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Abstract
In the last decade, research and corporate have shown a dramatically growing interest in the
field of machine learning, mostly due to the performances of deep neural networks. These
increasingly complex architectures solved a wide range of problems. However, training these
sophisticated architectures requiremany computation on advanced hardware.With this paper,
we introduce a new approach based on the One-Step procedure that may fasten their training.
In this procedure, an initial guess estimator is computed on a subsample that is then improved
with only one step of theNewton gradient descent on thewhole dataset. To show the efficiency
of this framework, we consider regression and classification tasks using simulated and real
datasets. We consider classic architectures, namely multi-layer perceptrons and show, on our
examples, that the One-Step procedure is often halving the computation time to train the
neural networks while preserving the performances.

Keywords Multi-layer perceptron · One-step procedure · Binary classification · Regression

1 Introduction

As shown by Cardon et al. [5], neural networks took revenge since 2010. Snubbed during
the winter of artificial intelligence, the fast increase in computing capacity of the last decade
allowed to exploit their potential, leading to their supremacy when considering machine
learning. Indeed, they were successfully operated to solve a wide range of problems: image
recognition [26], machine translation and automatic speech recognition [1], etc. However,
these networks became deeper and deeper and increasingly complex. Architectures to deal
with sequential data are symptomatic of this growing complexity. Recurrent neural networks
led to convolutional networks and Long short-term memory architectures [11]. Furthermore,
for data requiring bidirectional contexts, transformers and their efficient attention mecha-
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nisms were widely adopted [25]. The Bert language model which is transformer-based is,
in its large version, made of 24 layers with 16 attention heads each [8]. With an embedding
size of 1028, it leads to 340 millions parameters to train. The training time of such huge
architectures has to be done on sophisticated hardware and still requires a large amount of
computation and time. That is why we focus on speeding up the training of neural networks.
It would help to generalize their use while reducing the high carbon footprint of such use [15,
23]. To do so, we bring from statistics to machine learning the One-Step procedure [16]. The
main contribution of this paper is extending and evaluating this procedure for simple neural
networks architecture, paving the way to its use to speed up the training of more complex
architectures.

One-Step procedure. This procedure was initially considered for the estimation of finite-
dimensional parameterswith an observation sample composedby independent and identically
distributed (i.i.d.) variables [16]. In such procedure, an initial guess estimator is proposed
which is fast to be computed but not asymptotically efficient. Then, a single step (hence
its name One-Step) of the gradient descent method is done on the log-likelihood function in
order to correct the initial estimation and reach asymptotic efficiency.With some recent devel-
opments, the One-Step procedure has been successfully generalized to more sophisticated
statistical experiments as diffusion processes [9, 13], ergodic Markov chains [14], inhomo-
geneous Poisson counting processes [6], fractional Gaussian and stable noises observed at
high frequency [2, 3].

In order tomake it work, the initial sequence of guess estimator is generally supposed to be√
n-consistent (see Sect. 2.2 for the definition) and the Fisher information matrix uniformly

continuous. But it had been recently shown [13, 14] that for a n
δ
2 -consistent initial sequence

of guess estimators (with 1
2 < δ ≤ 1) and a Lipschitz Fisher informationmatrix, the sequence

of One-Step estimators is still consistent, asymptotically normal and efficient. In this setting,
for a initial sequence which is neither asymptotically rate nor variance efficient, the new
sequence is asymptotically rate and variance efficient. This result allows to use the numerical
computation of the Maximum Likelihood estimation (MLE) on a subsample (of size nδ ,
1
2 < δ ≤ 1) as a fast initial sequence of guess estimators (see [4] for the practical application
in the i.i.d. setting).

In the usual One-Step procedure, a single step of the gradient descent is done on the log-
likelihood function. In this paper, we generalize this procedure to allow its use with neural
networks optimizing the least-square functional in the regression setting and the cross-entropy
in the binary classification setting. Our experiments show that this procedure allows to fasten
the training of multi-layer perceptron neural networks, which may thus be of use for a wide
panel of applications.

