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Abstract: The increasing use of inertial measurement units (IMU) in biomedical sciences brings
new possibilities for clinical research. The aim of this paper is to demonstrate the accuracy of the
IMU-based wearable Syde® device, which allows day-long and remote continuous gait recording
in comparison to a reference motion capture system. Twelve healthy subjects (age: 23.17 ± 2.04,
height: 174.17 ± 6.46 cm) participated in a controlled environment data collection and performed a
series of gait tasks with both systems attached to each ankle. A total of 2820 strides were analyzed.
The results show a median absolute stride length error of 1.86 cm between the IMU-based wearable
device reconstruction and the motion capture ground truth, with the 75th percentile at 3.24 cm. The
median absolute stride horizontal velocity error was 1.56 cm/s, with the 75th percentile at 2.63 cm/s.
With a measurement error to the reference system of less than 3 cm, we conclude that there is a valid
physical recovery of stride length and horizontal velocity from data collected with the IMU-based
wearable Syde® device.

Keywords: IMU; wearable; analytical validation; motion capture; gait monitoring; controlled environment

1. Introduction

Motion analysis in healthcare is a standard tool that is essential in medicine and clinical
research [1]. Reduced or impaired mobility occurs in many chronic health conditions, in the
natural aging process, and is often associated with reduced quality of life, increased risk of
falls, and mortality [2–4]. It is described as a meaningful criterion in neuromuscular [5,6]
or neurological [2,3,7] diseases. Indeed, gait speed, referred to as the “6th vital sign of
health” [8], is an informative and commonly used measure in the clinical assessment of
patients [9]. Lower gait speeds are observed in the most clinically affected patients [2,3]
and in older patients [4].

Quantifying patients’ mobility at the lower limb level is a key challenge that needs
to be addressed in order to obtain an objective assessment of their clinical evolution. Cur-
rent practice in measuring mobility includes patient-reported outcomes, objective clinical
assessments (using standard walking scores), and subjective clinical assessments (using
standard criteria) [10]. A quantitative approach using technologies such as motion capture
systems, which permit the precise measurement of positions by triangulation, is possible.
However, this technique is large, expensive, and difficult to use. An interesting alternative
is inertial measurement units (IMUs), which have been used for the past twenty years. It
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has been an inexpensive, non-invasive, and user-friendly technology for studying motion
occurring during physical activities [11]. This technology is widely used in controlled
environments, hospitals, and academic laboratories [12], but can also be used in uncon-
trolled environments to measure real-world gait parameters. Experiments in controlled
settings have the main advantage of ensuring accurate data acquisition and annotation,
thus providing directly usable gait metrics through spatiotemporal feature computation [7].
However, when performed in a controlled environment, gait assessment provides snapshot
measurements that may not accurately reflect the exact patient’s condition and may have
the following limitations:

• High variability of data depending on the state and motivation of the participant at
the time of data collection;

• Access to a fixed number of activities chosen by the experimenter;
• A white coat [13] and Hawthorne effect [14] due to experimental conditions.

For example, Shema-Shiratzky et al. (2020) [15] observed a lower gait speed in patients
observed in an uncontrolled environment rather than in those who participated in the data
collection in the laboratory and, conversely, the opposite tendency was observed in the
control population. It then justifies the need for real-world digital gait clinical outcomes in
research and clinical trials.

The increasing use of biomedical technologies in healthcare over the last decade has
enabled real-world remote monitoring and generation of digital mobility outcomes such as
spatiotemporal (speed), temporal (pace, step time, swing time), and spatial (stride length,
width) gait characteristics that quantify real-world walking and may be more reliable than
gait assessment in a controlled environment [16–18]. Therefore, there is a growing interest
in developing real-world digital mobility outcomes to quantify patients’ natural gait and
ensure the quality, reliability, and validity of the development to limit the fragmentation
and difficulty of the assessment of the method.

The Syde®, an IMU-based wearable device that can be used in an uncontrolled envi-
ronment, is one of these evolving biotechnologies (Figure 1) that, like its first-generation
predecessor, the ActiMyo® [6,19], measures the patient’s movement in a real-life environ-
ment. This device consists of two IMUs, including a high-precision triaxial accelerometer,
gyrometer, magnetometer, and barometer, measuring linear acceleration, angular velocity,
magnetic field of motion (in all directions), and barometric altitude, all within the body
frame of the device. Dedicated algorithms capture the limb trajectory, enabling high-fidelity
3D step reconstruction from which multiple-step parameters are derived. These wearable
devices are being used in numerous clinical trials in neuromuscular pathologies, such as
facioscapulohumeral muscular dystrophy [20], spinal muscular atrophy [21], and, most
notably, in Duchenne Muscular Dystrophy [22] (Figure 2).

