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AfterLearnER (After Learning Evolutionary Retrofitting) consists in applying non-differentiable optimization,
including evolutionary methods, to refine fully-trained machine learning models by optimizing a set of
carefully chosen parameters or hyperparameters of the model, with respect to some actual, exact, and hence
possibly non-differentiable error signal, performed on a subset of the standard validation set. The efficiency
of AfterLearnER is demonstrated by tackling non-differentiable signals such as threshold-based criteria
in depth sensing, the word error rate in speech re-synthesis, image quality in 3D generative adversarial
networks (GANSs), image generation via Latent Diffusion Models (LDM), the number of kills per life at Doom,
computational accuracy or BLEU in code translation, and human appreciations in image synthesis. In some
cases, this retrofitting is performed dynamically at inference time by taking into account user inputs. The
advantages of AfterLearnER are its versatility (no gradient is needed), the possibility to use non-differentiable
feedback including human evaluations, the limited overfitting, supported by a theoretical study and its anytime
behavior. Last but not least, AfterLearnER requires only a minimal amount of feedback, i.e., a few dozens to a
few hundreds of scalars, rather than the tens of thousands needed in most related published works. Compared
to fine-tuning (typically using the same loss, and gradient-based optimization on a smaller but still big dataset
at a fine grain), AfterLearnER uses a minimum amount of data on the real objective function without requiring
differentiability.

Additional Key Words and Phrases: Evolutionary algorithms, machine learning, speech synthesis, hyperpa-
rameters

1 INTRODUCTION

Retrofitting is the addition of new technology or features to older systems [Dawson 2007; Dixon and
Eames 2013; Douglas 2006]. Retrofitting is routinely used in industry, e.g., in the building sector to
adapt old buildings to new needs or new regulations. When it comes to machine learning models,
the term is mainly used in natural language processing (NLP) since the seminal work of Faruqui
et al. [2015a], who modify the word vector representation to take into account some semantic
knowledge. This is done in a post hoc way, i.e., without retraining the whole network.

Other examples of such retrofitting (though not using that term) are used for transfer learning,
when only some of the last layers of a deep neural network that had been trained for a given task
are fine-tuned to another one [Oquab et al. 2023]. However, even though not involving the whole
set of parameters (i.e., weights), such re-trainings use gradient descent and hence only work on
differentiable losses.

More generally, though differentiable machine learning (ML) has achieved significant successes,
optimizing the hyperparameters of an ML pipeline (from algorithm selection to algorithm config-
uration) is particularly challenging, because the evaluation of a set of hyperparameters requires
running a complete training cycle, or simply because the actual objective might not be differentiable.
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On the opposite, gradient-free (aka black-box) optimization offers two main advantages: it
does not require the computation of the gradient, thus decreasing the computational cost; and
it can handle non-differentiable cost function that are out-of-reach of gradient-based methods.
And there are many situations where the actual goal of the ML model is better expressed as a
non-differentiable metric, and the differentiable cost used for training with stochastic gradient
descent (SGD) approaches is only a proxy of such actual goal. Examples of such situation will be
given in Section 5, like e.g., the number of kills in Doom video game (Section 5.3).

However, black-box optimizers generally do not scale well, and cannot be used to optimize the
large set of parameters (weights) of current deep models — one significant exception being OpenAl
Evolution Strategies [Salimans et al. 2017], in which Evolution Strategies are used to optimize
thousands of weights of a deep neural network, as an alternative to standard deep reinforcement
learning based on policy gradient approaches.

With this in mind, this work proposes AfterLearnER, for After Learning Evolutionary Retrofitting,
a method that optimizes a small set of parameters or hyperparameters in a fully trained model.
AfterLearnER works with any machine learning algorithm and can use a different loss function
than the one used during initial training. Notably, it can handle non-differentiable loss functions,
allowing for better alignment with the actual goals of the learning task without needing to run any
gradient back-propagation cycle. !

The overall view of AfterLearER is given in Figure 1. It can operate before test/inference time
(bottom left), or at test/inference time (bottom right). In both modes, the user should proceed as
follows:

e Select a small subset of the hyperparameters and/or the parameters of the model to be fine-
tuned. This set of variables will be called in the following the X-parameters. Several examples
of such K-parameters are given in the experimental Section 5, detailed in Table 2.

o Choose a focused, reliable, possibly non-differentiable, feedback signal (e.g., human feedback)
as the objective of the retrofitting. In particular, it can (and will) be different from the loss
used for training the model, that is required to be differentiable. Again, in order to avoid
confusion with the training loss, it will be called in the following the N-loss.

e Find approximately optimal values of the NX-parameters using a black-box optimization
algorithm to minimize the K-loss, using only the results of a few inferences on a subset of
the validation set, in particular without ever retraining the whole model.

As emphasized in Figure 1, there are two modes in AfterLearnER: In both modes, AfterLearnER
operates after the classical backprop training. In offline mode (Figure 1-bottom left, examples in
Sections 3 and 5.1 to 5.4), AfterLearnER optimizes the X-parameters w.r.t. the 8-loss once and for
all, using some low-volume coarse grain validation data. In particular, it only needs a few inferences
of the trained model (and in particular no gradient backpropagation).

In online mode (Figure 1-bottom right and Sections 5.5 to 5.7), AfterLearnER optimizes the model
answer to each test cast during inference, and the N-parameters can typically contain some latent
variables, input to the model. This amounts to online retraining, based on some small aggregated
feedback (SAAF as defined in Section 4.4).

AfterLearnER clearly relates to hyperparameter optimization (HPO) [Feurer and Hutter 2019],
transfer learning [Zhuang et al. 2021], and fine tuning [Lialin et al. 2023] approaches. Also, because
AfterLearnER is performed after standard training, it semantically relates to a number of test-time
adaptation (TTA) approaches [Chen et al. 2022; Niu et al. 2022]. The main difference with such
previous works is that AfterLearnER can handle non-differentiable losses, possibly closer to the

1All experiments were conducted on Jean Zay servers. Meta affiliated authors provided code and expertise and acted in an
advisory role.
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Fig. 1. AfterLearnER vs Classical ML. Top: Standard gradient-based training (e.g., backpropagation) and
hyperparameter tuning (the outer loop). Bottom: The two modes of AfterLearnER. Left: In the offline mode,
retrofitting of some parameters (termed N-parameters, see text) of the trained model, once and for all before
test time, as in Sections 5.1 to 5.4, and the output of AfterLearnER is an optimized model. Right: In the
online mode, the N-parameters can also include some model input in the latent space, the objective can
then be dynamic (the loss, the user feedback, or a surrogate model), as in Sections 5.5 to 5.7. The output of
AfterLearneER is then an improved output for the given input.

actual objective of the learning task. AfterLearnER can also be used to handle distributional data
shift (like TTA approaches), or to adapt the pre-trained mode to new tasks, as in transfer learning
[Oquab et al. 2023], though it is initially conceived to improve the pre-trained model for the same
task, the N-loss providing a different point of view on the task at hand. These issues will be discussed
in more detail in Section 2.1 below, and illustrated by the experiments in Section 5.

The paper is organized as follows. Section 2 introduces the context of this work: Section 2.1
surveys related works, Section 2.2 discusses non-differentiable losses, and Section 2.3 introduces the
black-box optimization algorithms used in AfterLearnER. Section 3 presents AfterLearnER in detail,
following some kind of “user guide” format. Section 4 discusses a priori the advantages of the pro-
posed methodology. Section 5 presents the experimental results obtained across various applications,
by AfterLearnER in offline mode for Depth sensing (Section 5.1), speech re-synthesis (Section 5.2),
reinforcement learning for Doom video-game (Section 5.3), and code translation (Section 5.4); And
by AfterLearnER in online mode for 3D-GANSs (Section 5.5), and text-to-image (Sections 5.6 and 5.7).
Finally, Section 6 globally discusses the results, and Section 7 concludes the paper.

2 BACKGROUND
2.1 Related work

AfterLearnER is related to a number of previous works, with some significant differences that are
summarized in Table 1 along different axes, and will be discussed in turn in this Section. We are
aware that many other works could have been cited here. We nevertheless did our best to cover
the most prominent lines of related work, even if not citing all relevant papers in each subsection
below.

2.1.1 Hyperparameter Tuning. Hyper-parameter optimization (HPO) has become routine in the
ML world in general (see e.g., Feurer and Hutter [2019] for a survey), and in deep learning in
particular. The N-parameters are the usual hyperparameters of the training pipeline, and can include



Table 1. Comparison between different works related to AfterLearnER. The columns from left to right are:
Whether their target task is the same as the one used during pre-training; Whether any additional knowledge
is needed for the optimization; What proportion of the model parameters are modified; Whether some
gradient is needed or not; The number of full backprop optimization that are performed (if any) after the
pre-training; The corresponding typical references (there are dozens of other works, and we cannot pretend
to be exhaustive).

