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Abstract. Nestedness is a property of bipartite complex networks that
has been shown to characterize the peculiar structure of biological and
economical networks. Emergence of nestedness is commonly due to two
different schemes: i) mutualistic behavior of nodes, where nodes of each
class have an advantage in associating with each other, such as plant pol-
lination or seed dispersal networks; ii) geographic distribution of species,
captured in a so-called biogeographic network where species represent
one class and geographical areas the other one. Motivated by analogies
with biological networks, we study the nestedness property of the public
Internet peering ecosystem, an important part of the Internet where au-
tonomous systems (ASes) exchange traffic at Internet eXchange Points
(IXPs). We propose two representations of this ecosystem using a bi-
partite graph derived from PeeringDB data. We statistically confirm the
nestedness property of both graphs, which has never been observed be-
fore in Internet topology data. From this unique observation, we show
that we can use node metrics to extract new key ASes and make efficient
prediction of newly created links over a two-year period.

Keywords: Peering ecosystem, Nestedness, Link prediction

1 Introduction

Nestedness is a graph property that characterizes the peculiar structure of certain
real bipartite complex networks. This property has been observed mainly in two
types of biological networks: i) the so-called ”mutualistic” networks [2], such
as pollination or seed dispersal networks, where the nodes of each class have a
mutual benefit to associate with each other and ii) the biogeographic networks
representing the distribution of species over geographical sites [32]. Only more
recently has this structural property been identified in non-biological networks:
in the international trade network [11] and in online communication systems [6].

Here, by making an analogy with mutualistic and biogeographic networks,
we question for the first time to our knowledge the concept of nestedness in
data describing the topology of the Internet. At the coarsest granularity, the
Internet is composed of autonomous systems (ASes) that can be, for example,
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content providers, Internet service providers, or network service providers. They
essentially interconnect with each other in a client-to-provider or peer-to-peer
relationship, thanks to infrastructures that can be private or public. A signif-
icant amount of Internet traffic between ASes occurs in public infrastructures
known as Internet Exchange Points (IXPs) [12]. IXPs are generally non-profit
organizations that operate in metropolitan areas with the objective of facilitat-
ing the peering interconnections of the ASes that are members, in exchange for
a fee from the ASes to cover their operating costs. Together, ASes and IXPs
form what is known as the “public peering ecosystem”. This ecosystem is not
very well known because individual peering relationships between ASes are no-
toriously difficult to measure [24] [35] and the information is not disclosed by
interested parties for competitive and security reasons.

To study the nestedness of the public Internet peering ecosystem, we leverage
the PeeringDB dataset to construct two graphs that capture either the relation-
ships leading to a mutualistic network or the ones leading to a biogeographic
network. Since ASes and IXPs gain mutual benefit from their association (ASes
gain access to novel ASes and IXPs gain in attractiveness), the first graph is
the AS [is member of] IXP graph. To capture the relationship leading to a
biogeographic network in the second graph, we model the process of selective
immigration of an AS to a new geographic area. ASes are actors that may have
a geographical strategy in choosing the IXP to connect. For instance, they could
select IXPs leading to densely populated areas. We mimic such graph by group-
ing IXPs into countries, and defining an AS [is present at] country graph. If
the analogies are relevant, we expect to find nested networks that, through the
applications of the nestedness concept such as node ranking and link prediction,
improve our understanding of the public peering ecosystem.

2 Background

We adopt the following notation. A graph G(E, V ) is composed of a set of edges
or links E, and a set of vertices or nodes V and is described by an adjacency
matrix A. A graph is said to be bipartite if all links are shared between two
disjoint subsets of nodes, and if the graph is not directed, it can be fully described
by its bi-adjacency matrix B. We denote by d(i) the degree of node i. A graph
is connected if there exists a succession of links connecting every pair of nodes.

2.1 Dataset

The dataset generally used by the scientific community to study the evolution of
public peering is PeeringDB [33]. PeeringDB contains self-reported data about
ASes, IXPs, and the membership of ASes at IXPs. This database is expressive
enough to identify the major players in the peering ecosystem [8] [20], and can
be modeled as a bipartite graph representing the AS [is a member of] IXP
relationship [27]. PeeringDB is being collected on a daily basis by CAIDA [19],
allowing for temporal studies.
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PeeringDB is the authoritative source of information about the public peering
ecosytem. It is a non-profit and user-maintained database made to facilitate
interconnections of ASes at IXPs. It consists in self-reported information about
ASes (ASN, business type, traffic levels, ratio of inbound or outbound traffic,. . . ),
IXPs (facilities, country,. . . ), and the membership of ASes at IXPs. As of March
1st, 2021, 869 IXPs and 21388 ASes are registered.

