of the trait x. In
such a configuration, as an optimization principle based on the function R0 holds, the population always
becomes mono-morphic around an evolutionary attractor corresponding to the global maximum of the
function R0 (Figure 1).

However, when the half saturation constant for uptake depends on the phenotypic trait

µ(s, x) = µmax(x)
s

ν(x) + s
, (4.12)

the optimization principle based on the function R0 does not apply (compared to the previous scenario)
and EAs could not be always characterized by the shape the function R0. Accordingly, the Pairwise
Invasibility Plot (PIP) based on the calculation of invasion fitness using equation (4.6) becomes necessary
to characterize model’s EAs at the evolutionary steady state. Usually, the EA selected at steady state
may not correspond to the global maximum of the function R0 (Figure 2).

5 Globally stable EA and concentration phenomenon

In the context of this work, several EAs may exist. Classifying these EAs among themselves can then
be of significant use, i.e. by characterizing which on is persistent at the evolutionary steady state. We
only deal with the case where the growth function µ = µ(s, x) satisfies the condition (4.8). In such a
case and when the scaling parameter ε introduced in (1.4) is small enough, we shall show that only one
EA persists at the evolutionary steady state. The persistent EA (among several EAs) will be referred to
as the Globally Stable Evolutionary Attractor (GSEA for short). Furthermore, we shall show that the
positive steady state of Model (1.1) concentrates on the GSEA (when ε is small enough).

We now denote by Hε ≡ H the linear operator defined by (2.1) with Kε ≡ K. Then, by Theorem 2.4,
we recall that the positive steady state Ēε = (s̄ε, v̄ε) of System (1.1) is characterized by (2.8), i.e. by the
eigenvalue equation

1

d
H[s̄ε, φ̄(s̄ε, ·)] = φ̄(s̄ε, ·),
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Figure 1: The function R0 is bimodal, with both a global and a local maximum (left panel). At t = 0,
the v-population is concentrated around the local maximum (central and right panels). The evolutionary
dynamics and phenotypic composition of the v-population are shown in the central panel. The distribution
of the v-population with respect to the phenotypic space x at t = 0 and at steady state is depicted in

the central and right panels, respectively. Here we fix, d = 1, sin = 100, τ(·) ≡ 1, K(x) = exp
(
− |x|2

)
,

ε = 0.03, ν(·) ≡ 10, and µmax(x) = N (x,−0.47, 0.2) + N (x, 0.49, 0.2), where N (x, a, b) stand for the
normalized density function of the Gaussian distribution.

Figure 2: An illustration the evolutionary attractor selected at the steady state, x∗ ≈ −0.38 (line 2), does
not correspond to either the global maximum, x ≈ −0.18, or a local maximum, x ≈ +0.2, of the function
R0 (line 1, left panel). The pairwise invasibility plot (PIP) visualize the sign of invasion fitness fx(y)
(line 1, right panel). As a mutant strain y will invade the resident population x if and only if fx(y) > 0,
the PIP reveals a single evolutionary attractor x∗ ≈ −0.38 (the vertical line through x∗ is completely
contained within a region marked ”-”). Here we have ν(x) = 10 (N (x,−0.47, 0.2) +N (x, 0.49, 0.2))−1,
µmax(·) ≡ 1 and the other parameters are as in Figure 1.
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which, under condition (4.8), is equivalent to

Lε[φ(s̄ε, ·)] =
1

χ(s̄ε)
φ(s̄ε, ·),

where Lε is the linear operator defined on L1(R) by

Lε[w](x) =

∫
R
Kε (x, y) Θ2(y)w(y)dy, (5.1)

and the function Θ : R→ R+ by

Θ(y) =

√
µ(sin, y)

d
=
√
R0(y). (5.2)

Note that the square function Θ2 is introduced here in anticipation of later facilitating the reformulation
of the non self-adjoint operator Lε into a self-adjoint operator on the Hilbert space L2(R,R).

