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Abstract—This paper presents a novel CFAR compressed de-
tection approach for human detection using IR-UWB radar. The
associated Xampling scheme operates way below the Nyquist limit
and is designed to minimize the sensing matrix coherence, without
increasing the implementation complexity. The proposed signal
processing architecture aims to detect both moving and stationary
people in the framework of heavy-cluttered use cases, such as
smart factory indoor environments. In order to address this
challenge, we rely on standard radar signal processing, including
MTI filtering, noise whitening, and Doppler focusing, but also
introduce two new algorithms for joint sparse reconstruction
and CFAR detection, in fast-time and range-Doppler domains,
respectively. We propose a specific detection statistic, which is
proven to be appropriate for both algorithms, its distribution
being identified and then validated by standard goodness-of-fit
tests. Moreover, it enables reducing the CFAR scheme complexity,
since the associated detection threshold is invariant to the noise
power, thus making unnecessary its estimation. The proposed
approach is finally validated using both simulated and experi-
mentally measured data in an Industry 4.0 indoor environment,
for several canonical scenarios. The effectiveness of our CFAR
compressed detection algorithms for human detection is thus fully
demonstrated, and their performance is assessed and compared
to that obtained by signal processing at the Nyquist sampling
rate.

Index Terms—UWB, radar detection, compressed sensing, sub-
Nyquist sampling, smart factory.

I. INTRODUCTION

Radar systems have played an essential role in various
applications, ranging from military and automotive to medical
imaging and security. Among these, Impulse Radio Ultra-
Wideband (IR-UWB) radar systems have emerged as a signif-
icant technological advancement, offering unparalleled capa-
bilities in remote sensing and target detection, especially for
short-range and indoor applications [1] [2] [3]. UWB radar
systems utilize ultra-short pulses of radio waves transmitted
over a broad frequency range, typically spanning several GHz
[4]. This unique feature enables UWB radar to provide high-
resolution detection and measurement capabilities, making
it invaluable in applications where precision is paramount.
Moreover, UWB radar can accurately measure not only the
distance but also the velocity and other characteristics of
objects, making it versatile for various purposes. The multi-
functionality of IR-UWB radar is reflected in its widespread

adoption across various domains. In military applications,
these systems are used for target detection, tracking, and imag-
ing, providing a strategic advantage in complex operational
scenarios [5] [6]. In the automotive industry, IR-UWB radar
is integrated to advanced driver assistance systems (ADAS)
[7] and autonomous vehicles, enhancing safety and enabling
features like collision avoidance and parking assistance [8].
IR-UWB radar is utilized in medical imaging for its abil-
ity to penetrate materials like clothing and walls, offering
non-invasive and high-resolution imaging capabilities [9][10].
Additionally, IR-UWB radar finds applications in industrial
settings for level sensing, localization, quality control, and
security systems for intrusion detection and surveillance [11].

To ensure the coexistence of IR-UWB systems with other
wireless communication technologies, public regulatory bodies
have assigned strict constraints for the power spectral density
(PSD) of the transmitted UWB signals. It is mainly limited to
a maximum level of -41.3 dBm/MHz [12] and constrained by
a spectral mask, established by each regulation authority, such
as the FCC (Federal Communications Commission) in USA or
the ECC (Electronics Communications Committee) in Europe.

While IR-UWB radar systems offer exceptional capabilities,
they also come with certain challenges. One of the most
important drawbacks is the requirement for a high sam-
pling rate, which leads to the need for complex analog-to-
digital converters (ADCs) and high power consumption. This
poses significant limitations, especially in battery-powered
or resource-constrained applications. An effective solution to
address the bottleneck associated with high sampling rates
and power consumption is represented by compressed sensing
(CS) techniques [13]. They define a groundbreaking signal
processing paradigm, which exploits the signal intrinsic spar-
sity or compressibility in some domains. In the context of IR-
UWB radar, CS techniques are able to significantly reduce
the number of received signal samples required to capture
the essential information, compared to traditional sampling
theory. Known as sub-Nyquist sampling or Xampling [14],
they lead to more efficient ADCs and lower power con-
sumption. Conversely, CS techniques are also able to recover
the information conveyed by the received signal from highly
undersampled measurements obtained by Xampling, via sparse
reconstruction (SR) algorithms [15].
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Fig. 1: Indoor environment sensed by an IR-UWB radar

In order to illustrate the suitability of CS techniques for
our application, let’s consider an indoor environment (Fig. 1),
which is seen by the IR-UWB radar as a set of L resolvable
scattering points, at the range resolution δR = c/(2B),
where c and B stand for the speed of electromagnetic waves
and the effective band of the Trec-periodically transmitted
UWB waveform p(t) respectively. During the qth pulse rep-
etition interval (PRI), the scattering points located at the
slant ranges {R(q)

l }l=1,...,L and having the radial velocities
{υ(q)

l }l=1,...,L, are characterized by the associated reflectivi-
ties {σ(q)

l }l=1,...,L, delays {τ (q)l } = (2R
(q)
l )/c}l=1,...,L and

Doppler shifts {f (q)
l } = (2ν

(q)
l )/λc}l=1,...,L, with λc = c/νc

and νc the central frequency of the UWB pulse spectrum.
For the sake of simplicity, note that the upper index (q) is
dropped when the signal processing is limited to one PRI or
for graphical representations.

The noiseless signal received by the IR-UWB radar during
the q-th PRI can be written as:

rq(t) =

L∑
l=1

σ
(q)
l p(t− τ

(q)
l − qTrec)e

j2πf
(q)
l qTrec ,

t ∈ [qTrec, qTrec + Tr], q = 0, . . . , Nrec − 1

(1)

where Nrec is the number of PRIs and Tr is the fast-time
duration of the signal acquisition. Note that Tr is different
from the slow-time sampling period Trec, also known as FPS
(frames per second) in the case of the Novelda UWB radar
introduced below.

As it can be readily seen, since the transmitted UWB wave-
form p(t) is known to the receiver, rq(t) is fully characterized
by a finite number of parameters (3L) and can therefore be
considered as a Finite Rate of Innovation (FRI) signal [16].
Consequently, it admits a minimum sampling rate equal to the
number of degrees of freedom per time unit, which is much
lower than the Nyquist frequency in the framework of our
application. Hence, the CS approach appears to be well suited
to IR-UWB radar data acquisition and sparse reconstruction,
for human detection in an indoor environment.

Several Xampling schemes have already been proposed [17]
[18] for the sub-Nyquist sampling of the IR-UWB signal
given in (1). One of these techniques, known as MultiChannel
Modulating Waveforms (MCMW) [19], has been chosen for
our application because it is proven to be efficient and stable
for the compressed sampling of a series of arbitrary pulses.
Based on modulation of the received signal with a set of
specific random waveforms, followed by an integrator on

each parallel signal processing path, this method provides a
reduced set of the received signal’s Fourier coefficients (FC)
{c(r)km

}km∈kM
with kM = {km}m=1,...,M the vector of their

positions.
Let’s denote by y = [y1 y2 . . . yM ]T , where ym =

c
(r)
km

, the measured vector at the output of the Xampling
scheme, with L < M ≪ N and N = ⌊Tr.FNyq⌋ the
number of signal samples during a fast-time acquisition du-
ration, at the Nyquist frequency. Let’s also denote by x the
N × 1 sparse vector, which has only L non-zero elements
{xil = σle

j2πflqTrec}l=1,...,L, with il = ⌊τl.FNyq⌋ . The
measured and sparse vectors are related by the following
matrix equation:

y = Ax (2)

where A stands for the M × N sensing matrix. A detailed
description of matrix A is given in Appendix C.