Figure 1. IMU-based wearable Syde® device station with its two sensors docked.
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Figure 2. IMU-based wearable Syde® sensors being worn on the left wrist and ankle.

In addition, the wearable’s calculated features have been approved by health author-
ities. In 2019, the 95th centile of stride velocity (SV95C) was accepted by the European
Medicines Agency for use as a secondary endpoint in pivotal trials in Duchenne Muscular
Dystrophy (DMD) [23] and is currently being used in various clinical trials [24,25]. In July
2023, the SV95C digital outcome was qualified as a primary endpoint in clinical trials in
ambulatory patients with Duchenne Muscular Dystrophy [26], allowing it to be used as
a first-order measure of treatment efficacy. It became the first wearable-derived digital
clinical outcome measure to be qualified as a primary endpoint by the European Medicines
Agency. This work follows the “V3” digital clinical measure validation scheme described
by the Digital Medicine Society, which has been adopted by the European Medical Agency.
It requires sensor verification (sensor performance), the analytical validation of processing
algorithms (ability to measure physiological metrics), and clinical validation (ability to
identify, measure, or predict clinically meaningful functional states in a specified popula-
tion and context of use). This study is, therefore, part of a long-term project to develop a
digital mobility endpoint that can be used as a primary endpoint in clinical trials, such as
SV95C in Duchenne Muscular Dystrophy [26].

The primary objective of this study is to perform an analytical validation in a controlled
environment of the wearable device dedicated algorithms on stride length and horizontal
velocity compared with the same features obtained with a motion capture reference. A gait
data collection session was conducted with 12 healthy adult volunteers. The participants
were fitted with an IMU-based wearable device on both ankles in a motion capture room,
which was also equipped with markers to record motion. The participants were asked to
perform predefined gait exercises in a controlled environment. The stride length and stride
horizontal velocity for all exercises calculated using Sysnav’s proprietary algorithm were
compared with those obtained using the motion capture setup.

This paper is structured in the following way. Section 2 provides details of the motion
capture materials, the experimental protocol, and the analysis method. Section 3 presents
the results of the stride detection, the feature distribution between the IMU-based wearable
and the motion capture system, and the error distribution between the two systems. The
results are discussed in Section 4. Finally, Section 5 concludes this article.

2. Materials and Methods

This section presents the gait outcomes of interest and the experimental setup used to
measure them.

2.1. Motion Recording Materials
2.1.1. IMU-Based Wearable Device

In this study, an IMU-based wearable device is attached to both ankles of each par-
ticipant to record inertial data, which, after analysis, allows the reconstruction of the gait
parameters of interest, namely the stride length and the horizontal stride velocity. The
model used is Sysnav Syde®, which includes a high-precision triaxial accelerometer, triaxial
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gyroscope, barometer, and a temperature sensor, recording data at a sampling rate of
around 100 Hz. This IMU-based wearable device continuously monitors the patient’s daily
activities at home and outdoors for up to 14 h.

The data recorded by the sensors follow the processing pipeline below:

1. Raw data are written on the docking station after the sensors are reattached;
2. Station uploads the raw data to a remote secure cloud;
3. Usable data are extracted against the sensors’ calibration files;
4. Trajectory is estimated at the stride level from the calibrated inertial data;
5. Gait parameters are estimated from the reconstructed trajectory.

The gait parameters of interest in this study are the stride length and the mean
horizontal velocity over a stride.

2.1.2. Motion Capture

In this study, the motion capture is used as the ground truth to compare the stride
reconstruction performed on the inertial data collected by the IMU-based wearable device.