Therefore, by Theorem 2.4, the positive steady state Ē of Model (1.1) strongly relies on the spectral
properties of the linear operator Lε. Moreover, note that spectral radius r (Hε) and r(Lε) of operators Hε
and Lε are such that

T (s) =
1

d
r (Hε[s, ·]) = χ(s)r(Lε), for all s > 0. (5.3)

5.1 Preliminaries

In this section, we introduce some results on the principal eigenpair of the linear operator Lε. By
Assumption 2.1, the function Θ is such that Θ ∈ C∞(R,R) and Θ(x) > 0 for all x ∈ R. Moreover, we
assume that the function Θ satisfies

Assumption 5.1 There exists a finite number of local maximum points, at {xk}k=1,...,n ⊂ R, to the
function Θ. That is,

Θ′(xk) = 0 and Θ′′(xk) < 0, for all k = 1, . . . , n.

Note that the above assumption is a sufficient condition to have a local maximum; we could have zero
derivatives up to a higher order.

Under Assumptions 5.1 and 2.1, we are able to derive the following spectral properties of the linear
operator Lε.

Theorem 5.2 Let Assumptions 2.1 and 5.1 be satisfied, and let ε > 0,

1. For each p ≥ 1, the linear operator Lε is compact, positive, and irreducible on Lp(R,R) and its
spectral radius, r(Lε) is positive. Furthermore, there exists a function φε ∈ L1(R,R) such that
φε > 0 a.e. and Lε[φε] = r(Lε)φε.

2. For each k ∈ {1, · · · , n}, such that Θ(xk) = ‖Θ‖∞, we can find a unique sequence {λj,k}j≥0 ⊂ R
such that for any N ≥ 0, r(Lε) writes:

r(Lε) =
N∑
j=0

ε
j
2λj,k +O

(
εN+1

)
.

The first three components of the above expansion are explicitly given by

λ0,k =Θ2(xk), λ1,k = 0, λ2,k = −Θ2(xk)

2

√
−2m2[K]

Θ′′(xk)

Θ(xk)
, (5.4)

13



where m2[K] =
∫
R z

2K(z)dz.
Details on the proof of Theorem 5.2 are provided by [10]. Here, we give some comments on above

results. Under Assumptions 5.1 and 2.1, for any p ≥ 1 and w ∈ Lp(R,R), we have Lε[w] ∈ Lp(R,R), such
that Lε can be viewed as a linear operator from Lp(R,R) to Lp(R,R) as appropriate. However, Lε is not
a self-adjoint operator on the Hilbert space L2(R,R). We then introduce the following linear operator
defined on L2(R,R) by

Mε[w](x) = Θ(x)

∫
R
Kε (x, y) Θ(y)w(y)dy. (5.5)

Then, Mε is compact, irreducible and self-adjoint operator on the Hilbert space L2(R,R). Furthermore,
spectral radius of Mε and Lε coincide, i.e.,

r (Mε) = r (Lε) . (5.6)

Basically, for any k ∈ {1, · · · , n}, the sequence {λk,j}k≥0 specified in Theorem 5.2 is obtained by a
construction of a suitable quasi-modes for the operator Mε around each local maximum point xk of the
function Θ. More specifically, we introduce the unitary operators U εk defined on L2(R,R) by

U εk[u](x) = ε−
1
4u
(
ε−

1
2 (x− xk)

)
.

and define the following linear operator

Mε
k[u](x) =

(
(U εk)

−1 ◦Mε ◦ U εk
)

[u](x). (5.7)

The sequence {λk,j}k≥0 then comes from the fact that, the principal eigenvalue λεk of the linear operator

Mε
k has an asymptotic series, such that λεk =

∑∞
j=0 ε

k
2λk,j . In Appendix A, we give more details on the

derivation of Mε
k and the first three terms of the asymptotic series given by (5.4).

5.2 Globally stable evolutionary attractor

By Section 4.2, recall that, under condition (4.8), each maximum point xj of the function Θ is an EA
of Model (1.1). Moreover, for any maximum point xj ∈ {x1, .., xn} of the function Θ, we are able to
define a sequence {λj,k}j≥0 ⊂ R (Theorem 5.2). Consequently, we can define an order relation on the

set {x1, .., xn}. For that purpose, recall that the set of real sequences RN can be endowed by the usual
(total) lexicographical order, denoted by �, and defined as follows: for any pair of sequences, {aj}j≥0 and
{bj}j≥0, one has

{aj}j≥0 � {bj}j≥0 ⇔


either a0 < b0,

either ∃p ≥ 0, aj = bj , ∀j = 0, .., p and ap+1 < bp+1,

or aj = bj , ∀j ≥ 0.