Although it is a self-reported database, PeeringDB is considered to be up-
to-date and correct [8][19]. The data is now mostly uploaded automatically and
it is in ASes best interests to give correct information. Thus, in line with these
previous works, we consider PeeringDB as ground truth. However, it’s important
to note that PeeringDB only tells us about the public peering ecosystem, which
is only a sub-part of the inter-domain Internet. Although IXPs are an important
part of today’s Internet, enabling local traffic exchange, tier 1 ASes bypassing
[7] and CDN deployment [25], PeeringDB does not report on private network
interconnects (PNIs).

2.2 Nestedness

Nestedness [22] is a graph property commonly found in real world data such as
biological and economical networks. Formally, a graph is perfectly nested when,
for any pair of nodes (i, j), if the degree of i is greater than the degree of j,
then the neighborhood of j is included in the neighborhood of i. If the graph is
bipartite, as is often the case in nestedness studies, then the same condition holds
for any pair of nodes within the same class (cf. Figure 1-(b)). As a consequence,
it is possible to find an arrangement of rows and columns such as its bi-adjacency
matrix presents a triangular shape on the top left corner (cf. Figure 1-(c)). Such
a structure is representative of a perfectly nested network.

Nestedness is a property characterized at different levels. At the graph-level,
it consists in quantifying how much the graph is close to a perfectly nested
graph. After that, one might be interested in node-level nestedness that consists
in finding the arrangement of rows and columns allowing to reveal the triangular
structure in the adjacency matrix. This ordering represents a new ranking of the
nodes in terms of their individual contribution to nestedness. And finally, one
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Fig. 1: Illustration of a perfectly nested biogeographic network.
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might look for nestedness at the partition-level to identify communities where
nodes arrange themselves in a nested manner.

3 Modeling PeeringDB for a nestedness study

After introducing the networks requirements for a nestedness study, we present
how the AS [is member of] IXP and AS [is present at] country graphs are built
and conditioned to meet these requirements.

3.1 Constraints on the bi-adjacency matrix

The nested biological networks commonly studied in the literature are present
in the database web of life [17]. Most of them are bipartite, with bi-adjacency
matrix presenting the following properties [10]:

– The ratio between the number of rows Nr and columns Nc is balanced (there
is an equilibrium between the number of nodes in both classes). Therefore
the eccentricity e = |Nr −Nc| /(Nr +Nc) should be between 0 and 0.5.

– The matrix has a small size N = Nr + Nc (at most 1000 nodes in both
classes). As a consequence, numerous tools related to the evaluation of nest-
edness do not scale up.

– The matrix is neither too sparse nor too dense. Since nestedness is based
on the comparison of overlapping neighborhoods, graphs with many low-
degree nodes are penalized when detecting nestedness, even if these nodes
do not play an important role in the overall structure of the graph. The
scarce studies involving large networks therefore filter out the nodes with
the fewest connections [29][31].

3.2 AS-IXP graph

The AS [is member of] IXP graph, referred to as AS-IXP graph, is a bipartite
graph composed of 11407 ASes reporting 31889 associations to 780 IXPs. It
is obtained with PeeringDB membership data as proposed in [27], for which we
weight the links with the port size attribute that represents its capacity in Gbps.
We consider only the main connected component, which comprises more than
99% of the total of nodes.

We filter out nodes in order to meet the constraints given earlier. We studied
the evolution of adjacency matrix properties (eccentricity and network size N)
according to node filters based on degree and weighted degree (we use for the
later the terminology “port capacity” introduced in [8] as the sum of the port
sizes of an AS’ links). We chose to filter out the nodes with a degree d ≤ 3 in
order to i) reduce the eccentricity to 0.5 ; ii) make the network small enough for
a tractable nestedness study on 2681 nodes ; iii) and have the least restrictive
filter possible. We do not apply a filter on the port capacity because its effect
is less pronounced than the one of the filter on degrees, and could result in the
removal of high degree ASes with low associated port sizes. The resulting graph
presents 1942 ASes connected to 739 IXPs with 17689 links.
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3.3 AS-country graph

