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Abstract. This paper presents and investigates ARUL, a variant of dy-
namic belief revision logic in which revision policies, in particular radical,
or lexicographic, upgrades, can be arbitrary. We discuss the motivations
of having this kind of soft arbitrary operator, concretely for refining the
analysis of agentivity and modelling classical epistemic paradoxes. We
introduce a sound and complete axiomatic system over models whose
accessibility relation is a reflexive, transitive and locally connected pre-
order, following an approach parallel to Arbitrary Public Announcement
Logic (APAL) for proving completeness.

Keywords: Dynamic Logics · Plausibility · Radical Upgrades · Arbi-
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1 Introduction

Public Announcement Logic (PAL) [30,8,31] was tailored as an extension of Epis-
temic Logic [25] to reason about information change. Soon after its introduction,
PAL was followed by logics for softer revision policies, such as the belief upgrades
family of e.g. [16,11,12]. In the meantime, the expressivity of PAL increased sub-
stantially with the possibility to quantify over hard announcements, leading
to Arbitrary Public Announcement Logic (APAL), introduced and axiomatized
in [4]. The completeness argument was then fixed in [2], and improved in [5].
This paper proposes to make similar steps for dynamic belief revision theory by
introducing ARUL, a logic for Arbitrary Radical Upgrades.

Arbitrary radical upgrades have been considered already in [28], not as syn-
tactic primitive operators, but as defined notions to help analyze a Smullyan’s
deception puzzle on surprise [33] (see also [27]). In [28], arbitrary radical up-
grades are used meta-logically to model two versions of deception in Smullyan’s
puzzle, the so-called deception by commission (i.e., false beliefs obtained by the
existence of some radical upgrade) and deception by omission (i.e., false beliefs
obtained by the lack of some radical upgrade). In this paper we aim to provide
a formal and general treatment of these concepts, by defining and axiomatizing
the logic ARUL.

The language of ARUL is based on dynamic epistemic languages divided into
two parts. The static part elaborates on [34] by featuring modalities for “at least
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as plausible as” situations and for an agent’s knowledge. In turn, the dynamic
part of ARUL contains the standard radical upgrade modality on specific for-
mulas of the language [19,16,12], but also incorporates an operator for arbitrary
upgrades, authorizing quantification over any formulas of ARUL. The language of
ARUL is interpreted over doxastic-plausibility models (see, e.g., [12,34]). Herein,
the model’s plausibility relation considered is a reflexive, transitive and locally
connected pre-order. To our knowledge, the extension of arbitrariness to radical
upgrades proposed by ARUL is novel. Regarding technical results, ARUL con-
nects to standard modal logic by using tools designed to axiomatize APAL [5].
Regarding expressivity, the agentive definitions and distinctions that ARUL helps
delineate find applications into the philosophical analysis of various paradoxes,
such as e.g. Gerbrandy’s formalization of the surprise examination paradox and
variants, such as Fitch’s paradox and Moore’s paradox.

Outline of the paper. In Section 2, we introduce the dynamic logic of arbitrary
radical upgrades (ARUL), describing the syntax and semantic interpretation of
the language. Section 3 presents an axiom system for ARUL, akin to the axiomati-
zation of APAL, that we prove to be sound and complete with respect to doxastic
plausibility models. We present our completeness argument in Section 4, follow-
ing the strategy adopted by [5] for APAL. In Section 5, we show the expressivity
strengths of ARUL regarding action theory and related epistemic paradoxes. We
conclude in Section 6 and set the basis for future logical extensions to other
belief revision policies, and to more general results.

2 Preliminaries

We present the logic ARUL, an extension of classic dynamic belief revision
logic [16,11,12] incorporating arbitrary radical upgrades. Unlike the aforemen-
tioned approaches, the syntax of ARUL contains a modal plausibility operator
as in [34], instead of the a static modal operator for belief. Nevertheless, the
belief operator is definable in our setting. In addition, ARUL features dynamic
modal operators for plausibility upgrades with specific formulas, and a modality
for upgrades with arbitrary formulas as a novelty.

Definition 1. Let Prop be a countable set of propositional symbols. The set of
all ARUL-formulas is given by the following Backus-Naur Form:

φ,ψ ::= p | ¬φ | φ ∨ ψ | [⩽]φ | Kφ | [⇑φ]ψ | [⇑]ψ,

where p ∈ Prop. On the one hand, the language contains the static modal for-
mulas [⩽]φ (standing for “φ holds in all worlds the agent considers at least as
plausible as the current one”), and Kφ (for “the agent knows that φ”). On the
other hand, it contains dynamic formulas [⇑φ]ψ (standing for “after a radical
upgrade with formula φ, ψ holds”), and the arbitrary upgrade [⇑]ψ (read as “af-
ter any radical upgrade takes place, ψ holds”). Finally, a formula φ is called
epistemic, if it does not contain any occurence of [⇑ψ] or [⇑].
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The simple language of ARUL defined above enables us to define several other
notions, as shown hereafter.