Twelve infrared OptiTrack® Prime 13 W cameras were mounted on tripods and ar-
ranged in an elliptical fashion to maximize the space available to perform the exercises
defined in the protocol. Their placement must ensure optimal coverage while maximizing
the number of cameras that can detect a given reflective marker present within the exper-
imental area, which is formally the inside of their convex hull. The number of cameras
and their placement are crucial settings because the motion capture process is based on the
principle of triangulation: the 3D positions of the reflective markers can be computed if at
least three cameras can see them. If a reflective marker is in the field of view of fewer than
three cameras at any given time, the capture software is technically unable to determine
the marker’s position, and the signal is temporarily lost.

The cameras were powered and wired using RJ45 cables to a network switch, which,
in turn, was connected to a computer used to store and then analyze the collected data. The
visual signals recorded by the cameras were processed by the OptiTrack® Motive software
(v1.10.0) to produce the usable position and attitude data at a sampling rate of 120 Hz.

The motion was recorded by the cameras using reflective markers. Markers are solid
plastic spheres, 12.5 to 16 mm in diameter, covered with a gray reflective coating. The
markers can be used separately or mounted together on a rigid body to reduce missing
data due to obstructions.

The acquisition process is preceded by a calibration routine. Its purpose is to define an
inertial reference frame for the measurements and to determine the relative and absolute
positions of the camera within this frame. A calibration square with markers on each
edge was placed on the ground to define the inertial frame. The position of the cameras
was determined by moving a calibration wand around the field of view until satisfactory
coverage was achieved. Finally, the software assessed the quality of the calibration and
rated it on a scale from “very poor” to “exceptional”. In this study, calibrations were
performed until a level of quality equivalent to “excellent” was achieved.

The technical specifications provided by OptiTrack indicate a three-dimensional accu-
racy of 0.3 mm, justifying its use as the ground truth in our experiment.

2.2. Experimental Protocol

The recording session was conducted in July 2022 and included 12 healthy adult
volunteers (9 men, 3 women), age 23.17 ± 2.04 years, height 174.17 ± 6.46 cm, weight
65.08 ± 9.41 kg, and BMI 21.40 ± 2.29. Each participant received a written description of
this study and signed an informed consent form. They explicitly agreed to the use of their
data in this study. The exclusion criteria consisted of not including participants who had a
current lower limb injury, so as not to interfere with thia study and its results, or who had
undergone surgery within three months prior to this study.

The experimental session took place in an indoor motion capture room in Vernon, France.
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An IMU-based wearable device was placed over the lateral malleolus of each ankle
with a rigid body consisting of five to six reflective markers. A variable number of markers
per rigid body was used to break any possible symmetry between the two rigid bodies,
thus prophylactically preventing any rigid body inversion. In addition, the barycenter
of each rigid body was positioned to coincide with the center of mass of the IMU-based
portable device (Table 1).

The session included the following walking exercises:

• Normal walk: The participants were asked to walk a distance of 80 m. The walking
route consisted of 10 two-way trips between two markers on the ground separated
by 4 m, as shown in Figure 3. The instruction given to the participant was to “walk
at your own comfortable walking pace”, as it is similarly seen in pace instructions in
standard assessments of walking, such as the 10 MWT at a comfortable pace [27].

4 m

1m

1

7

4

10

2

3

8

9

6

5

12

11

ground marker

Figure 3. The experimental settings for the regular walking exercises (normal walk, fast walk,
and dual-task walk). The twelve motion capture cameras are placed around the outside of the
experimental area at a distance that allows the movements to be captured accurately.

• Fast walk: The participants had the same setting and distance as in the normal walking
exercise but were instructed to walk "as fast as they could" as is similarly seen in the
instructions of gait pace in the 10 MWT [27].

• Dual-task walk: As inspired by a real-life condition, where "the multifaceted nature of
the stimuli coming from the surrounding world requires responses that often imply
the simultaneous performance of a motor and a cognitive task, i.e., dual-task" as
presented by Pedullà et al. (2022) [28]. We choose to perform a dual task of walking
and cognitive activity to change the patients’ walking behavior, such as walking speed,
and get closer to real-life conditions, as shown in studies [29,30]: same setting, distance,
and pace as in the normal walk exercise, but the participants were asked to perform
a cognitive task at the same time. The task was to recite as many animal names as
possible while walking.

• Half-turns: The same setting and pace as in the normal walk exercise, but this time,
the participants had to walk for one minute and make a half-turn each time the
experimenter clapped their hands. Seven hand claps occurred at predetermined and
heterogeneously distributed times within one minute. See Figure 4.

