
HAL Id: hal-04733426
https://hal.science/hal-04733426v1

Preprint submitted on 12 Oct 2024 (v1), last revised 29 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Left heart hemodynamics simulations with
fluid-structure interaction and reduced valve modeling
Oscar Ruz, Jérôme Diaz, Marina Vidrascu, Philippe Moireau, Dominique

Chapelle, Miguel Angel Fernández

To cite this version:
Oscar Ruz, Jérôme Diaz, Marina Vidrascu, Philippe Moireau, Dominique Chapelle, et al.. Left heart
hemodynamics simulations with fluid-structure interaction and reduced valve modeling. 2024. �hal-
04733426v1�

https://hal.science/hal-04733426v1
https://hal.archives-ouvertes.fr


Left heart hemodynamics simulations with fluid-structure interaction and

reduced valve modeling

Oscar Ruz
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Sorbonne Université, CNRS, LJLL, Inria, Paris, France

miguel.fernandez@inria.fr

Abstract. The combination of reduced models of cardiac valve dynamics with a one-way kinematic uncoupling of blood
flow and electromechanics is a widespread approach for reducing the complexity of cardiac hemodynamics simulations. This
comes however with a number of shortcomings: artificial pressure oscillations, missing isovolumetric phases and valve laws
without precise continuous formulation. This paper is aimed at overcoming these three difficulties while still mitigating
computational cost. A novel reduced model of valve dynamics is proposed in which unidirectional flow is enforced in
a mathematically sound fashion. Artificial pressure oscillations are overcome by considering a fluid-structure interaction
model, which couples bi-ventricular electromechanics and blood flow in the left cavities. The interface coupling is solved in a
partitioned fashion via an unconditionally stable loosely coupled scheme. A priori energy estimates are derived for both the
continuous coupled problem and its numerical approximation. The benefits and limitations of the proposed approaches are
illustrated in a comprehensive numerical study.

Keywords. Cardiac hemodynamics, fluid-structure interaction, reduced valve modeling, loosely coupled scheme.

1 Introduction

The numerical simulation of cardiac hemodynamics (that is, of blood flows in the chambers of heart) opens many fascinating
perspectives for enhanced device design, treatment planning and clinical decision (see, e.g., [45, 49] for recent reviews), notably
because computer simulations provide direct access to mechanical quantities (such as local pressures and shear stresses)
which can hardly be measured in a non-invasive fashion. The genuine multi-physics nature of the heart function makes these
simulations a permanent challenge in computational modeling and scientific computing. Indeed, a complete mathematical
model of cardiac hemodynamics must involve also the interaction with different additional complex phenomena, such as
cardiac electromechanics and valve dynamics.

The simulation of all the fluid-structure interaction phenomena involved in the heart is a complex problem, with only a
few studies reported in the literature so far (see [38, 30, 26, 64, 63]). Heart valves are definitely a bottleneck of the problem,
particularly due to their large deflections, fast dynamics and contact phenomena at high pressure-drops. Fortunately, not all
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cardiac hemodynamics simulations require a complete multi-physics model of the heart, and alternative reduced modeling
options can be considered depending on the relevant physics driving the phenomena of interest (see, e.g., [45, 49]).

With the purpose of reducing the computational complexity of the problem, several reduced models of cardiac hemo-
dynamics have been proposed in the literature. One of the most widespread approaches consists in combining a reduced
modeling of the valve dynamics with a one-way kinematic uncoupling of blood flow and cardiac electromechanics. In short,
motion data, coming either from electromechanical simulations (see, e.g., [3, 39, 61, 70, 68, 69]) or from imaging measure-
ments (see, e.g., [44, 43, 56, 18, 62, 40, 6, 7, 67]), is enforced on the boundaries of the fluid cavities, while the opening and
closing of the valves is described by switching boundary conditions (see, e.g., [8, 4]) or via resistive immersed methods (see
[2, 25, 61, 68]).

These modeling simplifications come however at a price. First, unphysical pressure oscillations are observed during
the opening/closing phases of the valves. This often requires the prescription of artificial refractory periods. Second, the
isovolumetric phases are neglected in the cardiac cycle, since the fluid pressure within the ventricle is not well defined in
a fully enclosed domain with Dirichlet data. In [61] (see also [68]), this issue has been overcome by leveraging the natural
leakage induced by the resistive immersed valve model (for moderate values of the resistance), but it requires an a priori
knowledge of the ventricle pressure. And third, the opening/closing valve laws generally lack mathematical soundness. They
are indeed defined in a time semi-discrete framework (as a discrete algorithm rather than as a mathematical model), without
a clear continuous counterpart. The contributions of this paper are aimed at overcoming these three issues.