This total order for real sequences allows us to define the following total order E on the set {x1, .., xn} as
follows: for any xk, xl ∈ {x1, .., xn} we define

xk E xl ⇔ {λj,k}j≥0 � {λj,l}j≥0 . (5.8)

Next, we now introduce the set Mmax ⊂ {x1, .., xn} defined by

Mmax = max ({x1, .., xn},E) . (5.9)

In other words, xi ∈Mmax if and only if xp E xi for each p ∈ {1, . . . , n}. Observe thatMmax 6= ∅ because
{x1, .., xn} is finite andMmax is not necessarily reduced to a single point. Furthermore, if xi 6= xj belongs
to Mmax, then λi,k = λj,k for all k ≥ 0, that is Θ(k)(xi) = Θ(k)(xj) for all k ≥ 0. We then introduce the
following definition.
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Definition 5.3 The globally stable evolutionary attractor (GSEA) is the evolutionary attractor (EA) xi0,
when Mmax = {xi0}.

To better explain this result, let x1 and x2 be two local maximum points of the basic reproduction
number R0 introduced by (4.4), or equivalently of the function Θ introduced by (5.2). By above results,
both x1 and x2 are EAs of Model (1.1). By Theorem 5.2, the spectral radius r(Lε) of the operator Lε
can be written as an asymptotic expansion of two sequences {aj}j≥0 and {bj}j≥0 defined about x1 and
x2 respectively. More precisely we have,

r(Lε) =

{
a0 + a1ε

1/2 + a2ε+O(ε3/2); about x1,

b0 + b1ε
1/2 + b2ε+O(ε3/2); about x2.

(5.10)

Since Θ(x) = (R0(x))1/2, by (5.4), we find that

a0 = R0(x1), a1 = 0, a2 = −a0

2

√
−m2[K]

R′′0(x1)

2R0(x1)
,

and

b0 = R0(x2), b1 = 0, b2 = −a0

2

√
−m2[K]

R′′0(x2)

2R0(x2)
.

Using the total order E (defined by (5.8)) on the set {x1, x2}, we can then determine among both EAs
x1 and x2 which one is persistent as follows:

- if R0(x1) 6= R0(x2), then the GSEA is x1 when R0(x1) > R0(x2) and x2 when R0(x1) < R0(x2).

- if R0(x1) = R0(x2), then the GSEA is x1 when R′′0(x1) > R′′0(x2) and x2 when R′′0(x1) < R′′0(x2).

- if R0(x1) = R0(x2) and R′′0(x1) = R′′0(x2), then we need to determine higher-order terms in the
asymptotic expansion (5.10) to characterize Mmax and possibly the GSEA.

5.3 Concentration of the evolutionary steady state

Recall that, by Theorem 2.4, Model (1.1) has a unique positive steady state Ēε = (s̄ε, v̄ε) if and only if
the spectral radius T (sin) = T ε(sin) of the operator 1

dHε[sin, ·], is such that T ε(sin) > 1. Moreover, by
(5.3), we know that T ε(sin) = χ(sin)r(L)ε = r(L)ε, because by (4.8) χ(sin) = 1. Since r (Lε) = r (Mε),
see (5.6), and Mε is a self-adjoint operator, the Rayleigh quotient gives

r (Lε) = sup
ϕ∈L2(R)
‖ϕ‖L2(R)=1

∫∫
R×R

Θ(x)Θ(y)Kε(x, y)ϕ(x)ϕ(y)dxdy. (5.11)

Even with an explicit formula of r (Lε) given by (5.11), the threshold T ε(sin) remains quite difficult to
obtain (except through numerical computations). However, when the kernel parameter ε is small, we can
go further steps by giving a simple approximation of T ε(sin). Indeed, let x̄ ∈ R be any point maximizing
of the function Θ, i.e., Θ(x̄) = ‖Θ‖∞ (by Assumption 5.1, such a point is known to exist). Furthermore,