• Timed up-and-go: Each participant started the exercise sitting in a chair, stood up,
walked 3 m at their natural pace, turned, walked back to the chair, and sat down. This
exercise was repeated three times with little or no rest. See Figure 5.
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Figure 4. Experimental motion capture settings for half-turns exercise.
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Figure 5. Experimental settings for timed up-and-go exercise.

Table 1. Details of participant demographic data, exercises performed, and available data for IMU-
based wearable device motion capture comparison.

Subject Gender Age (years) Height (cm) Weight (kg) BMI (kg·m−2)

01 M 23 181.0 63 19.2
02 M 25 178.0 72 22.7
03 M 24 175.0 72 23.5
04 M 22 174.5 70 23.0
05 M 27 179.0 86 26.8
06 F 22 165.0 52 19.1
07 M 22 180.0 65 20.1
08 M 24 174.0 60 19.8
09 F 21 164.5 55 20.3
10 M 26 176.0 68 22.0
11 M 21 180.0 63 19.4
12 F 21 163.0 55 20.7
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2.3. Analysis Method
2.3.1. Gait Parameter Reconstruction from Inertial Data

The gait reconstruction algorithms used in this study fulfill two main objectives. The
first one is to be able to integrate the sensor acquired data with the constraint of minimizing
a quadratic time dependent drift and bias to obtain a physical trajectory in an inertial
frame of reference. The second is to isolate steps based on the sole inertial data and then
recover the length and average horizontal velocity during a step. The strides are isolated
by identifying key gait phases in the reconstructed signals, which are passed through
a segmentation algorithm based on a state machine. The position and velocity signals
corresponding to a stride can be visualized in Figures 6 and 7.
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Figure 6. The vertical position motif of an ankle during a stride.
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Figure 7. The horizontal and vertical speed motifs of an ankle during a stride.

The underlying processes used are patented and registered [31,32].

2.3.2. Motion Capture Data Processing

The physical setup of motion capture is described in the Section 2.1.2. The capture
software performs full motion reconstruction from visual signals, directly outputting the
positions and attitudes of markers and rigid bodies in a predefined inertial reference frame.
The data are then synchronized in time with the IMU data by correlating the data from
both devices. The synchronization accuracy is estimated to be the duration of two samples
of IMU data, i.e., approximately 15 ms.
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2.3.3. Analytical Features Calculation

The two analytical features of interest in this study are stride length and average
horizontal stride velocity. They are computed independently on both the limb inertial data
and the motion capture data. The features are computed using inertial and optical motion
reconstruction methods for all the strides performed by the twelve participants, from the
data acquired on both ankles, for all the five exercises foreseen by the study protocol. To
analyze the results, we consider the strides detected simultaneously on the inertial and
motion capture signals for each exercise, limb, and participant.

3. Results

The results of the experiments defined in the study protocol and their statistical
analysis are presented in this section.

3.1. Validation of Sensor-Based Stride Detection

A manual annotation of the 24 sensor-acquired recordings (12 participants, two wear-
ing sides) was conducted to validate the performance of the inertial stride detection. Manual
annotation consisted more precisely in segmenting strides with respect to the gyrometer
and accelerometer signals, identifying strides by spotting key gait phases such as the heel
strikes and the swing subphases. Afterward, the manually detected strides were compared
to the inertial detection and tagged into three categories: the true positives, namely strides
that have been correctly detected; the false negatives, which designate undetected strides;
and the false positives, the wrongfully detected strides.

The entire data acquisition session produced a total of 6480 strides, out of which
6237 were actually retrieved with the use of the inertial stride detection algorithm. Among
those 6237 strides, 6218 were correctly detected and 19 were false positives, representing
on average less than one stride per file, or 0.3% of the total number of detected strides.
As a corollary, the inertial segmentation missed 262 strides, representing 4.0% of the total
existing number of strides.

The sensor-based stride detection yielded excellent results when looking at each ex-
ercise individually, as shown in Figure 8 where the true positive rate of the method is
displayed by exercise and side. This preliminary validation of the sensor-based segmenta-
tion shows that the sensor-based detection is not influenced by the sensor location nor by
the exercise performed.
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Figure 8. The true positive rate of the sensor-based stride detection by side and by exercise.



