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Abstract—An experimental investigation of people detection in
Industry 4.0 environments, using impulse radio ultra-wideband
signals, is described in this paper. Given the specific charac-
teristics of the considered indoor environment and signals of
interest, we first address clutter reduction, and then propose
a two-paths signal processing architecture for constant false
alarm rate (CFAR) detection of moving and stationary people,
using matched filtering and Doppler focusing, respectively. A
statistical study of the residual clutter and noise is carried out,
and optimal threshold values are derived for these two use cases.
The performance of the two CFAR detectors is then assessed
using simulated data for different signal-to-noise ratios (SNR)
and false alarm probabilities. Finally, their detection capabilities
are explored using real data, measured in a heavily cluttered
Industry 4.0 indoor environment, for a specially designed scenario
with a person alternating between stop and motion phases.

Index Terms—Impulse Radio Ultra-Wideband, Indoor people
detection, Industry 4.0 environment, CFAR detection.

I. INTRODUCTION

In today’s increasingly automated world, the importance
of effective human-machine interaction cannot be overstated.
With applications spanning military operations, safety pro-
tocols, security measures, and entertainment endeavors, the
transition from manual to automated machinery and robotics
requires a seamless collaboration between humans and ma-
chines [1]. An essential aspect of this collaboration lies in
ensuring the safety and efficiency of human presence alongside
autonomous systems.

Among multiple techniques, recent years have witnessed
remarkable strides in Impulse Radio Ultra-Wideband (IR-
UWB) technology [2], particularly in its application to human
detection scenarios. Moreover, it is utilized in various fields,
including military, automotive, radar imaging for medicine [3],
complex situation [4], security systems for intrusion detection
and surveillance [5], and other security purposes, due to
its material penetrating capability [6] [7]. These IR-UWB
sensors transmit short radio pulses typically spanning between
3.1 and 10.6 GHz, enabling high-resolution detection and
measurement capabilities.

People detection and tracking using IR-UWB technology
involves assessing spatio-temporal properties including their
presence, counting, localization and identification. This tech-
nology distinguishes various human characteristics, enabling
detection of the human body and its movements, from fast or
slow walking paces to small motions of hands and feet, and
even vital signs such as heartbeats and breathing [8]–[10].

IR-UWB sensors can be successfully used for human de-
tection scenarios, whether in line-of-sight (LOS) conditions
or even in challenging conditions like through-wall detection
and dense environments. In this case, additional algorithms
are necessary for clutter removal, including Singular Value
Decomposition (SVD), Kalman filter, exponential averaging
algorithm, adaptive clutter reduction, and Moving Target In-
dicator (MTI) [11]–[15].

Our original contribution in this paper is threefold. We first
propose a two-paths CFAR detection scheme, designed to de-
tect moving and static people using a single snapshot and mul-
tiple snapshots, respectively. Another important contribution is
the study of the statistical distribution of the residual clutter
and noise after clutter reduction at the output of the matched
filter (MF) and Doppler focusing (DF) respectively, and the
evaluation of the CFAR detectors performance using simulated
data. While the identification of the Rayleigh distribution as
the best match in the first case is straightforward, our finding
related to the best fitted Nakagami distribution in the second
case can be considered as an original result. Finally, our third
contribution is to demonstrate the effectiveness of the proposed
detection approach using measured data, in a realistic smart
factory-like environment.

The remainder of the paper is organized as follows. Section
II introduces the system model and explains the various
steps of UWB signal processing. Section III deals with the
statistical analysis of residual clutter and noise and provides
detection performance curves obtained by simulation. Section
IV describes the experimental setup and shows the results
obtained for both moving and stationary people detection,
using data measured in a Industry 4.0 indoor environment.



Fig. 1: UWB signal processing flowchart for people detection

Finally, some concluding remarks are drawn and future work
is planned in Section V.