Definition 2. We define the possibility operator for knowledge as K̂φ := ¬K¬φ,
and the existential modality for plausibility as ⟨⩽⟩φ := ¬[⩽]¬φ (standing for
“there is at least a plausible world where φ holds”). Plain beliefs can be defined
in terms of plausibility as Bφ := ⟨⩽⟩[⩽]φ (see [34, Fact 1] for details), and read
as “the agent believes that φ”. We also define the existential radical upgrade as
⟨⇑ψ⟩φ := ¬[⇑ψ]¬φ, and its arbitrary version as ⟨⇑⟩ψ := ¬[⇑]¬ψ (standing for
“there exists a formula φ such that [⇑φ]ψ holds”). Additional connectives (⊤, ⊥,
∧, →, ↔) are defined as usual.

Formulas of ARUL are interpreted semantically by using (doxastic) plausibil-
ity models defined in [16,11,12,17]. Below we follow the presentation of [34].

Definition 3. A plausibility model for ARUL is a tuple S = ⟨S,⩽, V ⟩ where:

– S is a countable non-empty set of “possible states” (or “worlds”),

– ⩽ ⊆ S × S, the “plausibility relation” for the agent, is a locally connected
pre-order, and

– V : Prop → ℘(S) is a standard “valuation map”, where ℘(S) is the set of all
subsets of S.

The conventional reading of the plausibility order is that in case s ⩽ t (for
all s, t ∈ S), the agent considers state t to be “at least as plausible as” state s.
Given s ∈ S, we call S, s a pointed model, with s being the “actual” state.

Definition 4. Let S = ⟨S,⩽, V ⟩ be a plausibility model. We define the epistemic
accessibility relation ∼ as ∼:=⩽ ∪ ⩽−1. Notice that ∼ is an equivalence relation
(i.e., reflexive, symmetric and transitive relation), thus for each s ∈ S we define
its equivalence class [s]∼ := {t | s ∼ t}.

Let A ⊆ S. We define MaxA⩽ as the set of states in A that are maximal for
the ordering ⩽ restricted to states in A, i.e.,

MaxA⩽ = {u ∈ A | for all v ∈ A, v ⩽ u}.

Recall that a locally-connected pre-order is a pre-order (i.e., it is reflexive
and transitive), that is locally connected (for all t, v ∈ [s]∼ we have t ∼ v). In
e.g. [19,12,34], it is also required that the relation be conversely well-founded
(i.e., it has a minimum element). However, as done in e.g. [16], we drop this
condition as not being crucial in our logical presentation, and moreover, our
completeness argument might no longer apply otherwise.
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Definition 5. The truth of a formula φ at the actual state s in the plausibility
model S, denoted S, s |= φ, is defined inductively as follows:

S, s |= p iff s ∈ V (p)
S, s |= ¬φ iff S, s ̸|= φ
S, s |= φ ∨ ψ iff S, s |= φ or S, s |= ψ
S, s |= [⩽]φ iff for all t ∈ S, if s ⩽ t then S, t |= φ
S, s |= Kφ iff for all t ∈ S, if s ∼ t then S, t |= φ
S, s |= [⇑φ]ψ iff S[⇑φ], s |= ψ
S, s |= [⇑]ψ iff for all epistemic φ, S, s |= [⇑φ]ψ,

where JψKS := {s | S, s |= ψ}, and S[⇑φ] = ⟨S,⩽[⇑φ], V ⟩ is such that:

⩽[⇑φ]:= (⩽ ∩(S × JφKS)) ∪ (⩽ ∩(J¬φKS × S)) ∪ (∼ ∩(J¬φKS × JφKS)).

A formula φ is said to be satisfiable if S, s |= φ for some model S and state s,
and φ is valid in S if S |= φ for all states s of S. Finally, φ is valid stricto
sensu (notation: |= φ) if S |= φ for all models S.