Sensors 2024, 24, 2413 9 of 22

3.2. Joint Stride Detection

The validation of the gait parameters computed from the inertial data is performed by
comparing them to the ones measured by the reference system, optical motion capture, in
our study. Consequently, only strides that have simultaneously been detected by both the
inertial and optical motion capture systems can be used to compute the gait features on
and, subsequently, compare them.

The first step was to compare the stride detection performance of both systems. To
perform this, Figure 9 shows the average distance of the twelve participants for the three
80-m exercises (normal speed, fast walk, and dual-task), computed from the total stride
length with both systems.
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Figure 9. Mean total distance walked by subject, in meters, by side, and by exercise.

The average distance measured with the IMU-based wearable was between 74 m
(left foot of the dual-task walking test) and 85 m (right foot of the fast walking test), as
shown in Figure 9. A slight but systematically shorter distance was observed on the left
side compared to the right foot. With the motion capture system, the average distance
traveled was between 24.4 m (left foot of the fast walking test) and 42.7 m (right foot of
the normal walk test). This was half the distance traveled by the participants. A shorter
distance on the left side was also observed on the three walking test configurations. The
stride detection with the IMU system is close to the 80 m distance defined in the protocol.
However, the motion capture system only detects half the distance. This difference will be
discussed in Section 4 of this paper. In the rest of the analysis, only the strides detected by
the two systems are included in the gait features computation.

Figure 10 finally shows the histogram of the number of strides detected for each foot
for all participants per exercise.

A total of 2820 strides were detected by both systems, of which 1312 strides were
taken by the left foot and 1508 by the right foot. As shown in Figure 9, an asymmetry
remains between the left and right feet. Nevertheless, all the 2820 strides are included in
the following stages of the analysis, and the observed asymmetry is discussed in Section 4.
Since we have shown in the previous subsection that the inertial-based stride segmentation
displayed a performance good enough to consider most strides to be successfully detected,
the missed strides in the joint distribution are, therefore, imputed to defects in the motion
capture acquisition, which limitations will also eventually be discussed in Section 4.
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Figure 10. The number of strides recovered from inertial data and motion capture data for each
exercise and side of the ankle where the devices are worn. Strides are used when data are available
on both devices simultaneously.

3.3. Gait Features Distribution in Both Systems

In this subsection, the stride length and horizontal gait velocity features with both
systems were computed. The densities of the statistics distributions for both features on
each foot and each exercise are shown in Figures 11 and 12.
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Figure 11. The stride length distributions, computed from the inertial sensor and the motion capture
ground truth, for each ankle, for all five exercises.
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Figure 12. The horizontal stride velocity distributions, computed from the inertial sensor and the
motion capture ground truth, for each ankle, for all five exercises.

In Figure 11, we observe most stride values on the normal walk exercise are between
1.0 and 2.0 m. As expected, the strides realized during the fast walk exercise are longer,
with values ranging from 1.2 m to 2.5 m, and shorter for all the three remaining exercises;
the values ranging in those cases between 0.7 m and 1.8 m for the dual-task and half-turns
exercises and 0.5 m to 1.8 m for the timed-up-and-go exercise.

As for the horizontal stride velocity distributions shown in Figure 12, there is also
evidence of matching distributions for all five exercises. The stride velocity distribution
ranges from 0.5 to 1.9 m per second for the normal walk exercise. Concordantly, the values
are higher for the fast walk exercise, with values that spread between 0.5 and 2.5 m per
second. Similarly, the velocity distributions are lower for the three remaining exercises,
with the values ranging between 0.3 and 1.5 m per second.

Lastly, for each foot and each exercise, as shown in Figures 11 and 12, there is a similar
distribution of median, quartiles, and spread density between the IMU-based wearable
and the motion capture system. This indicates that the stride length and horizontal stride
velocity characteristics calculated by the IMU-based wearable are similar to those calculated
by the reference system.

3.4. Precision of Motion Capture Reference

The calibration performed in our study was satisfactory with respect to the manufac-
turer’s guidelines [33], which pledged a maximum mean residual error of 0.8 mm for the
calibration. The precision obtained in our calibration was 0.789 mm and is, therefore, under
the aforementioned threshold. This value, when compared with the mean stride length
reconstructed by the motion capture reference of 1.3077 m, represented a mean error rate of
0.06%. The maximum residual error was 2.94 mm, representing a maximal error of 0.22%
for the positioning precision.