We first introduce a novel reduced valve model in which unidirectional flow is enforced in a mathematically sound fashion
through an inequality constraint on the fluid velocity across the immersed valve. This naturally avoids the need of artificially
switching between different interface conditions or between different values of the resistance. Related unilateral constraints
have been proposed in another context with the purpose of deriving energy estimates for the Navier-Stokes equations with
outflow boundary conditions (see [66, 53, 52]). In the context of kinematical uncoupling, numerical evidence indicates that
this approach reduces the magnitude of the spurious pressure oscillations but it does not remove them.

We postulate that these artificial oscillations are due to the lack of compatibility between the kinematical data enforced
on the cardiac cavities and the status of the reduced valve model. We investigate this hypothesis by proposing a cardiac
hemodynamics model which combines the above mentioned reduced valve dynamics models with a fluid-structure interaction
model in the left ventricle. Alternative fluid-structure interaction models for the left-ventricle have been proposed in [17, 47,
54, 9, 10]. A salient feature of the proposed approach is that it couples a bi-ventricular model of active cardiac mechanics with
the Navier-Stokes system in the left heart. Furthermore, in order to mitigate computational complexity, notably with respect
to the kinematically uncoupling approach, the interface coupling is numerically solved via a Robin-Robin loosely coupled
scheme reported in [12] (see also [13, 11]), which is expected to deliver nearly optimal accuracy. An a priori energy estimate,
guaranteeing unconditional energy stability, is derived for the resulting fully discrete method. A comprehensive numerical
study, involving a simplified and a realistic left-heart geometry, illustrates the accuracy and robustness of the proposed
approach. Numerical evidence indicates, in particular, that fluid-structure interaction removes the above mentioned spurious
pressures oscillations, irrespectively of the considered reduced valve model.

The rest of the paper is organized as follows. Section 2 presents the different mathematical models considered in this
paper: from active cardiac mechanics, blood flow and reduced valve modeling to kinematical uncoupling and fluid-structure
interaction. The numerical approximation of the proposed coupled fluid-structure interaction system is addressed in Section 3.
We introduce a loosely coupled scheme and derive an energy stability estimate. Section 4 is devoted the description and
discussion of the numerical examples. Finally, a summary of the main results and some directions of future work are drawn
in Section 5.

2 Problem setting and mathematical models

In this section, we introduce a distributed fluid-structure interaction model of the left ventricle. The myocardium is described
as a passive hyperelastic material with an active law along the muscle fibers (Section 2.2), whereas fluid flow within the left
cavities is modeled by the incompressible Navier-Stokes equations with a reduced modeling of the valve dynamics (Section 2.3).

2.1 Geometrical setting

We denote by Ω ⊂ R3 the reference computational domain, partitioned as Ωf ∪ Ωs, where Ωf stands for the left heart
fluid cavities and Ωs represents the ventricles myocardium (see Figure 1). The fluid domain can be split into three regions
Ωla

f ∪ Ωao
f ∪ Ωlv

f , which respectively correspond to the fluid cavities in the left atria, ascending aorta and left ventricle. For
the solid domain we consider the partition Ωlv

s ∪ Ωrv
s , where Ωlv

s and Ωrv
s respectively denote the left and right ventricular

myocardiums. As mentioned above, the present study focuses on the fluid-structure interaction between the left ventricular
flow and the myocardium mechanics. This interaction takes place at the left ventricle endocardium interface, denoted by

Γl
def
= ∂Ωlv

s ∩ ∂Ωlv
f .
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Figure 1: Geometrical description of the reference computational domain Ω.

2.2 Cardiac mechanics model

The mechanical response of the myocardium is described by the fundamental law of dynamics, formulated in a total Lagrangian
approach, in terms of the deformation map ϕ : Ωs × R+ → R3. This mapping describes the position of each point in the

reference configuration at any given time instant. The solid displacement field y : Ωs × R+ → R3 is defined as y(x, t)
def
=

ϕ(x, t) − x for all x ∈ Ωs. We introduce the deformation gradient of the solid F s
def
= ∇ϕ = I +∇y, where I denotes the

identity matrix. The Jacobian of the solid system is given by the relation Js
def
= detF s. The boundary of Ωs (see Figure 1)

is assumed to be partitioned as Γr ∪ Γa ∪ Γb ∪ Γv ∪ Γl, where Γr denotes the endocardium of the right ventricle, Γa the apex
of the heart, Γb the base of the heart, Γv the annulus of the mitral and tricuspid valves, and Γl the endocardium of the left
ventricle. For simplicity, the solid is assumed to be clamped on Γv, and a viscoelastic boundary condition is enforced on
Γa ∪ Γb, which emulates the support provided by the surrounding tissue (e.g., as the pericardium).