Following [16] and [12], the belief radical upgrade with respect to a formula φ
defined above, written [⇑φ], induces a mapping of the following kind:

[⇑φ] : S 7→ S[⇑φ]

Here, S is the initial plausibility model and S[⇑φ] is the transformed model
obtained once the operation [⇑φ] is performed on S. In this definition, S and V
remain unchanged. The special feature of S[⇑φ] is the plausibility order ⩽[⇑φ].
The reordering of states defined by ⩽[⇑φ] ensures that the states where φ is
true are promoted in plausibility. In the definition of ⩽[⇑φ], the first part (⩽
∩(S × JφKS)) states that the relative ordering of worlds where φ is true is the
same as in the original order ⩽. The second part (⩽ ∩(J¬φKS × S)) states that
the relative ordering of worlds where φ is false is the same as in the original
order ⩽. Finally, the third part (∼ ∩(J¬φKS × JφKS)) states that the worlds
where φ is true become equally or more plausible than worlds where φ is false
in the locally connected component.

Remark 1. Notice that, by Definition 5, the radical upgrade operator [⇑ψ] is
self-dual, i.e., [⇑ψ]φ ↔ ⟨⇑ψ⟩φ is valid, since [⇑ψ] can always be executed (its
semantics does not involve a pre-condition) and the mapping [⇑φ] : S 7→ S[⇑φ]

always yields one and only one model.

Finally, we state that plain beliefs can be recovered from plausibility.

Proposition 1 ([34]). Let S be a plausibility model with s being one of its
states, and let φ be an ARUL formula. Then,

S, s |= Bφ iff for all t ∈ Max
[s]∼
⩽ , S, t |= φ.
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3 Axiom System

In this section, we present an axiom system for ARUL. This puts together the
axiomatization for the [⇑φ]-free fragment and reduction axioms to eliminate the
occurrences of [⇑φ] [11], plus axioms and rules for arbitrary announcements [4].

Our strategy closely follows the ideas introduced in [5] for APAL. In [4], it
is noticed that single-agent APAL (over S5 models) can be reduced into plain
epistemic logic, while for n > 1 agents the expressive power of APAL is strictly
greater than basic epistemic logic. For the case of ARUL, it has not been estab-
lished whether this is also the case or not. Thus, to prove a completeness result
for ARUL we will use the argument followed by [5] for multi-agent APAL.

Here we need to introduce the so-called necessity forms for ARUL. Necessity
forms are crucial in axiomatizing the logic, as a mechanism for performing special
restricted forms of substitution on certain formulas (see [24,5,1]).

Definition 6. Let ♯ be a fresh propositional symbol. We define the set of neces-
sity forms (whose members are notated η(♯), η′(♯), η′′(♯), etc.) of ARUL as:

η(♯) ::= ♯ | φ→ η(♯) | [⩽]η(♯) | Kη(♯) | [⇑φ]η(♯),

where φ is a formula of ARUL.

Our strategy to provide a sound and complete axiom system for ARUL con-
sists in three parts. Firstly, we provide standard modal axioms for the epistemic
fragment of ARUL, i.e., the fragment whose only modalities are [⩽] and K, as
in e.g. [34] (see also [18]). Secondly, we provide so-called reduction axioms for
axiomatizing formulas containing the [⇑ψ] modality. Reduction axioms enable us
to eliminate occurences of [⇑ψ], as done in [34]. Finally, a block should be intro-
duced for axiomatizing arbitrary upgrades [⇑]. To achieve this, we provide basic
modal axioms and a modal necessitation rule using a necessity form, similar to
the ones for arbitrary public announcements described in [5].

Definition 7. The axiom system ARU for ARUL is defined by the axioms and
rules of Figure 1. Precisely, ARU is the smallest set of formulas of ARUL that
contains all the axioms of Figure 1 and it is closed by its rules.

Let us briefly discuss the list of axioms and rules of Figure 1. The first
block provides the propositional base of the system, as well as distribution ax-
ioms for each modality of ARUL. The second block axiomatizes the properties
of knowledge (knowledge and factivity, and positive and negative introspection,
respectively). In the third block, we introduce the axioms to capture the prop-
erties of the plausibility relation, as well as its connections with the knowledge
modality K. Then, axiom (LC) establishes that the plausibility relation is lo-
cally connected, whereas (Int) characterizes the interaction between arbitrary
and non-arbitrary radical upgrades. Finally, blocks are provided for the infer-
ences rules, including Modus Ponens and Necessitation rules for each modality
(using a necessity form for [⇑]), and for the reduction axioms of [⇑χ], including
axiom (A5) which mimics every possible outcomes resulting from the application
of a plausibility upgrade, and (A6) describing the composition of two upgrades.
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Basic Axioms

CPL All tautologies from propositional logic
K[⩽] [⩽](φ→ ψ) → ([⩽]φ→ [⩽]ψ)
KK K(φ→ ψ) → (Kφ→ Kψ))
K⇑χ [⇑χ](φ→ ψ) → ([⇑χ]φ→ [⇑χ]ψ)
K⇑ [⇑](φ→ ψ) → ([⇑]φ→ [⇑]ψ)