3.5. Gait Features Error Distribution

Considering the left and right stride detection asymmetry shown in Figure 9, we state
the hypothesis that both feature error distributions are the same on the left ankle and on the
right ankle, and we analyze both acquisition methods on the global set of the 2820 strides,
rather than separately.
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To that extent, we performed a two-sided Mann–Whitney U-test. For both features,
the tests on the error distribution for the normal walk, fast walk, and half-turns exercises
yielded a p-value above the 0.05 threshold and, therefore, were not statistically significant
(p-value > 0.05). In contrast, for both features, the test on the dual-task and the timed-
up-and-go exercises produced a p-value below that fixed threshold and were statistically
significant (p-value < 0.05). When computed on the global set of strides, for all exercises,
the p-value was above the threshold (p-value > 0.05). We concluded not to reject the null
hypothesis and to consider that the left and right strides distributions are similar, with the
caveat that extra caution should be taken when concluding upon the cases of the exercises
that were statistically significant for the hypothesis test.

Figures 13 and 14 present the statistical distributions of the difference between stride
length and horizontal velocity computed with the IMU-wearable system and the motion
capture system.

Figures 13 and 14 show that the mean difference between the inertial motion recon-
struction and the optical motion reconstruction is centered around zero for both features
and for all exercises. Moreover, in Table 2, an overall median of 1.86 cm and the 75th
percentile at 3.24 cm were computed for the stride length error. The intra class correlation
(ICC two-way-random: ICC2k) was statistically analyzed on all detected strides. The
computed correlation was excellent (ICC2k > 0.99, CI95 [0.99, 0.99]).

Table 2. Absolute stride length error distributions between the inertial sensor acquisition and the
motion capture ground truth (NW: normal walk, FW: fast walk, DTW: dual-task walk, HT: half-turns,
TUG: timed up-and-go).

Sensor Location Left Ankle Right Ankle Overall

Exercise Q1 Median Q3 Q1 Median Q3 Q1 Median Q3

NW (cm) 0.93 1.87 3.23 0.86 1.73 2.99 0.88 1.81 3.11
FW (cm) 0.93 1.72 3.01 0.86 1.81 3.05 0.87 1.79 3.03

DTW (cm) 0.69 1.55 2.95 0.98 1.98 3.20 0.83 1.74 3.05
HT (cm) 1.10 1.97 3.67 0.88 1.92 3.98 0.94 1.95 3.82

TUG (cm) 1.07 2.33 4.04 1.08 2.17 3.70 1.07 2.29 3.77

Overall (cm) 0.87 1.84 3.14 0.89 1.90 3.32 0.88 1.86 3.24

Similarly, stride velocity error distribution was computed with a median at 1.56 cm/s
and 75th percentile at 2.63 cm/s, as shown in Table 3. The correlation was also excellent
(ICC2k, >0.99, CI95 [1.0, 1.0]).

Table 3. The absolute horizontal stride velocity error distributions between the inertial sensor
acquisition and the motion capture ground truth. (NW: normal walk, FW: fast walk, DTW: dual-task
walk, HT: half-turns, TUG: timed up-and-go).

Sensor Location Left Ankle Right Ankle Overall

Exercise Q1 Median Q3 Q1 Median Q3 Q1 Median Q3

NW (cm·s−1) 0.77 1.50 2.45 0.74 1.50 2.57 0.75 1.50 2.51
FW (cm·s−1) 0.77 1.58 2.69 0.88 1.78 3.05 0.84 1.71 2.87

DTW (cm·s−1) 0.54 1.21 2.09 0.77 1.55 2.48 0.64 1.38 2.26
HT (cm·s−1) 0.83 1.65 2.81 0.70 1.59 3.32 0.77 1.61 3.06

TUG (cm·s−1) 0.92 1.84 2.74 0.89 1.77 3.08 0.90 1.84 3.01

Overall (cm·s−1) 0.71 1.48 2.47 0.77 1.61 2.75 0.74 1.56 2.63
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Figure 13. Stride length signed error distribution, computed between the IMU-based wearable
reconstructed trajectory and the motion capture ground truth, by exercise.
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Figure 14. Stride velocity signed error distribution, computed between the IMU-based wearable
reconstructed trajectory and the motion capture ground truth, by exercise.

