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Summary. We investigate Schwarz’ domain decomposition algorithm as a tool for numerical

zoom and compare it with the Subspace Correction Method. Quadrature error is investigated

and the convergence of Schwarz’ algorithm is sketched for non matching grids. The methods

are also compared numerically.

1 Introduction

Often enough engineers do a coarse calculation and then a finer one on a subset

(zoom) Λ of the whole domain Ω . We wish here to justify this approach, i.e. to study

convergence and errors when the strategy is made into a loop. Obviously one zoom

calculation is not enough, unless the problem is nonlinear or time dependent and the

iterations for the zoom are seen as part of the nonlinear or time loop.

So the situation is as follows: a coarse calculation is done in Ω , then another one

in a zoom Λ ⊂ Ω . The question then is how to set properly the problem in Λ and

how to feed in intelligently its solution into the coarse solver to correct it?

Chimera

The chimera method proposed by Steger [11], originally for nonlinear time depen-

dent problems, digs a hole D in the coarse domain strictly inside the zoom region Λ .

For example, to compute the hydrostatic pressure u of a porous media flow given its

value on ∂Ω and governed by Darcy’s law with porosity K,

u−g ∈ H1
0 (Ω) : −∇ · (K∇u) = f in Ω (1)

one chooses a sub-domain D strictly inside Λ and loops on n on the two problems:

Chimera is identical to Schwarz’ algorithm for domain decomposition, but the 
Computational Fluid Dynamic community uses this terminology. In our numerical 
experiments in the present paper, the hole D will always be chosen as a union of sev-

eral triangles from the coarse mesh on Ω and Un|∂ D = un−1|∂ D will be approximated
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Require: An initial guess is needed, for instance u0
H = gH

1: for n = 1 . . .N do

2: Solve

−∇ · (K∇Un) = f in Ω\D, (Un −g)|∂ Ω = 0, Un|∂ D = un−1|∂ D, (2)

3: Solve

−∇ · (K∇un) = f in Λ , un = Un on ∂Λ . (3)

4: end for

Algorithm 2: Chimera

by taking the values of un−1 at the coarse grid vertices of ∂D. Although this seems

to work fine in most cases, the convergence in the natural energy norm is an open

problem, as well as the precision because of the unavoidable interpolation of Un on

∂Λ when Λ is not made of elements of the triangulation of Ω . The theoretical anal-

ysis of this method will be done here in the maximum norm. Note that an alternative

way to impose Un|∂D = un−1|∂D (even with an arbitrary form of ∂D) would be to use

boundary penalty on ∂D or volumic penalty on D. However, such implementations

do not perform well in practice as reported in [9].

Hilbert Space Decomposition Method

An alternative idea introduced in [12] and studied in [2, 3] amounts, formally speak-

ing, to finding a subspace correction u to the coarse solution, i.e.

find U,u with U −g ∈ H1
0 (Ω),u ∈ H1

0 (Λ) and

∫

Ω
(K∇(U + u) ·∇(W + w)− f (W + w)) = 0 ∀W ∈ H1

0 (Ω), w ∈ H1
0 (Λ) (4)

This equation is easy to discretize, with uH ≈ U, uh ≈ u, and a simple iterative

scheme such as Algorithm 3. We use there the following notations: VH and Vh are

finite element spaces on some regular triangulations TH and Th of Ω and Λ respec-

tively; V0H = VH ∩H1
0 (Ω); VgH is the subspace of VH consisting of functions equal

to gH on ∂Ω , and V0h = Vh ∩H1
0 (Λ).

When Λ ⊂ Ω , Algorithm 3 is also known as the patch iterator [7]. The solution

uHh = limn→∞(un
H + un

h) thus obtained satisfies the following error estimate even if

the two meshes ΩH and Λh do not match:

‖u−uHh‖H1(Ω) ≤C
(

Hr‖u‖Hq(Ω\Λ ) + hs‖u‖Hq(Λ)

)

, (7)

where r and s are the maximal degrees of the polynomials used in the construction

of VH and Vh respectively and q = max(r,s)+ 1.
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Require: an initial guess u0
h
∈V0h is needed.