Framework Final Additional Reoptimized Gradient needed Additional References
task knowledge parameters Full Backprop
Hyperparameter tuning Same - Small part No (outer loop) Many <1>
Fine tuning Different Smaller dataset Depends Yes A few <2>
Transfer learning Different  Distinct dataset Entire net Yes A few <3>
Test-Time Training Same = Large part Yes A few <4>
Test-Time Adaptation Same - Small part Yes None <5>
Retrofitting Same High-level info Small part Depends None <6>
AfterLearnER Same Coarse grain info Small part . NO . None
or latent vars  (possibly interactive)
<1> Feurer and Hutter [2019] <4> Sun et al. [2020]
<2> Lialin et al. [2023] <5> Wang et al. [2021]
<3> Zhuang et al. [2021] <6> Faruqui et al. [2015b]

architecture parameters (HPO is then called neural architecture search (NAS)). The optimization
is then a two-tiered process, as shown in Figure 1-top, in which the inner loop is a full backprop
optimization, and the outer loop is a black-box optimization (e.g., Bayesian [Kandasamy et al. 2018]
or Evolutionary [Assuncéo et al. 2019] optimization. But the process is extremely costly because
the loss is then the performance of the fully re-trained network. As such, we will not consider it as
an alternative to AfterLearnER.

2.1.2  Fine-tuning and transfer learning. Fine tuning has become now a routine process in deep
learning [Lialin et al. 2023]. It is used for instance to specialize general purpose LLMs for downstream
tasks [Ouyang et al. 2022], including supervised learning and Reinforcement Learning from Human
Feedback (see Section 2.1.5 below). Still in the context of LLMs, it can be used to “improve” the
outcomes of the model following the programmer’s preferences [Rozado 2023]. In such situations,
the whole model is fine-tuned using standard gradient-based optimization of the training loss itself,
and even though only a fraction of the iterations is needed, this still has a significant cost.

Another use of fine tuning relates to Transfer Learning [Zhuang et al. 2021]: A model that has
been trained for a specific task can be fine-tuned to perform a different but similar task, freezing
most of the model, optimizing only a fraction of it (e.g., one or a few last layers). Under some mild
hypotheses, it has been demonstrated [Giannou et al. 2023; Lu et al. 2022] and later proved [Burkholz
2024] that normalization layers are indeed good candidates for such fine-tuning. Still, the number
of N-parameters can be rather high (e.g., more than 100,000 in [Lu et al. 2022]). Furthermore,
here again, a few iterations of full backprop optimization is needed, meaning that the loss should
be differentiable, and the optimization might be costly (in compute and/or memory). The latter
approach is sometimes referred to as Feature Extraction: the frozen first layers de facto become
feature constructors.

As its name says, however, the goal of transfer learning is to handle tasks that are not the ones
for which the model was pre-trained, or modify the behavior of the model, whereas the main goal
of AfterLearnER is to improve the outputs of the model on the task for which it was initially trained,
possibly using a non-differentiable 8-loss that better describes the desired behavior of the model.
Also, the N-parameters that are tuned AfterLearnER are generally much smaller than those of the
above works, even when most parameters are frozen.



2.1.3 Test-Time Training / Adaptation. Whereas fine tuning and transfer learning generally pertain
to supervised learning, in that they require labeled examples of the possibly new task, there are
many real world situations where such labels are not available. A large body of work has been
devoted to such contexts, in particular to handle the case of distribution shift between training and
testing times, pertaining to unsupervised domain adaptation. A survey and discussion of several of
such approaches is given in [Niu et al. 2022].

A first line of research assigns some labels to the unlabeled test data, and performs some test
time training. Such labels can be self-supervision labels, e.g., the number of 90° rotations in images
[Sun et al. 2020] and the upper layers of the pre-trained model are gradually modified by standard
backprop; or one can use some pseudo-labels obtained from a copy of the pre-trained model that is
gradually updated [Chen et al. 2022]. In both cases, however, the size of the X-parameters that are
modified is rather big (a large fraction of the original model), and the N-loss must be some usual
supervised training loss, hence differentiable.

On the other hand, test-time adaptation (TTA), as proposed by Wang et al. [2021], and further
refined by, e.g., Niu et al. [2022, 2023], performs some generic entropy minimization, and only
optimizes some affine transformation parameters of the normalization layers of the original deep
network, in order to fully preserve the pre-trained model. TTA N-parameters are hence very small,
a feature shared with AfterLearnER. However, the entropy minimization is gradient-based, and the
N-loss is limited to the chosen entropy — or possibly another differentiable loss [Goyal et al. 2022].

The main advantage of AfterLearnER compared to test-time adaptation remains the possible use
of non-differentiable N-loss, together with the small compute needed in most cases (see Section 5).

2.1.4 Retrofitting for NLP. Retrofitting in natural language processing enhances word vector
representations by refining them with relational information from semantic lexicons. This post-
processing technique adjusts pre-trained word vectors so that semantically related words are closer
in the vector space.

Faruqui et al. [2015b] introduced a graph-based retrofitting method that refines word vectors by
using belief propagation on a graph constructed from lexical relationships. It encourages linked
words to have similar vector representation. This process retains the original distributional prop-
erties while integrating relational information. ConceptNet [Speer et al. 2017], a multilingual
knowledge graph, links words and phrases through labelled edges and improves the understanding
of word meanings. When combined using retrofitting with word embeddings, it forms a hybrid
semantic space called ConceptNet Numberbatch [Speer et al. 2017], which provides a richer under-
standing of language. In summary, retrofitting for natural language processing leverages external
knowledge to refine word vectors, enhancing their quality and interpretability for various natural
language processing tasks. Both AfterLearnER and the above works aim to take new knowledge
into account in order to improve the task the model was pre-trained on, by modifying a few of its
parameters. However, AfterLearnER can modify any type of X-parameters, and is not limited to
modifying some latent representation in the model. Furthermore, AfterLearnER uses far less new
knowledge than the full lexicons required by NLP retrofitting approaches [Chiu et al. 2019].

2.1.5 Reinforcement Learning from Human Feedback. A particular case of non-differentiable feed-
back is human feedback. Reinforcement learning from human feedback (RLHF) has recently gained
importance in image generation [Lee et al. 2023b] and large language models (LLMs). However,
most low-budget RLHF papers (working with dozens or hundreds of human feedback samples) are
in the field of robotics [Jain et al. 2015]. The trend in LLMs is more in the dozens of thousands,
or even the millions [Abramson et al. 2022]. However, a limited human feedback is sometimes
sufficient [Kim et al. 2023] and real-time user-specific preferences can sometimes be taken into



account [Videau et al. 2023]. Low-budget RLHF could be based on inverse reinforcement learn-
ing (IRL) i.e., simulating human preferences from preference signals in a reward model [Adams
et al. 2022]. To reduce the need of abundant ground truth data, it is important to focus on small but
impactful weights of the model. As already mentioned in Section 2.1.2, Burkholz [2024]; Giannou
et al. [2023]; Lu et al. [2022] present such small impactful parts, the normalization layers, which
are relatively small but intersect entirely the information flow from input to output.

2.2 Non-differentiable reward functions and feedbacks

Stochastic gradient descent and its many variants perform extremely well for many machine
learning tasks, but can only handle differentiable feedbacks. Criteria like those used in depth
estimation, human satisfaction (as in translation or image generation), or large-scale simulators
(e.g., Doom) are beyond gradient-based approaches.

Therefore, the design of specific reward functions, typically in the realm of reward shaping [Ng
et al. 1999], is critical. In particular, one must be careful with reward hacking [Skalse et al. 2023]
and transferability. In [Lee et al. 2023a; Niu et al. 2023; Wang et al. 2021], differentiable criteria
are designed as proxies to the actual target criteria, adding one level of approximation to the
goal, and hence leading to less accurate solutions. The point of the present work is to bypass
such approximation errors by directly using possibly non-differentiable criteria and arbitrary
combinations thereof.

In terms of optimization algorithms, Rolinek et al. [2020] proposes a method specifically for
rank-based criteria. Huang et al. [2021]; Jiang et al. [2020] propose to approximate non-differentiable
reward functions by differentiable scores. Hiranandani et al. [2021] focuses on criteria defined
on the confusion matrix. Sun et al. [2022] focuses on a random subspace of a huge parameter
space. Susano Pinto et al. [2023] applies the Reinforce [Williams 1992] algorithm. On the opposite,
AfterLearnER is based on generic black-box optimization (Section 2.3).

2.3 Tools for black-box optimization

Black-box optimization refers to optimization methods which only need, from the objective function
£, the value of f (x) when providing x. In particular, no gradient is used, and no knowledge of the
internal structure of f is necessary. Evolutionary Algorithms [Eiben and Smith 2015] and Iterated
Local Search [Stutzle and Ruiz 2018] are examples of black-box optimization tools.