While the solution of (2) can be found using sparse recon-
struction algorithms, its estimation quality strongly depends on
the sensing matrix characteristics, which can be equivalently
assessed in terms of its spark, Null Space Property (NSP),
Restricted Isometry Property (RIP) or coherence [20] [21]
[22]. Hence, to improve the sparse reconstruction quality, in
this paper we aim at minimizing the sensing matrix coherence
(SMC) denoted µA, which is given by the highest level of
correlation among its columns {ak}k=1,...,N :

µA = max
k ̸=l

(
|aHk al|
∥ak∥.∥al∥

)
(3)

In a previous work [23], we have addressed the coherence
minimization of the sensing matrix with respect to the position
vector kM of the reduced set of the received signal’s FC, in
the framework of channel estimation for IR-UWB indoor com-
munications. In another previous work [11], we investigated
human detection for collision avoidance using IR-UWB radar
in indoor environments. However, the signal acquisition and
the proposed subsequent signal processing steps have been
performed at the Nyquist sampling frequency. Relying on [23]
and [11], we demonstrate in this paper that human detection
in a smart factory-like environment can be formulated as a CS
problem and we propose an effective solution to solve it. Our
main contributions are summarized below:

• We introduce two Orthogonal Matching Pursuit (OMP)-
based algorithms for joint sparse reconstruction and
CFAR detection, designed to process data recorded during
a single and multiple PRIs respectively.

• We propose a correlation-based statistic for CFAR detec-
tion, which reduces the CD complexity by making the
detection threshold invariant to the noise power.

• We analyze the performance obtained by the CD ap-
proach using simulated data. This data is generated based
on the CM7 IEEE 802.15.4a channel model utilizing
an IR-UWB waveform optimized for maximizing its
normalized effective signal power (NESP).

• We demonstrate the effectiveness of the CD approach
using measured data, acquired by an IR-UWB radar, in
a realistic smart factory-like environment.
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• We identify the best trade-off for the kM vector selection
for both IR-UWB waveforms used in the two scenarios
above, in terms of sensing matrix coherence minimization
and compressed sampling scheme complexity.

The remainder of the paper is organized as follows. Sec-
tion II is dedicated to the IR-UWB system model and the
formulation of human detection problems in smart factory-
like environments, while the proposed approach for signal
sparse reconstruction and compressed detection is introduced
in Section III. This approach is then validated in Sections IV
and V using simulated and measured data respectively. Finally,
some conclusions are drawn in Section VI, which also outlines
planned future work.

The general notations used in this paper are as follows.
Matrices and vectors are denoted by symbols in boldface,
including uppercase for matrices and lowercase for vectors.
The ith column/row of a matrix A is denoted by A(:, i)
and A(i, :) respectively. (.)T , (.)H and (.)† represent matrix
transpose, Hermitian operator, and Moore-Penrose pseudo-
inverse respectively. IM denotes the M ×M identity matrix.
∥.∥k and ∥.∥F stand for the lk-norm and the Frobenius norm,
respectively. Some other specific notations are defined in the
next sections.

II. SYSTEM MODEL

While IR-UWB signals have outstanding capabilities in
terms of accurate localization, as mentioned in the previous
section, their use for human detection in indoor environments
remains very challenging, mainly because of the large number
of resolvable backscattered signals. Most of these signals are
reflections from the scattering points of the indoor environ-
ment itself, also known as radar clutter, which prevents the
detection of the signals of interest. For smart factory-like
indoor environments, the radar clutter can be simulated in a
realistic manner using IEEE 802.15.4a channel models [24],
which take into account most of the physical large/small-scale
characteristics associated with the UWB signal propagation in
an industrial indoor environment (delay dispersion, amplitude
decay, frequency dependence of the reflectivity . . . ). More
precisely, in this paper, we adopt the CM7 model, associated to
line-of-sight (LOS) roomy enclosures like factory halls, filled
with a large number of metallic reflectors, robots, plants, etc.

A realization of the IEEE 802.15.4a CM7 environment
impulse response is shown in Fig. 2. Note that the radar
reception is enabled only for ranges larger than 0.8 m, to
avoid direct reception of the transmitted pulse. As it can
be readily noticed, this impulse response corresponds to a
heavily cluttered environment, which is likely to make human
detection very challenging. Moreover, with more than 450
backscattered signals having significant amplitudes (90 %
of the cumulated energy), it results in an innovation rate
of 3L/Tr (about 20 × 109), which roughly corresponds to
a sampling frequency equivalent to the Nyquist limit, thus
making compressed sensing irrelevant and useless in this
context.

Nevertheless, it can also be noticed that for such an indoor
environment, most scattering points are fixed, resulting in null
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Fig. 2: Impulse response of a LOS industrial indoor environ-
ment simulated according to IEEE 802.15.4a CM7 model

Doppler shifts associated to the clutter signals, excepting those
backscattered by mobile robots or plant components. On the
other hand, the signals of interest for human detection can be
characterized by a specific Doppler signature, resulting from
people’s motion and breathing. Consequently, it is possible to
remove most radar clutter by using a moving target indicator
(MTI) filter [25], thus making human detection tractable within
the compressed sensing framework. Note that the MTI filtering
can be performed either in the RF domain, using delay lines
complying with the signal frequency characteristics, or after
the analog-to-digital conversion, using digital filters. A simple
yet effective 1st order MTI filter consists in subtracting the
signals corresponding to each couple of consecutive PRI:

r(MTI)
q (t) = rq(t)− rq−1(t− Trec)

=

L∑
l=1

σ
(q)
l p(t− τ

(q)
l − qTrec)e

j2πf
(q)
l qTrec

−
L∑

l=1

σ
(q−1)
l p(t− τ

(q−1)
l − qTrec)e

j2πf
(q−1)
l (q−1)Trec

⇒ r(MTI)
q (t) =

L∑
l=1

(
σ
(q)
l p(t− τ

(q)
l − qTrec)e

j2πf
(q)
l qTrec

−σ(q−1)
l p(t− τ

(q−1)
l − qTrec)e

j2πf
(q−1)
l (q−1)Trec

)
(4)

Thus, according to (4) the signals backscattered by fixed
objects from the indoor environment are completely canceled
in the ideal case because the corresponding delays and reflec-
tivities do not vary from a PRI to another, while the associated
Doppler shifts are null.

When the signal is sampled at the Nyquist frequency,
the system block diagram is shown in Fig. 3. While the
processing flow includes some well-known stages, such as
MTI, noise whitening, matched filtering (MF), and Doppler
focusing (DF), there are also some significant differences
compared to the standard radar processing, which justify this
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particular system structure. The most important is that in a
standard narrowband radar system, the targets remain in the
same range resolution cells during the coherent integration
time Tcoh associated with DF, when typical values of the
target velocity, pulse repetition frequency (PRF), and range
resolution are considered. However, this is not the case in our
application, especially due to the signal’s huge bandwidth,
which results in a very fine range resolution, typically of
about 10 cm. Obviously, the CFAR detection is also still
carried out after DF to identify standing people using the
Doppler frequency associated to their breathing (∼ 0.4 Hz).
Moreover, the Doppler patterns corresponding to walking
people can be further analyzed in order to discriminate them
from other artificial moving targets. Finally, position filtering
and people tracking can be also implemented when data from
several UWB radars are available. However, note that only
human detection is addressed in the following, the other tasks,
represented in dashed line in Fig. 3, being outside the scope
of this paper.

In the case of compressed detection, the proposed system
block diagram is shown in Fig. 4. MCMW is first applied to
obtain a reduced set of the received signal’s FC. The sampling
frequency associated to this Xampling scheme is the same as
the signal PRF and is much lower than the Nyquist sampling
frequency used by the ADC in Fig. 3. The resulting FC
are then processed by the MTI filter implemented in digital
domain, as already stated in the previous section.

The sparse reconstruction of the signals of interest can be
performed with the OMP technique [26][27][28], which is
a widely used greedy algorithm. Indeed, OMP provides the
delays and the amplitudes corresponding to the echoes from
the targets of interest, which is equivalent to estimating the
signals of interest when the transmitted IR-UWB waveform is
known. Nevertheless, in its original form, OMP algorithm does
not enable the control of the false alarm rate. Two versions
of this algorithm, which undertake the CFAR detection task
in fast-time (single snapshot) and after Doppler focusing
(multiple snapshots), are then proposed in the next section.
The two proposed algorithms are denoted by CFAR-UWB-
OMP and CFAR-UWB-MSOMP, respectively in Fig. 4.