Outline. The notations and the One-Step estimation procedure we introduce for neural
networks are presented in Sect. 2. The experimental setup to evaluate the performance of
our procedure on multi-layer perceptrons neural networks is described Sect. 3. In this setup,
we consider both simulated and real dataset describing classification and regression tasks.
Results are detailed Sect. 5 and show that our extended One-Step procedure is at least halving
the training time while preserving the performances. Conclusions and perspectives of this
method for real applications are given in Sect. 6.
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2 Extending the One-Step Estimation Procedure

2.1 Notations

Let (yi )i=1,...,n be the response variable belonging toR for the regression setting or to {−1, 1}
for the binary classification setting. Let (xi )i=1,...,n be the dataset of explanatory variables
belonging to R

d .
Let us consider a loss functional �n(ϑ) for the model f (linear model, multi-layer percep-

trons neural networks, etc.) characterized by the finite-dimensional parameter ϑ ∈ � ⊂ R
d .

For instance, in the regression setting,

�n(ϑ) = 1

n

n∑

i=1

(yi − f (ϑ, xi ))
2 (1)

and, for the binary classification,

�n(ϑ) = 1

n

n∑

i=1

log
(
1 + e−yi f (ϑ,xi )

)
. (2)

Generally, the training of the model is done by simply minimizing the loss function

ϑ̂n = arg min
ϑ∈�

�n(ϑ). (3)

For multi-layer perceptrons neural networks, the back-propagation equations allows to

compute the gradient ∂
∂ϑ

�n and the Hessian ∂2

∂ϑ2 �n of the function �n defined in (1) and (2).
In the most simple form, without any regularization method, the gradient descent method
could be proposed tominimize the loss function and train themodel. In this paper, theNewton
method for optimization allows to avoid considering the setup of hyper-parameters such as
the learning rate, or the mini-batch size in the case of stochastic gradient descent and to
focus on the comparison in terms of performance and computation time. This method is not
so commonly used in machine learning due to the fact that calculating the inverse of the
Hessian can be expansive in computing resources. But the Newton type gradient descent, or
its approximations, are efficient to train physically-inspired neural networks [17]. Fastening
this method of optimization is yet of great interest in order to allow its use.

2.2 Our One-Step Estimation Procedure

Let us denote ϑ ∈ � ⊂ R
d the finite-dimensional parameter to be estimated. We propose

in this paper the following One-Step procedure to speed up the training of multi-layer per-
ceptrons neural networks: we first train a neural network on a subsample of the data to get a
guess estimator that we drastically improve with one step of Newton gradient descent on the
whole dataset.

Guess estimator. Firstly, we propose an initial guess estimator (ϑ̃n, n ≥ 1). Here the
initial sequence of guess estimator (ϑ̂n, n ≥ 1) is the estimator (3) on a subsample of size
�nδ�, 12 < δ < 1. In other words, the parameter δ is a key ingredient in the proposedOne-Step
method which characterizes the subsample size considered in the initial estimation.
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One-Step estimators. Then the sequence of One-Step estimators (ϑn, n ≥ 1) is defined
by

ϑn = ϑ̃n −
(

∂2

∂ϑ2 �n(ϑ̃n)

)−1

· ∂

∂ϑ
�n(ϑ̃n), n ≥ 1. (4)

Heuristically, in the simplest statistical experiments (i.i.d. or generalized linear models

with controlled covariates variables as in [18]), if the initial guess estimator ϑ̃n is n
δ
2 -

consistent (with 1
2 < δ ≤ 1), i.e. for any ε > 0 there exists a constant C such that

Pϑ

(
n

δ
2
∥∥ϑ̃n − ϑ

∥∥ > C
)

≤ ε,

and the Fisher information matrix (the mean of the opposite of the Hessian) is Lipschitz
regular, then the sequence of One-Step estimators defined by (4) is asymptotically equivalent
to ϑ̂n defined in (3). The proof in this setting is postponed inAppendixA. In otherwords, if the
initial guess is statistically close enough to the true parameter and the Hessian is sufficiently
regular, then a single step in the Newton gradient descent is sufficient to reach the asymptotic
efficiency in the calibration procedure.

In the following, we show on simulations and real datasets that the sequential experiment
setup described in Sect. 3whichmimicks theOne-Step procedure (4) can speed up the training
of the multi-layer perceptrons neural networks with the same asymptotic performance.

3 Experimental Setup

In this paper, we consider speeding up the training of neural networks architectures with a
sequential experiment setup which mimicks the One-Step estimation procedure. To evaluate
the efficiency of our approach, we consider regression and classification tasks with simulated
and real datasets. However, we do not compare the results of our systems to the state-of-the-art
nor dowe claimourmodels to be better. The aim is to demonstrate that theOne-Step procedure
that we extended has the potential to speed up the training while preserving performances.
We thus compare models trained using a classic Newton type gradient descent with models
trained with the One-Step procedure we described in Sect. 2.2, and calculate runtime in
addition to performance indicators.