Finally, Bland–Altman visualizations show, for each of the two gait parameters, the
variance of the stride length and horizontal stride velocity estimations, as well as the
variance of the inertial reconstructions, with respect to the motion capture ground truth.
Such visualizations are provided with a split by wearing side in Figures 15 and 16 and
by participant in Figures 17 and 18. On all the exercises except for the half-turns where a
bias equal to 1.4 cm appears for the stride length and 1.2 cm·s−1 for the horizontal stride
velocity. This indicates that the inertial reconstruction suffers from little to no systematic
bias for four out of the five exercises, and an average bias representing around 1% of the
stride length or speed for the half-turns exercise. These results are not influenced by the
wearing side or the participants who produced the analyzed strides, except for the specific
case of the subject 01–003 in the half-turns exercise, which can be considered an outlier. In
addition, for both features, the bias does not change with the value of the feature. Lastly,
very few strides stand outside the error band µ ± σ, with µ as the empirical mean error
of the feature of interest, and σ as the sample standard deviation. This evidences the low
variance of the inertial reconstruction method compared with the motion capture reference.
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Figure 15. Bland–Altman comparison (IMU-based wearable versus MoCap reference) for the stride
length feature by exercise, differentiated by wearing side.
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Figure 16. Bland–Altman comparison (IMU-based wearable versus MoCap reference) for the stride
velocity feature by exercise, differentiated by wearing side.
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Figure 17. Bland–Altman comparison (IMU-based wearable versus MoCap reference) for the stride
velocity feature by exercise, differentiated by subject.
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Figure 18. Bland–Altman comparison (IMU-based wearable versus MoCap reference) for the stride
velocity feature by exercise, differentiated by subject
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4. Discussion

In this study, the IMU-based wearable Syde® analytical algorithm gait parameters,
stride length and mean horizontal velocity over a stride, were compared to the same features
computed from the gold standard motion capture system on five different walk exercises
(normal walk, fast walk, double task walk, turns, timed-up, and go) on 12 healthy subjects.

The first thing that needs to be discussed is the asymmetry in the stride detection
between the two systems. The mean total reconstructed distance recovered shown in
Figure 9 is significantly less for the strides recovered and analyzed from the motion capture
data than for the IMU-wearable-obtained strides. The inertial-based stride detection valida-
tion that has been performed beforehand, and which results are summarized in Figure 8,
shows that the motion capture is the limiting factor for the gait features analysis, as it
only allows for retrieving half the maximal expected distance, whereas 95.9% of the strides
are successfully segmented by the sensor-based detection. The theoretical total distance
walked by each subject is expected to be around 80 m in the case of a six-loop walk around
the track defined by the protocol. However, the subjects tended to move away from the
inside of the track proportionally to their walking pace, with the latter being lowest for the
dual-task walk and the highest for the fast walk. Therefore, the actual total distances vary
with the same logic. As for the motion capture strides, the motion capture acquisition is
less efficient when the subjects walk at a higher pace (Figure 19), with a lesser number of
detected strides compensating the estranging effect previously evidenced.

Material Method Protocol

Environment Human

Defective  
MoCap data 

variable room
temperature

available
space

bad sensor
placement

loose
sensor camera

placement

clothing-related
obstructions

camera heating

number
of cameras 
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definition

asymmetric
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calibration

environmentally
caused obstructions

protocol
nonconformities 

bad marker
placement

loose
marker

interindividual
variability

Figure 19. Root cause analysis of the defective motion capture data.

Another important point to discuss is the asymmetry between left and right feet in
the 2820 strides detected by both systems and included in the analysis. The remaining
asymmetry between the right and left foot observed could be explained by the asymmetric
exercise path where the left foot is always oriented toward the interior of the walking
track. The right foot is outside the curve; the simple physical reason for this asymmetry
is that the right foot covers a higher distance than the left. Figure 8 again shows that the
inertial-based stride detection does not manifestly suffer from asymmetry matters. Also, as
the motion capture cameras are placed outside the exercise track, the occasional occlusion
of the left-ankle reflective markers by the right ankle can happen during an acquisition run.
Making this test per exercise does not make much sense as the typology of gait patterns
varies too much between the strides performed with the left foot and the strides performed
with the right foot. Indeed, with the shape of the walking path being oval, left strides are
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logically closer to the inner part of the trajectory, especially in the turns. Consequently, the
feature’s stride length and stride mean horizontal velocity aggregation were performed
on each foot independently and not on an average of the feet. The asymmetry thus has
no impact on the results shown here. This difference can be explained by the speed at
which the three exercises taken into consideration were realized: the dual-task walk was
performed at a slower pace than the normal walk exercise, itself, in essence, realized slower
than the fast walk exercise. When the round-trip is performed at a higher speed, the subjects
tend to take the bend wider and stray away from the interior of the curve, finally making
them walk a higher overall distance.