Theorem 5.2 ensures the existence of a sequence {λj}j such that r(Lε) =
∑+∞

j=0 ε
j
2λj , with λ0 = ‖Θ‖2∞,

see (5.4). From where,
T ε(sin) = ‖Θ‖2∞ +O(ε),

such that for ε small enough, condition ‖Θ‖∞ > 1 guarantees the existence of a unique positive steady
state Ēε of Model (1.1).
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Another interesting property of the positive steady state Ēε = (s̄ε, v̄ε(·)) is the concentration phe-
nomenon. Indeed, when the kernel parameter ε is small and condition (4.8) is satisfies, the vε-component
of the steady state Ēε elusively concentrates around some points in the phenotypic space R. This con-
centration phenomenon is a consequence of the below theorem concerning the normalized eigenvector φε

of the linear operator Lε (see [10]).

Theorem 5.4 Let Assumptions 2.1 and 5.1 be satisfied, and assume Mmax = {xi}. Consider the prin-
cipal eigenvector φε of Lε normalized so that ‖φε‖L1(R) = 1. Then for each γ ∈ (0, γ0) there exists η > 0
such that the following concentration property holds∫

R\]xi−εγ ,xi+εγ [
φε(x)dx = O

(
exp

(
−ηε−γ

))
as ε→ 0.

In particular, one gets φε → δxi as ε → 0 for the narrow topology, that is, for any continuous function
f ∈ C (R) one has

lim
ε→0

∫
R
f(x)φε(x)dx =

∫
R
f(x)δxi (x) dx = f (xi) .

Consequently (by Theorems 2.4 and 5.4) and ) the concentration of the evolutionary steady state
Ēε = (s̄ε, v̄ε) of Model (1.1) reads as

Corollary 5.5 Let Assumptions 2.1 and 5.1 be satisfied, and ‖Θ‖∞ > 1. Assume one hasMmax = {xi}.
Then, there exist γ > 0 and η > 0 such that the following concentration property holds∫

R\]xi−εγ ,xi+εγ [
v̄ε(x)dx = O

(
exp

(
−ηε−γ

))
as ε→ 0.

Furthermore, one has

lim
ε→0

s̄ε = χ−1

(
1

‖Θ‖2∞

)
,

and

lim
ε→0

∫
RN

f(x)vε(x)dx =
dτ(xi)

µ(sin, xi)

[
sin − χ−1

(
1

‖Θ‖2∞

)]
f (xi) .

In other words, Corollary 5.5 says that, under condition 4.8, when Mmax = {xi} and the dispersal in
the phenotypic space is small, namely ε� 1, the unique positive steady state of Model (1.1) concentrates
on a single trait xi, i.e., the steady state of the biomass population is essentially mono-morphic.

For instance, if the growth function µ follows the Monod-type expression (4.11), the proportionality
condition (4.7) is met, and R0 writes

R0(x) =
sin

d(ν + sin)
µmax(x).

Hence, there will be an asymptotic concentration around a singular trait even if the function µmax exhibits
multiple maxima. Another intriguing scenario involves a linear combination of separable growth functions
µ as µ(s, x) =

∑n
j=1 αj(x)µj(s), with αj ,s and µj ,s non-negative functions. Hence, for all x and y,

µ(s, x) =
n∑
j=1

αj(x)

αj(y)
αj(y)µj(s),

and the proportionality condition (4.7), which leads to the optimization principle for R0, holds when the
functions αj ,s do not depend on the index j.
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6 Conclusion

In this work, we have developed an integro-differential model that extends classical chemostat models. The
model proposed here incorporates a continuum of different consumer phenotypic traits represented by a
scalar variable, each consumer competing for a single common resource. The micro-organisms quantitative
factors given by the specific growth rate and the yield coefficient are assumed to depend on the phenotypic
trait. The evolution in the space of phenotypic values is modeled with an integral operator with a kernel
describing mutations from a micro-organisms with a phenotypic value to another one. In our investigation,
we have established the model’s mathematical well-posedness through the classical semi-groups theory,
along with demonstrating the existence and uniqueness of a positive steady state.