The AS [is present at] country is referred to as the AS-country graph in the
following. We construct the AS-country graph by merging, in the unfiltered AS-
IXP graph, the IXPs by their reported countries. We obtain the presence of 11407
ASes in 112 countries, inducing a strong imbalance between both classes. To
have a balanced ratio, we select the most central ASes in the graph according to
three metrics: degree, PageRank (to select major traffic destination) and reverse
PageRank (to select major traffic sources). For each metric, we select the top
100 ASes and keep the union of the three sets. The final AS-country graph is
composed of 182 ASes and 112 countries.

PageRank and reverse PageRank metrics are computed on a weighted and di-
rected AS-IXP graph model of PeeringDB as given in [20]. Weights stem from the
routers’ port size reported in PeeringDB and edge directions from the reported
traffic balance of ASes (Heavy or Mostly Inbound or Outbound, Balanced).

Next, we solely work with the unweighted version of the two AS-country
and AS-IXP graphs because: i) nestedness studies are mainly carried out on
unweighted graphs, and are therefore better understood ; ii) many nestedness
tools don’t account for weights ; iii) to simplify the scope of our analysis (for
example, in the link prediction study, predicting the link weight is harder than
predicting the appearance of a new link). From an application point of view, this
restriction amounts to working only on the absence and presence of ASes, which
we argue is still valuable information for stakeholders.

4 Nestedness assessment

Here, we characterize for the first time to our knowledge the presence of nest-
edness in Internet topology data. We first introduce the methods used to assess
nestedness that are based on shared best practices outlined in [40],[3] and [22].

4.1 Detecting nestedness

Statistical significance of metrics Most metrics do not include a null model
and return a value that, in absolute terms, has no clear interpretation. It is
therefore necessary to compare this value to a null ensemble consisting of a large
number of nestedness measures on random networks sharing properties with the
network to be evaluated. We generate the null ensembles with the null model
Proportional-Proportional (PP) that is commonly used since it offers a balance
between errors of type I (identifying non-nested networks as nested) and type II
(rejecting nested networks) [22]. State-of-the-art implementations of this model
are known as “Bascompte’s PP” [2] and “corrected PP” [30], the latter being
a correction of the widely used Bascompte’s PP aiming to further reduce the
number of type I errors.

The nestedness statistical significance of the network to be evaluated is as-
sessed with the p-value and the z-score [40]. The p-value is the fraction of the null
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ensemble with higher nestedness than the test network. If there is no network
in the null ensemble that is more nested than the network to be tested, then
we conservatively set the value of p to be the inverse of the ensemble size, as
proposed in [3]. A p-value less than 0.05 is considered sufficient to say that the
network is more nested than the statistical set [3]. On the other hand, p > 0.95
indicates an anti-nested pattern. The z-score is the difference between the test
network measure and the mean of the null ensemble measures, normalized by its
standard deviation.

Graph-level metrics To evaluate the nestedness of a network, it is considered
good practice to use several metrics We consider the popular “Nestedness metric
based on Overlap and Decreasing Fill” (noted NODF) [1], a variant of NODF
taking into account a null model called “η̃” [36], and the “spectral radius metric”
(noted ρ)[4][37].

4.2 Nestedness in AS-country graph

The results of the statistical tests of nestedness for the AS-country graph are
given in Table 1. The p-value, associated with a high z-score, shows that no
null ensemble provided a more nested network than the AS-IXP graph. We can
conclude that the AS-country network is highly nested.

4.3 Nestedness in AS-IXP graph

For the AS-IXP graph, the results presented in Table 1 are quite mixed. Among
the six combinations of null ensembles and metrics, four indicate a strongly
nested network with p < 0.05 while two identify the network as strongly anti-
nested with p close to 0.95. Thus, we cannot conclude on the nested structure
of the AS-IXP graph.

Table 1: Statistical test results of the graph-level nestedness, presented as the p
value and z score in parentheses.