The mechanical response of the cardiac tissue is described in terms of the second Piola-Kirchhoff stress tensor Σ, which
is assumed to be composed of a passive contribution Σp, and an active contribution Σa. We relate both contributions using
an extension of the classical Hill-Maxwell rheology scheme, which takes into account the nonlinear response, as outlined in
[16, 41, 51]. Therefore, the overall second Piola-Kirchhoff stress tensor of the cardiac tissue can be expressed as Σ = Σp+Σa.
The passive behavior, primarily influenced by the collagen and elastin matrix surrounding the heart fibers, is fully three-
dimensional (3D) and is composed of hyperelastic and viscous contributions:

Σp =
∂We(E)

∂E
+

∂Wv(Ė)

∂Ė
, (1)

where E stands for the Green-Lagrange strain tensor, defined by the relation E
def
= 1

2 (F
T
s F s − I). The cardiac tissue is

modeled as nearly incompressible and transversely isotropic, with a privileged direction along the fibers. The hyperelastic
potential is given by the Holzapfel–Ogden constitutive law (see [37]), expressed as:

We = µ1(J1 − 3) + µ2(J2 − 3) + C0exp(C1(J1 − 3)2) + C2exp(C3(J4 − 1)2) + κ(Js − 1)− κ ln(Js),

where J1, J2, J4 denote the reduced invariants and µ1, µ2, C0, C1, C2, C3 are model parameters adjusted on the specific regions
of the heart tissue. On the other hand, we model the viscous pseudo-potential with the simple relation:

Wv =
ν

2
I : (Ė)2, (2)
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where ν denotes the solid viscosity coefficient.
The active behavior, driven by the chemical reactions within myocytes that induce the contraction and relaxation of

sarcomeres (resulting in the subsequent contraction and relaxation of the myocardium along the fibers of the heart), is
modeled following the approach outlined in [16, 41]. The dynamics of the active stiffness kc and of the contractile stress τc
produced by the sarcomeres are hence given by{

k̇c = − (|ue|+ αd |ėc|) kc + n0k0|ue|+,
τ̇c = − (|ue|+ αd |ėc|) τc + ėckc + n0σ0|ue|+,

(3)

where ec represents the extension along the fibers, which is further elaborated below, and ue denotes the chemical activation

(or electrical input) and |x|+ def
= max{x, 0}. The term αd |ėc| accounts for the bridges destruction upon rapid length changes.

The parameter 0 ≤ n0 ≤ 1 is a reduction factor that accounts for the Frank-Starling effect, which describes the relation of
the contraction with the current strain of the sarcomeres. The constant k0 is the maximum stiffness, while σ0 accounts for
the solid contractibility.

es, σs ec, σc

Es

We

Wv

μc

τc, kc

E, Σ

ue

ea, σa

Figure 2: Rheological model from [16, 51].

Following [16, 51], the passive and active elements of the myocardium tissue are assembled using the rheological scheme
of Figure 2. The total stress acting along the fiber is composed of contractile and elastic stresses, respectively denoted σc

and σs. The contractile stress is given by the constitutive relation

σc = τc + µcėc, (4)

where µc > 0 is the dissipation coefficient. On the other hand, the elastic stress produced in the sarcomeres (due to the
elastic response of the Z disks) can be modeled as

σs = Eses, (5)

where Es represents the Young modulus of the elastic component of the sarcomeres and es is the elastic extension of these
components. The overall stress along the fibers, denoted by σa, can be related with the contractile and elastic stresses
according to the following relations (see [16]):

σa =
σc

1 + 2es
=

σs

1 + 2ec
. (6)

On the other hand, the extension along the fibers, denoted by ea, is related with the contractile and elastic extensions as

1 + 2ea = (1 + 2es)(1 + 2ec). (7)

Additionally, ea is given in terms of the Green-Lagrange strain tensor as

ea
def
= aTEa, (8)

where a stands for the unit vector tangential to the cardiac fibers. The final relation for the active behaviour is described as

Σa = σaa⊗ a.
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Note that from, (7), we get

es =
ea − ec
1 + 2ec

, (9)

so that this expression can be used to eliminated es in the above relations. In particular, owing to (5) and (6), we have

σa = Es
ea − ec

(1 + 2ec)2
. (10)

Similarly, by combining (4), (6) and (9), we get the following dynamics for ec

µcėc + τc = Es
(ea − ec)(1 + 2ea)

(1 + 2ec)3
.