We have also investigated concentration properties in the space of phenotypic values at stationary
state. Such properties enable us to characterize the most dominant or persistent phenotypic traits at the
model steady state, which are referred to as Evolutionary Attractors (EAs). Under the assumption of the
proportionality of the growth rate functions associated to each phenotypic trait, we have demonstrated
that the EAs of the model correspond to local maximum points of a generalized reproduction number
R0, defined as a function of the trait. Indeed, this is facilitated by the application of an optimization
principle that holds under this configuration condition.

Furthermore, when the set of maximum points of the function R0 admits an unique maximizer for
an order defined from the expansion of the principal eigenvalues of a linear operator, we have shown
the concentration property of the population towards a single trait. Let us underline that having an
unique mazimizer in this sense is possible even when the generalized reproduction number admits several
maximum points. Importantly, even under the condition of proportionality of the growth functions of
each trait, their proportionality coefficient can have multiple maxima as a function of the trait, while the
asymptotic concentration is with a single trait.

Finally, when the optimization principle is not satisfied, the characterization of EAs relies on a Pairwise
Invasibility Plot (PIP) of the invasion fitness. The PIP is a two-dimensional function that facilitates the
study of the spread of a new mutant strain in a resource already colonized by a resident strain.
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A Asymptotic estimates of the principal eigenpair

The objective of this section is to provide a step by step computations of the asymptotic expansion
(up to order 2) of the principal eigenvalue λε of Lε. Let us mention that we do not intend to give a
proof different from the one in [10] but present the computations in dimension 1 for completeness. Let
Lε : L1(R)→ L1(R) be defined by

Lε[w](x) =

∫
R

1

ε
K

(
x− y
ε

)
Θ(y)2w(y)dy, ∀x ∈ R, ∀w ∈ L1(R)

with K and Θ satisfying Assumptions 2.1 and 5.1. We introduce the following self-adjoint linear operator

Mε[w](x) = Θ(x)

∫
R

1

ε
K

(
x− y
ε

)
Θ(y)w(y)dy, ∀ ∈ R, ∀w ∈ L1(R)

which is related to Lε by the following formula

Mε[Θw] = ΘLε[w], ∀w ∈ L1(R).

Let (λε, φε) be the principal eigenpair of Lε with ‖φε‖L1 = 1. Observe that

Mε[Θφε] = ΘLε[φε] = λεΘφε (A.1)

so that λε is also the principal eigenvalue of Mε. Therefore, in what follows we will manipulate the
operator Mε instead of Lε.

Reformulation of Mε. In the next steps we will rewrite Mε in a more convenient form. Let
w ∈ L1(R) and x ∈ R be given. We first we make the change of variable z = x−y

ε to obtain

Mε[w](x) = Θ(x)

∫
R
K (z) Θ(x− εz)w(x− εz)dz (A.2)

and secondly the change of variable z = −x−y
ε to obtain

Mε[w](x) = Θ(x)

∫
R
K (z) Θ(x+ εz)w(x+ εz)dz. (A.3)

Therefore summing up (A.2) and (A.3) we obtain

Mε[w](x) =
Θ(x)

2

∫
R
K (z) Θ(x+ εz)w(x+ εz)dz +

Θ(x)

2

∫
R
K (z) Θ(x− εz)w(x− εz)dz

or equivalently

Mε[w](x) =
Θ(x)

2

∫
R
K (z) Θ(x+ εz) [w(x+ εz)− w(x)] dz

+
Θ(x)

2

∫
R
K (z) Θ(x− εz) [w(x− εz)− w(x)] dz

+
Θ(x)

2

∫
R
K (z)w(x) [Θ(x− εz) + Θ(x+ εz)] dz.

(A.4)

To get the desired form of the operator Mε we note that up to a change of variables we have

Θ(x)

2

∫
R
K (z) Θ(x− εz) [w(x− εz)− w(x)] dz =

Θ(x)

2

∫
R
K (z) Θ(x+ εz) [w(x+ εz)− w(x)] dz (A.5)
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and we infer from (A.4) and (A.5) that

Mε[w](x) = Θ(x)

∫
R
K (z) Θ(x+ εz) [w(x+ εz)− w(x)] dz

+w(x)
Θ(x)

2

∫
R
K (z) [Θ(x− εz) + Θ(x+ εz)] dz.