Graph
Null model

Nestedness metric
η̃ NODF Spectral radius

AS-country 0.001 (80.59) 0.001 (61.04) 0.001 (29.97)
AS-IXP PP (Bascompte) 0.001 (103.94) 0.001 (86.61) 0.001 (94.58)
AS-IXP nested comp. 0.001 (144.36) 0.001 (113.21) 0.001 (56.31)

AS-country 0.001 (27.34) 0.001 (20.93) 0.001 (11.42)
AS-IXP PP (corrected) 0.945 (-1.63) 0.977 (-1.94) 0.001 (39.68)
AS-IXP nested comp. 0.001 (27.97) 0.001 (19.53) 0.001 (16.79)

However, it has been shown in [20] that the IXPs membership network ex-
hibits a community structure that correlates with the geographic proximity of
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ASes and IXPs. Thus, we leverage a metric developed in [36] to quantify the
presence of nested communities. This metric called In-Block Nestedness (IBN)
is an adaptation of the metric η̃ also introduced in [36]. It can be optimized in
the same way as the classical modularity [16][14] to obtain a network partition.
In order to find nested communities, the authors of [36] optimize IBN with the
extremal optimization (EO) method [5] [13]. In the present work, we use the
implementation of this algorithm made available by the authors of [28] to find
nested communities, and compare it to the classical modularity communities. We
observe that the modularity tends to partition the network in communities of
similar sizes. The 15 hypergiant ASes identified in [8], i.e. ASes leveraging IXPs
to have a global reach, are split between communities 0 (40%) and 7 (60%), which
does not capture their actual global footprint on the Internet. For the IBN on
the contrary, a large portion of the nodes and all of the hypergiants are grouped
in a single community. If we consider the port capacity metric, introduced in [8]
as the sum of all port sizes reported in PeeringDB for each AS, this community
is even more predominant, containing ASes that account for 77% of total port
capacity. The connected subgraph induced by this community is highly nested,
with the results presented in Table 1 showing the lowest possible p-value and
a high z-score. Motivated by these observations, we will study in the following
this community which we call the main nested component of the AS-IXP graph.

5 Use cases

The triangular structure in the bi-adjacency matrix which is characteristic of
nestedness is yet to be revealed with node-level metrics. Such a structure is
obtained by a relevant ordering of the rows and columns of the bi-adjacency
matrix, and has several applications:

– The derivation of a new and original ranking of nodes that offers a novel
interpretation of their importance in the network;

– The prediction of link appearance in the network based on the idea that a
new link is more likely to appear in the triangular structure of the matrix.

5.1 Node-level metrics

The simplest node-level metric we can use is the node degree. It is a classical
metric fulfilling the decreasing degree condition of nestedness, and has a simple
interpretation. However, its definition does not take into account the second and
only other property of nestedness: the neighborhoods’ overlap.

Another possible ordering of nodes is given by the popular state-of-the-art
BINMATNEST algorithm [34]. The authors propose a graph-level nestedness
metric sensitive to the nodes ordering in the matrix. A genetic algorithm is
deployed to maximize this graph-level metric by swapping the rows and columns.
The ranking of nodes is given by the row or the column indices observed in the
optimal isomorphism.
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We also use the fitness-complexity metric [39] [38] that also produces state-of-
the art ordering [18], but which has the advantage over BINMATNEST of having
simple and efficient implementation and a clear interpretation. This metric has
been introduced in world trade networks to rank countries and the products they
export. It is modeled by coupled, non-linear and recursive fitness and complexity
equations. For a network described by the adjacency matrix A, the fitness f(i)
of a country i is defined as the sum of the complexity scores q(α) of the products
α exported by this country:

f(i) =
∑
α

Ai,αq(α), q(α) =
1∑

i Ai,α(1− f(i))
. (1)

This equations are solved by computing iteratively:

fn(i) =
∑
α

Ai,αqn−1(α), qn(α) =
1∑

i Ai,α(1− fn−1(i))
, (2)

beginning with uniform non-null vectors f0 and q0. The fitness equation mea-
sures the economic health of a country based on the quality of its exported prod-
ucts and the complexity equation measures the quality of the products based on
the economic health of the countries that export them and the number of coun-
tries that export them. In our case, the interpretation for the AS-IXP graph
(respectively AS-country graph) is as follows: an AS has a high fitness score if it
is able to reach many IXPs (countries), some of which are difficult to access. An
IXP (country) has a high complexity score if it is associated with many ASes,
some of which are capable of reaching hard-to-reach areas.