Therefore, in this paper, we aim to demonstrate empirically that the adaptation of One-
Step’s to neural networks can speed up their training.

3.1 Infrastructure

All results in the paper are computed using Python 3.7.13, scikit-learn 1.0.2, keras 2.8.0 and
tensorflow 2.8.2 on Google Colab with a GPU accelerator. In addition, we use the Kormos
implementation of a Newton optimizer [12].

3.2 Simulations

Multiple datasets were simulated for regression and classification using randomly generated
but fixed random states. At the beginning of the experiment, a random state was fixed arbi-
trarily and used to generate 10 other random states for dataset simulations, making sure the
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method is robust but allowing other users to easily reproduce the results. Results that are
presented in Sect. 5 are averaged results of these 10 runs.

In adddition, we vary the sample size throughout the experiment to display the impact of
dataset size on model training speed. The values tested were 5.104 and 5.105.

3.2.1 Simulated Regression Dataset

The method used was scikit-learn’smake_regression (for more information on the method,
see [20]). Here are the data generation parameters:

• n_features: 50, total number of features
• n_informative: 95, total number of features that will be used to generate the target. This

is to better simulate real data where some features have no impact on the target
• noise: 0.5, standard deviation of the gaussian noise applied to the target. This is to make

predicting the target a little harder

3.2.2 Simulated Classification Dataset

The method used was scikit-learn’s make_classification (for more information on the
method, see [20]) with the generation parameters as follows:

• n_features: 50, total number of features
• n_redundant: 5, total number of features generated as random linear combinations of

the informative features. This is to help better simulate a real dataset with some level of
feature colinearity

• weights: [0.7], class weights. 0.7 corresponds to 30–70% split between positive and
negative values. The imbalance is to simuate a real dataset with some data imbalance.

3.3 Real Datasets

In addition to simulations, real datasets were used to validate our approach. Yolanda and
Credit Card Fraud Detection datasets were chosen in order to eliminate the influence of
different preprocessing techniques and having enough volume to necessitate the speedup of
the training. We described further these datasets in this section.

3.3.1 Regression Dataset: Yolanda

Yolanda is a dataset introduced inGuyon et al. [10] as part of an automl challenge. This dataset
is a subsample of the Million song dataset and the regression task consists in predicting the
year a song was released from 90 audio features extracted with Echo Nest API. Most of
the songs are western, commercial tracks ranging from 1922 to 2011. Yolanda is made of
460.000 songs divided in 400.000 as a training set, 30.000 as validation set and 30.000 as a
test set.

3.3.2 Classification Dataset: Credit Card Fraud Detection

TheCreditCardFraudDetection dataset contains transactionsmade by credit cards in septem-
ber 2013 by European cardholders. The dataset’s target is binary and imbalanced, with the
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positive class accounting for only 0.172% of all transactions. In addition, its variables are the
result of PCA transformation, making it perfect for our purpose. The dataset has been col-
lected and analyzed during a research collaboration of Worldline and the Machine Learning
Group of Université Libre de Bruxelles on big data mining and fraud detection [7].

4 Models and Training

4.1 Preprocessing

The variables of all datasets are somewhat similar in format, allowing for homogeneous
preprocessing across the board - barring some exceptions. All datasets have nomissing values
and have purely quantitative explicative variables. All variables are normalized in order to
have a mean of 0 and standard deviation of 1. Extra care is done during normalization to
avoid data leakage.

The one exception is the handling of the “Amount” variable in the Credit Card Fraud
Detection dataset, which is replaced by its logarithm in order to reduce its range and limit the
effect of outlying values. These steps are inspired from tensorflow’s tutorial on that dataset
[19].

After preprocessing, the datasets go through a train test split. If the task is classification,
the split is stratified according to the target variable. In all cases except Fraud Detection, 10%
of the data is dedicated to testing. For Fraud Detection, we use 30% of the data given the
small number of positive values.