(A.6)

Asymptotic expansion around a local maximum. Let x1 ∈ R be such that Θ(x1) = ‖Θ‖∞. In
what follows, will show how to obtain the three first terms of the sequence {λj,k} defined in Theorem 5.2.
Following [10], we first localize the operatorMε around x1 by means of the operator U ε1 : L1(R)→ L1(R),
ε > 0

U ε1[w] = w

(
· − x1√

ε

)
, ∀w ∈ L1(R)⇔ (U ε1)−1[w] = w(x1 +

√
ε ·), ∀w ∈ L1(R).

More precisely we set
Mε

1 := (U ε1)−1 ◦Mε ◦ U ε1, ∀ε > 0

so that for each w ∈ L1(R) we have

Mε
1[w](x) =Mε

[
w

(
· − x1√

ε

)]
(x1 +

√
εx), ∀x ∈ R. (A.7)

Thus from (A.6) and (A.7) we deduce that

Mε
1[w](x) = Θ(x1 +

√
εx)

∫
R
K (z) Θ(x1 +

√
εx+ εz)

[
w
(
x+
√
εz
)
− w (x)

]
dz

+w (x)
Θ(x1 +

√
εx)

2

∫
R
K (z)

[
Θ(x1 +

√
εx− εz) + Θ(x1 +

√
εx+ εz)

]
dz.

(A.8)

Remark A.1 Since Θ(x1) is a global maximum of Θ, λε, the principal eigenvalue of Lε, is also the
principal eigenvalue of Mε

1 (eg., see [10]).

In the following we give an formal asymptotic expansion in terms of ε which is fully justified in [10]. More
precisely we have for each x, z ∈ R and ε > 0

w
(
x+
√
εz
)
− w (x) =

√
εzw′(x) + ε

z2

2
w′′(x) + ε

√
ε
z3

6
w′′′(x) + · · · (A.9)

Recalling that Θ′(x1) = 0 we have for x ∈ R and ε > 0

Θ(x1 +
√
εx) = Θ(x1) + ε

x2

2
Θ′′(x1) + ε

√
ε
x3

6
Θ′′′(x1) + · · · . (A.10)

Next we also note that for each x, z ∈ R and ε > 0

Θ(x1 +
√
εx+ εz) = Θ(x1) +

(
√
εx+ εz)2

2
Θ′′(x1) +

(
√
εx+ εz)3

6
Θ′′′(x1) + · · ·

= Θ(x1) +
εx2 + 2ε

√
εxz

2
Θ′′(x1) +

ε
√
εx3

6
Θ′′′(x1) + · · ·

(A.11)

and

Θ(x1 +
√
εx− εz) = Θ(x1) +

(
√
εx− εz)2

2
Θ′′(x1) +

(
√
εx− εz)3

6
Θ′′′(x1) + · · ·

= Θ(x1) +
εx2 − 2ε

√
εxz

2
Θ′′(x1) +

ε
√
εx3

6
Θ′′′(x1) + · · ·

so that

Θ(x1 +
√
εx+ εz) + Θ(x1 +

√
εx− εz) = 2Θ(x1) + εx2Θ′′(x1) + ε

√
ε
x3

3
Θ′′′(x1) + · · · (A.12)
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From (A.10) and (A.12), keeping only the term of order at most ε
√
ε we obtain

Θ(x1 +
√
εx)

2

[
Θ(x1 +

√
εx+ εz) + Θ(x1 +

√
εx− εz)

]
= Θ(x1)2 + εx2Θ(x1)Θ′′(x1)

ε
√
ε
x3

3
Θ(x1)Θ′′′(x1) + · · ·

(A.13)

From (A.9) and (A.11), keeping only the term of order at most ε
√
ε we obtain

Θ(x1 +
√
εx+ εz) [w (x+

√
εz)− w (x)] =

√
εzΘ(x1)w′(x) + ε

z2

2
Θ(x1)w′′(x)