TK Kφ→ φ
4K Kφ→ KKφ
5K ¬Kφ→ K¬Kφ

T[⩽] [⩽]φ→ φ
4[⩽] [⩽]φ→ [⩽][⩽]φ
Inc Kφ→ [⩽]φ

LC (K̂φ ∧ K̂ψ) → K̂(φ ∧ ⟨⩽⟩ψ) ∨ K̂(ψ ∧ ⟨⩽⟩φ)
Int [⇑]φ→ [⇑ψ]φ, for ψ epistemic

Inference Rules

MP from φ and φ→ ψ infer ψ
Nec[⩽] from φ infer [⩽]φ
NecK from φ infer Kφ
Nec[⇑χ] from φ infer [⇑χ]φ
Nec[⇑] from η([⇑ψ]φ) infer η([⇑]φ), for ψ epistemic

Reduction Axioms

(A1) [⇑χ]p↔ p
(A2) [⇑χ]¬φ↔ ¬[⇑χ]φ
(A3) [⇑χ](φ ∨ ψ) ↔ [⇑χ]φ ∨ [⇑χ]ψ
(A4) [⇑χ]Kφ↔ K[⇑χ]φ
(A5) [⇑χ][⩽]φ↔ [⩽]((χ→ [⇑χ]φ) ∧ (¬χ→ [⩽][⇑χ]φ) ∧

(¬χ→ K(χ→ [⇑χ]φ)))
(A6) [⇑χ][⇑ψ]φ↔ [⇑([⇑χ]ψ)]φ

Fig. 1: Axiom system and inference rules ARU for ARUL.

Lemma 1 (Soundness). The axiomatization ARU is sound, i.e., all the ax-
ioms are valid formulas, while inference rules preserve validity over formulas (on
plausibility models).

Proof. Soundness of most axioms and rules (or variants of them) has been shown
in e.g. [19,12,34], and for arbitrary announcements in [3,5,2]. The reduction ax-
iom (A6) deserves more attention, since upgrades deal with relation updates
rather than worlds updates. We need to prove that: s ⩽[⇑χ[⇑ψ]] t iff s(⩽[⇑χ])[⇑ψ]t.
Suppose s ⩽[⇑χ[⇑ψ]] t, then we have three alternatives:

1. s ⩽ t and S, t |= [⇑χ]ψ. Then, s ⩽[⇑χ] t and S[⇑χ], t |= ψ.
2. s ⩽ t and S, t |= ¬[⇑χ]ψ. The latter is equivalent to state S, t |= [⇑χ]¬ψ,

by (A2). Then, we get s ⩽[⇑χ] t and S[⇑χ], s |= ¬ψ.
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3. s ∼ t, S, s |= [⇑χ]ψ, and S, t |= ¬[⇑χ]ψ. For a similar reason as above, we
get s ∼[⇑χ] t, S[⇑χ], s |= ¬ψ and S[⇑χ], t |= ψ.

The other direction of the implication is similar. Thus, we conclude s(⩽[⇑χ])[⇑ψ]t.

We list now a number of definitions and properties that are useful to establish
completeness of the axiom system ARU . These properties are mostly inspired
by their analogues from [5] (some proofs and properties are omitted for space
reasons). We start by defining the notion of a theory, which is our main ingredient
to build a canonical model.

Definition 8. Let Γ be a set of formulas. We call Γ a theory if: 1) Γ contains
ARU , and 2) Γ is closed under MP and Nec[⇑].

A theory Γ is consistent if ⊥ /∈ Γ , and it is maximal if for all φ in ARUL,
we have either φ ∈ Γ or ¬φ ∈ Γ . We denote as MCT the set of all theories that
are both consistent and maximal.

Notice that a theory is only required to be closed under rules MP and Nec[⇑],
as these rules preserve truth while the others preserve only validity. Next, we
present classical properties which ensure that a theory behaves as expected.

Lemma 2. Let Γ be a MCT. The following properties hold:

1. ⊥ /∈ Γ ,
2. φ ∈ Γ iff ¬φ /∈ Γ ,
3. φ ∨ ψ ∈ Γ iff either φ ∈ Γ or ψ ∈ Γ .

Definition 9. Let Γ be a theory. Define:

[⇑ψ]Γ = {φ | [⇑ψ]φ ∈ Γ} Γ⊕φ = {ψ | φ→ ψ ∈ Γ}
KΓ = {φ | Kφ ∈ Γ} [⩽]Γ = {φ | [⩽]φ ∈ Γ}.