5.2 New key players

We show the AS-country bi-adjacency matrix ordered by different node-level
nestedness metrics in Figure 2. All metrics reveal a triangular structure charac-
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teristic of nestedness. The links are concentrated in a stylized upper left triangle,
with a convex hypothenuse caused by the filling rate of the matrix. To visualize
how marked the AS-IXP triangular structure is, we compare it to a perfectly
nested network with the same number of links. The hypothenuse of a perfectly
nested network is given by the diversity-ubiquity curves [11]. The diversity and
ubiquity curves are respectively the curves giving the degree of the AS and the
countries. They are represented in red on the figure. We can see that the density
of the links is indeed higher on the left of these curves than on the right, thus
giving a visual indication of nestedness for all of the metrics considered.

We find a difference between the degree metric on one side, and the BIN-
MATNEST and fitness-complexity metrics on the other side. Degree ordering
has a dense triangle of links but some of them are far to the right of the diago-
nal, while the other two have no links to the right of the diagonal at the cost of a
less dense triangle. This means that the fitness-complexity and BINMATNEST
rankings, specific to nestedness, provide a new ranking that is original compared
to the traditional degree one. We investigated the differences between the top 30
ASes for all three rankings. New players characterized by a large gap between
both their nestedness ranking and their degree ranking appear. Facebook’s sec-
ondary ASN (now Meta), that is used to distribute its most popular content [23]
efficiently through offnet deployment as close as possible to end-users [15], ranks
significantly better according to BINMATNEST and fitness, with +13 and +14
increase respectively over the degree. It enters the top 4 AS, and ahead of Face-
book’s main AS, which may seem peculiar. Other AS have a significant increase
in ranking, such as network service providers ROSTELECOM (+80 and +91)
and NETIX communication (+16 and +32). According to the fitness-complexity
metric, these new players are interpreted as being able to access hard-to-reach
areas of the world, which can not be captured in degree ranking.

Although hard to validate, we believe most of these results are consistent from
an operational point of view. Facebook’s secondary AS is used to distribute its
most popular content in cached form, which we assume is essential in remote
areas where bandwidth is limited. NETIX communication offers global peering
solution and advertise its “global reach” [26], so they might be specialized in
hard-to-reach regions. In the case of ROSTELECOM, we attribute the large
increase to a low degree coupled with its presence in both Europe and Asia.

We also observed the appearance of new actors in the AS-IXP graph with by
comparing the degree and fitness-complexity rankings3. Among them, we find
operators related to domain resolution (DNS) such as RIPE NCC K-Root Oper-
ations (improvements over the degree of +30), DNS-OARC-112 (+29), Netnod
(+11). The RIPE NCC K-Root Operations and Netnod ASes are associated with
the 13 root name servers and thus play a structuring role in the global Internet,
which is clearly revealed in this new ranking. These AS are well ranked because
they extend their presence to isolated IXPs.

We point out that all the AS rankings presented differ greatly from a CAIDA
reference ranking based on ASes customer cone [21]. This is mainly due to the

3We do not show results from BINMATNEST due to performance issues.
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fact that ASes with many customers, such as backbone ASes with no provider
known as ”tier 1 networks”, are less interested in public peering. For them,
settlement-free peering means losing a potential customer. Thus, we see the
limits and specificity of the PeeringDB dataset.

5.3 Link prediction

As a more concrete application, we ask whether the nestedness observed in Peer-
ingDB graphs can be used to predict the appearance or disappearance of new
links, which is motivated by the fact that nestedness captures the attractiveness
of IXPs and countries for ASes looking for novel interconnection opportunities.
To assess the quality of the proposed link prediction scheme, the temporal evolu-
tion of the network has to be extracted as a ground truth. Thus, we first explain
how temporal snapshots of the two graphs are extracted from PeeringDB. Sec-
ond, we present the prediction method, and describe how the predictions are
validated for both graphs. Results are given for both graphs numerically, to-
gether with an illustration for the AS-country graph.