Algorithm 1 outlines the functioning of all algorithms used in this study, within a parallel
computing context, utilizing the the well-known ask-and-tell interface: the algorithm o is defined
by its methods initialize, tell (informs o of the value of f(x)), ask (returns next value x to evaluate),
and recommend (returns its best guess for the optimum).

There are many libraries for black-box optimization. AfterLearnER uses Nevergrad [Rapin and
Teytaud 2018] that implements Evolutionary Algorithms [Eiben and Smith 2015], Mathematical
Programming [Powell 1964, 1994], or handcrafted combinations [Meunier et al. 2022b].

In terms of black-box optimization tool, AfterLearnER can run several times, using different
methods, as developed in Algorithm 2. By default, it uses a single algorithm, namely an optimization
wizard (Appendix B), namely NGOpt [Meunier et al. 2022a], which automatically selects a relevant
algorithm based on the available computational budget, the problem dimension, and the types
of variables to optimize. More precisely, the algorithms available to the wizard include Diagonal-
CMA [Hansen and Ostermeier 2003; Ros and Hansen 2008], Differential Evolution (DE) [Storn and
Price 1997], Particle Swarm Optimization (PSO) [Kennedy and Eberhart 1995], Lengler [Doerr et al.
2019], among others. When we pick up several algorithms instead of just NGOpt, we follow the
recommendations described in the Nevergrad documentation for choosing the different algorithms,



Algorithm 1 General organization of a parallel asynchronous black-box optimization method
o. There is a first-in-first-out (FIFO) pool of pairs (x, f (x)) to be computed by the workers. The
sequential case corresponds to P = 1.

Require: objective function f, number of workers P > 1, domain D, budget b
o.initialize (D, b, P) > Initialize o given P, domain D, and budget b
procedure WORKER-TASK(x)
Compute f (x)
o.tell (x, f (x)) » Inform the method o of the performance obtained by the NP x, no gradient
needed
end procedure
forie{l,...,b} do

Wait until there are less than P computations in progress in the FIFO

Request x « o.ask () (x € D) > Choice of N-parameters to be tested
Put x in the FIFO of workers tasks

end for

Wait until the FIFO is empty

return o.recommend () > Final returned value

as detailed later. A benchmark of the many existing black-box optimization methods is beyond the
scope of this paper.

3 THE AFTERLEARNER ALGORITHM AND ITS EXPERIMENTAL SETTING
3.1 AfterLearnER

The AfterLearnER algorithm and its default parameter settings are presented in Algorithm 2. Given
an N-loss (Section 4.3) to be minimized on some validation set V (running the trained model at
hand on the data points in V), AfterLearnER needs an integer k (number of runs), a list of black-box
optimization algorithms, and a list of possible budgets. It then loops k independent times (Line 1),
launching (Line 4) one randomly chosen black-box algorithm in the list (Line 2) to minimize the
N-loss on V for one of the available budgets (Line 3). The result of the run is stored (Line 5) and
the best results of the k runs is returned by AfterLearnER (Line 7).

By default, the list of black-box algorithms is made of a single algorithm, the wizard NGOpt
[Meunier et al. 2022a], presented in more details in Appendix B. As a wizard, it can work in
all dimensions/domains/budgets. The budget and the number of runs depend on the expected
computational cost and the available overall compute budget. See Table 3 for some examples of
AfterLearnER settings used in this work.

3.2 The Experiments

AfterLearnER is validated in Section 5 on eight problems, whose characteristics are given in Table 2,
while the corresponding AfterLearnER N-parameters are given in Table 3. The choice of these test
beds and their setups have been guided by the following principles, that can be viewed as a kind of
User Guide for AfterLearnER.

(1) Optimize a small but impactful part: Burkholz [2024]; Giannou et al. [2023]; Lu et al.
[2022] have demonstrated how a small part of the parameters of an ML model can have a big
impact on its performance. Typically, for a huge network or a combination of modules, one
should look for a smallest set of parameters that intersects all paths from inputs to outputs.
Furthermore, it is important to keep the dimension of the optimization problem small:



Algorithm 2 The AfterLearnER algorithm.

Require: N-loss !
Require: V validation set
Require: List of black-box optimization algorithms O
Require: List of budgets B
Require: Number of independent runs k
1: forie{1,...,k} do

2: Randomly draw o; € O

3 Randomly draw b; € B

4: Run o0; to minimize ! on V with budget b;
5 N-parameters p; = o.recommend()

6: end for

7: return N-parameters p; that minimizes N-loss [ on V, i € [1, k]

> By default O = {NGOpt}

> No default value
> By default 1

> only if #0 > 1

> The result of the optimization

Table 2. Problems tackled in the present paper. The size of the N-parameters optimized by AfterLearnER
varies between 1 and 16384. All the feedbacks in this table are not differentiable. For comparison, a classical
ML training with e epochs on a dataset of cardinal S and a gradient of size p has a feedback of size (R -RP)¢S.

Problem

N-parameters

Feedback volume

Type of feedback

Depth sensing (Section 5.1)

Speech resynthesis

3D Gan

LDM + input text
Doom AI

Code Translation

6 input normalization pa-
rameters

2 hardcoded constants

latent variable z (problem
dependent)

latent variable z (4 - 64 - 64)
Rescaling of the output
layer (35 weights)
Rescaling between encoder
& decoder (1024)

300 feedbacks by the large
model (R3%)

40 automatically computed
feedbacks for TextLess
®*Y)

Image quality (200 user in-
puts, one per image, total
RZOO)

Variable, a few clicks

Kills per life in VizDoom,
[R60000

BLEU + comp. accuracy on
valid set (R1090)

Depth estimate by the
large model
Word error rate

Human rating

Human ratings
VizDoom simulation

Automatically computed
score

black-box optimization algorithms do not scale up well in general — opposite to gradient-
based optimization algorithms, The list of what is optimized in this paper is summarized
in Table 2, middle column. Except for Doom, the number of evaluations of N-parameters is
small compared to e.g., [Arakawa et al. 2018; Zhu et al. 2023]

(2) Don’t fear non-differentiable N-losses: This is the main advantage of AfterLearnER:
Burkholz [2024]; Giannou et al. [2023]; Lu et al. [2022] work on a small part (as we do),
but with differentiable criteria. There are many methods for differentiable optimization in
machine learning: gradient-free algorithms cannot outperform these methods unless the
gradient is not reliable. We note that [Lee et al. 2023a; Niu et al. 2022, 2023] propose to create
(possibly without any human feedback or ground truth, thanks to unsupervised entropy
minimization) a differentiable criterion based on entropy. However, AfterLearnER focus is on
cases in which a non-differentiable criteria is worth a direct optimization.



Table 3. AfterLearnER parametrization in our experiments. In the case of LDM, we use a Voronoi crossover
described in Section 5.7.

Problem Optimizer O Budget B per run

Depth sensing {NGOpt} {300}
Speech resynthesis {NGOpt} {2, 10, 20, 40, 80}
Image generation {Lengler} user stopping
Image generation Fairness {RandomSearch} {30}
Doom Al {OptimDisc(1+ 1)} {300, 600, 800, 1000, 1200}
CodeGen translation {Diagonal CMA} {1000}

EG3D-cats {RandomSearch} 1000*
EG3D-cats with diversity {NGOpt} 1000*

LDM Ad hoc (incl. Voronoi crossover) a few batches

3.3 Discussion

Before detailing the experimental validation, we take a look at the a priori benefits of retrofitting
on the problems described in Table 2, according to the rationale developed in Section 4.

Table 2 shows in particular the different sizes of the feedback used in the following. It can always
be provided by humans or computationally expensive solvers. Regarding RLHF (such as EG3D,
LDM), we consider feedback limited to dozens or hundreds of scalars (far less than most works as
discussed in Section 2.1.5).

For speech re-synthesis Section 5.2 and depth sensing Section 5.1, the number of runs is k = 1
because of the computational cost (for depth and speech) or limited human attention span (for
image generation).

Our approach requires less data and utilizes feedback at a more aggregated level, compared to
most RLHF [Zhu et al. 2023] and Human In The Loop Reinforcement Learning (HITLRL [Arakawa
et al. 2018]) approaches. Specifically, our approach needs only one objective function value per
model and dataset. In contrast, classical stochastic-gradient methods require one objective function
value and one gradient value per model and per data point. The process is hence compatible with
evaluation by humans, who can study an entire system output, and compare on key points (see
e.g., human feedback ), or with end-of-episode (delayed) evaluations by complex simulators (e.g.,
VizDoom [Kempka et al. 2016] for Doom, Section 5.3) or non-differentiable computational accuracy
(in code translation Section 5.4).

4 RATIONALE FOR AFTERLEARNER

This section discusses a priori the potential benefits of using retrofitting, beyond the obvious generic
advantages of any gradient-free optimization: one can work in settings in which the gradient cannot
be computed or does not make any sense, e.g., discrete metrics or discrete domains.