II. SYSTEM MODEL

The proposed UWB signal processing flowchart is shown in
Fig. 1. The system model includes several signal processing
stages, including MTI, whitening filter, MF and DF. The
noiseless signal received by the IR-UWB sensor during one
pulse repetition interval (PRI) can be written as:

rn(t) =

L∑
l=1

σ
(n)
l p(t− τ

(n)
l − nTr)e

−j2πf
(n)
l nTr ,

t ∈ [nTr, (n+ 1)Tr]

(1)

where L represents the number of resolvable scattering points,
each at a range resolution of δR = c/(2B), c denotes the speed
of electromagnetic waves, and B stands for the bandwidth of
the Tr-periodically transmitted UWB waveform p(t). As well,
we have the associated reflectivities σl, delays τl = (2Rl)/c
for l = 1, . . . , L, and Doppler shifts fl.

To mitigate the indoor environment clutter, a first-order MTI
filter [15] subtracts signals between consecutive PRIs, which
eliminates reflections from stationary objects, as their delays
and reflectivity remain constant, resulting in null Doppler
shifts. Since the low Doppler frequencies associated with
human breathing are also considerably weakened, a whitening
filter is used to compensate for the MTI effect and thus enable
the detection of stationary people.

One notable difference from conventional radar processing
is how targets are managed during the coherent integration
time (CIT) associated with Doppler focusing. In standard
narrowband radar systems, targets typically persist within the
same range resolution cell during this CIT. However, in our
system, the wide bandwidth of the transmitted signal results
in a very fine slant range resolution, typically around 10 cm.
Consequently, the DF hypothesis does not hold anymore for
moving people, so that their CFAR detection has to be done
directly at the MF output. For stationary people, CFAR detec-
tion follows DF, leveraging their breathing-associated Doppler
frequency (approximately 0.4 Hz). Additionally, Doppler pat-
terns from walking individuals aid in distinguishing targets.

To accurately find out the optimal CFAR detection thresh-
old, a statistical study of the residual clutter plus noise (RCN)
is carried out in the next section, at the output of the MF
and DF stages, for moving and stationary people detection,
respectively.

III. STATISTICAL ANALYSIS

In the context of heavy-cluttered environments, like Industry
4.0 [16], the detection of signal of interest (SoI) is challenging
due to the abundance of resolvable signals backscattered by the
other objects from the environment. The statistical study and
the detection performance curves provided in this section are
performed considering an IEEE 802.15.4a CM7 model [17],
which is well suited to such an indoor environment.

We first note that for the signal processing flow chart
represented in Fig. 1, the MF is basically a linear and time-
invariant (LTI) pass-band filter, while the RCN at its input can
be considered as a real centered AWGN. Hence, according to
[18], the noise amplitude aMF and the noise envelope eMF at
the MF output, follow normal and Rayleigh distributions, re-
spectively. Therefore, aMF ∼ N(0, σ2), while the expression
of the Rayleigh distribution corresponding to eMF is given
by:

pMF out
(eMF ;σ) =

eMF

σ
exp

Å
−e2MF

2σ2

ã
(2)

where σ is both the Rayleigh distribution parameter and the
standard deviation of the normal distribution associated to
aMF . This parameter can be estimated by averaging the values
of eMF inside a Nwin-length sliding window, using (3), where
E stands for the mathematical expectation:

σ =

…
2

π
E(eMF ) ⇒ σ̂ =

…
2

π

Nwin∑
n=1

eMF (n) (3)

As shown in Fig. 2(a), pMF out
(eMF ; σ̂) fits well the distri-

bution of RCN envelope at the MF output, this hypothesis is
further validated by both chi-square and Kolmogorov-Smirnov
tests, with a significance level of 0.05.

For stationary people detection, the real and imaginary
parts of the DF output remain normally distributed after
the Nfft-points slow time FFT, with the variance σ2

DF =
Nfftσ

2, so that Re{aDF } ∼ N(0, Nfftσ
2) and Im{aDF } ∼

N(0, Nfftσ
2). In this case, according to the result mentioned

above, their envelopes, denoted by e
(Re)
DF and e

(Im)
DF , will be

Rayleigh distributed, with the parameter
√

Nfftσ. We propose
to consider the following detection statistic for the stationary
people CFAR detection:

eDF =

…Ä
e
(Re)
DF

ä2
+
Ä
e
(Im)
DF

ä2
(4)