1: for n = 1 . . .N do

2: Find un
H ∈VgH by

∫

Ω
K∇un

H ·∇wH =
∫

Ω
f wH −

∫

Ω
K∇un−1

h
·∇wH ∀wH ∈V0H (5)

3: Find un
h
∈V0h by

∫

Λ
K∇un

h ·∇wh =

∫

Λ
f wh −

∫

Λ
K∇un

H ·∇wh ∀wh ∈V0h (6)

4: end for

Algorithm 3: Hilbert Space Decomposition

Harmonic Patch Iterator

The drawback of Hilbert Decomposition method is that its convergence can be very

slow when the triangulations TH , Th are not nested. The method needs to be im-

proved; this is the object of Algorithm 4, the Harmonic patch method of [8]. To write

it down, we need the following (normally low dimensional) subspace of VH :

V 0
H = {vH ∈VH : supp vH ⊂ Λ}.

Require: an initial guess u0
h ∈V0h.

1: for n = 1 . . .N do

2: Find λ n
H ∈V 0

H such that

∫

Ω
K∇λ n

H ·∇μH =
∫

Ω
f μH −

∫

Ω
K∇un−1

h
·∇λH ∀μH ∈V 0

H (8)

3: Find un
H ∈VgH by

∫

Ω
K∇un

H ·∇wH =
∫

Ω
f wH −

∫

Ω
K∇un−1

h
·∇wH −

∫

Ω
K∇λ n

H ·∇vH ∀wH ∈V0H (9)

4: Find un
h ∈V0h by

∫

Λ
K∇un

h ·∇wh =
∫

Λ
f wh −

∫

Λ
K∇un

H ·∇wh = 0 ∀wh ∈V0h (10)

5: end for

Algorithm 4: Harmonic patch iterator

The new variable λ n
H is merely auxiliary, and the solution is recovered as uHh =

limn→∞(un
H + un

h) exactly as in the case of Algorithm 3. In fact these two algorithms

are identical in the case of nested triangulations, in the sense that un
H + un

h is then

rigorously the same in Algorithms 3 and 4 for all n ≥ 1 although each un
H and un

h

may differ from one algorithm to another. In general, uHh obtained by the Harmonic
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Patch Iterator can be slightly different from the limiting solution of Algorithm 3

but it still satisfies the a priori error estimate (7). The additional problem for

λ n
H is normally very cheap to solve permitting a great increase of the conver-

gence rate in comparison with Algorithm 3 as confirmed by the numerical experi-

ments in [8].

One Way Schwarz

If (as will be done in this paper) in order to facilitate the evaluation of
∫

Λ K∇un
H ·∇wh

in (6), one approximates un
H there by its interpolation γhun

H on Th, then the re-

sulting problem for un
h can be simplified. Namely, one introduces in each itera-

tion the new unknown wn
h ∈ Vh as wn

h = γhun
H |Λ + un

h so that wn
h solves the same

problem (3) as the fine correction un in the Schwarz algorithm 2. One can rewrite

then Algorithm 3 in terms of un
H and wn

h (without distinguishing between γhun−1
H

and un−1
H in the coarse correction step) and this leads to the “One way Schwarz”

algorithm 5 proposed in [9]. Note that the successive approximations un
Hh to u

should be defined here as un
Hh = {wn

h in Λ , un
H outside Λ} just as in the Schwarz

algorithm.

Require: 2 initial guesses u0
H ∈VgH and w0

h
∈Vh such that w0

h
= γhu0

H on ∂Λ .

1: for n = 1 . . .N do

2: Find un
H ∈VgH by

∫

Ω
K∇un

H ·∇vH =
∫

Ω
f wH +

∫

Λ
K∇(un−1

H −wn−1
h

) ·∇vH ∀vH ∈V0H (11)

3: Find wn
h
∈Vh with

∫

Λh

K∇wn
h ·∇vh =

∫

Λh

f vh ∀vh ∈V0h, wn
h = γhun

H on ∂Λ (12)

4: end for

Algorithm 5: One way Schwarz

The equivalence of Algorithms 3–5 is readily seen in the nested case. In a general

situation, the relations between them are rather complicated because of interpolations

from one mesh to another. One can see though that our last algorithm is closer to

the harmonic version 4, but its performance in practice is situated between those of

Algorithms 3 and 4, see [9].