4.2 Model Architectures

Models used change based on dataset difficulty, but they share the same overall simple design.
All models features two layers and a batch size equal to the size of the dataset (Newton
optimization). Such simple architectures are commonly used in physically-inspired neural
networks, for instance to solve differential equations [22, 24]. For such networks, because
of the use of the Hessian to guide the convergence with Newton, the training may actually
be better than with Adam. Furthermore, there is no such hyper-parameters as batch size and
learning rate that requires much computation to tune. In addition, we usedMichael BHynes’s
Python implementation of a Newton-cg optimizer for keras in the Kormos Python library
[12].

For all models, sigmoid is used as the activation function for all layers (except in the
prediction layer for regression models). The sigmoid’s structure has been chosen in order
to meet the usual regularity assumptions to make the One-Step procedure works, although
other activation functions (such as ReLU) may give better empirical results.

Finally, classification models were initialized in order to have them predict the percentage
of positive cases at initialization - effectively initializing the bias to log(pos/neg), pos
being the number of positive values, and neg being the number of negative values. This
helps convergence in imbalanced datasets, as described in the tensorflow imbalanced datasets
tutorial [19]. In addition, class weights with a factor of 2 are introduced duringmodel training
in order to make learning to predict the positive classes easier.
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4.3 The Experiment

After preprocessing and train/test splitting, we begin by training the One-Step model (see
One-Step experiments below). We save the training time and the performances for a specific
metric on the test set (see Sect. 4.4). For simulated datasets, we calculate the average training
time and performance (on the test set) after training separately on every dataset. For real
datasets, a 10-fold cross-validation is done in order to get the average training time.

Then we train the control model with a callback stopping training when it overtakes the
performance (on the test set) of the One-Step model trained on the same sample.

Finally we compare the training time, one trained using the One-Step method, and the
other being the control model with a classic Newton gradient descent. The comparison is
made in terms of average training time on the 10 simulations (or 10-fold cross-validation).
We also compare the performance of the two models in terms of performances on the test
set.

4.3.1 One-Step Experiments

The One-Step training experiment starts with a data split based on a δ value that allows us
to take a subset of the train set for training. Larger values of δ allowing for larger portions
of the dataset in the initial training. In addition, this subset would be stratified by the target
value in case of classification.

Therefore, we initially train the model on p epochs of the same subsample and then
perform one final epoch on the whole dataset (One-Step procedure). The parameter p may
vary, depending on the dataset.

4.3.2 Control Experiment

The control training experiment (written Ctrl in tables of results) goes through the training
of model on m epochs with a callback stopping it when it reaches the One-Step model’s
performance on the same sample in terms of loss function on the test set. The m epochs
are never effectively reached due to the callback - model training stops when the evaluation
metric is overtaken.

The callback depends on the score attained by the One-Step experiment relative to the
dataset sample in question. For simulated datasets, this means that we compare the control
score at iteration level with the score attained by the One-Step procedure on the respective
dataset simulation in question. For real datasets, this means comparing the score attained at
the respective cross-validation fold.

4.4 Metrics

For regression tasks, we use the Mean Average Error (MAE) metric to evaluate our models.
For classification tasks, given the data imbalance, we use the AreaUnder the Precision-Recall
Curve (AUPRC).
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5 Results

The One-Step procedure outperforms the classical approach in terms of computation time
with the same asymptotic performances in terms of precision. However, this is only true for
very large datasets, as when dataset size is small, differences in execution time are minimal.
Detailed results are described in the section below.

5.1 Regression on Simulation Data

The specific parameters of this experiment are as follows:

• p = 5, number of epochs trained on a δ dependant subsample pre-One-Step;
• δ = 0.9, allows us to compute what share of the dataset to use in the pre-One-Step

iterations;
• Test set size: 10%;
• Model Architecture: Two fully-connected sigmoid layers (256 → 128) followed by one

prediction neuron.

In this first experiment, we vary the sample size and observe the average training time with
the control approach, and with the extended One-Step that we introduced. We can observe
Table 1 that for larger datasets, the One-Step method is faster then the control on (Ctrl) for a
similar performance: roughly 2, 3 times faster for 500.000 data.

In our second experiment, we aim to understand the impact of the hyper-parameter δ of our
One-Step procedure introduced Sect. 2.2. This parameter controls the size of the subsample
used to compute the guess estimator, having thus an influence on the quality of this guess
estimator. In particular, we monitor the average training time on this parameter on the dataset
made of 500.000 observations. As one can see on Fig. 1, the lower the δ, the lower the
training time. Furthermore, with this sample size, even with low δ, the guess estimators are
good enough: one step of Newton gradient (One-Step) on the whole data allows to converge
to the same results as the control.