+ε
√
ε
z3

6
w′′′(x)Θ(x1) + ε

√
ε
x2z

2
w′(x)Θ′′(x1) + · · ·

(A.14)
and we deduce from (A.14) and (A.10) that

Θ(x1 +
√
εx)Θ(x1 +

√
εx+ εz) [w (x+

√
εz)− w (x)] =

√
εzΘ(x1)2w′(x) + ε

z2

2
Θ(x1)2w′′(x)

+ε
√
ε

[
z3

6
w′′′(x)Θ(x1)2 + x2zw′(x)Θ′′(x1)Θ(x1)

]
+ · · ·

(A.15)

Next observing that ∫
R
K(z)zndz = 0, n = 2k + 1, k ∈ N

it follows from (A.8) together with (A.13) and (A.15) that

Mε
1[w](x) = ε

Θ(x1)2

2
w′′(x)

∫
R
K(z)z2dz + Θ(x1)2w(x)

∫
R
K(z)dz

+εΘ(x1)Θ′′(x1)w(x)

∫
R
x2K(z)dz + ε

√
εΘ(x1)Θ′′′(x1)w(x)

∫
R

x3

3
K(z)dz + · · ·

(A.16)

Let φ̂ε be the eigenvector associated with the eigenvalue λε of Mε
1. Then (A.16) implies that

λεφ̂ε(x) = ε
Θ(x1)2

2

d2φ̂ε(x)

dx2

∫
R
K(z)z2dz + Θ(x1)2φ̂ε(x)

∫
R
K(z)dz

+εΘ(x1)Θ′′(x1)φ̂ε(x)

∫
R
x2K(z)dz + ε

√
εΘ(x1)Θ′′′(x1)φ̂ε(x)

∫
R

x3

3
K(z)dz + · · ·

(A.17)

Thanks to [10] one knows that

λε =
n∑
k=0

ε
k
2λk and φ̂ε =

n∑
k=0

ε
k
2ϕk (A.18)

Hence we have on the one hand

λεφ̂ε = λ0 [ϕ0 +
√
εϕ1 + εϕ2 + ε

√
εϕ3] +

√
ελ1 [ϕ0 +

√
εϕ1 + εϕ2] + ελ2 [ϕ0 +

√
εϕ1] + ε

√
ελ3ϕ0 + · · ·

= λ0ϕ0 +
√
ε [λ0ϕ1 + λ1ϕ0] + ε [λ0ϕ2 + λ1ϕ1 + λ2ϕ0] + ε

√
ε [λ0ϕ3 + λ1ϕ2 + λ2ϕ1 + λ3ϕ0] + · · · ,

(A.19)
and on the other hand, plugging (A.18) into (A.19) yields

λεφ̂ε(x) =

n∑
k=0

ε
Θ(x1)2

2
ε
k
2ϕ′′k(x)

∫
R
K(z)z2dz

+

n∑
k=0

Θ(x1)2ε
k
2ϕk(x)

∫
R
K(z)dz

+

n∑
k=0

εΘ(x1)Θ′′(x1)ε
k
2ϕk(x)

∫
R
x2K(z)dz

+

n∑
k=0

ε
√
εΘ(x1)Θ′′′(x1)ε

k
2ϕk(x)

∫
R

x3

3
K(z)dz + · · ·

(A.20)
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By keeping only the terms of order at most ε
√
ε in (A.20) we obtain

λεφ̂ε(x) = ε
Θ(x1)2

2
ϕ′′0(x)

∫
R
K(z)z2dz + ε

√
ε
Θ(x1)2

2
ϕ′′1(x)

∫
R
K(z)z2dz

+Θ(x1)2ϕ0(x)

∫
R
K(z)dz +

√
εΘ(x1)2ϕ1(x)

∫
R
K(z)dz

+εΘ(x1)2ϕ2(x)

∫
R
K(z)dz + ε

√
εΘ(x1)2ϕ3(x)

∫
R
K(z)dz

+εΘ(x1)Θ′′(x1)ϕ0(x)

∫
R
x2K(z)dz + ε

√
εΘ(x1)Θ′′(x1)ϕ1(x)

∫
R
x2K(z)dz

+ε
√
εΘ(x1)Θ′′′(x1)ϕ0(x)

∫
R

x3

3
K(z)dz + · · ·

and rearranging the terms with respect to the order of ε it follows that

λεφ̂ε(x) = Θ(x1)2ϕ0(x)