According to [19], the two terms
Ä
e
(Re)
DF

ä2
and
Ä
e
(Im)
DF

ä2
are then exponentially distributed with the parameter λ =

1/
(
2Nfftσ

2
)

and their sum
Ä
e
(Re)
DF

ä2
+
Ä
e
(Im)
DF

ä2
follows a

Gamma distribution with the shape parameter a = 2 and the
scale parameter b = 2Nfftσ

2. Still according to [19], we can
finally conclude that eDF follows the Nakagami distribution
with the same shape parameter (a = 2) and the scale parameter
Ω = 2b = 4Nfftσ

2, given by:

pDF out
(eDF ; 2,Ω) =

8

Ω2
e3DF exp

Å
− 2

Ω
e2DF

ã
(5)
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Fig. 2: Estimated pdf fitting for the envelope of RCN at the: (a) MF output and (b) DF output

The scale parameter Ω can be also estimated using a Nwin-
length sliding window, but by averaging the square values of
eDF inside the window, as shown by the equation below:

Ω = E
(
e2DF

)
⇒ Ω̂ =

Nwin∑
n=1

e2DF (n) (6)

Just as for the MF output statistical analysis, our finding is
confirmed by Fig. 2(b), which shows the good match between
pDF out

Ä
eDF ; 2, Ω̂

ä
and the RCN envelope at the DF output,

this hypothesis being again further validated by the chi-square
and Kolmogorov-Smirnov tests, with the same significance
level. The best-fitted Rayleigh distribution is also plotted as a
reference.

Since the RCN envelope distribution is completely deter-
mined at both MF and DF output, a standard CA-CFAR (Cell
Averaging CFAR) scheme [20] can be used to perform people
detection, with the detection thresholds provided by:®

TMF = σ̂
√
2 ln (1/Pfa)

TDF = cdf−1
Nakagami

Ä
1− Pfa; 2, Ω̂

ä (7)

where Pfa is the required level of constant false alarm
probability and cdf−1

Nakagami(.) is the inverse of the Nakagami
cumulative function.

Relying on the statistical study above, the CFAR detection
performance has been evaluated using simulated data, in a
scenario with one stationary and two moving people. The
curves of the detection rate against the in-band SNR at the
MF input are plotted in Fig. 3 for three values of the false
alarm probability, in the case when the CFAR detection is
performed at the MF and DF output. While the MF gain,
corresponding to the product between the signal duration and
its bandwidth, applies to both cases, an additional processing
gain, proportional to the DF coherent integration time, also
comes into play in the second case. For our Monte Carlo
simulations, we have used the Novelda waveform parameters
provided in Table I, and considered 4000 transmitted pulses
in the multiple snapshots case, for each one of the 104 inde-
pendent trials, which corresponds to a DF coherent integration
time of 20 seconds, given the value of 200 FPS (frames per
second) selected in the radar configuration.

TABLE I: Novelda Radar parameters

Parameter Value
output power 13.6 dBm

center frequency 8.7 GHz
pulse repetition frequency 120 MHz

sampling frequency 23.3 GHz
slow time sampling frequency 30 Hz
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Fig. 3: CFAR detection simulation results obtained using
Novelda waveform, at the MF and DF output

IV. EXPERIMENTAL RESULTS

The experimental approach described in this section illus-
trates the two processing paths for people CFAR detection in
the Industry 4.0 indoor environment of the University of Brest
shown in Fig. 4. It represents a drug industrial production
chain, with all the associated supervision and cybersecurity
infrastructure. During our experiments the platform was run-
ning, so that the Doppler spectrum generated by its mobile
components and conveyors, as well as the signal backscattered
by its rigid structure are mixed with the SoI, backscattered by
a person present in the room.

In our experimental setup, we have used a Xethru X4M03
IR-UWB Novelda radar [21], having the parameters given in
Table I. It has been connected to a laptop for data storage and



(a) (b)

Fig. 4: Experimental setup in the industrial platform used for measured data acquisition and illustration of the two main phases
of the considered scenario: (a) person walking in front of the radar, and (b) person sitting

analysis, utilizing MATLAB® software for data processing.
The data acquisition period spans 120 seconds, during which
the person to be detected alternates between sitting and mov-
ing alongside the industrial platform. We have considered a
combined scenario including 4 distinct phases: the person sits
at about 5.5 m away from the radar during 50 seconds, then
slowly moves back and forth in front of the radar within the
range 2.5-5 m, during 20 seconds, sits again at about 4 m for
30 seconds, and finally walks faster than in the second phase
during the last 20 seconds.