Training time remains somewhat similar for models trained using the control procedure,
i.e. the classic Newton gradient descent. Their variation is due to the variations of model
performance of their respective One-Step training iterations, since the iteration score is used
in the callback.

5.2 Classification on Simulated Data

The specific parameters of this experiment are as follows:

• p = 5, number of epochs trained on a δ dependant subsample pre-One-Step;
• δ = 0.85, allows us to compute what share of the dataset to use in the pre-One-Step

iterations;

Table 1 Results of the One-Step
and control approaches (Ctrl) on
simulated data for regression

n_samples 500.000 50.000

Method One-Step Ctrl One-Step Ctrl

Avg training time (s) 12.29 27.86 4.63 3.47

Avg MAE 220.4 220.4 243.4 241.2
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Fig. 1 Influence of the δ

parameter regarding the average
time to train the systems (in
seconds) on a regression dataset
made of 500.000 observations.
Mean time for Ctrl is 26.785 s for
comparison
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Table 2 Results of the One-Step
and control approaches on
simulated data for classification

n_samples 500.000 50.000
Method One-Step Ctrl One-Step Ctrl

Avg training time (s) 4.35 6.32 3.14 3.27

Avg AUPRC 0.74 0.74 0.81 0.81

• Test set size: 10%;
• Model Architecture: Three fully-connected sigmoid layers (256 → 128 → 1);
• Abias initializer element dependingon target imbalance as per theTensorflow imbalanced

classification tutorial [19].

Results of Table 2 show a similar trend to the regression experiment, in the sense that
average training times are significantly lower for the One-Step experiment than in the control
(Ctrl) in the larger dataset while preserving performances of classification given by the
AUPRC. These resultats are thus very encourageing, which is why we aim to confirm these
trends on real datasets in the rest of this section.

5.3 Regression Dataset: Yolanda

The specific parameters of this experiment are as follows:

• p = 8, number of epochs trained on a δ dependant subsample pre-One-Step;
• δ = 0.9, allows us to compute what share of the dataset to use in the pre-One-Step

iterations;
• Test set size: 10%;
• Model Architecture: Two fully-connected sigmoid layers (64 → 16) and one prediction

neuron;
• Number of folds: 10, number of cross-validation folds.

The gap in training time in this experiment is lower compared to the regression experiments
on simulated data as one can see in Table 3, especially regarding the huge size of Yolanda

Table 3 Results on the Yolanda
regression dataset

Method One-Step Ctrl

Avg training time (s) 4.30 6.07

Avg MAE 8.11 8.00
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Table 4 Results on the Credit
card fraud detection classification
dataset

Method One-Step Ctrl

Avg training time (s) 5.07 27.00

Avg AUPRC 0.72 0.74

(400.000 observations in the train set). This is due to the fact that the model considered is
significantly simpler with a lower number of neurons involved. Still, this displays a pattern
that the size of the model has an influence on the time gained through the One-Step procedure
in absolute terms.

5.4 Classification Dataset: Credit Card Fraud Detection

• p = 4, number of epochs trained on a δ dependant subsample pre-One-Step;
• δ = 0.9, allows us to compute what share of the dataset to use in the pre-One-Step

iterations;
• Test set size: 30%;
• Model Architecture: Three fully-connected sigmoid layers (512 → 256 → 1);
• Number of folds: 10, number of cross-validation folds;
• Abias initializer element dependingon target imbalance as per theTensorflow imbalanced

classification tutorial [19].

As one can see Table 4, the gap in this experiment is significant, One-Step is roughly
five times faster to train than with the control procedure (Ctrl). This is due both to the more
complex model structure with more neurons involved, and to the dataset size (over 280.000
samples).

6 Conclusions and Perspectives

In this paper, we introduce a new extended One-Step procedure to deal with the training of
neural networks. To prove the relevance of this approach, we consider classic multi-layer per-
ceptrons that are trained using Newton optimization, which often suffers from its computing
time. On simulated and real dataset, we have demonstrated that the One-Step methodology
allows to speed up the training time while keeping the same asymptotic performance in terms
of precision. Our One-Step based approach seems to be particularly efficient to deal with
large dataset, speed up is also more impressive on bigger architectures as shown with the
credit card fraud detection example.