III. SIGNAL SPARSE RECONSTRUCTION AND COMPRESSED
DETECTION

The sparse solution of the equation (2), provided by a greedy
reconstruction algorithm, is obtained by solving the following
constrained optimization problem:

x̂ = argmin
x
∥y −Ax∥22, subject to ∥x∥0 ≤ L (5)

It can be demonstrated [29] that the OMP algorithm provides a
unique solution corresponding to the global optimum provided
that: ®

L < (1 + 1/µA) /2

M ≥ 2L ln(N)
(6)

Actually, these conditions are very restrictive in the framework
of CFAR detection [30]. Indeed, OMP algorithm still provides
good performance in terms of detection rate, even if they

are not strictly met, provided that the values of L and M
are not too far from the theoretical limits above. Thus, a
particular attention should be especially paid to the sensing
matrix coherence µA, since the lower its value, the better the
OMP’s reconstruction performance.

The design of low coherence sensing matrices has already
been extensively addressed and important theoretical results
have been obtained. Thus, when no prior constraints are
defined for the sensing matrix, it was demonstrated that
random Gaussian matrices are able to satisfy RIP with high
probability and to provide the lowest coherence levels for the
sensing matrix [31] [32]. However, they are not suitable for
our application, since the structure of the sensing matrix is
constrained by the selected MCMW Xampling scheme and is
expressed as follows [33]:

A = ΦΨ (7)

with Φ the diagonal M ×M matrix of the transmitted wave-
form’s FC {c(p)km

}km∈kM
, and Ψ the M×NDFT reduced DFT

matrix {e−j2πkmn/NDFT }km∈kM ,n=0,...,NDFT−1 as explained
in Appendix C.

We demonstrated in [23] that the coherence of this partic-
ular sensing matrix is given by the equation below, where
βkm

= |c(p)km
|2 and ΣkM

(n) = {cos( 2πn(kl−km)
N )}, with

km ∈ kM , kl ∈ kM :

µA(kM ) = max
n=1,...,N−1

Ã
βT
kM

ΣkM
(n)βkM

βT
kM

1MβkM

(8)

According to this equation, the sensing matrix coherence
depends only on the selected set of transmitted waveform’s
FC
¶
c
(p)
km

©
km∈kM

. Selecting consecutive coefficients makes
the MCMW scheme design simpler, but results in high values
of µA. On the other hand, a fully random selection of the FC
is likely to provide the lowest coherence values, but is very
challenging for the MCMW scheme implementation, since it
requires very selective filters. A good trade-off between the
MCMW hardware complexity and the sparse reconstruction
accuracy can be found by combining these two opposite ap-
proaches for selecting the transmitted waveform’s FC. Hence,
in this paper, we adopt the same strategy as in [14], which
consists of selecting 4 groups of 4 consecutive FC, whose
positions inside the UWB signal bandwidth are chosen to
minimize the sensing matrix coherence.

The FC corresponding to the same positions y =¶
c
(r)
km

©
km∈kM

are obtained at the output of the Xampling
scheme, using 4 MCMW 4-channels schemes. If w =¶
c
(w)
km

©
km∈kM

denotes the FC vector associated with the
clutter and noise, the input vector for the CS processing flow
can be expressed as:

y = Ax+w (9)

It is worth noting that no sparse reconstruction method can
be used to solve (9), simply because the solution vector x is not
sparse at this stage. Indeed, as shown in the previous section,
the clutter associated with the CM7 indoor environment is very
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Fig. 3: Block diagram of Nyquist signal processing

Fig. 4: Block diagram for people compressed detection in an indoor environment

rich in multipaths, which results in a high number of non-
zero components of the solution vector x, thus making their
accurate estimation using sparse reconstruction algorithms like
OMP intractable. The MTI filtering is an effective way to solve
this problem, as already discussed in the previous section. In
the framework of our application, we have used a 1st order
digital filter with the transfer function: HMTI(z) = 1− z−1.

However, although this processing step can remove most
of the clutter, it also introduces a strong attenuation in the
low-frequency domain. The consequence is that the Doppler
shifts associated with human breathing, typically below 1 Hz,
become more difficult to detect. A whitening filter (WHT)
can then be included to compensate for the effect of MTI
filtering in the low-frequency domain and improve the de-
tection of stationary people after the Doppler focusing stage.
The WHT filter used in our application is a standard 1st

order autoregressive (AR) filter having the transfer function:
HWHT (z) = 1

1−az−1 , with a = 0.99, which is considered
the maximum value of this coefficient that still meets the
filter’s stability requirement in practical implementations. It
can be readily checked that the WHT filter enables an overall
attenuation of the signal backscattered by a breathing person
of only 2.1 dB, compared with 44 dB at the MTI filter output.

A. Single snapshot algorithm

Let us consider now the matrix Y obtained by concatenating
the column vectors {yq}q=1,...,Nrec

measured during Nrec

successive PRI and denote by X and W the N × Nrec ma-
trices whose columns are the corresponding solution vectors

{xq}q=1,...,Nrec
and clutter and noise vectors {wq}q=1,...,Nrec

.
The equation (9) takes the following matrix form in this case:

Y = AX+W (10)

Finally, if we denote by CMTI and CWHT the convolution
matrices corresponding to the MTI and whitening filters,
respectively, (10) can be rewritten in the form:

Ỹ = AX̃+ W̃ (11)

where Ỹ = YCMTICWHT , X̃ = XCMTICWHT , and W̃ =
WCMTICWHT .

Each column of the X̃ matrix is now sparse and can be
recovered using the OMP algorithm, for subsequent CFAR
detection. However, as already stated in the previous section,
in its original form, OMP is not suitable for dealing with
this problem. Hence, we propose a modified version, called
CFAR-UWB-OMP taking into account the UWB waveform
characteristics and performing an effective CFAR detection.
Indeed, a standard cell-averaging CFAR (CA-CFAR) tech-
nique [34] relies on a noise amplitude-based detection statistic.
The associated detection threshold must be constantly updated,
since it depends on the noise mean power, which is likely
to vary over time. Instead, we propose to use the maximum
normalized correlation coefficient between the residual and the
columns of the sensing matrix, denoted by c

(corr)
max , as detection

statistic. In this case, the detection threshold is invariant to the
noise power and depends only on the UWB waveform shape
and sensing matrix coherence, as will be shown in Section IV.

Algorithm 1 below summarizes the processing flow associ-
ated with the joint sparse reconstruction and CFAR detection
in fast-time (one snapshot). It operates on each column of the
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data matrix Ỹ at the output of the whitening filter, which is
denoted by ỹ and corresponds to the current PRI.

Algorithm 1 CFAR-UWB-OMP

1: Input: The M × 1 data vector ỹ at the output of
the whitening filter, the M × N sensing matrix A, the
detection threshold Thdet and the maximum number of
expected targets during a PRI Ntg .

2: Initialization:
3: x̃0 = 0N×1: the reconstructed sparse vector (solution

vector).
4: r0 = ỹ: the residual vector.
5: θ0 = [∥r0∥]: the vector of residual vector norms.
6: i0 = [ ]: the vector of non-zero component positions of

the solution vector.
7: ccorr0 = [ ]: the vector of correlation coefficients cor-

responding to the non-zero components of the solution
vector.

8:
¯
x̃0 = [ ]: the vector containing only the non-zero compo-
nents of the solution vector.

9: n = 0 and fstop = 0: index and stop flag used inside the
while loop.

10: while n ≤ Ntg and fstop = 0 do
11: Find the column of the matrix A the most correlated

with the residual rn: i(n)max = argmax i/∈in
i=1,...,N

|rHn ai|
∥rn∥.∥ai∥

12: if c(corr)max =
|rHn a

i
(n)
max

|

∥rn∥∥a
i
(n)
max

∥ ≤ Thdet then
13: fstop = 1
14: else
15: n← n+ 1 and :
16: Update in = [in−1 i

(n−1)
max ]

17: And c
(corr)
n = [c

(corr)
n−1 c

(corr)
max ] ,

¯
An = A(:, in)

18:
¯
x̃n =

¯
A†

nỹ, rn = ỹ −
¯
AH

n ¯
x̃n

19: Update θn = [θn−1 ∥rn∥]
20: end if
21: end while
22: Set the N × 1 solution vector: x̃ = 0N×1, x̃(in) =

¯
x̃n

23: Output: The sparse vector solution x̃, the vector of non-
zero component positions of the solution vector in, the
vector of correlation coefficients corresponding to the non-
zero components of the solution vector c

(corr)
n and the

vector of residual norms θn.