4.1 Computational cost

Even when the gradient exists and is easy to compute, it might require a large computational cost,
and re-optimizing billions of weights for each value of the hyperparameters is time-consuming.
AfterLearnER has a low computational cost: no gradient needs to be computed during AfterLearnER,
therefore saving the memory and computation costs of the backward pass. Table 3 attests that our
budgets are small.



4.2 Branching factor analysis for a low overfitting

Whereas gradient-based optimization does not lead to any bound on the generalization error,
such bounds can be obtained when using black-box optimization, as detailed below. These bounds
suggest that the risk of overfitting is lower. Indeed, following [Fournier and Teytaud 2011], consider
& the risk of an e-divergence between the empirical risk and the risk in generalization for a given
N-parameters, i.e., P(|(expected loss) — (empirical loss on dataset)| > €) < . If we use the
validation error for picking up the best N-parameters, in a list of N N-parameters, the risk of
deviation e for that N-parameters is at most N - § (Bonferroni correction [Bonferroni 1936]) instead
of 6:

P(3c a N-parameters, | (expected loss). — (empirical loss on dataset);| > €) < N§.

If the N N-parameters are not defined a priori but built by optimization, with A N-parameters per
iteration and selection of the best at each iteration, then the total risk is at most A" - § where n is
the number of iterations (A evaluations in each iteration) [Fournier and Teytaud 2011]. And if the
total number of evaluations is N, then n = N/A and the total risk is at most AN/A s,

Furthermore, if k independent runs of AfterLearnER are run, and if the budget N is divided by k,
then the Bonferroni correction leads to a risk

k L NGk P)
N—— ——— ——

Bonferroni correction for k runs Branching factor per run Risk for a single model

for the resulting parametrization. According to these bounds, increasing the number k of indepen-
dent runs, for a given total budget, decreases the risk of overfitting. Also, according to this bound,
increasing the parallelism A decreases the risk of overfitting.

4.3 Versatility, convenience

Black-box optimization is very versatile, allowing the user to easily explore different objective
functions. For Doom (Section 5.3), for fair comparisons, we report results on the same losses than
the ones used by the authors of previous works [Lample and Chaplot 2017]. However, a significant
benefit of AfterLearnER is its ability to adapt a model to a different loss, the N-loss, without the
need to manually craft reward shaping, or using an approximate proxy.

We note that the approach can be applied for the optimization of a complex system, including
several deep learning (DL) models combined with other mathematical programming tools or signal
processing methods, even if some of these blocks are non differentiable, as illustrated by the
experiments presented in Section 5.

4.4 Small Aggregated Anytime Feedback

The arguments for the potential benefits of AfterLearnER can be summarized by the acronym
SAAF, for Small Aggregated Anytime Feedback:

e Small: A few dozens scalars is enough, as will be demonstrated in the experiments (see
Table 2).

o Aggregated: A feedback of one scalar per model is sufficient, instead of one scalar per data
point or one scalar and a gradient for each mini-batch. This is visible in our applications
when training once and for all a model between training and testing, in Sections 5.1 to 5.4.

e Anytime: AfterLearner can be stopped when desired, given the real-time user feedback [Zil-
berstein 1996].



5 EXPERIMENTS

This section presents different experiments demonstrating that black-box optimization can indeed
take advantage of SAAF to significantly improve a pre-trained model. The computational cost is
discussed in Appendix D.

The first four experiments, Depth Sensing (Section 5.1), Speech Resynthesis (Section 5.2), Doom
(Section 5.3) and Code Translation (Section 5.4), pertain to the offline mode, and directly use
(Algorithm 2). The last three experiments, 3D-GANs with EG3D (Section 5.5), LDM with human
feedback (Section 5.6), and Interactive LDM (Section 5.7) present experiments that use AfterLearnER
in online mode: AFterLearnER is then tightly embedded in the inference process.

5.1 Depth sensing

5.1.1 Context. MiDaS [Ranftl et al. 2022] is a famous deep network for monocular depth estimation
from a single image. This neural network exists in three trained variants: large, hybrid and small.
The large one, known for its precision [Birkl et al. 2023], is considered here as the ground truth.

Asin [Ranftl et al. 2022], ImageNet images are first resized to 144 X 144 pixels. Then AfterLearnER
(Algorithm 2) uses a set V' of 300 images randomly drawn from ImageNet validation set (of size
50,000). With b = 50, the feedback used by AfterLearnER is made of the 50 scalars obtained in
applying 50 variants of the model (corresponding to different N-parameters iteratively provided
by AfterLearnER) to the images in V, for each of the k runs. Furthermore, a set V' of 500 images
randomly drawn from ImageNet test set is used to assess AfterLearnER performance.

5.1.2  N-parameters. AfterLearnER tunes the 6 normalization parameters (multiplication and bias
for each of 3 channels) for optimizing the N-loss on V. We use the code available at github.com/isl-
org/MiDaS.

5.1.3 N-loss: Estimating depth. Yin et al. [2020] point out that there exist several depth estimation
criteria, created for different applications: a criterion which is good for local differences (relative
depth) might be plain wrong for global profiles. Therefore, a diversity of criteria has been proposed,
including, among others, the absolute relative error (AbsRel), the weighted human disagreement
rate [Xian et al. 2018], the scale-invariant root-mean-square error [Li et al. 2019], or the frequency
of obtaining a mismatch greater than a given threshold [Ranftl et al. 2022]. These different losses
are used in different areas [Hwang et al. 2021; Ma and Karaman 2018; Paul et al. 2022].

Following [Ranftl et al. 2022], we focus here on the frequency of failing, by a factor greater than
1.25%, with i = 1,2, or 3 (further referred to as Threshold i). These criteria are not continuous, and
are flat almost everywhere so that their gradient is essentially zero.

5.14 Results. Algorithm 2 is launched here with values O = {NGOpt}, B = {b} (by default 50),
and for different values of k.

Figure 2 displays the K-loss on the test set V"’ versus the number of runs k for a budget of 50
(other results are presented in Appendix A). These results demonstrate an enhancement in the
N-loss optimized using the validation set, consistently improving the performance of the Small
baseline, and sometimes outperforming the performance of the Hybrid model, even with k < 10.
Appendix A also presents evidence of effective transferability: specifically, training on Threshold 3
(i.e. with ratio 1.25%) does not only improve outcomes in the test set for that metric, but also yields
positive results for other metrics discussed in Section 5.1.3 above.

5.1.5 Discussion. Whereas no more than 50 scalars of feedback are necessary for AfterLearnER
to improve the Small model, we note that with larger budget, we sometimes outperform the
intermediate (a.k.a hybrid) model with just 300 scalars (e.g., k = 6 and b = 50 in Figure 2). We
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Fig. 2. Losses on the test set S’ of the small and models, and of after optimizing criteria
Thresholds 1 (left), 2 (middle) or 3 (right), with b = 50 and for different values of k > 1.

observe that results are robust and are effectively transferred to different loss functions (Appendix A).
Because k runs of budget b amounts to k - b scalars, 300 feedbacks could eventually be asked to
human raters, though in the present case we actually (for the sake of reproducibility) use the large
MiDaS model as a ground truth.

5.2 Speech resynthesis: a few dozens feedbacks for improving sound quality

TextLessLib [Kharitonov et al. 2022] is a deep learning library for speech synthesis without text
representations. It includes a demo of speech resynthesis [Polyak et al. 2021] from low bit rates.

5.2.1 Context. The discrete resynthesis operation can be viewed as a form of lossy compression
for speech. Approaches such as [Polyak et al. 2021] directly train in the waveform using an
autoencoder, with adversarial and reconstruction loss. Here, we diretly optimize the Word Error
Rate (WER) [Kharitonov et al. 2022], which is not differentiable. We use data and code from [Polyak
et al. 2021], splitting the training data into 75% for the N-parameters optimization and 25% as a test
set post-optimization. The results can, therefore, not be compared numerically to the results in the
original work: we use an additional information. Nonetheless, the results show that a few dozen
scalar feedbacks are enough for a significant improvement.

5.2.2 N-parameters. AfterLearnER handles here two N-parameters of the Tacotron/Vocoder model
[Wang et al. 2017]: the sigma in WaveGlow/inference [Prenger et al. 2019] and the denoiser strength.
These two N-parameters are hardcoded in the original code.

5.2.3 N-loss: Word-Error-Rate. This measure evaluates how accurately the audio can be transcribed
after compression, assessing how well the textless compression preserves speech-specific charac-
teristics and clarity. We compute the WER through the wav2vec 2.0-based [Baevski et al. 2020] and
Automatic Speech Recognition (ASR) system: the code compares the output with the ground-truth
transcription. The WER is also used to evaluate our retrofitted model on the test set.

5.2.4 Results: robust low budget quality improvement. The results of applying different param-
eterizations in Algorithm 2 are presented in Table 4. One can observe that picking up the best
outcome from multiple shorter runs (i.e., a large number of runs (k) with a small budget (b) per
run) yields the most favorable results. In certain instances, the number of runs (k) is even so large,
and the budget per run so limited that the approach nearly resembles a random search (e.g., a
9.9% improvement observed with the best of 8 runs each having a budget of 2). These experiments
demonstrate that AfterLearnER can significantly improve test results at a low cost within a few
evaluations on a small validation set.