Networks preparation Our study window is the period between 2019-01-01 and
2021-03-01, and we choose a time resolution of a month, leading to 27 snapshots
of the two graphs.
Since the graphs evolve over time, we study here the largest connected compo-
nent present over the time window of interest. Thus, we select the nodes of both
graphs by considering only the sub-graphs induced by the nodes present in all
snapshots. This selection leads to only a few nodes being disconnected from the
main connected component, that are removed as well. For the AS-country graph,
this results in a network of 181 ASes and 91 countries. For the AS-IXP graph
of which we previously studied only the main nested component, we perform a
new largest nested community search as described in subsection 4.3, this time at
the beginning of the time period. To be comprehensive, our goal is to start from
a community and study its evolution, without the knowledge of the future com-
munity structure. We find a similar main community strongly nested comprising
51.8% of ASes, 39.7% of IXPs, 80% of all port capacity and all 15 hypergiants.
We therefore consider only the sub-graph induced by this community.
For the AS-country and AS-IXP graphs, respectively, the number of links varies
from 1863 to 2064 and 6329 to 6893. The links persist over time: for both graphs,
a mean of 98% of links of a snapshot are still present in a snapshot taken 6 months
later.

Link prediction models We adopt the method of link prediction proposed in
[11]. This method is used to predict both the appearance and disappearance
of links in nested networks. We only present how to predict appearances for
the sake of simplicity, the extension to the prediction of disappearances being
straightforward and given in [11]. It consists in i) ordering all unformed links at
the beginning of the time period according to their likelihood of appearance ii)
predicting the links sequentially according to this order.
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The first point is achieved by taking advantage of the triangular structure
of the bi-adjacency matrix. Let us consider a probit model of parameters α, β, γ
that is fit from the nested arrangement of links at the beginning of the time
period:

Ai,j = αd(i) + βd(j) + γ(d(i)× d(j)) + ϵi,j (3)

The probit residual term ϵ represents the deviation from the nested arrangement
of links and the model. A low negative value corresponds to an unformed link
that was expected to be present in the nested structure. It is therefore a link
that is likely to be created. On the other hand, high positive value corresponds
to a formed link not expected to be present, and thus being likely to disappear
in later snapshots.

Validation We assess the quality of the predictor by doing the following checks.
Based on the first snapshot and its matrix, we define the order of link appearance
(resp. disappearance) following the decreasing (resp. increasing) order of the
probit model of (3). For each prediction, we check in the subsequent snapshots
if the link has appeared (resp. disappeared) or not.

The quality of the predictor is then assessed by the receiver operating char-
acteristic (ROC) curve [9]. The true positive rate (TPR, predicted links actually
created or deleted afterwards) and the false positive rate (FPR, predicted links
not created or not deleted afterwards) is evaluated at each prediction. The evo-
lution of the TPR as a function of the FPR gives the ROC curve, and the area
under this curve (AUC) quantifies the quality of the predictor: 1 for the best
predictor, 0.5 for a random predictor, and 0 for the worst predictor.

Results The results of the link prediction for the AS-country graphs are shown
in Figure 3. We see in a) that links with negative probit residuals and therefore
likely to appear are located inside the triangular structure. These links are pro-
posed first by the predictor, leading to a high predictor quality with an AUC
of the ROC curve shown in b) of 0.875, far outperforming a random prediction.
The positive probit residuals shown in b) are located outside of the triangle.
This time, the prediction based on the nested structure is only slightly better
than a random one, with an AUC of the ROC curve shown in d) of 0.621.

We find the same behavior for the prediction quality of the AS-IXP graph,
with an AUC of 0.88 for created links and 0.55 for deleted links. Overall, these
results show that the nestedness observed in the PeeringDB ecosystem can be
efficiently leveraged to predict the creation of new links. This could serve as an
IXP recommender system for network operators.

6 Conclusion

In this work, we have drawn a parallel with biological ecosystems to reveal
the nestedness of graph representations of the public peering ecosystem. To the
best of our knowledge, this is the first time that nestedness has been observed in
Internet topology data. We have shown that nestedness has concrete applications
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Fig. 3: Link prediction for the AS-country graph.

to better understand the public peering ecosystem, an ecosystem difficult to
grasp because of the lack of topology data due to its confidential nature and
measurement limitations. The node-level nestedness metric known as fitness-
complexity provides a new interpretable ranking of ASes. This metric highlights
the ability of ASes to reach isolated regions of the world and IXPs, which is not
captured with the traditional degree and betweenness metrics. With a 27-month
time study, we also show that nestedness effectively predicts new associations
between ASes and countries in the world, as well as new membership of ASes to
IXPs.

We believe these applications will be useful to stakeholders in the public peer-
ing ecosystem. For example, link prediction can be seen as an IXP recommender
system for network operators.
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