The signal processing results corresponding to the consid-
ered scenario are provided in Fig. 5. The envelope of the
measured signals is first shown in Fig. 5(a). The backscattered
signals are measured in each PRI during the fast time, their
delays being directly related to the slant range represented on
the vertical axis of the plotted images. The other axis is the
slow time, which refers to the time required to transmit the
4000 snapshots to be used by the Doppler focusing stage. It
can be readily seen from this image that the considered indoor
environment is heavily-cluttered, making it difficult to detect
people inside. The most part of the clutter, corresponding to
fixed objects, is removed after the MTI stage, as illustrated
in Fig. 5(b), but the signal corresponding to the person’s
stationary positions is also highly attenuated because the
breathing rate is very low (around 0.4 Hz). This effect is
compensated by the whitening filter, which restores the SNR
corresponding to the signal backscattered by the stationary
person, as shown in Fig. 5(c).

The SNR is further maximized for all the backscattered
signals by the MF, as can be seen in Fig. 5(d), the associated
processing gain being of about 4.5 dB. Note that MF operates
in fast time, unlike the two previous signal processing steps,
which are performed in slow time, just as the last processing
stage, i.e. Doppler focusing. Its effect is shown in Fig. 5(e)
and Fig. 5(f) for two Doppler shift ranges, under and above 1
Hz, respectively. This separation is useful since the stationary
people can be detected in the first region, while the Doppler
spectrum associated with the moving people and mobile parts
of the industrial production chain is visible on the second re-
gion. Indeed, the person’s breath during the two time intervals
when she is seated can be clearly identified in Fig. 5(e), by
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Fig. 5: Signal processing results for measured data in an
Industry 4.0 indoor environment: (a) measured data, (b) MTI
output, (c) whitening filter output, (d) MF output, (e) DF
output under 1 Hz and (b) DF output above 1 Hz

the two maxima located at 4 m and 5.5 m, corresponding to
a Doppler shift of about 0.5 Hz. Their amplitudes are similar,
although the second sitting position is closer than the first one,
because the processing gain is higher for the first position, due
to a longer coherent integration time, i.e. 50 seconds instead of
30 seconds for the second position. It also explains the better
Doppler resolution, which can be noticed for the first position
compared to the second one.

Finally, the CFAR detection results at the MF and DF output
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Fig. 6: CFAR detection results for measured data in an Industry
4.0 indoor environment: (a) at the MF output (Pfa = 10−1),
(b) at the MF output (Pfa = 10−6), (c) at the DF output
(Pfa = 10−1) and (d) at the DF output (Pfa = 10−6)

are illustrated in Fig. 6, for two false alarm probabilities,
i.e. 10−1 and 10−6. The detection thresholds (7), derived
in Section III, have been used to obtain these results, by
making a decision on each MF/DF output envelope sample
or decision statistic. They have been calculated by averaging
100 measured samples around the decision statistic, according
to (3) and (6), with a guard interval equal to the fast time and
Doppler resolution, respectively.

As it can be readily seen, the person inside the room is
correctly detected, both during the motion and stillness time
intervals. All four phases of the scenario under consideration
are reliably recovered, so that the detection results can be
further used for tracking or people identification purposes. We
have also noticed an accurate estimation of the required false
alarm rate for the regions where only the RCN is present.

V. CONCLUSION

The experimental UWB system for people detection in
cluttered industrial environments has shown promising results,
with effective clutter and noise mitigation performed by its
signal processing stages. Our findings demonstrate a high
probability of detection for both static and moving people,
highlighting the system’s suitability for industrial applications.
Future research will focus on refining clutter mitigation algo-
rithms and exploring machine learning integration to distin-
guish between the Doppler signatures of mobiles objects and
people moving in indoor environment.
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