Despite this slight asymmetry, similar distributions of stride length were observed
on the wearable device computed and motion capture data (Figure 11), with an overall
median difference below 2 cm (1.86 cm), and a 75th percentile of 3.24 cm (Table 2). The intra
class correlation was excellent between IMU-wearable-based gait features and the reference
system (ICC(2,1) > 0.99, CI95% [0.99, 0.99]). Similar results were observed with stride
mean horizontal velocity. There was a similar statistical distribution across the IMU-based
wearable analytical algorithm and the motion capture system computation (Figure 12). The
computed median was 1.56 cm·s−1 and a 75th percentile of 2.63 cm·s−1 (Table 3). ICC was
also computed, and there was an excellent correlation between the two methods (ICC2k,
>0.99, CI95 [1.0, 1.0]). We also observed a repartition centered on a zero value that we
interpret as an absence of systematic bias from one measurement method compared to the
other one (Figures 13–16). These results support the initial hypothesis that the computed
features of stride length and stride mean horizontal velocity with the IMU-based wearable
device analytical algorithm are similar to those computed on the motion capture system.

This study presents some limitations that we group into three main categories.
One of the challenges has been finding a balance between the plurality of exercises and

environmental restrictions caused by the limited available space (Figures 3–5). The diversity
of exercises aims to gather a broad range of gait patterns (initiation stride, half-turns, fast
walk, transition from sitting to standing up). Because of the small area, we had a slight
imbalance of half-turns, acceleration, and deceleration strides compared to regular strides.
As mentioned before, the asymmetry of walk exercises may be an issue; indeed, in the
first three exercises, participants always turn in the same direction, with the left foot on
the interior side. This has probably contributed to the occlusion of the MoCap markers
observed on the left foot and then stride detection with the MoCap algorithm. Creating a
symmetrical eight-shaped walking path would be one solution to alleviate the occurrence
of occlusions and hinder participants from drifting out of the camera field, narrowing the
turning angle.

Because of environmental conditions, human-related factors, and protocol design
flaws with the asymmetric path (Figure 19), we had some noisy motion capture data that
we could not include in the analysis and ended up with less stride detected on the left foot.

Finally, the participant bias of selection is one limitation of our work. Indeed, our
study includes healthy and mostly young male subjects (mean age of 23 years old). Given
the natural evolution of gait in aging, validation with healthy middle-aged and elderly
individuals is needed. Moreover, gait patterns are altered depending on the localization of
the affection. Validation should also be performed with patients suffering from different
gait alteration affections.

5. Conclusions

This article presents the analytical validation of the stride length and horizontal
velocity features extracted from the Syde® wearable sensor in comparison to a reference
motion capture system, with the participation of 12 healthy participants. For this analytical
validation, a total of 2820 strides were computed from five different walking exercises
performed by each participant. Among these strides, the median absolute error between the
reference system and the reconstructed stride was 1.86 cm for stride length and 1.56 cm/s
for stride horizontal velocity.



Sensors 2024, 24, 2413 20 of 22

With a median measurement difference with the gold standard of less than 2 cm, a 75th
percentile of less than 4 cm for the total stride length characteristics, a median horizontal
stride velocity of less than 2 cm/s, and a 75th percentile of less than 3 cm/s, the present
results demonstrate the accuracy of these two temporal and spatiotemporal gait parameters,
respectively, computed with the Syde ® IMU-based wearable device. We conclude with an
analytical validation of the computation algorithm of these two features.

The features extracted from IMU-based wearable devices must be robust and rigor-
ously validated to be used in clinical research. The results presented in this study support
that the IMU-based wearable Syde® device computed features of stride length and hori-
zontal stride velocity are accurate enough to be used in a real-world setting in a free-living
environment on healthy subjects. Further studies with patients with different types of
conditions in a controlled environment are needed to investigate the accuracy of these
features in altered gait.
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