Compared to the standard OMP, the proposed algorithm
introduces a detection threshold Thdet, which is defined to
ensure the required false alarm probability (Pfa) level. Thus,
the iterations are stopped and new non-zero components
for the solution vector are no longer extracted as soon as
c
(corr)
max < Thdet.

The detection threshold is calculated using a M × Nnoise

sample matrix W̃sample of residual clutter plus noise at the
output of the whitening filter. Thus, the same algorithm is first
used with Thdet = 0 to extract the Ntg ×Nnoise correlation
coefficients c

(corr)
max from this data (Ntg correlation coefficients

for each PRI).
The statistical analysis we have carried out in order to

identify the distribution providing the best fit for these cor-

relation coefficients revealed that they are well matched by
the generalized extreme value (GEV) law [35], as shown in
Fig. 5(a). Our finding is not surprising since, according to
the extreme value theorem, the GEV distribution is the only
possible limit distribution of properly normalized maxima of
a sequence of independent and identically distributed random
variables [36]. This hypothesis has been further validated by
simulation, by comparing the required and estimated false
alarm rates, and using both the chi-square and Kolmogorov-
Smirnov Goodness-of-Fit (GoF) tests, with a significance level
α = 0.01, which is the probability of rejecting the true
distribution.
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Fig. 5: Estimated pdf fitting for the correlation coefficients
associated to the non-zero components extracted with: (a)
CFAR-UWB-OMP (b), CFAR-UWB-MSOMP

Consequently, we next estimate the GEV distribution pa-
rameters (location parameter λ ∈ R, scale parameter σ > 0,
and shape parameter ξ ∈ R) providing the best goodness-
of-fit for the correlation coefficients extracted from the data
in W̃sample. Finally, we calculate the detection threshold for
CFAR-UWB-OMP corresponding to the required Pfa using
the inverse cumulative GEV distribution [37]:

Thdet = F−1

λ̂,σ̂,ξ̂
(1− Pfa)

=

{
λ̂− σ̂

ξ̂

î
1− (− ln(1− Pfa))

−ξ̂
ó
, ξ̂ ̸= 0

λ̂− σ̂ ln(− ln(1− Pfa)), ξ̂ = 0

(12)

where (λ̂, σ̂, ξ̂) are the data-based estimated parameters of the
best-fitted GEV distribution.

The CFAR-UWB-OMP algorithm is well suited to detect
moving targets, which continuously change the range reso-
lution cell. The DF is not effective in this case because it
requires that a detected target remains in the same resolution
cell during the coherent integration time. Nevertheless, the
DF is a much better solution for detecting stationary people.
Indeed, although they are not moving, their backscattering
signal is not removed by the MTI filter because of the Doppler
shift associated to the human breathing. Since the breathing
rate is almost constant for a standing person, it can be detected
using the DF technique.

As for the Nyquist signal processing, the DF is performed
by taking the Fourier transform of the signal in each range
resolution cell (slow-time processing), but at the output of the
whitening filter rather than at the output of the MF. In the
following subsection, we will establish the signal model for
the DF focusing in the CS processing framework.
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B. Multiple snapshots algorithm

Let us consider again the matrix equation (11), which lies
in the fast-time (range) vs slow-time domain. The matrix X̂
contains one non-zero value in each column for each target,
located in a position given by its range from the radar during
the current PRI. Obviously, for a stationary target with a non-
null Doppler shift there will be as many non-zero values as
columns, on the row corresponding to its range from the
radar. However, all these values reduce to only one in the
range-Doppler domain, after taking the data row-wise Fourier
transform:

X̃(DF) = X̃FNrec ⇒ X̃ = X̃(DF)FH
Nrec

(13)

where FNrec
is the Nrec × Nrec Discrete Fourier Transform

(DFT) matrix.
Consequently, the X̃

(DF )
matrix has a sparsity level much

higher than X̃ for this type of targets. In this case, (11) can
be rewritten in the following form:

Ỹ = AX̃+ W̃⇒ Ỹ = AX̃
(DF )

FH
Nrec

+ W̃

⇒ ỸFNrec
= AX̃

(DF )
FH

Nrec
FNrec

+ W̃FNrec

⇒ Y̌ = AX̃
(DF )

BH + W̌

(14)

where BH = FH
Nrec

FNrec
= INrec

while Y̌ = ỸFNrec
and

W̌ = W̃FNrec
are the signal and noise matrices respectively,

after the Doppler focusing.
Note that the problem of recovering the sparse solution of

(14) is equivalent to the previous problem in (11), for an equiv-
alent MNrec×NNrec sensing matrix Aech = A⊗B, where
⊗ stands for the Kronecker product. As it is demonstrated in
Appendix B, the coherence of both matrices A and Aech is the
same when B = INrec . Hence, if the matrix A is optimized
for the sparse reconstruction problem in (11), it will be also
optimized for the second one in (14).

The solution of (14) can be found using the OMP matrix
sketching algorithm [38]. Actually, we propose a modified
version, called CFAR-UWB-MSOMP and described by Al-
gorithm 2, which also enables the control of the false alarm
rate. Note that unlike the Algorithm 3 given in [38], our
algorithm is able to work with complex vectors/matrices and
allows solution matrices X̃

(DF )
of arbitrary size N × Nrec,

not limited to being square.
Just as for the Algorithm 1 introduced above, the same

GEV distribution, but with different parameters, has been
identified, by statistical analysis and using the same GoF tests,
as providing the best fit for the correlation coefficients (see Fig.
5(b). Consequently, the detection threshold is provided by the
same equation (12), using the GEV distribution’s shape, scale,
and location parameters estimated from a M ×Nnoise sample
matrix W̌sample of residual clutter plus noise at the DF output.

It is worth noting that, unlike the previously discussed one
snapshot sparse reconstruction, in this case the objective is to
find the couple of indices [i

(n)
max l

(n)
max] of the current extracted

component, instead of the single index i
(n)
max. In [38], they are

determined using the following relationship:

[i(n)max l
(n)
max] = argmax

[i l]/∈Λn

|aHi Rnbl| (15)

Algorithm 2 CFAR-UWB-MSOMP

1: Input: The M × Nrec data matrix Y̌ at the output of
the DF, the M × N and Nrec × Nrec sensing matrix
A and B respectively, the detection threshold Thdet and
the maximum number of expected targets in the range-
Doppler domain Ntg .

2: Initialization:
3: X̃

(DF )
0 = 0N×Nrec

: the reconstructed sparse matrix (so-
lution matrix).

4: R0 = Y̌: the residual matrix.
5: θ0 = [∥R0∥F ]: the vector of residual matrix Frobenius

norm.
6: ε≪ 1: positive constant used to stop the algorithm when

the residual matrix norm becomes too small.
7: Λ0 = [ ]: the 2-columns matrix containing the indices of

the solution matrix non-zero components.
8: ccorr0 = [ ]: the vector of correlation coefficients cor-

responding to the non-zero components of the solution
vector.

9: x̌0 = [ ]: the vector containing the amplitudes of the
solution matrix only for its non-zero components.

10: amax = maxi=1,...,N ∥ai∥, bmax = maxl=1,...,Nrec
∥bl∥

11: n = 0 and fstop = 0: index and stop flag used inside the
while loop.

12: while n ≤ Ntg and fstop = 0 do
13: Find the indices of the current non-zero component of

the solution matrix X̃(DF ) by solving the maximization
problem: [i(n)max l

(n)
max] = argmax[i l]/∈Λn

|aHi Rnbl|

14: if c(corr)max =

∣∣aH

i
(n)
max

Rnb
l
(n)
max

∣∣
amaxbmaxs

(n)
max

< Thdet then
15: fstop = 1
16: else
17: n← n+ 1 and:

18: Update Λn =

ñ
Λn−1

i
(n−1)
max l

(n−1)
max

ô
19: And c

(corr)
n = [c

(corr)
n−1 c

(corr)
max ]

20: Compute the n × n matrix D(n), with
d
(n)
r,q = bH

Λn(q,2)
bΛn(r,2)a

H
Λn(r,1)

aΛn(q,1),
and the n × 1 vector d(n) =
[aHΛn(1,1)

Y̌bΛn(1,2) . . .a
H
Λn(n,1)

Y̌bΛn(n,2)]
T

21: Solve x̌n = (D(n))−1d(n)

22: Find the new residual matrix Rn = Y̌−AX̃
(DF )
n BT ,

where X̃
(DF )
n =

∑n
i=1 x̌n(i)aΛn(i,1)b

H
Λn(i,2)

23: Calculate the maximum singular value of Rn:
s
(n)
max = ∥Rn∥F , and add it to the vector of the

residual matrix Frobenius norm θ = [θn−1 s
(n)
max].