Lemma 3. Let Γ be a theory, and let φ be a formula of ARUL. Then, [⇑φ]Γ ,
Γ⊕φ, KΓ and [⩽]Γ are theories. Moreover, Γ ∪ {φ} ⊆ Γ⊕φ, and Γ⊕φ is
consistent iff ¬φ /∈ Γ .

Lemma 4. Each consistent theory can be extended to a MCT.

Now, we provide some properties that are essential to guarantee that the
canonical model is a proper plausibility model for ARUL.

Lemma 5. Let Γ,∆,Π be MCTs. Then,

1. KΓ ⊆ Γ , [⩽]Γ ⊆ Γ , and KΓ ⊆ [⩽]Γ ,
2. if [⩽]Γ ⊆ ∆ and [⩽]∆ ⊆ Π then [⩽]Γ ⊆ Π,
3. if KΓ ⊆ ∆ and K∆ ⊆ Π then KΓ ⊆ Π,
4. if KΓ ⊆ ∆ then K∆ ⊆ Γ .
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4 Completeness

We can now introduce our completeness argument for ARUL, following the stan-
dard methodology via a canonical model. To do so, we borrow the developments
of [5] for proving completeness of APAL.

Definition 10 (Canonical Model). The canonical model for ARU is defined
as Sc = ⟨Sc,⩽c, V c⟩, where:

– Sc = {Γ | Γ is a MCT },
– ⩽c= {(Γ, Γ ′) | [⩽]Γ ⊆ Γ ′},
– V c(p) = {p | p ∈ Γ}, for all p ∈ Prop.

Clearly, Sc is a plausibility model (e.g. structural properties on ⩽c are guar-
anteed by Lemma 5). We now introduce some definitions and syntactic proper-
ties, that are useful to properly treat formulas in our completeness proof.

Definition 11. The size of a formula φ of ARUL, is written size(φ) and defined
inductively as follows:

size(p) = 1 size(φ ∨ ψ) = 1 +max{size(φ), size(ψ)}
size(δφ) = 1 + size(φ) size([⇑ψ]φ) = 5.size(φ) + size(ψ),

with δ ∈ {¬,K, [⩽], [⇑]}. The ⇑-depth of φ, written depth⇑(φ), is defined as:

depth⇑(p) = 0 depth⇑(φ ∨ ψ) = max{depth⇑(φ),depth⇑(ψ)}
depth⇑(γφ) = depth⇑(φ) depth⇑([⇑ψ]φ) = max{depth⇑(φ),depth⇑(ψ)}
depth⇑([⇑]φ) = 1 + depth⇑(φ),

with γ ∈ {¬,K, [⩽]}. We write φ <s
d ψ iff either depth⇑(φ) < depth⇑(ψ), or

depth⇑(φ) = depth⇑(ψ) and size(φ) < size(ψ).

Lemma 6. The relation <s
d is a well-founded strict partial order over formulas.

In Definition 11, we define size(φ ∨ ψ) as 1 +max{size(φ), size(ψ)}. By con-
trast, in [5], size(φ ∨ ψ) is defined as 1 + size(φ) + size(ψ). In addition, the
“curious” factor of 3 in size([⇑ψ]φ) becomes 5 here, the aim of which is to guar-
antee the application of the inductive hypothesis in the proof of Lemma 8. Below
we prove the special property about the order <s

d that is not present in [5].

Lemma 7. Let χ, ψ be ARUL formulas. Then,

1) [⩽](¬χ ∨ [⇑χ]ψ) <s
d [⇑χ][⩽]ψ 2) [⩽](χ ∨ [⩽][⇑χ]ψ) <s

d [⇑χ][⩽]ψ
3) [⩽](χ ∨K(χ→ [⇑χ]ψ)) <s

d [⇑χ][⩽]ψ.

Proof. In all cases, the ⇑-depths coincide, so we need to check their sizes. Notice
that by applying repeatedly Definition 11, we get:

size([⇑χ][⩽]ψ) = 5.size([⩽]ψ) + size(χ)

= 5.(1 + size(ψ)) + size(χ)

= 5 + 5.size(ψ) + size(χ)
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Item 1 is shown below:

size([⩽](¬χ ∨ [⇑χ]ψ)) = 2 +max{1 + size(χ), size([⇑χ]ψ)}
= 2 +max{1 + size(χ), 5.size(ψ) + size(χ)} (†)
= 2 + 5.size(ψ) + size(χ) < size([⇑χ][⩽]ψ)