As the subspace correction methods such as Algorithms 3–5 can in principle be

prone to instabilities due to the quadrature errors, we wish here to study the Chimera

idea more carefully. The convergence of Algorithm 2 and an error estimate for it

will be proved in the maximum norm under some natural hypotheses. It will be also

numerically compared with Algorithms 3–4.
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2 Convergence of Schwarz’ Algorithm on Arbitrary

Non-Matching Meshes

Convergence of multidomain approximations with overlap of arbitrary finite element

meshes is known only in the case of the Mortar method [1]. Convergence of Schwarz’

algorithm on arbitrary uniform meshes has been shown by Cai et al. [4] only for

finite difference discretization. Their proof relies on the maximum principle and the

exponential decay of the solution of elliptic pdes far from the boundaries. The same

ideas are used here for triangular first order finite elements.

Fig. 1. Triangulations showing ΩH outside SH and Ωh inside Sh.

To solve

−Δu = f in Ω with u = g on Γ = ∂Ω , (13)

we choose two subsets of Ω , ΩH and Ωh and two triangulations TH of ΩH , Th of Ωh,

such that

ΩH ∪Ωh = Ω , ∂Ωh ⊂ ΩH , ∂Ωh ∩Γ = /0, ∂ΩH\Γ ⊂ Ωh.

As in Fig. 1 we denote by Sh the boundary of Ωh and by SH the part of the boundary

of ΩH different from ΓH . Next, let

VH = {v ∈C0(ΩH) : v|K ∈ P1, ∀K ∈ TH}, V0H = {v ∈VH : v|∂ΩH
= 0},

and similarly with h. Starting from u0
H = 0, u0

h = 0, the discrete Schwarz algo-

rithm (same as Chimera Algorithm 2) finds um
H ∈ VH and um

h ∈ Vh such that ∀wH ∈
V0H , ∀wh ∈V0h:

aH(um
H ,wH) = ( f ,wH), um

H |SH
= γHum−1

h , um
H |ΓH

= gH

ah(u
m
h ,wh) = ( f ,wh), um

h |Sh
= γhum

H ,
(14)

where aH,h(u,v) =
∫

ΩH,h
∇u ·∇v and γH (resp γh) is the interpolation operator on VH

(resp Vh).
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Hypothesis 1 Assume that the maximum principle holds for each system in (14)

independently. Further assume that the solution νH ∈VH of

aH(νH ,wH) = 0 ∀wH ∈V0H , νH |SH
= 1, νH |ΓH

= 0, (15)

satisfies |νH |∞,Sh
:= λ < 1.

Remark 1. Notice that the maximum principle is known to be true when all the angles

of the triangulation are acute [5]. The strict maximum principle of the hypothesis

could be checked numerically, a priori. Error estimates in maximum norm of order

h2 log 1
h

with respect to the mesh edge size h for linear elements have been obtained

by Schatz et al. [13].

Proposition 1. Assume Hypothesis 1 to be satisfied. Then the discrete Schwarz al-

gorithm (14) converges to the unique solution (u∗h,u
∗
H) ∈ Vh ×VH of the following

system:

aH(u∗H ,wH) = ( f ,wH) ∀wH ∈V0H , u∗H |SH
= γHu∗h, u∗H |ΓH

= gH

ah(u
∗
h,wh) = ( f ,wh) ∀wh ∈V0h, u∗h|Sh

= γhu∗H .
(16)

Proof. By the maximum principle and the fact that γH and γh decrease the L∞ norms,

problems of the type: find vH ∈VH , vh ∈Vh

aH(vH ,wH) = 0 ∀wH ∈V0H , vH |SH
= γHuh, vm+1

H |ΓH
= 0

ah(vh,wh) = 0 ∀wh ∈V0h, vm+1
h |Sh

= γhvH ,
(17)

satisfy

‖vH‖∞ ≤ ‖uh‖∞,SH
, ‖vh‖∞ ≤ ‖vH‖∞,Sh

. (18)

Combining this with the estimate on the solution of (15) we obtain

‖vh‖∞ ≤ ‖vH‖∞,Sh
≤ λ‖vH‖∞ ≤ λ‖uh‖∞. (19)

Consider now the mapping T : Vh →Vh that maps any um−1
h in (14) to um

h . Since T

is affine, estimate (19) the problem (17) proves that T is a contraction in the L∞(Ωh)
norm. By Banach contraction theorem we have then that the iterative process um

h =

Tum−1
h converges to the unique fixed point u∗h of T . In other words, um

h given by (14)

converges to u∗h in (16), which entails the convergence of um
H to u∗H .