24: if s
(n)
max < ϵ∥R0∥F then

25: fstop = 1
26: end if
27: end if
28: end while
29: Set the N × Nrec solution matrix: X̃(DF ) =

0N×Nrec
, X̃(DF )(Λn(i, 1),Λn(i, 2)) = x̌n(i), i = 1 . . . n

30: Output: The sparse matrix solution X̃(DF ), the matrix
Λn of non-zero component indices of the solution matrix,
the vector of correlation coefficients c(corr)n corresponding
to the non-zero components of the solution matrix, and the
vector of residual matrix norm θn.
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where Λn is the 2-columns matrix whose nth row
[λn(1) λn(2)] = [i

(n)
max l

(n)
max] contains the indices of X̃

(DF )

matrix non-zero component extracted at the nth iteration and
Rn−1 = Y̌ − AX̃

(DF )

n−1 BH is the residual matrix at the
(n− 1)th iteration.

Nevertheless, since our algorithm not only extracts the
X̃

(DF )
non-zero components but also performs the CFAR

detection, the maximized value in (15) has to be normalized,
in order to remove the dependence of the detection threshold
on the noise power. Relying on the inequality below:

|aHi Rnbl| ≤ amaxbmaxs
(n)
max (16)

where s
(n)
max = ∥Rn∥F is the maximum singular value of Rn,

amax = maxi=1,...,N ∥ai∥ and bmax = maxi=1,...,Nrec
∥bl∥,

we define the following normalized correlation coefficient,
which will be further used in Algorithm 2 as decision statistic:

c
(corr)
i,l (n) =

|aHi Rnbl|
amaxbmaxs

(n)
max

(17)

As a final remark about the two proposed algorithms above, it
is also important to note that CFAR detection is not performed
using the estimated sparse solution (x̃ for Algorithm 1 and
X̃

(DF )
for Algorithm 2), but on the contrary, sparse recon-

struction is done using the CFAR detection result. Indeed, the
proposed algorithms merge sparse reconstruction and CFAR
detection in a new nested architecture, in which OMP provides
the detection statistic, while CFAR detection threshold is used
to stop OMP iterations. The input scaling of the detection
statistic ( c(corr)max ) is obtained in our case as a consequence of
its normalization by the residual norm (line 12 of Algorithm
1 and line 14 of Algorithm 2).

C. Computational complexity

Finally, the complexity of the two CD proposed algorithms
has been assessed and compared to that of the corresponding
Nyquist processing architectures. The results are provided in
Table I and illustrated in Figure 6 for several values of M and
Tcoh = 10 sec. Since both CD algorithms actually stop after a
number of iterations Niter between 1 and Ntg , the complexity
curves are also plotted for three Niter values.
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Fig. 6: Complexity comparison between Nyquist and sub-
Nyquist CFAR approaches for: (a) one-snapshot processing
and (b) multiple-snapshots processing

As it can be noticed, the complexity of the proposed
CFAR-UWB-MSOMP algorithm is reduced compared to the
multiple-snapshots Nyquist processing, for all the consid-
ered values of M and Niter, unlike the CFAR-UWB-OMP
algorithm, which yields higher complexity in most cases.
Nevertheless, it is worth noting that the main advantage of
CD algorithms is actually related to the huge reduction of the
sampling frequency, which is divided by N=1536 for the ap-
plication considered in this paper, leading to significant gains
in terms of hardware complexity and power consumption.

IV. SIMULATIONS RESULTS

The scenario considered for our simulations is shown in
Fig. 7. The IR-UWB radar operates in a challenging heavy-
cluttered CM7 indoor environment, whose impulse response is
illustrated in Fig. 2. In this scenario, we have also considered a
stationary person located at 3 m from the radar and two other
fast walking and slow walking people, who are moving in front
of the radar within the range intervals [2 m, 8 m] and [3.5 m,
6 m]. A Doppler frequency of fstat = 0.4 Hz is associated
to the stationary person, corresponding to a respiratory rate of
24 breaths per minute, while for the two moving people, their
average velocities of 6.5 km/h = 1.8 m/s and 3 km/h = 0.83
m/s result in Doppler shifts of ffast =

2υfast

λc

∼= 87 Hz and
fslow = 2υslow

λc

∼= 41 Hz, respectively. Actually, as moving
people also breathe, two Doppler shifts, i.e. ffast ± fstat and
fslow ± fstat, should be associated with each of them, but a
simplified configuration can be considered in this case, given
that fstat is much lower than both ffast and fslow.

Note that a linear motion model for the people velocity
has been considered in our simulations. They initiate their
movement from a standstill, quickly accelerate to reach their
maximum velocity, which is then maintained constant, and
decelerate rapidly at the end, before stopping and going back
in the other sense. Consequently, while the Doppler shift for
the stationary person can be considered as constant, a Doppler
spectrum has to be rather associated to moving people.

Fig. 7: Considered scenario for the simulation results

Two IR-UWB waveforms have been considered in our
simulations. The first one is a frequency-shifted Gaussian
pulse and is the same as for the Novelda IR-UWB radar [39],
used to acquire the measured data in Section V. Its analytical
expression is given below:

p(t) = VTX exp

Ç
− t2

2T 2
g

å
cos(2πνct) (18)

where VTX is the transmitted pulse amplitude, Tg =

(πB−10dB

√
log10(e)

−1
, νc = 7.29 GHz and B−10dB = 1.4
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TABLE I: Complexity of Nyquist and sub-Nyquist CFAR approaches

Processing approach Technique/Algorithm Complexity

One-snapshot processing
CFAR detection at the MF output O(2N(log2(N) + 3))

CFAR-UWB-OMP O(NiterMN)

Multi-snapshots processing
CFAR detection at the DF output O(N(Nlog2(N) + 2Nreclog2(Nrec)))

CFAR-UWB-MSOMP O(NiterMNrec(N2
iter + 8))

GHz is the −10 dB waveform bandwidth. The second one is
a specially designed waveform [40], optimized with respect
to the normalized effective signal power (NESP), which is
defined by:

NESP (p(t)) =

∫
|P (ν)|2dν∫

MECC(ν)dν
(19)

where P (ν) is the UWB waveform spectrum and MECC(ν)
is the power spectral density mask defined by ECC/ETSI for
the UWB emissions in Europe.

Fig. 8 shows the power spectral densities of the two
UWB waveforms considered in our simulations, which com-
ply with the ECC regulations and are characterized by
NESPNovelda = 0.33 and NESPopt = 0.74. Thus, it is
worth noting that although the Novelda waveform has the
advantage of the simplicity, the signal-to-noise ratio (SNR)
is improved by 3.5 dB in the case of the NESP-optimized
waveform, for a given maximum Effective Isotropic Radiated
Power (EIRP) level. Furthermore, the SNR gain of the matched
filter is 4.8 dB and 6.9 dB for the Novelda and NESP-
optimized waveforms, respectively.
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Fig. 8: Power spectral densities of the two UWB waveforms
considered in our simulations.

Fig. 9 presents the noiseless and the noisy cluttered signals
for an acquisition duration of 20 sec, as well as the processing
results (matched filtering and Doppler focusing) at the Nyquist
frequency for the considered scenario. Since the SNR gets
lower as the range from the radar increases, a maximum SNR
of 0 dB corresponding to the closest position is considered
for our simulations. The amplitude variations of the signal of
interest (SoI) for both a stationary and a moving person are
explained in Appendix A.