Step (†) follows from the fact that the size is always at least 1. Using similar rea-
soning, we get size([⩽](χ ∨ [⩽][⇑χ]ψ)) = 3+ 5.size(ψ) + size(χ) < size([⇑χ][⩽]ψ),
then item 2 follows. Finally, for item 3, we have:

size([⩽](χ ∨K(χ→ [⇑χ]ψ))) = 2 +max{size(χ),
2 + max{1 + size(χ), 5.size(ψ) + size(χ)}}

= 4 + 5.size(ψ) + size(χ) < size([⇑χ][⩽]ψ)

With this property at hand, in addition to those introduced in [5], we can
proceed with the crucial result in this section.
Lemma 8. Let φ be a formula, let conditions P and H be defined as follows:

P (φ): for all MCT Γ , we have φ ∈ Γ iff Sc, Γ |= φ;
H(φ): for all formulas ψ, if ψ <s

d φ, then P (φ).

Then, if H(φ) then P (φ).

Proof. The proof is by structural induction on φ. One interesting case is φ =
[⇑χ][⩽]ψ. Assuming H([⇑χ][⩽]ψ), we suppose [⇑χ][⩽]ψ ∈ Γ . By (A5), we get
[⩽]((χ → [⇑χ]φ) ∧ (¬χ → [⩽][⇑χ]φ) ∧ (¬χ → K(χ → [⇑χ]φ))) ∈ Γ . Then, we
have {[⩽](χ → [⇑χ]φ), [⩽](¬χ → [⩽][⇑χ]φ), [⩽](¬χ → K(χ → [⇑χ]φ))} ⊆ Γ . By
CPL, {[⩽](¬χ∨ [⇑χ]φ), [⩽](χ∨ [⩽][⇑χ]φ), [⩽](χ∨K(χ→ [⇑χ]φ))} ⊆ Γ . Thus, by
Lemma 7, IH and (A5), we get Sc, Γ |= [⇑χ][⩽]ψ. Hence, P ([⇑χ][⩽]ψ) holds.

Lemma 9 (Truth Lemma). Let φ be a formula of ARUL, and let Γ be a MCT.
Then, φ ∈ Γ iff Sc, Γ |= φ.

Proof. By Lemmas 6 and 8.

Theorem 1. The axiomatic system ARU from Figure 1 is sound and complete
for ARUL over the class of plausibility models from Definition 3.

Proof. Soundness follows by Lemma 1. For completeness, we need to show that
|= φ implies φ ∈ ARU . Aiming for a contradiction, suppose that |= φ and that
φ /∈ ARU . By Lemmas 3 and 4, there exists a MCT Γ such that ¬φ ∈ Γ . By
Lemma 9, Sc, Γ |= ¬φ, thus Sc, Γ ̸|= φ. Then, ̸|= φ, a contradiction. Therefore,
ARU is complete for ARUL over the class of plausibility models from Definition 3.

5 Applications

This section shows that our framework fruitfully paves the way to address some
central philosophical issues. We first discuss the surprise deception paradox inves-
tigated from a dynamic doxastic logic perspective in [28], — a work that inspired
the definition of our arbitrary upgrades. Then, we disccuss Fitch’s knowability
paradox [22], and Moore’s paradox (see e.g. [29,25]) in the context of logic ARUL.
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Application 1 (Surprise Deception Paradox). ARUL elaborates on the
arbitrary radical upgrade introduced meta-logically in [28] using standard radical
upgrades. The goal in [28] is to analyze a Smullyan’s puzzle on deception and
surprise that can be summarized as follows: on the morning of April Fool’s Day,
an agent announces to an addressee that he or she would be deceived later on
that day, but apparently nothing happened. Since the addressee waited all day
to be deceived by some action, he or she was actually deceived, but by the lack of
an action, i.e., by omission. This deception left the addressee strongly surprised.

In [28], such a deception-based surprise is modelled along the lines of Ger-
brandy’s formalization of the three-day Surprise Examination Paradox [23]. The
difference is that exam days are replaced by types of deception, based on cap-
turing the distinction between deception as a result of an action, or deception by
commission, and deception by the lack of an action, or deception by omission.

The distinction between deception by commission versus by omission can be
defined in ARUL using the plausibility operator [⩽] to characterize deception,
the existential radical upgrade ⟨⇑⟩ to capture the existence of an action, or
commission, and its negation ¬⟨⇑⟩ for the absence of such an action, or omission.

We define the fact that the addressee is deceived on a formula ψ in case ψ is
true but the addressee judges ¬ψ as more highly plausible, i.e., as (ψ ∧ [⩽]¬ψ).