It is worth mentioning that other experiments without early stopping were also conducted.
They show that, on the aforementioned datasets, the performances of the One-Step and the
control methods are similar.

To further demonstrate the relevance of this One-Step procedure, we aim at extending its
application to a wider range of problems, and thus to bigger and more complex architectures.
Other contributions could be made considering other optimizers for the initial guess. It
would be for example interesting to experiment the relevance of such a One-Step approach
when stochastic gradient descent is used. Furthermore, it would be interesting to develop a
framework to efficiently setup the hyper-parameters of the One-Step procedure, i.e. δ, the size
of the subsample, and the number of Newton gradient descents to run on the subsample to get
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the most optimal speed up while preserving the performances. Eventually, we supposed here
some regularity of the functionals using sigmoids helping us to understand the machinery.
But simulations with ReLU activations functions are also encouraging and needs to be further
studied theoretically.

7 Appendix A

7.1 Proof

The mean-value theorem gives, for the initial sequence of guess estimators (ϑ̃n, n ≥ 1),

∂

∂ϑ
�n

(
ϑ̃n

) = ∂

∂ϑ
�n

(
ϑ̂n

) +
∫ 1

0

∂2

∂ϑ2 �n
(
ϑ̂n + v

(
ϑ̃n − ϑ̂n

))
dv · (

ϑ̃n − ϑ̂n
)

=
∫ 1

0

∂2

∂ϑ2 �n
(
ϑ̂n + v

(
ϑ̃n − ϑ̂n

))
dv · (

ϑ̃n − ϑ̂n
)

(5)

since ∂
∂ϑ

�n
(
ϑ̂n

) = 0 by definition. From (4), we have

(
ϑn − ϑ̂n

) = (
ϑ̃n − ϑ̂n

) −
(

∂2

∂ϑ2 �n(ϑ̃n)

)−1

· ∂

∂ϑ
�n(ϑ̃n)

and

(
ϑn − ϑ̂n

) =
(
Ip −

(
∂2

∂ϑ2 �n(ϑ̃n)

)−1 ∫ 1

0

∂2

∂ϑ2 �n
(
ϑ̂n + v

(
ϑ̃n − ϑ̂n

))
dv

)
(
ϑ̃n − ϑ̂n

)

where Ip is the p × p identity matrix.
In the regular setting, if the sequence of initial guess estimators is

√
n-consistent and

the Hessian possess some kind of uniform continuity, we get the asymptotic equivalence by
showing that

√
n

(
ϑn − ϑ̂n

) =
(
Ip −

(
∂2

∂ϑ2 �n(ϑ̃n)

)−1 ∫ 1

0

∂2

∂ϑ2 �n
(
ϑ̂n + v

(
ϑ̃n − ϑ̂n

))
dv

)

︸ ︷︷ ︸
tending to 0

· √
n

(
ϑ̃n − ϑ̂n

)
︸ ︷︷ ︸

bounded in probability

−→ 0 in probability

In the more recent result, the sequence of initial guess estimator is only n
δ
2 -consistent and

we need more regularity on the loss function to make it work. Heuristically,

√
n

(
ϑn − ϑ̂n

) = n
1
2 −δ

︸ ︷︷ ︸
tending to 0 if 1

2 < δ ≤ 1

(
∂2

∂ϑ2 �n(ϑ̃n)

)−1

︸ ︷︷ ︸
bounded with the LLN

· n
δ
2

(
ϑ̃n − ϑ̂n

)
︸ ︷︷ ︸

bounded in probability

· n δ
2

([
∂2

∂ϑ2 �n(ϑ̃n) − ∂2

∂ϑ2 �n(ϑ̂n)

]
−

∫ 1

0

[
∂2

∂ϑ2 �n
(
ϑ̂n + v(ϑ̃n − ϑ̂n)

) − ∂2

∂ϑ2 �n(ϑ̂n)

]
dv

)

︸ ︷︷ ︸
bounded in probability, see below

.

ALipschitz condition on theHessian function (obtained for instancewhen � has three con-
tinuous derivatives (for smooth multi-layer perpcetrons neural networks)), gives for instance,
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that

∥∥∥∥
∂2

∂ϑ2 �n
(
ϑ̃n

) − ∂2

∂ϑ2 �n(ϑ̂n)

∥∥∥∥ ≤ L‖ϑ̃n − ϑ̂n‖

and the boundedness of the last term in the r.h.s..
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