As already mentioned in Section II, the CFAR detection
is performed at MF output for moving people, resulting in
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Fig. 9: Signal processing results at the Nyquist sampling
frequency in the considered scenario involving two moving
people and one stationary person for a maximum input SNR
= 0 dB: (a) noiseless simulated SoI, (b) noisy and cluttered
SoI, (c) MF output, and (d) DF output

the performance curves plotted in Fig. 10(a). The stationary
person can be also detected at the MF output, with the same
performance, but the detection rate is much better after the
DF stage, the performance gain being proportional with the
coherent integration time, as shown in Fig. 10(b) for Tcoh=10
sec. Note that the performance curves are plotted in both
cases with respect to the in-band SNR ratio at the MF input
or equivalently at the whitening filter output. This choice is
motivated by the possibility of directly comparing Nyquist
and sub-Nyquist approaches, as well as one-snapshot against
multiple snapshots signal processing options. Note also that
the additional SNR gain of 3.5 dB obtained with the NESP-
optimized waveform is not visible in these figures because the
detection rate corresponding to the two waveforms is estimated
for the same SNR values.

In the case of compressed detection, we compare not only
the performance provided by the two waveforms, but also
the detection rate obtained for different levels of the sensing
matrix coherence. Thus, for each one of the two waveforms
we consider a minimum coherence level µmin corresponding
to an optimized set of 4 × 4 FC

{
c
(p)
km

}
km∈kM

, and a high
coherence level µmax, typically associated to consecutive FC.
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Fig. 10: CFAR detection results for signal processing at the
Nyquist sampling frequency: (a) at the MF output and (b) at
the DF output (Tcoh=10 sec.)

The optimized FC sets for the two UWB waveforms are
shown in Fig. 11. Note that the minimum coherence value
is µmin = 0.89 for the Novelda pulse and µmin = 0.76 for
the NESP-optimized pulse, while the µmax values are very
close, i.e. 0.99 and 0.98, respectively.
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Fig. 11: Optimized FC sets for minimum coherence in the case
of the two UWB waveforms considered in our simulations

As stated in Section III and illustrated by Fig. 12 for Pfa =
0.1, whether the decision is taken using CFAR-UWB-OMP
(one-snapshot processing) or CFAR-UWB-MSOMP (multi-
snapshots processing), the detection threshold is invariant with
respect to the noise power and depends only on the UWB
waveform shape and sensing matrix coherence.

The impact of the coherence on the detection performance,
for both CFAR-UWB-OMP and CFAR-UWB-MSOMP algo-
rithms, is illustrated in Fig. 13. Note that the same value
of Tcoh=10 sec has been used for the DF as in the case
of Nyquist processing. It can be readily seen that lower the
coherence values, the better the detection performance and that
for the highest coherence levels, the values of interest for the
detection rate (higher than 0.8) do not increase anymore with
the false alarm probability. The most important SNR gain for
both UWB waveforms is obtained for Pfa = 0.1 and it is of
about 5dB, at a detection rate level Pdet = 0.8. In Fig. 14
we also compare the CFAR CD performance of the two UWB
waveforms, for both moving and stationary people. We now
focus only on the most interesting configuration, associated
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Fig. 12: Detection threshold variation for CFAR CD, with Pfa

= 0.1 and using: (a) CFAR-UWB-OMP and (b) CFAR-UWB-
MSOMP
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Fig. 13: Impact of the coherence on the CFAR CD perfor-
mance using: (a) CFAR-UWB-OMP and Novelda waveform,
(b) CFAR-UWB-OMP and NESP-optimized waveform, (c)
CFAR-UWB-MSOMP and Novelda waveform, and (d) CFAR-
UWB-MSOMP and NESP-optimized waveform

to the lowest coherence level (µmin). The comparison results
are roughly similar to those shown in Fig. 10, except that as
the false alarm level varies, the SNR gain of NESP-optimized
over Novelda waveform, which is almost constant in the case
of Nyquist processing, becomes more significant for higher
Pfa values in the compressed detection case. It reaches over
3 dB for Pfa= 0.1 and Pdet= 0.8, compared to 2 dB and 1 dB,
at the MF and DF output, respectively, in the case of Nyquist
processing. Finally, an SNR loss depending of the false alarm
level can be also noticed in the case of compressed detection
compared to the Nyquist processing. For the considered Pfa

values, this performance loss is more significant for moving
human detection (up to 6 dB) than for the stationary human
detection (up to 4 dB).
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Fig. 14: Impact of the UWB waveform on the CFAR CD
performance, for the lowest coherence level (µmin), using:
(a) CFAR-UWB-OMP and (b) CFAR-UWB-MSOMP

V. EXPERIMENTAL RESULTS

This section presents the experimental results using com-
pressed CFAR processing for detecting people in the Industry
4.0 indoor environment at the University of Brest. The ex-
perimental setup, shown in Fig. 15, includes a drug industrial
production chain with associated supervision and cybersecu-
rity infrastructure. During our experiments, the platform was
operational, so the Doppler spectrum generated by its mobile
components and conveyors, as well as the signal backscattered
by its rigid structure, are mixed with the signal of interest (SoI)
backscattered by a person present in the room. Xethru X4M03
IR-UWB Novelda radars have been used in our experiments,
with parameters outlined in Table II from the datasheet [41].

Each radar was connected to a laptop for data storage and
analysis, utilizing MATLAB® software for data processing.

Three scenarios were investigated to evaluate UWB human
detection in indoor environments and to assess the effective-
ness of the proposed approach:

• Scenario 1: A person sits approximately 4 meters from
the UWB radar for 60 seconds.

• Scenario 2: A person walks slowly or quickly in front of
the UWB radar for 60 seconds.

• Scenario 3: A person alternates between sitting at about
4 meters and 5.2 meters, with periods of slow or fast
walking, for 120 seconds.

TABLE II: Main parameters of X4M03 IR-UWB Novelda
radar

Parameter Value
Power consumption 120 mW
Center frequency νc 7.29 GHz

Fast-time acquisition duration Tr 65.844 ns
Frames per second(FPS) 200 Hz

Detection zone 0.8 - 9.5 m
Bandwidth at -10 dB 1.4 GHz

Duty cycle 0.95
Antenna beamwidth 65◦ azimuth and elevation

Fig. 16 presents signal processing results for the first sce-
nario. Fig. 16(a) shows signal envelopes revealing a cluttered
indoor environment challenging for person detection. The IR-
UWB radar avoids interference by blocking reception for the
first 5.33 ns of PRI (0.8 meters range). After applying MTI
and whitening filters, Fig. 16(b) displays improved clutter

removal, enabling OMP reconstruction using the CFAR-UWB-
OMP algorithm with a zero threshold. CFAR detection results
for Pfa = 10−1 and Pfa = 10−6 are shown in Fig. 16(c) and
(d), respectively, clearly indicating a seated person with iden-
tifiable breathing patterns. Fig. 16(e) demonstrates enhanced
localization in the range-Doppler plane through Doppler fo-
cusing and sparse reconstruction using matrix sketching OMP.
Finally, Fig. 16(f) exhibits the output of the CFAR-UWB-
MSOMP algorithm, accurately extracting the person’s position
and breathing rate. Note that algorithms outputs have been
convolved with a Hamming window for clarity.

Fig. 17 depicts results from two scenarios: a person walking
slowly (Fig. 17(a), (c), (e), and (g)) and quickly (Fig. 17(b),
(d), (f), and (h)) in front of a UWB radar. Trajectories are
clear after sparse reconstruction and CFAR detection. Doppler
spectrums in Fig. 17(g) and (h) correlate with motion patterns,
showing ranges of 2.2 to 4.2 meters for slow walking and 2.2
to 5.2 meters for fast walking. These Doppler shifts correspond
to speeds of 0 to 1.6 km/h and 0 to 5 km/h respectively.
Machine learning techniques can further analyze these patterns
to distinguish people from other objects. Doppler focusing and
sparse reconstruction reveal significant amplitudes beyond the
walking zone, primarily due to indoor clutter. Additionally,
when the person walks between the radar and a wall 6.5 meters
away (seen in Fig. 17(a) and (b)), her body intermittently
blocks the signal to the wall, causing signal fluctuations. This
creates a notable amplitude peak at 6.5 meters after Doppler
focusing.