Definition 12. Let ψ be an arbitrary formula of ARUL, we define the fact that
the addressee is deceived by commission on formula ψ (written d+ψ ), and that she
is deceived by omission on ψ (written d−ψ ), respectively as:

d+ψ := ⟨⇑⟩(ψ ∧ [⩽]¬ψ); d−ψ := ¬⟨⇑⟩(ψ ∧ [⩽]¬ψ).

In [28], definitions of d+ψ and d−ψ are used to express the fact that the agent’s
deception results in the addressee’s surprise. Let d+ and d− be abbreviations
for the complex formulas d+ψ and d−ψ , respectively. Following [23], modulo minor
adaptations to radical upgrades [10], the surprise aspect of the agent’s announce-
ment can be encoded by the formula D as follows:

D := ((d+ ∧ ¬d−) ∧ ¬[⩽](d+ ∧ ¬d−)) ∨
((¬d+ ∧ d−) ∧ [⇑ ¬(d+ ∧ ¬d−)]¬[⩽](¬d+ ∧ d−)) ∨
((d+ ∧ d−) ∧ [⇑ ¬(d+ ∧ ¬d−)][⇑ ¬(¬d+ ∧ d−)]¬[⩽](d+ ∧ d−)).

The first disjunct of D states that in case addressees are deceived only by
commission, i.e. (d+ ∧ ¬d−), they will be surprised because they deny this pos-
sibility as being plausible: ¬[⩽](d+ ∧¬d−). The second disjunct reflects an anal-
ogous situation in presence of deception by omission. The third disjunct of D
states that in case addressees are deceived both by commission and by omission,
i.e. (d+ ∧ d−), they will be surprised because after rejecting deception only by
commission and only by omission: [⇑¬(d+ ∧ ¬d−)][⇑¬(¬d+ ∧ d−)], they (still)
deny option (d+ ∧ d−) as being plausible: ¬[⩽](d+ ∧ d−).

Following [23,10], though, [28] shows that any radical upgrade with D , or
with a reinforced formula involving D , will result in the agent failing to surprise
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the addressee. But this failure is theoretical since in the puzzle at stake, the
addressee is actually surprised as he fails to predict the type of deception he is
preyed to, i.e. deception both by commission and by omission. The puzzle dy-
namics and interplay between deception and surprise can be modelled in ARUL.
One noticeable difference is that arbitrary upgrades are defined externally in
in [28]. ARUL goes a step further by internalizing these upgrades as primitive
operators of the syntax for which sound and complete axiomatization is proven.

Application 2 (Fitch’s Paradox). Fitch’s knowability paradox [22,20] is
rooted in the verificationnist thesis according to which all truths are verifiable.
Following van Benthem’s version in [15], this principle can be interpreted in terms
of learnability and knowability as: “what is true may come to be known”. Accord-
ingly, it can be expressed in APAL using the schema: {for all φ, φ → ⟨!⟩Kφ},
where φ is some given truth of the language, and ⟨!⟩ is the arbitrary announce-
ment modality. As shown in [15], paradox arises with the case of truths that are
unknown by agents, expressed as (ψ∧¬Kψ). It has been established in e.g. [6,7]
that substituting (ψ∧¬Kψ) to φ in the knowability principle with arbitrary an-
nouncements, leads to inconsistency and thus, to the necessary acceptance of the
irrealistic omniscience conclusion that all truths are already known: φ→ Kφ.

It turns out that a variant of Fitch’s paradox with plausibility operator [⩽]
and arbitrary upgrade ⟨⇑⟩ applies to ARUL. Let S = ⟨S,⩽, V ⟩ be a plausibility
model with s ∈ S. Aiming for a contradiction, suppose that the learnability
principle transfers to the ARUL operators [⩽] and ⟨⇑⟩, stating that all truth ψ of
ARUL will be considered plausible by the agent after some arbitrary upgrade: {for
all φ, φ→ ⟨⇑⟩[⩽]φ)}. Suppose that a given truth ψ of ARUL is judged implausible
by the agent: (ψ ∧ ¬[⩽]ψ). By instantiating the learnability principle with this
formula, substituting (ψ∧¬[⩽]ψ) to φ, we have: S, s |= (ψ∧¬[⩽]ψ) → ⟨⇑⟩[⩽](ψ∧
¬[⩽]ψ). By modus ponens: S, s |= ⟨⇑⟩[⩽](ψ ∧ ¬[⩽]ψ). By Definition 5, for some
epistemic φ, S, s |= ⟨⇑φ⟩[⩽](ψ ∧ ¬[⩽]ψ), iff S[⇑φ], s |= [⩽](ψ ∧ ¬[⩽]ψ). Observe
that S[⇑φ], s |= [⩽](ψ ∧ ¬[⩽]ψ) leads to contradiction since, by distributing [⩽]
over ∧, we have S[⇑φ], s |= [⩽]ψ ∧ [⩽]¬[⩽]ψ. So, in particular S[⇑φ], s |= [⩽]ψ.
But we also have S[⇑φ], s |= [⩽]¬[⩽]ψ. By instantiating axiom T[⩽], it holds that
S[⇑φ], s |= [⩽]¬[⩽]ψ → ¬[⩽]ψ. Then, S[⇑φ], s |= ¬[⩽]ψ, a contradiction.