Table 4. Performance on the test set in textless Speech Resynthesis for different values of k in Algorithm 2.
The baseline WER is 7.84: for each scenario, several replicas are run: 100% of scenarios lead to an improvement
on average.

Num runs k Budget WER (]) Avg.improvement (%,T) Std of WER

2 7.488 4.511 0.335
3 10 7.558 3.620 0.202
40 7.736 1.361 0.235
80 7.542 3.828 0.298
2 7.306 6.837 0.387
4 10 7.501 4.355 0.147
40 7.751 1.163 0.217
80 7.378 5.924 0.201
2 7.222 7.908 0.397
5 10 7.442 5.104 0.130
40 7.803 0.502 0.149
6 2 7.273 7.259 0.417
10 7.433 5.216 0.104
7 2 7.097 9.506 0.361
10 7.398 5.661 0.076
8 2 7.067 9.880 0.344

5.2.5 Discussion. Table 4 shows that in this test case with minimal sample size, the utilization
of a high number of runs consistently enhances performance in generalization, aligning with
the theoretical discussions presented in Section 4.2: such results experimentally demonstrate the
reduction of the risk of overfitting by using a large number of runs and a small budget per run.

5.3 Doom Al: Retrofitting for Deep Reinforcement Learning

5.3.1 Context. We explore the application of AfterLearnER in the context of the game ‘Doom’, in
the framework defined in [Lample and Chaplot 2017].

Our study focuses on two distinct setups: 'Normal mode’, where the agent combats 10 bots, and
"Terminator mode’, involving a confrontation with 20 bots. As the base trained network, we use the
agent defined in [Lample and Chaplot 2017], which is trained in Normal mode.

5.3.2 N-parameters. We add a flattened action head of length 35 in the final layer of the baseline
network, where the output o is adjusted to o - exp (r), and these 35 scalars are the N-parameters to
optimize.

5.3.3  N-loss: Kill/Death ratio. Since the main objective in Doom is to kill as many bots as possi-
ble while minimizing deaths, we optimize the non-differentiable and long-term objective of the
kill/death ratio.

However, this reinforcement signal is very noisy: when we have k > 1, it might happen that
the comparison between the different loss signals, on the last iteration of each run, is wrong for
selecting which of the k runs is best. So, instead of the last value of the kill/death ratio, we use a
moving average of the last 8 values as the N-loss returned to the black-box optimizer.

5.3.4  Results: AfterlearnER kills monsters in Doom. We get an improvement as shown in Table 5.
In that table, the suffix 10 (resp. 100) refers to dividing the scale by 10, i.e., we use exp (0.1r) (resp.
exp (0.01r)) instead of exp (r). The suffix w20 means that we use P = 20 parallel workers inside
each of the k runs (as opposed to a single worker: this reduces the computational cost, but also the
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number of available feedbacks when choosing a new candidate as shown in Algorithm 1): k is still
the total number of runs, .

Here we use a single black-box optimization method o in O for each experiment, but we repeat
the experiment with distinct o for comparing them. All these methods are available in [Rapin
and Teytaud 2018]. “Optim” means “Optimistic” [Munos 2014], Disc. refers to Discrete [Rapin and
Teytaud 2018], Diagonal CMA refers to [Ros and Hansen 2008], “Recomb” refers to recombinations,
as in Holland [Holland 1975]. “Port” refers to Portfolio, which is the name used in [Rapin and
Teytaud 2018] for the algorithm in [Dang and Lehre 2016]. “TBPSA” refers to Test-Based Population
Size Adaptation as in [Khalidov et al. 2019]. We use k < 50 runs (see k in the table) and pick up
the one with the best validation loss, as in Algorithm 2. The names of all methods are those in
Nevergrad [Rapin and Teytaud 2018].

5.3.5 Discussion. The terminator mode is a priori easier to optimize: the baseline agent was
originally optimized for normal mode, a priori leaving a greater gap of potential improvement by
AfterLearnER for this transfer learning.

In terminator mode, the best results are obtained by methods based on DiscreteOnePlusOne.
Therefore, we only used this optimization algorithm for the normal mode, and improve over the
baseline in all cases. The validation score for TBPSA is the lowest: this is because TBPSA [Khalidov
et al. 2019] explores widely and tries to learn from samples far away from the current optimum (as
recommended in [Beyer 1998]). Its performance in test is nonetheless among the top 4.

Table 5. Results on Arnold playing Doom. The red marker indicates the only detrimental run of AfterLearnER,
which reduced test performance. We run these experiments in preemptable mode on the cluster, allowing for
interruptions but maintaining positive results in nearly all cases. (See Section 5.3.4 for a detailed discussion).

Total Validation Average
Optimizer budget score (T) test score Num runs k

i<k bi )

Baseline 3.61
Diagonal CMAw20 9348 2.447 3.642 11
NoisyDisc(1+1)w20 6864 3.590 3.616 15
OptimDisc(1+1)10 4500 3.700 3.719 11
Terminator mode OptimDisc(1+1)w20 5980 3.712 3.682 13
OptimNoisy(1+1)w20 6764 3.651 3.685 14
ProgNoisyw20 8028 3.114 3.615 18
RecombPortOptimNoisyDisc(1+1)10 5400 3.686 3.658 15
RecombPortOptimNoisyDisc(1+1)w20 5696 3.630 3.639 17
SplitNoisyw20 13144 3.234 3.646 18
TBPSAwW20 5964 2.404 3.678 15

Baseline 3.31
OptimDisc(1+1)100 51500 3.382 3.356 87
Normal mode OptimDisc(1+1)10 31200 3.419 3.399 50
OptimDisc(1+1)w20 6644 3.380 3.430 20
RecombPortOptimNoisyDisc(1+1)100 46900 3.453 3.447 75

RecombPortOptimNoisyDisc(1+1)10 19950 3.346 3.329 36




5.4 Code translation

5.4.1 Context. Transcompilers perform code translation, i.e., convert source code from one pro-
gramming language to another while maintaining the same level of abstraction. Unlike traditional
compilers, which translate high-level code to low-level languages like assembly, transcompilers
focus on translating between languages of similar complexity. This process is useful for updating
obsolete codebases or integrating code written in different languages. Roziere et al. [2020] leverage
unsupervised machine translation techniques to develop a neural transcompiler. Trained on source
code from open-source GitHub projects, their transformer model can accurately translate functions
between C++, Java, and Python. This method uses only monolingual source code, requires no
specific language expertise, and can be generalized to other programming languages. The present
section uses this neural transcompiler as a baseline, and applies AfterLearnER before test/inference
time (Algorithm 2) to improve its performance.

5.4.2 N-parameters: linear rescaling. A linear rescaling layer (1024 weights) is added between the
encoder and the decoder, and these 1024 scalars are the 8-parameters to be optimized.

5.4.3 N-loss: a diversity of criteria. Many criteria can be used for code translation: computational
accuracy, which checks that both programs’ outputs are equal for the same input, code speed,
code size, BLEU [Papineni et al. 2002] which checks the correctness and readability of the code
by measuring the similarity of n-grams between generated code and reference code, adjusting
for length. Recent papers [Jiao et al. 2023] pointed out that overfitting or other issues can arise,
making the joint improvement of robust and diversified criteria relevant, in particular on smaller
but curated data sets. In this work, we use either the computational accuracy (frequency of
obtaining a code which satisfies the requirements) or the BLEU [Papineni et al. 2002]%. None of
these N-losses is differentiable.

5.4.4 Results: AfterLearnER can code. Figure 3 compares the solutions obtained using AfterLearnER
(with different black-box optimizers o) to the baseline solution using a feedback limited to b ground
truth scalar numbers (b on the x-axis). O is restricted to a singleton {0} (see o in the legend) and a
single run (k = 1).

The results obtained with AfterLearER improve over the baseline whatever the optimizer used,
though some optimizer perform better than others. Empirically, DiagonalCMA is often the best
choice in this context.

5.4.5 Discussion. These experiments have been performed with the distribution of test cases in
the original code from [Roziere et al. 2020], i.e., limit at 100: we investigated the case of a limit
512, but further work is needed on the dataset as there are redundancies between valid and test
in that context (in particular when using computational accuracy, which aggregates distinct but
functionally similar codes).

5.5 EG3D-cats: learning and optimizing in the latent space, unconditional case

5.5.1 Context: Offline optimization of the latent variable thanks to a surrogate model. EG3D-
cats [Chan et al. 2022] is a pioneering work in 3D GANs, with impressive results. In the present
Section, we improve EG3D-cats by learning the latent space: instead of randomly drawing a latent
variable z, we learn a surrogate model of image quality and use it to optimize the input z to the
GAN, in order to get rid of bad z’s.