We can then use (8) to express ea in terms of E in the two previous relations, which together with (3) closes the active
modeling.

A lumped parameter (0D) model is used to describe the blood flow in the right cardiac cavities (see, e.g., [51]). The
coupling with ventricular tissue is operated by the relations

F sΣns = −Prns on Γr,∫
Γr

Jsus · F−T
s ns = Qr

(
Pr, Par,r, Pat,r

)
,

The first enforces the dynamic balance on the fluid-solid interface Γr, in terms of the unknown homogeneous fluid pressure
Pr, while the second corresponds to the balance of mass in the right ventricular cavity, with Qr denoting the net flux across
the valves given by the function

Qr(Pr, Par,r, Pat,r)
def
=


Kat,r(Pr − Pat,r) if Pr ≤ Pat,r,

0 if Pat,r ≤ Pr ≤ Par,r,

Kar,r(Pr − Par,r) if Pr ≥ Par,r.

(11)

Here, Par,r, Pat,r respectively denote the right atrium and pulmonary artery pressures, respectively, while Kat,r,Kar,r stand
for the conductances of the valves in the open configurations. Furthermore, a two-stage Windkessel system is used to model
the impact of the external circulation on the dynamics of the unknown arterial pressure Par,r (see, e.g., [36]), viz.,

Cp,rṖar,r +
Par,r − Pd,r

Rp,r
= |Qr|+,

Cd,rṖd,r +
Pd,r − Par,r

Rp,r
=

Pvs,r − Pd,r

Rd,r
,

(12)

where Pd,r stands for the unknown distal pressure, Pvs,r for a given remote venous pressure and Rp,r, Cp,r and Rd,r, Cd,r

respectively denote the proximal and distal parameters.
The resulting active cardiac mechanics system reads therefore as follows: find the displacement y : Ωs × R+ → R3,

the velocity us : Ωs × R+ → R3, with us = ∂ty, the extension along the fibers ec : Ωs × R+ → R, the active stifness
kc : Ωs × R+ → R+, the active tension τc : Ωs × R+ → R, the right ventricular pressure Pr : R+ → R, the right proximal
pressure Par,r : R+ → R and the right distal pressure Pd,r : R+ → R such that

ρs∂tus − div
(
F sΣ(E, ec)

)
= 0 in Ωs,

Σ =
∂We

∂E
+

∂Wv

∂Ė
+

Es(a
TEa− ec)

(1 + 2ec)2
a⊗ a in Ωs,

µcėc + τc = Es
(aTEa− ec)(1 + 2aTEa)

(1 + 2ec)3
in Ωs,

k̇c = − (|ue|+ αd |ėc|) kc + n0k0|ue|+ in Ωs,

τ̇c = − (|ue|+ αd |ėc|) τc + ėckc + n0σ0|ue|+ in Ωs,

y = 0 on Γv,

F sΣns + ay + bus = 0 on Γa ∪ Γb,

F sΣns = −Prns on Γr,∫
Γr

Jsus · F−T
s ns = Qr

(
Pr, Par,r, Pat,r

)
,

Cp,rṖar,r +
Par,r − Pd,r

Rp,r
= |Qr|+,

Cd,rṖd,r +
Pd,r − Par,r

Rp,r
=

Pvs,r − Pd,r

Rd,r
,

(13)
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where ρs stands for the solid density and a, b > 0 are given coefficients of the viscoelastic support boundary condition on
Γa ∪ Γb. The type of boundary conditions imposed on the left endocardium wall Γl depends on the type of model coupling
approach considered with the fluid in the left ventricle. This will be discussed in Section 2.4 below.

2.3 Fluid model with reduced valve dynamics

The dynamics of the fluid flow within the left cavities are described by the incompressible Navier-Stokes equations in ar-
bitrary Lagrangian-Eulerian (ALE) formulation. The current configuration of the fluid domain, denoted by Ωf(t), is hence

parametrized by the so-called ALE map A : Ωf × R+ → R3, with At
def
= A(·, t) one-to-one and so that Ωf(t) = A (Ωf , t),

for all t > 0. The ALE map A can be given in terms of the displacement of the fluid domain yf : Ωf × R+ → R3, as

A(x, t)
def
= x + yf(x, t). Note that both A and yf are arbitrarily defined in the interior of Ωf . With the ALE map, we can

define the computational domain velocity, also called ALE velocity, as w = ∂tA, the gradient of deformation F
def
= ∇A and

the Jacobian J
def
= detF .