Application 3 (Moore’s Paradox). Hidden behind Fitch’s paradox are so-
called “unsuccessful formulas” [21], i.e. formulas φ that do not necessarily hold
after an update with φ. As noticed in e.g. [26,14], this phenomenon is at the
heart of Moore’s paradox [29], since announcing a true formula ψ that is not
believed by the agent, i.e. a formula of the form ψ∧¬Bψ, leads to contradiction.
This concerns KD45 belief modalities, as well as S5 knowledge modalities.

In ARUL, arbitrary upgrades [⇑] on formula (ψ ∧ ¬[⩽]ψ) give rise to such a
Moorean phenomenon. Let S be a plausibility model with a state s ∈ S. Let
(ψ ∧ ¬[⩽]ψ) be the formula stating that ψ is true but not judged as plausi-
ble by the agent, and suppose that S, s |= (ψ ∧ ¬[⩽]ψ). As a way towards a
contradiction, suppose that [⩽](ψ ∧ ¬[⩽]ψ) holds after any universal arbitrary
radical upgrade, i.e., that S, s |= [⇑][⩽](ψ ∧ ¬[⩽]ψ). By Definition 5, it is the
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case that S, s |= [⇑][⩽](ψ ∧ ¬[⩽]ψ) if and only if S, s |= [⇑φ][⩽](ψ ∧ ¬[⩽]ψ) for
all epistemic φ ∈ ARUL. So this applies in particular for φ ≡ (ψ ∧ ¬[⩽]ψ), i.e.
S, s |= [⇑(ψ ∧¬[⩽]ψ)][⩽](ψ ∧¬[⩽]ψ). A contradiction ensues since in presence of
Moorean formulas, the formula [⇑φ][⩽]φ is not valid (see e.g., [34]).

Accordingly, (ψ∧¬[⩽]ψ) is an unsuccessful formula of ARUL. Actually, there is
no escaping the Moore’s paradox with the arbitrary variation of the learnability
principle holding, as shown above with the instanciation of (ψ ∧ ¬[⩽]ψ). As for
APAL, this issue also concerns the more classical version of Moore’s paradox
involving plain beliefs B, now with the version: {for all φ, φ→ ⟨⇑⟩Bφ)}.

6 Conclusion

This paper introduces ARUL, a variant of dynamic belief revision logic that in-
corporates arbitrary radical upgrades, a concept not previously formalized in the
literature. The syntax and semantics of ARUL extend the standard belief revi-
sion logics by allowing arbitrary quantification of radical upgrades. We present
a sound and complete axiomatization for ARUL, operating over doxastic plau-
sibility models characterized by a reflexive, transitive, and locally connected
plausibility relation. Our completeness result relies on the proof for arbitrary
announcements presented in [5]. Interestingly, ARUL complements extant logical
frameworks by helping analyze classical epistemic paradoxes, such as the surprise
examination paradox, Fitch’s paradox, and Moore’s paradox.

As pointed out in [5], the argument therein inspires a new realm of logics
featuring information quantification, and our work should be seen as a first step
towards the understanding of quantified upgrades in general. In this regard,
many other dynamic belief revision policies exist that are weaker than radical
upgrades [9,32]. A classical example is the “conservative upgrade” [16,11] with
respect to φ, in which only the best φ-states increase in plausibility to reach the
top of the plausibility ordering, leaving the rest of the ordering unchanged. Pre-
liminary results obtained for ARUL could be extended to conservative upgrades.
Also interesting would be to deal with arbitrary upgrades over different classes
of models, including conversely well-founded orders as in [12,34]. Moreover, we
would like to characterize the exact expressivity of ARUL, for instance to de-
termine whether single-agent ARUL is already more expressive than its [⇑]-free
fragment or not. In fact, this would help adjudicate on the robustness of the
puzzles analyzed with ARUL, showing whether Fitch’s and Moore’s paradoxes
still hold in case of increased expressivity. Finally, this framework can be used
to investigate agentive notions tied to commission versus omission and related
notions (see, e.g. [13,35]). We leave those investigations for future work.
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