2From the abstract of [Papineni et al. 2002]: BLEU is a method of automatic machine translation evaluation that is quick,
inexpensive, and language-independent, that correlates highly with human evaluation, and that has little marginal cost per run.
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Fig. 3. Results of AfterLearnER on several problems from [Roziere et al. 2020] with BLEU or Accuracy N-losss
(the lower the better). Each curve is the average over 3 runs of AfterLearner with a single optimization
method in parameter O of Algorithm 2, and the horizontal line is the baseline, i.e., without any retrofitting.
AfterLearnER improves the result whatever the black-box optimizer used, though Diagonal CMA performs
well on average.

Building the surrogate model. We proceed as follows:

e Generate 200 images, corresponding to 200 randomly chosen latent variables z.

e Get binary user feedback: good or bad, for each image.

e Train a decision tree (we use the scikit-learn implementation [Pedregosa et al. 2011]) to
approximate the probability, for a given latent variable z, that it generates a bad image:
tree(z) ~ P (bad|z).

5.5.2  N-parameters: The latent variable z of EG3D-cats.

5.5.3 N-loss: The surrogate model. We propose two variants of the algorithm, both using the trained
decision tree described above to optimize the 8-parameters z:

e The random search variant applies random search on tree: Randomly draw z until tree(z) = 0,
i.e. the trained decision tree predicts that the image will be ok.

o The evolutionary version applies NGOpt on the objective function [ : x +— tree(zy + € - x) for
some randomly drawn zy. For a small € (e.g., 1e—2), the final value is close to the starting
point zy, thus preserving the diversity of the original GAN: this is the main advantage of the
evolutionary version compared to the random search.
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Table 6. Results of the evolutionary version of the EG3D-cats algorithm with human raters, using a double-
blind interface with randomized left/right positioning of compared images: the percentage shows how
frequently our method outperformed the vanilla LDM according to human raters.

Initial model = Proposed method Frequency of improvement (T) Remark

afhqcats512-128 Random search 65% (160 images) Cats
athqcats512-128 Evolution 71% (193 images) Cats

Fig. 4. Example of evolution: unmodified cat (bottom) generated by EG3D-cats, and its evolutionary counter-
part (top). Left: the ears have been significantly improved, while the neck is improved on the right.

To evaluate the approach, we use human raters to assess the improvement between initial z
and optimized z. The humans (not working in the computer science field) are presented with a
cat generated by EG3D-cats and a cat generated by AfterLearnER: they choose the cat image they
prefer, or click on “no preference”. The success rates are evaluated among cases in which they do
have a preference. For the evolutionary variant, raters have to choose one of both cat images, but
only images for which the initial z, was not satisfactory (i.e. P(bad|zy) > 0) are presented: these
statistical comparisons are based on paired data, i.e., zg vs zg + € - x* with x* recommended by the
optimization run. Figures 4 and 5 present some qualitative results of before and after the evolution
done by AfterLearnER.

5.5.4  Results: offline improvement of the model. The results are presented in Table 6. In all setups,
we observe an improvement when using AfterLearnER compared to vanilla EG3D (i.e. all numbers
are larger than 50%). Of course, the different random seeds used for computing these statistics are
distinct from those used for creating the training set of 200 images.

5.5.5 Discussion. We demonstrated that it is possible to learn a good approximation of the set of
Z’s that lead to errors using a decision tree, at a reasonable cost: labelling 200 examples is feasible
for a motivated human.

5.6 LDM: learning and optimizing in the latent space, conditional case

5.6.1 Context: Using feedback to steer model output towards human preferences. LDM [Rombach
et al. 2022] provided impressive results in text to image generation recently: a prompt conditions
the output. This section is based on [Videau et al. 2023], and applies the same techniques as
in Section 5.5, on latent models in the present section.

Building the surrogate model.



Fig. 5. Example of evolution: unmodified cat (bottom) generated by EG3D-cats, and its evolutionary counter-
part (top). In both cases, the mouth has been significantly modified, though it is still not perfect.

e Generate 200 images on the prompt “a photograph of an astronaut riding a horse”.

o Get a binary user feedback: good or bad, with a special emphasis on the quality of crops.

o Train a classifier (a decision tree or a neural network, and we use the scikit-learn implemen-
tation for both [Pedregosa et al. 2011]* ) to approximate the probability, for a given latent
variable z, that it generates a bad image: tree(z) ~ P (bad|z).

5.6.2 N-parameters. The latent variable of LDM.

5.6.3 N-loss: The Surrogate Model. As in Section 5.5.1, we use the trained decision tree as After-
LearnER N-loss to determine an optimal latent value z, optimizing z to minimize tree(z) ~ P (bad|z).
We stop the optimization as soon as we reach some z satisfying tree (z) = 0.

To assess the effectiveness of this approach, we rely on human raters. Specifically, raters are
asked: “Is the crop of this image of top quality and does it include the entire astronaut and horse?”
We refer to this evaluation metric as the ’satisfaction rate’.

5.6.4 Results. The results are presented in Table 7. We observe progress in all contexts: the
frequency of poorly cropped images dramatically decreases.

5.6.5 Discussion: This success looks surprising: how can we learn something with 200 examples,
whereas the latent space has size 4 - 64 - 64? Nevertheless, the next section will confirm these results,
switching to an online context, with an even lower budget.

5.7 LDM with online human feedback, learning from 15 images

5.7.1 Context: In order to double-check the results above (successful inference from a few data
points in a huge latent space), we perform the following experiment:

e 15 images are generated with the same text input.

e The users select their five favorite images.

e Learning a “local” surrogate model on the fly: these 5 favorite images are separated from the
other 10, using scikit-learn neural network.

e Similarly to both previous sections, we minimize the probability of generating bad images
(according to the local surrogate model) using Nevergrad (Lengler algorithm [Doerr et al.

3We use MLPClassifier(solver='1bfgs', alpha=le-5, hidden_layer_sizes=(5, 2), random_state=1) and
tree.DecisionTreeClassifier().



Table 7. Results of AfterLearnER on LDM. The training is made on data labelled by us, and the performance
here is on other generated images with/without AfterLearner, with different seeds. Some human raters,
randomized order among the 4 tested methods, double-blind, prompt “A photograph of an astronaut riding a
horse”. Between parenthesis the number of rated images. The overall comparison LDM vs. AfterLearnER+LDM
is statistically significant, with p-value 0.04 for Fisher’s exact test. The ’satisfaction rate’ is described in
Section 5.6.3.

Experimental setup Optimizer Loss Satisfaction rate (T)
LDM 2.9% (486)
LDM+AfterLearnER Random search Decision tree 5.1 % (98)
LDM-+AfterLearnER Lengler Decision tree 5.6 % (180)
LDM+AfterLearnER Discrete(1+ 1)  Neural net 6.7 % (104)
Average LDM+AfterLearnER 5.7 % (382)

Algorithm 3 Crossover between images with latent variables z; and z, at points p; and p,. Here
the user has selected the point p; in the image generated from the latent variable z; and the point
p2 in the image generated from the latent variable z,, out of 15 images. Latent variables are tensors
with shape 64 X 64 X 4.
Require: Latent variables z; and z,, coordinates p; € I; = LDM(z;) and p, € I, = LDM(z3).

Create a new latent variable z of same shape as z; and z;.

for each p spatial coordinate in z. do

if [|p1 = pl| < lp2 — pl| then

z(p) = z1(p)
else
z(p) = z2(p)
end if
end for

2019]), with an initial point created by crossover (from [Videau et al. 2023] and specified
below).

The crossover operator. The vanilla optimization by Nevergrad is here improved by creating a
starting point for the optimization run built using a specific crossover operator, so-called Voronoi
crossover [Hamda et al. 2002; Pehlivanoglu 2012; Seo and Moon 2002; Seo et al. 2005; Videau
et al. 2023], in order to provide a better merging between different individuals than by geometric
averages: the Voronoi split between z; and z, for getting a child corresponding to a crossover
between images with latent variables z; and z, (Algorithm 3). These Voronoi combinations are
used as starting points for the optimization by AfterLearnER.

Application of the crossover operator for more than 2 clicks by users. Two modifications of Algo-
rithm 3 are needed. First, we might have more than 2 images chosen by the user, so we extend Al-
gorithm 3 to more than two images. Second, we need to create more than one offspring, so that a
randomization is necessary. For these two extensions, we follow [Videau et al. 2023]: let us consider
k clicks, with positions py, ..., pk, in images built on latent variables z; , ..., z;,. Each offspring



image Ivoronoi = G(Zvoronoi) is built by constructing a latent variable zyyrono; as in Figures 1-3.

r is randomly drawn uniformly in [1, 2] (1)

1
2Voronoi (¥) = zi, (x) if Yu # J,[lx = pjl| < ~[lx = pull )
Zvoronoi(x) ~ N(0, 1)for each channel otherwise (3)

5.7.2  N-loss. To evaluate this approach, we use a specific prompt and quality criteria (see below).
We generate a batch of images with the vanilla LDM, and a second batch, using AfterLearnER, after
selection of the 5 best by the user.