Proposition 2. Assume Hypothesis 1 to be satisfied. Then (u∗h,u
∗
H) in (16) solves ap-

proximately (13) with optimal L∞ error. More precisely, we have

max(‖u∗H −u‖∞,ΩH
, ‖u∗h −u‖∞,Ωh

) ≤

C

(

H2 log
1

H
‖u‖H2,∞(ΩH) + h2 log

1

h
‖u‖H2,∞(Ωh)

)

, (20)

with a constant C depending only on the domains ΩH and Ωh.
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Proof. Solution u to problem (13) satisfies u|Γ = g and

aH(u,w) = ( f ,w) ∀w ∈ H1
0 (ΩH), u = γHu +(u− γHu) on SH ,

ah(u,w) = ( f ,w) ∀w ∈ H1
0 (Ωh), u = γhu +(u− γhu) on Sh.

(21)

Let e = u∗H − u and ε = u∗h − u. Setting w = wH in the first equation and w = wh in

the second, we have

aH(e,wH) = 0 ∀wH ∈V0H , e = γHε − (u− γHu) on SH , e|Γ = gH −g

ah(ε,wh) = 0 ∀wh ∈V0h, ε = γhe− (u− γhu) on Sh.
(22)

Let ΠHu ∈VH and Πhu ∈Vh be the solutions of

aH(ΠHu,wH) = aH(u,wH) ∀wH ∈V0H , ΠHu = γHu on SH , ΠHu|Γ = gH

ah(Πhu,wh) = ah(u,wh) ∀wh ∈V0h, Πhu = γhu on Sh.
(23)

By [13], we have

‖ΠHu−u‖∞,ΩH
≤ H2 log

1

H
‖u‖H2,∞(ΩH),

‖Πh −u‖∞,Ωh
≤ h2 log

1

h
‖u‖H2,∞(Ωh).

(24)

Finally let

εH = uH −ΠHu = e + u−ΠHu, εh = uh −Πhu = ε + u−Πhu.

Then εH ∈VH , εh ∈Vh and

aH(εH ,wH) = 0 ∀wH ∈V0H , εH = γH(εh + Πhu−u) on SH , εH |Γ = 0

ah(εh,wh) = 0 ∀wh ∈V0h, εh = γh(εH + ΠHu−u) on Sh.
(25)

The maximum principle (like in (18) and (19)) again yields

‖εH‖∞ ≤ ‖Πhu−u‖∞,SH
+‖εh‖∞,SH

, (26)

‖εh‖∞ ≤ ‖ΠHu−u‖∞,Sh
+‖εH‖∞,Sh

, (27)

‖εH‖∞,Sh
≤ λ‖εH‖∞. (28)

Therefore

max(‖εh‖∞,‖εH‖∞) ≤
1

1−λ
(‖ΠHu−u‖∞,ΩH

+‖Πhu−u‖∞,Ωh
). (29)

Combining it with (24) and the triangle inequality we obtain the desired result.
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Numerical Tests

We have tested numerically the Schwarz algorithm for the problem u − Δu =
xy, u|∂Ω = xy with the solution u = xy and the geometry shown in Fig. 2a. All

the computations were done using the integrated environment freefem++ [10]. Con-

vergence of the Schwarz iterations is illustrated in Fig. 2b. The results show that the

convergence is linear and ‖um+1
h −u∗h‖0/‖um+1

h −u∗h‖0 → 0.67 while the constant λ
in the Hypothesis 1 is λ = 0.75. When the two meshes are refined by the factor of 2

or 4, these figures do not change much.

a) b)

10
–1

10
–2

10
–3

10
–4

10
–5

10
–6

10
–7

10 20

1

2

Fig. 2. a) The geometry of ΩH , Ωh and the meshes M1; b) Convergence on Schwarz iterations,

error with respect to the final discrete solution.