∫
R
K(z)dz +

√
εΘ(x1)2ϕ1(x)

∫
R
K(z)dz

+ε
Θ(x1)2

2
ϕ′′0(x)

∫
R
K(z)z2dz + εΘ(x1)2ϕ2(x)

∫
R
K(z)dz + εΘ(x1)Θ′′(x1)ϕ0(x)

∫
R
x2K(z)dz

+ε
√
εΘ(x1)2ϕ3(x)

∫
R
K(z)dz + ε

√
ε
Θ(x1)2

2
ϕ′′1(x)

∫
R
K(z)z2dz

+ε
√
εΘ(x1)Θ′′(x1)ϕ1(x)

∫
R
x2K(z)dz + ε

√
εΘ(x1)Θ′′′(x1)ϕ0(x)

∫
R

x3

3
K(z)dz + · · ·

(A.21)
Next making an identification between (A.19) and (A.21) it follows that

λ0ϕ0(x) = Θ(x1)2ϕ0(x)

∫
R
K(z)dz

λ0ϕ1(x) + λ1ϕ0(x) = Θ(x1)2ϕ1(x)

∫
R
K(z)dz

λ0ϕ2(x) + λ1ϕ1(x) + λ2ϕ0(x) =
Θ(x1)2

2
ϕ′′0(x)

∫
R
K(z)z2dz

+Θ(x1)Θ′′(x1)ϕ0(x)

∫
R
x2K(z)dz

+Θ(x1)2ϕ2(x)

∫
R
K(z)dz

λ0ϕ3(x) + λ1ϕ2(x) + λ2ϕ1(x) + λ3ϕ0(x) = Θ(x1)2ϕ3(x)

∫
R
K(z)dz +

Θ(x1)2

2
ϕ′′1(x)

∫
R
K(z)z2dz

+Θ(x1)Θ′′(x1)ϕ1(x)

∫
R
x2K(z)dz

+Θ(x1)Θ′′′(x1)ϕ0(x)

∫
R

x3

3
K(z)dz

(A.22)
The first equation of (A.22) implies that

λ0 = Θ(x1)2

∫
R
K(z)dz. (A.23)

Hence the second equation of (A.22) rewrites as

λ0ϕ1(x) + λ1ϕ0(x) = λ0ϕ1(x), ∀x ∈ R⇒ λ1 = 0. (A.24)

Using (A.23) and (A.24) together with the third equation of (A.22) we obtain

λ2ϕ0(x) =
Θ(x1)2

2
ϕ′′0(x)

∫
R
K(z)z2dz + Θ(x1)Θ′′(x1)ϕ0(x)x2

∫
R
K(z)dz, ∀x ∈ R. (A.25)
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Set

mi[K] :=

∫
R
K(z)zidz, ∀i ∈ N

so that (A.25) rewrites as

λ2ϕ0(x) =
Θ(x1)2

2
ϕ′′0(x)m2[K] + Θ(x1)Θ′′(x1)ϕ0(x)x2m0[K], ∀x ∈ R (A.26)

or equivalently

ϕ′′0(x)−

√
−2Θ′′(x1)

Θ(x1)

m0[K]

m2[K]

2

x2ϕ0(x) =
2

Θ(x1)2

λ2

m2[K]
ϕ0(x), ∀x ∈ R. (A.27)

Thus,

− 2

Θ(x1)2

λ2

m2[K]
=

√
−2Θ′′(x1)

Θ(x1)

m0[K]

m2[K]
⇔ λ2 = −m2[K]

Θ(x1)2

2

√
−2Θ′′(x1)

Θ(x1)

m0[K]

m2[K]
.

References

[1] S. Arkin. Microbial Evolution in the Chemostat. Phd thesis, Imperial College, London, U.K., 01
2010.

[2] R. A. Armstrong and R. McGehee. Competitive exclusion. The American Naturalist, 115(2):151–170,
1980.

[3] G. J. Butler and G. S. K. Wolkowicz. A mathematical model of the chemostat with a general class of
functions describing nutrient uptake. SIAM Journal on Applied Mathematics, 45(1):138–151, 1985.
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