We then compare the number of images that fit the given criteria in the initial batch (no user
feedback) and in subsequent batches (i.e., with user feedback).

5.7.3 Results. AfterLearnER was tested on three different setups:

e First setup: the prompt is “A close up photographic portrait of a young woman with colored
hair”. We consider images 15 to 28, in 2 cases: first case, the user selects red hair; and second
case, the user selects blue hair. Observation: the next generation by AfterLearnER + LDM
have dramatically greater proportions of red hair (resp. blue hair).

e Second context: “fighting Cthulhu in the jungle”. For the second setup (Figure 6), we present
more sophisticated experiments with celebrities fighting Cthulhu. We observe a moderate
improvement, on this easy setting of very famous people: some people, like X Y (anonymized
celebrity), are easier to generate in arbitrary contexts, so that the classical LDM performs
well. The prompt becomes much harder for a scientist like Yann LeCun: the improvement
becomes much greater. we do this in Figure 7 and the improvement is stronger.

e Third setup, we now check that AfterLearnER can also have an impact on realism. We just
ask for “Medusa” and feed AfterLearnER with the realism opinion of the user. The second
batch uses preferences mentioned by the user in the first batch, then the third batch uses
preferences mentioned by the user in the second batch, and so on. Each batch improves
over the previous one. Within 3 batches of 14 images, we get way more realistic portraits of
Medusa (Figure 8).

Results are aggregated in Table 8. They are always positive, with a clear gap in 3 out of 4 contexts.

5.7.4 Discussion. In each setup, we increase the proportion of images that fit specific criteria. This
approach is particularly effective for generating images that are difficult to produce by default, such
as “Yann LeCun fighting tentacles in the Jungle”. In these challenging scenarios, the text-to-image
model struggles to combine elements like Yann LeCun, a jungle, and tentacles. However, by selecting
the right images, we can guide the model to produce outputs that better match user preferences,
showing the effectiveness of the proposed approach.
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Table 8. Overview of our low budget image generation experiments. FB refers to user feedback (clicks on the
preferred images inside a screen presenting a batch of images). For Figure 8 the quality is not measured by
quantified metrics and the reader can compare the top 2 rows to the bottom 2 rows there.

Figure ‘ Context ‘ Observation
Top 2nd batch, after FB Mostly red hair
on red hair in batch 1
Bottom 2nd batch, after FB All blue hair
on blue hair in batch 1
Top Initial batch Success 11/14
Fig. | Middle | Batch 2 after FB on batch 1 | Success 12/14
6 Botom Batch 3 after FB on Success 13/14

batches 1 and 2

Fig. Top Initial batch Success = 30%
7 Bottom | After FB on the 1st batch Success ~ 71%

Fig. Top Initial batch Low quality
8 Middle After FB on 1st batch
Bottom | After FB on batches 1 and 2 | High quality

T . 3 S Lk 3 e iy

First batch of 14 images. Tentacles: in 11 images. XY is the only human: in 12 images.

a

Second batch of 14 images. Tentacles in 12 images. XY is the only human: in all images.

P

ey = 1

Third batch of 14 images. Tentacles: in 13 images. XY is the only human: in all images.
Fig. 6. XXX YYY (anonymized) fighting tentacles in the jungle. The original LDM is already good here, but

we observe an increased frequency of XXX YYY and an increased frequency of tentacles in the new batches.
All images have significant differences in terms of position. A more challenging task is proposed in Figure 7.
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Y

After selection of the 5 preferred images out of the 15 above, 14 new generations by AfterLearnER.
Tentacles in 10/14 images.

Fig. 7. A scientist fighting tentacles in the jungle. The frequency of tentacles has increased a lot. All images

have significant differences in terms of position. We observe again that 15 images evaluated by the user are
enough for a meaningful impact.
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Fig. 8. Medusa. Top two rows: first batch, i.e., equivalent to default LDM. Rows 3 and 4: second generation,
after clicking on the most realistic image of the first batch. Rows 5 and 6: generation 3, after clicking on the
two most realistic images of generation 2. Colors become better, and sus-sternal dimples appear. We observe
that a user feedback about 2 generations of images are enough for improving outputs.
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6 OVERVIEW AND DISCUSSION

All results in the present paper come from applying AfterLearnER after a classical ML pipeline.

Depth sensing: We use the small MiDaS model and optimize N-parameters on a small dataset.
More precisely, 300 images are used for optimizing 8-parameters by distillation of the big MiDa$
model so that we get test errors better than the original Small MiDaS, or even (in some cases) the
Hybrid MiDaS. These results only require 50 scalars of feedback for adapting a model to different
loss functions. In this benchmark, the loss is not differentiable either.

Speech resynthesis: We use the checkpoint previously tuned in [Kharitonov et al. 2022] and
optimize two NX-parameters on 75% of the test set and check on the remaining test data. This is a
simple experiment with just two constants, hardcoded in the original code, optimized on a small
dataset. The numbers are not directly comparable to the original work as we use a split of the
test set: but we show that a small feedback (40 scalars) on a split of the test set is enough for, on
average, an improvement on the rest of the test set. Compared to [Ranzato et al. 2016], we do a fast
distribution shift and not a whole training.

Doom/Arnold: In this reinforcement learning context, we use the same simulator as the one
used in the original paper/code. This consistency allows for a direct comparison of our results. We
observed enhanced outcomes primarily because we focused on optimizing the actual objective
function.

Transcoder: We use the same training/validation data as in the GitHub repository of [Roziere
et al. 2020]. We immediately observe an improvement (Figure 3) only using a few hundred scalars.
We do not use any information about the objective function, so we could have an online estimator
such as speed, memory consumption or elegance — which cannot be done with the original
supervised learning.

3D Gan EG3D for AFHQ (cats): With 200 feedbacks, we built a more realistic EG3D-cats,
outperforming state-of-the-art in three-dimensional cats.

LDM: We provide an interactive counterpart of LDM. The fact that it works is quite counter-
intuitive: the latent space has dimension 4 - 64 - 64. We perform several tests with hair color, image
quality, and realism, and results are precise. They are in line with user needs: whereas most LDM
users (in particular in the new field of prompt engineering for txt2img) do many independent
rerolls, we guide these rerolls using previous results.

A further work would be removing the significant engineering work necessary for reward
shaping thanks to AfterLearnER.

7 CONCLUSIONS

This paper demonstrates the potential of integrating small-scale feedback directly into the opti-
mization process, as in retrofitting, through black-box optimization approaches. Likewise, such
a strategy is especially beneficial for optimizing, with a few scalars, a non-differentiable criteria,
a common challenge in various fields. That way, we provide substantial improvements in state-
of-the-art DL applications, e.g., in scenarios such as Doom and code translation. Furthermore,
our methodology enables the generation images with minimal user interaction, requiring as few
as three interactions for getting a first approximation. Similarly, we optimize N-parameters for
depth estimation, language translation, and speech synthesis. Our method requires only dozens to
hundreds of (e.g., human) evaluations to achieve significant improvements. Additionally, we have
enhanced the EG3D-cats model with a streamlined codebase, illustrating our approach’s versatility
and practicality (see Algorithm 4). Overall, our findings underscore the value of human-in-the-loop
methodologies or simulation-based feedbacks in refining DL solutions across various domains,
without relying on millions of feedbacks.
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We recommend employing AfterLearnER in the following scenarios:

e Consider problems in which the actual objective is not differentiable, and is hence typically
approximated for gradient-based training by various proxies, or by ad-hoc reward shaping.

o Black-box retrofitting must come after the classical gradient-based training, and without any
backprop retraining.

e Restrict the N-parameters to key parameters: typically, some parameters at the input or
output transformations, or a single layer as small as possible. Dimensions in the 1000s is
manageable in a black-box manner (though this depends on the budget of course), but prefer
as much as possible small families of parameters that intersect all paths from input to output.

e Increasing the number of runs (parameter k), or the parallelism A, makes the code closer
to random search, and less prone to overfitting, as confirmed by the theoretical analysis
of Section 4.2. A relatively low budget is sufficient, both in terms of number of feedbacks
(whereas most papers use dozens of thousands to hundreds of thousands of scalar feedbacks),
and computational cost: a value of k = 1 has frequently been used here, except for Doom for
which we mostly set k = 30.

We emphasize the concept of small aggregated anytime feedback (SAAF). While we did a part of
our experiments from automatically computed feedback (e.g., word error rate based on programs for
speech synthesis or the biggest MiDaS model in depth estimation), AfterLearnER uses an aggregated
feedback, which could be provided by humans, based on a global experience of the system, without
the need for fine grain feedback. Also, this shows a clear generalization: compared to systems using
millions of fine-grained feedback, our system can not so easily “cheat” (overfit) using redundancies
between train/validation and test.