The final experiment is more elaborate, with a data acqui-
sition period of 120 seconds. During this time, the person
alternates between sitting and moving alongside the industrial
platform. The experiment consists of four distinct phases:

1) The person sits about 5.2 meters away from the radar
for 50 seconds.

2) The person slowly moves back and forth within the
range of 2 to 5.2 meters for 20 seconds.

3) The person sits again, this time about 4 meters away,
for 30 seconds.

4) The person walks faster than in the second phase for the
last 20 seconds.

Fig. 18 shows the signal processing results. The CFAR-
UWB-OMP algorithm (Fig. 18(c)) clearly identifies the four
phases with a false alarm level of Pfa = 10−6. Doppler
focusing and sparse reconstruction results are shown in Figure
18(d) for Doppler shifts above 1 Hz, and in Fig. 18(e) and Fig.
18(f) for shifts up to 1 Hz. This separation enhances readability
as amplitude peaks are higher when the person is stationary,
making moving objects less visible. Fig. 18(d) highlights
three Doppler spectrum zones: one common to both motion
phases, and two corresponding to slow and fast walking. Fig.
18(f) displays the CFAR-UWB-MSOMP algorithm output,
detecting and identifying the person’s breathing rate during
seated intervals with the same false alarm level. Two peaks
at 4 meters and 5.5 meters correspond to a Doppler shift of
about 0.5 Hz.

Despite the second sitting position being closer, both am-
plitudes are similar due to a higher processing gain for the
first position, which has a longer coherent integration time
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(a) (b)

Fig. 15: Experimental setup in the industrial platform used for data acquisition, illustrating the two main phases of the scenarios:
(a) person walking in front of the radar, and (b) person sitting
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Fig. 16: Signal processing results for the first considered
scenario (person sitting in front of the IR-UWB radar): (a)
measured data, (b) OMP reconstruction (c) CFAR-UWB-
OMP output (Pfa = 10−1), (d) CFAR-UWB-OMP output
(Pfa = 10−6), (e) Doppler focusing and matrix sketching
OMP reconstruction, (f) CFAR-UWB-MSOMP output (Pfa =
10−6)

(50 seconds vs. 30 seconds). A third peak results from a
constructive multipath summing in phase with the second
breathing signal.

VI. CONCLUSION

We have described a comprehensive approach to com-
pressed CFAR human detection, in highly cluttered indoor
environments, using IR-UWB radar. Although it shares some
aspects with other related research, to the best of our knowl-
edge, it is the first time that the compressed sensing and
CFAR detection are jointly considered for smart factory indoor
applications.

The two newly proposed OMP-based sparse reconstruction
and CFAR detection algorithms have been designed to un-
dertake both stationary and moving people extraction from
heavy-cluttered signals, sampled at a rate much lower than
the Nyquist limit. Another important contribution has been
represented by Xampling scheme optimization for both min-
imizing sensing matrix coherence, while keeping reduced its
hardware complexity. In this way, we have not only enhanced
the detection rates, but also paved the way for more efficient
implementation of CS techniques in practical scenarios. Fur-
thermore, we have proposed an effective detection statistic,
making the detection threshold invariant to the noise power,
and identified the corresponding best-fitted distribution, which
has been validated by statistical tests.

The extensive performance analysis of the proposed algo-
rithms, using both simulated and measured data, for several
canonical scenarios, is also worth to be mentioned as a sig-
nificant contribution. We have demonstrated the effectiveness
of our compressed CFAR approach for human detection,
particularly in Industry 4.0 indoor environments. This vali-
dation underscores its potential to offer robust and reliable
performance in such complex use cases.

Although the two proposed CD algorithms have the CFAR
property, only their general principle relying on the Neyman-
Pearson optimal test is provided in the paper. Further research
is necessary to design a true CFAR detector taking into
account all the practical implementation constraints. Since a
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Fig. 17: Signal processing results for the second considered
scenario (person walking slowly/quickly in front of the IR-
UWB radar): (a) and (b) measured data , (c) and (d) OMP
reconstruction, (e) and (f) CFAR-UWB-OMP output (Pfa =
10−6), (g) and (h) Doppler focusing and matrix sketching
OMP reconstruction

Envelope of the measured data

0 20 40 60 80 100

Slow time [s]

0

1

2

3

4

5

6

7

8

9

S
la

n
t 
ra

n
g
e
 [
m

]

(a)

0 20 40 60 80 100

Slow time [s]

0

1

2

3

4

5

6

7

8

9

S
la

n
t 
ra

n
g
e
 [
m

]

(b)

0 20 40 60 80 100

Slow time [s]

0

1

2

3

4

5

6

7

8

9

S
la

n
t 
ra

n
g
e
 [
m

]

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Doppler shift [Hz]

0

1

2

3

4

5

6

7

8

9

S
la

n
t 
ra

n
g
e
 [
m

]

(e) (f)

Fig. 18: Signal processing results for the third considered
scenario (person alternating seated positions with slow/fast
walking phases): (a) measured data, (b) OMP reconstruction,
(c) CFAR-UWB-OMP output (Pfa = 10−6), (d) Doppler
focusing and sparse reconstruction above 1 Hz, (e) Doppler
focusing and sparse reconstruction below 1 Hz, (f) CFAR-
UWB-MSOMP output below 1 Hz (Pfa = 10−6)

wide variety of CFAR detectors can be combined with sparse
reconstructors to form the proposed compressed detection
algorithms, we plan to carry out their comparative analysis
as future work, including their capability to operate in the
presence of clutter edges. We also plan to rely on the detection
results to perform people tracking and to thoroughly investi-
gate the Doppler signature analysis for human detection, em-
ploying specific machine learning techniques. This exploration
aims to differentiate between human movements and other
objects within intricate environments, thereby advancing the
capabilities of our detection system in complex and dynamic
settings.
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APPENDIX A
Let us consider the analytic signal in (1) corresponding

to only one target, under the hypothesis that the associated
Doppler shift is constant, i.e.f (q)

l = fD, during the acquisition
time:

rq(t) = σ(q)p(t− τ (q) − qTrec)e
j2πfDqTrec ,

t ∈ [qTrec, qTrec + Tr], q = 0, . . . , Nrec − 1
(A-1)

When this signal is sampled at the Nyquist rate
{
tn,q =

n/FNyq + qTrec

}
n=0,...,N−1,q=0,...,Nrec−1

, the following data
matrix is obtained from (A-1) and (18):

z(n, q) = Re
{
σ(q)p

(
n/FNyq − τ (q)

)
ej2π(fD/Frec)q

}
=

σ(q)VTxe
−

(
n/FNyq−τ(q)

)2
2T2

g cos
(
2π
(
νc(n/FNyq − τ (q)

)
+

(fD/Frec)q
))
,

n = 0, . . . , N − 1, q = 0, . . . , Nrec − 1
(A-2)

If the target delays are taken only on the data grid, i.e. τ (q)l =
n(q)/FNyq , then for the range cell n(q) and the qth PRI, we
get:

z(n(q), q) = σ(q)VTx cos
(
2π
(
fD/Frec)q

)
,

q = 0, . . . , Nrec − 1
(A-3)

In the equation above, the term cos
(
2π
(
fD/Frec)q

)
, depend-

ing on the target Doppler shift, explains the amplitude fluctu-
ations of the simulated data matrix represented in Fig. 9(a).
In a similar way, relying on (A-1) and (4), the corresponding
data matrix after the MTI processing can be then written in
the form:
z(MTI)(n, q) = Re

{
σ(q)p

(
n/FNyq − τ (q)

)
ej2π(fD/Frec)q−

σ(q−1)p
(
n/FNyq − τ (q−1)

)
ej2π(fD/Frec)(q−1)

}
,

n = 0, . . . , N − 1, q = 1, . . . , Nrec − 1
(A-4)

Assuming that the target reflectivity does not vary during
Trec , i.e. σ(q) = σ(q−1), we get:

z(MTI)(n, q) = σ(q)Re
{(

p
(
n/FNyq − τ (q)

)
− p
(
n/FNyq − τ (q−1)

)
e−j2π(fD/Frec)