Let us now look at the behavior of the converged Schwarz solution with respect

to the mesh refinement. Figure 3c shows it for the mesh M1 as in Fig. 2a, and the

error is plotted in Fig. 3d. Table 1 reports the error on three pairs of meshes, namely

M1, their twofold refinement M2 and the 4-times refinement M4. We observe the

optimal convergence rates

H1 L2 L∞

M1 7.2 ·10−3 1.4 ·10−3 4.0 ·10−3

M2 3.6 ·10−3 2.9 ·10−4 1.2 ·10−3

M3 1.6 ·10−3 9.8 ·10−5 3.8 ·10−4

Table 1. The relative error in H1, L2 and L∞ norms for the approximated solutions obtained

by Schwarz algorithm on meshes M1–M3.
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c) d)

Fig. 3. c) The solution obtained by the Schwarz algorithm on M1; d) The error with respect to

the exact continuous solution.

3 Numerical Comparison of the Methods

We tested all the Algorithms 2-4 on the benchmark of the Poisson equation −Δu = f

in Ω = (−1,1)2 with Dirichlet boundary conditions on ∂Ω and the exact solution

u = cos
π

2
xcos

π

2
y + 10χ(x2 + y2 < R2)e

1

R2 −
1

R2−x2−y2 (30)

with R = 0.3. We choose the patches of the form Λ = (−εΛ ,εΛ )2, the holes in Ω
of the form D = (−εD,εD)2 and take the triangulations TH and Th that do not match

each other, but the hole D always consists of several triangles from TH . We used

the following options to compute the mixed integrals in (5)–(6) (the same holds for

(8)–(10)): the integral
∫

Ω ∇un−1
h ·∇wH in (5) is evaluated by a numerical quadrature

on the fine mesh Th, the integral
∫

Λ ∇un
H ·∇wh in (6) is approximated by

∫

Λ ∇(γhun
H) ·

∇wh, which is easy to evaluate.

Figure 4 presents the convergence history in the H1 and L∞ norms of the relative

error on iterations for the 4 choices of triangulations. We observe that all the meth-

ods converge but that the Harmonic Patch Iterator is in general the most efficient ap-

proach. More specifically, it converges to a better approximation in situations a) and

b) with the patch of the size εΛ = 0.27. The gain in accuracy is observed in both H1

and L∞ norms. On the contrary, all the methods converge to virtually the same ap-

proximated solution in situations c) and d) where we have taken a larger patch with

εΛ = 0.4. However, this choice of meshes does not allow us to compare the relative

merits of our algorithms. Indeed, the patch here is so large that the solution outside

λ does not feel the spike in f , which lies inside Λ . Therefore, one does not need

to iterate here at all: one coarse calculation with one fine correction gives already a

fairly good solution. Note also that the errors in Fig. 4 are computed with respect to

the exact solution so that these results confirm the convergence of all the methods

under mesh refinement.
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We do not give here detailed results on our last Algorithm 5 since these results

are very close to those of Algorithm 4 for the present benchmark.

a)

10
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10
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5 10
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10
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5 10
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10
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10
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5 10

10
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10
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10
–3

5 10

c)
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10
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d)

10
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10
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10
–2

5 10

10
–1

10
–2

10
–3

5 10

Fig. 4. Results for the benchmark (30). Left – the meshes, middle – relative error on iteration

in the H1 norm, right – relative error in the L∞ norm. Four pairs of meshes: a) εΛ = 0.27,

εD = 0.15, H = 1
6 , h = 0.27

15 ; b) the twofold refinement of a); c) εΛ = 0.4, εD = 0.2, H = 2
15 ,

h = 1
50 ; d) the twofold refinement of c).
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4 Conclusion

The paper has shown that a standard Schwarz algorithm can be used for a zooming

procedure, even with standard interpolations at the boundaries. However it seems

that if one needs to iterate between the coarse and fine scales, the Harmonic Patch

approach is the most robust way to do it. The numerical quadrature could affect the

subspace correction methods in some cases. In order to get rid of the quadrature, one

can compute the mixed integrals exactly on the intersection of two triangulations.

In the near future we plan to improve on our triangulation intersector by inserting

Martin Gander et al ’s algorithm [6] into freefem++.
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