Limitations and further work

Most of the feature construction was performed by DL: what we propose can be added on top of a
DL solution, but does not replace it. We outperform Arnold for Doom, but only with Arnold and
its reward shaping as an excellent starting point. The situation is similar for speech resynthesis,
interactive generation and depth sensing. In the case of the Transcoder, we manage to optimize a
few weights of the checkpoint within a few dozens evaluations.

Maybe some of our results could be improved by applying AfterLearnER on several layers in
turn: in the present paper we just heuristically guessed which parameters to optimize, and did not
investigate bigger search spaces. This might be particularly true for cases in which we can generate
new data with a simulator, as in the case of Doom.

Improving generalization by searching for flat optima is a challenging topic [Baldassi et al. 2020;
He et al. 2019; Hoffer et al. 2017], mostly explored for gradient-based optimization of weights: our
context (black-box optimization, validation set, after training) is specific, promising, and deserves
exploration. This includes the mathematics in Section 4.2, inspired from [Fournier and Teytaud
2011].

Multi-objective extensions seem to be natural for Arnold/Doom (using the various reward
shaping criteria used in the original code) and for code translation, where BLEU and comp. acc. are
completely different measures, and for the many criteria of depth sensing.

The present paper demonstrated the applicability of AfterLearnER, with experiments reproducible
with a relatively low budget. A natural next step is the large scale application on unsolved problems,
such as hallucinations in large language models or code translation optimized for speed.
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Algorithm 4 The short code at the top of EG3D-cats for getting AfterLearnER on top of it. There
is no significant computational overhead, we learn directly from z: we do not have to generate
anything.

# Code for modifying a latent vector z, using a list of the
# bad random seeds over the 200 first seeds.
if "afhqcats512 -128" in network_pkl:
Y = [1] » 200 # Seeds 15, 84, 47 are bad for cats.
bad_latent_z = [15,84,47,30,33,78,4,50,49,
56,11,17, 36,85,59,16,63,81,25,39,
87,45,41,58,60,68,46,38]
bad_latent_z += [130,113,146,107,143,
175,158,192,121,
110,181,186,170,120,163,193,155,
144,148,191,141, 105,187,183,174,
129,117,100,157,166,194,198,138,
156,168,114,127,103,109]
if "ffhqrebalanced512 -64" in network_pkl:
Y = [1] » 200
bad_latent_z = [27,14,88,42,37,25,73,
53,40,17,45,92,
50,3,84,29,12,31,98,72,51,46,57,16,13,33,
43,69,60,74, 77,75,41,89,39,87,68,67,56,
35,26,9,23,7,38,20,63,55,
28,36,8,6,64]
bad_latent_z += [132,145,194,187,119,169,
137,176,185, 147,111,139,171,
101,161,116,115,155,175,118,112,144,172,
198,124,181, 129,117,189,108,174,138,121,143,
156,130,146,179,140,153,136,168,131,180,110,
109,199,100]
for p in bad_latent_z:
Y[p] =0
X = [list(np.random.RandomState(i).randn(1, G.z_dim)[0])
for i in range(len(Y))]
# Learning with Scikit -Learn.
from sklearn import tree
clf = tree.DecisionTreeClassifier ()
print(len(X), len(Y), len(X[0]))
clf = clf. fit (X, Y)
# Optimization with Nevergrad.
z = np.random.RandomState (seed).randn(1, G.z_dim)
import nevergrad as ng
epsilon = 0.01
def loss(x):
assert len(x) == G.z_dim
return clf.predict_proba(
[list(z[0] + epsilon = x)])[0][0]
nevergrad_optimizer = ng.optimizers.NGOpt(
G.z_dim, 10000)
for nevergrad_iteration in range(1, 10000):
x = nevergrad_optimizer.ask ()
1 = loss(x.value)
if 1 < le-5:
break
else:
nevergrad_optimizer. tell (x, 1)
print(f"Success_in_{nevergrad_iteration} iterations")
z[0] += epsilon + nevergrad optimizer.recommend (). value
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A  FULL RESULTS FOR THE AFTERLEARNER / MIDAS EXPERIMENT

We observe here (i) good performance even with a low budget (total budget < 300 is enough for
positive results) (ii) good transfer, in particular when training on Th3.

For each budget, there are three loss functions Th1, Th2 and Th3 which can be used in training
or in test, hence 9 curves. For 3 of them, train and test use the same loss function: the 6 others are
about transfer. The non-transfer cases are also presented in the main text. Fig. 9 consider a budget
b = 1. Fig. 10 considers a budget b = 50. Fig. 11 considers a budget 150. In each figure, the x-axis is
the number of runs k.
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Fig. 9. AfterLearnER applied to MiDa$S with budget B = {1}: with this budget 1, we are actually running
random search and already get positive results. We note that with a training on Th3, we get positive results for
all tests with b X k (total number of scalar evaluations provided to AfterLearner) less than 20: so 20 evaluations
is enough for a good transfer to all criteria Th1, Th2, Th3.
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Fig. 10. AfterLearnER applied to MiDa$S with budget B = {50}. Compared to B = {1}, the number of scalar
evaluations needed for beating the baseline is greater, but remains in the hundreds. Th3 remains the best
training criterion for good transfer to all 3 criteria Th1,Th2,Th3.
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Fig. 11. AfterLearnER applied to MiDaS with budget B = {150}. Compared to B = {1}, the number of scalar
evaluations needed for beating the baseline is greater, but remains in the hundreds. Th3 remains the best
training criterion for good transfer to all 3 criteria Th1,Th2,Th3.
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B BLACK-BOX OPTIMIZATION WIZARDS AND NGOPT

After becoming famous in SAT solving[Xu et al. 2008], wizards become important in black-box
optimization as well[Awad et al. 2020; Liu et al. 2020; Meunier et al. 2022a; Weise et al. 2018].

Optimization wizards are based on selecting, from characteristics of the domain (dimension,
type of variables) and of the optimization run (budget, parallelism), an optimization algorithm or a
bet-and-run [Weise et al. 2018] or chaining of several optimization algorithms. NGOpt, an open
source wizard for black-box optimization, is available in [Rapin and Teytaud 2018] and as a PyPi
package.

For example, in a continuous setting, with moderate dimension and a large budget and a se-
quential optimization context (no parallelism), NGOpt[Meunier et al. 2022a] chooses a chaining
of CMA[Hansen and Ostermeier 2003] fastened with a metamodel and followed by Sequential
Quadratic Programming[Artelys 2015].

An example of code involving NGOpt is provided in Appendix C.

C REPRODUCIBILITY

All black-box optimization algorithms are available in [Rapin and Teytaud 2018]. Nevergrad can be
installed by cloning https://github.com/facebookresearch/nevergrad or by “pip install nevergrad”.

A minimal example of optimization with some optimization methods mentioned above is in Al-
gorithm 5.

Algorithm 5 Minimal example of black-box optimization.

import nevergrad as ng
import numpy as np

def loss(x):
return np.sum((x - 1.7) »x 2)

# 3 optimization methods in dimension 10, continuous.

optim_ngopt = ng.optimizers.registry ["NGOpt"](10, 500)

optim_de = ng.optimizers.registry ["DE"](10, 500)

optim_lengler= ng.optimizers.registry ["DiscreteLenglerOnePlusOne"](10, 500)

# 1 optimization method for dimension 10, integer wvalues between 1 and 4,

# with 30 parallel evaluations.

array = ng.p.Array(init=np.array([2] « 10), lower=1, upper=4).set_integer_casting ()
optim_opo = ng.optimizers.registry["DiscreteOnePlusOne"]J(array, 500)

# an example with minimize
print(optim_ngopt.minimize (lambda x: loss(x)).value)

# an example with ask and tell
for k in range (50):
x = optim_de.ask()
y = loss(x.value)
optim_de. tell (x, y)

# an example with minimize in a discrete context
print (optim_opo.minimize (loss ). value)

The detailed code for improving EG3D is in Algorithm 4.
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Table 9. Computational cost. *Here the cost is in terms of data collection. **We get positive results even
with very low budget, though greater budgets lead to better results (Figure 3). The online overhead exists
only when we modify, online, the latent variables of a GAN for each new generation of images: however, it is
typically negligible compared to the generation of images itself.

Application computational cost
Offline comp. cost Online overhead
Depth sensing
(Fig. 2, k = 10, B = 50) 12h, 10 GPUs Zero
Speech resynthesis (Tab. 4, 1st line) 1 GPU, 2 hours Zero
EG3D 200 labelled examples*® negligible
LDM (offline, Section 5.6) 200 images negligible
LDM (online, Section 5.7) negligible negligible
Doom (Tab. 5) 48 hours, k GPU Zero
Code translation 0 to 54 hours™*, Zero
0 to thousands of *
" labelled translations

D COMPUTATIONAL COST

Table 9 presents typical computational costs of AfterLearnER, for a typical entire run providing
significant improvements compared to the initial DL tool.
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