)
ej2π(fD/Frec)q

}
,

n = 0, . . . , N − 1, q = 1, . . . , Nrec − 1

(A-5)

In the case of a stationary target, i.e. τ (q) = τ (q−1), (A-5)
takes the following form for the range cell n(q) and the qth

PRI:
z(MTI)(n(q), q) = σ(q)VTxRe

{(
1− e−2jπ(fD/Frec)

)
e2jπ(fD/Frec)q

}
= 2σ(q)VTx sin

(
π(fD/Frec)

)
Re
{
je−jπ(fD/Frec)e2jπ(fD/Frec)q

}
⇒ z(MTI)(n(q), q) = 2σ(q)VTx sin

(
π(fD/Frec)

)
cos
(
2π(fD/Frec)q − π(fD/Frec) + π/2

)
,

q = 1, . . . , Nrec − 1

(A-6)

It can be noticed that the term cos
(
2π(fD/Frec)q −

π(fD/Frec) + π/2
)

yields the same slow-time amplitude
fluctuations as for the data matrix, but they are phase shifted.
For low values of fD, this phase shift is of about π/2,
while it is null for fD = Frec/2 . It can be also noticed
that the additional amplitude term sin

(
π(fD/Frec)

)
has a

strong impact on the SNR, especially for low Doppler shifts
associated to human breathing. The role of the whitening
filter is to compensate this effect, while the matched filter
maximizes the SNR, resulting in Fig. 9(c).

In the case of a moving target, let us consider, without any
loss of generality, a positive Doppler shift fD = 2νr/λc ,
which results in:

τ (q) = τ (q−1)− (2νrTrec/c) = τ (q−1)− fD/(νcFrec) (A-7)

Consequently, for the range cell n(q) and the qth PRI, (A-5)
becomes:

z(MTI)(n(q), q) = σ(q)Re
ß(

p(0)− p(fD/(νcFrec)
)

e−2jπ(fD/Frec)
)
e2jπ(fD/Frec)q

™
= σ(q)VTxRe

ßÅ
1− e−(fD/(

√
2νcFrecTg))

2

ej2π(fD/Frec)

e−j2π(fD/Frec)

ã
ej2π(fD/Frec)q

™
⇒ z(MTI)(n(q), q) = σ(q)VTx

Å
1− e−(fD/(

√
2νcFrecTg))

2

ã
cos(2π(fD/Frec)q), q = 1, . . . , Nrec − 1

(A-8)

The same slow-time amplitude fluctuations as in the
case of the simulated data matrix, represented by the term
cos(2π(fD/Frec)q), can be observed in this case. Indeed, as
illustrated by Fig. 9(c), contrarywise to the stationary targets,
for moving targets there is no phase shift between the ampli-
tude fluctuations of the simulated and MF output data matrices.

The additional amplitude term
Å
1− e−(fD/(

√
2νcFrecTg))

2

ã
is

zero for fixed targets with no Doppler shift, while it increases
rapidly as fD is getting larger.

APPENDIX B

We will evaluate below the coherence of the equivalent
MNrec ×NNrec sensing matrix Aech = A⊗ INrec

:

Aech =


a11INrec a12INrec · · · a1NINrec

a21INrec
a22INrec

· · · a2NINrec

...
...

. . .
...

aM1INrec
aM2INrec

· · · aMNINrec


= [a1 ⊗ INrec

a2 ⊗ INrec
. . . aN ⊗ INrec

]

(B-1)

Let a
(Nrec)
k denote the MNrec × 1 vector obtained by up-

sampling ak with the factor Nrec, i.e. having only zero
components except for a(Nrec)

k,(i−1)Nrec+1 , i = 1, . . . ,M . Let also

denote by
˜
Ak = circ(a

(Nrec)
k ) = ak⊗INrec

the MNrec×Nrec
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circulant matrix associated to a
(Nrec)
k . (B1) can be then

rewritten as:
Aech = [

˜
A1

˜
A2 . . .

˜
AN ] (B-2)

and it is straightforward to note that:

∥
˜
Ak(:, i)∥ = ∥ak∥, i = 1, . . . , Nrec (B-3)

|
˜
AH

k (:, r)
˜
Al(:, q)| =

®
|aHk al|, if r = q and k ̸= l

0, if r ̸= q,∀k, l
(B-4)

Consequently:

µAech
= max

k ̸=l,r=q

(
|
˜
AH

k (:, r)
˜
Al(:, q)|

∥
˜
Ak(:, r)∥.∥

˜
Al(:, q)∥

)
=

max
k ̸=l

(
|aHk al|
∥ak∥.∥al∥

)
= µA

(B-5)

APPENDIX C
The transformation process from the echo signal to the

sparse signal model using the Xampling technique is detailed
in this appendix. The Xampling scheme is known as the
Multi-Channel Modulating Waveforms (MCMW) scheme and
is shown in Fig. C.1.

Fig. C.1: MCMW scheme for acquisition

This is a low-cost, stable, sub-Nyquist analog-to-digital
conversion method that provides a limited set of the sig-
nal’s Fourier Coefficients (FC) y = {c(r)km

}km∈kM
, whose

frequency positions are identified by the subset kM =
{ki}i=1,...,M . The Tr-periodical binary pseudorandom wave-
forms {ui(t)}i=1,...,P are first filtered to obtain the signals
{si(t) =

∑kM

k=k1
sike

j2π(k/Tr)t}i=1,...,P , where {sik}i=1,...,P
k∈kM

denote the Fourier coefficients of these signals within the filter
bandwidth. The echo signal r(t) is then mixed with the filtered
waveforms si(t), integrated during Tr and sampled at the PRF
rate. The z vector below is thus obtained:

zi =
1

Tr

∫ Tr

0

r(t)

kM∑
k=k1

sike
j2π(k/Tr)t dt for i = 1, . . . , P

(C-1)
It can be readily seen that:

z∗i =

kM∑
k=k1

s∗ik
1

Tr

∫ Tr

0

r(t)e−j2π(k/Tr)t dt =

kM∑
k=k1

s∗ikc
(r)
k

(C-2)

So that z∗ = Sy, where S is the P ×M matrix {s∗ik}i=1,...,P
k∈kM

.

Finally, the Xampling scheme output is given by:

y = S†z∗ (C-3)

where S† is the pseudo-inverse of the P × M matrix S =
{s∗ik}i=1,...,P

k∈kM

.

Let us now consider the received signal model (equation
(1) in the paper) and denote by c

(r)
k = 1

Tr
Rq

Ä
k
Tr

ä
and c

(p)
k =

1
Tr
P
Ä

k
Tr

ä
the FC of the periodized signals rq(t) and p(t)

respectively. Then, (1) can be further developed as follows:

rq(t) =

L∑
l=1

σ
(q)
l p(t− τ

(q)
l − qTr)e

−j2πf
(q)
l qTr (C-4)

which leads to:

Rq(ν) =

L∑
l=1

σ
(q)
l P (ν)e−j2π(τ

(q)
l +qTr)νe−j2πf

(q)
l qTr (C-5)

Further simplifying yields:

Rq(ν) = P (ν)e−j2πqTrν
L∑

l=1

σ
(q)
l e−j2πτ

(q)
l νe−j2πf

(q)
l qTr

(C-6)
thus, we have:

c
(r)
k = c

(p)
k

L∑
l=1

σ
(q)
l e−j2πτ

(q)
l

k
Tr e−j2πf

(q)
l qTr (C-7)

which simplifies to:

c
(r)
k = c

(p)
k

L∑
l=1

xile
−j2πilk/(TrFNyq) (C-8)

and further to:

c
(r)
k = c

(p)
k

L∑
l=1

xile
−j2πilk/NDFT (C-9)

When only the indices k ∈ kM are considered, this equation
can be expressed in the following matrix form:

y = ΦΨx = Ax (C-10)

where Φ is the diagonal M × M matrix {c(p)km
}km∈kM

and Ψ is the M × NDFT reduced DFT matrix
{e−j2πkmn/NDFT } km∈kM

n=0,...,NDFT−1
. This equation reveals

the link between the output of the considered Xampling
scheme, represented by the vector y, and the sparse signal
model x, subject to the proposed sparse detection algorithms.