The boundary of the fluid domain Ωf is assumed to be partitioned as Γla ∪ Γaw ∪ Γpv ∪ Γao ∪ Γl (see Figure 1), where
Γla ⊂ ∂Ωla

f denotes the left atrium wall, Γao ⊂ ∂Ωao
f the wall of the ascending aorta, Γpv ⊂ ∂Ωla

f \ Γla the inlet of the
pulmonary veins left atrium and Γout

ao ⊂ ∂Ωla
f \Γao the outlet of the ascending aorta. Furthermore, the closed configuration of

the mitral and aortic valves are represented through two immersed surfaces, denoted by Γmv and Γao, respectively, oriented
with the normal vector nf along the flow direction.

Remark 1. For a given field f defined in the current configuration Ωf(t), we shall use the notation f̂ to defined its corre-

sponding ALE description in Ωf , by composing with the ALE map, namely, f̂(x, t)
def
= f(A(x, t), t) ∀x ∈ Ωf . Conversely, a

given field defined in the reference configuration Ωf can also be transported into the current configuration by composition with
A−1

t . For the sake of simplicity, this composition is omitted. For instance, w in (14)1 below has to be read as w ◦A−1
t .

The fluid problem in the left cavities with a reduced model of the valve dynamics consists in finding the fluid velocity
û : Ωf × R+ → R3, and the fluid pressure p̂ : Ωf × R+ → R, such that

ρf
(
∂tu|A + (u−w) ·∇u

)
− divσ(u, p) +

∑
i∈{mv,ao}

fΓi
(u−w, p)δΓi = 0 in Ωf(t),

divu = 0 in Ωf(t),

u = 0 on Γla ∪ Γao,

σ(u, p)nf +
ρf
2
|u · nf |− u = −Ppv,aonf on Γpv ∪ Γao,

(14)

with ρf standing for the fluid density, δΓi
for the Dirac measure on the immersed surface Γi and σ (u, p) for the fluid Cauchy

stress tensor, given by:

σ (u, p)
def
= −pI + 2µfε (u) , ε (u)

def
=

1

2

(
∇u+∇uT

)
,

where µf > 0 denotes the dynamic viscosity of the fluid. Furthermore we have used the general notation f
def
= f̂ ◦A−1

t , for

any field f̂ defined in the reference configuration Ωf .
As boundary conditions, we impose a non-slip condition on Γla∪Γaw, while we consider normal tractions on Γpv∪Γao. The

enforced pressure Ppv,ao(t) is analytically given in Γpv, while in Γao it is determined through the one-stage Windkessel model.
Furthermore, in order to circumvent the potential backflow induced numerical instabilities on Neumann boundaries (see,

e.g., [23]), we include the following dissipative term, ρf

2 |u ·nf |−u, with |x|− def
= max{0,−x}. Finally, the term fΓi

(u−w, p)
represents the fluid stress jump Jσ(u, p)nfK induced by the opening and closing dynamics of the valve Γi, with the notation

JfK def
= f+ − f−, JfnK def

= JfKn, f±(x)
def
= lim

ϵ→0±
(x+ ϵnf) ∀x ∈ Γi.

The term fΓi
(u − w, p) can be modeled in different ways. In this work, we consider the resistive immersed surface (RIS)

approach and we propose as well a novel reduced valve modeling approach, with superior mathematical foundations.

2.3.1 Resistive immersed surface valve model

In the RIS model, introduced in [2] (see also [25, 61]), the expression of fΓi
(u−w, p) is given by a distributed Ohm’s law,

namely,

fΓi
(u−w, p) = RΓi(t)(u−w) on Γi, (15)

where RΓi
(t) plays the role of a time-dependent resistance which regulates the fluid flow across the valve Γi. Typically,

RΓi
(t) vanishes when the valve is open and takes a large value Rclosed whenever the valve is closed. The transition between
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Algorithm 1 Explicit resistance update in the RIS valve model.

if Rn−1
Γi

= Rclosed (closed valve) then

if
∫
Γi

Jpn−1K > 0 then
Rn

Γi
= 0

else
Rn

Γi
= Rn

closed

end if
else if Rn−1

Γi
= 0 (open valve) then

if
∫
Γi
(un−1 −wn) · nf ≤ 0 then

Rn
Γi

= Rn
closed

else
Rn

Γi
= 0

end if
end if

these two states of the valve depends on both the current status of the valve (closed or open) and on the nature of the flow
across Γi. Roughly, the basic idea consists in closing the valve when the relative flow rate becomes negative (or smaller than
a given tolerance) and opening the valve when the pressure jump across the valve reaches a positive value. The dependence
of RΓi

on u−w and p is hence rather intricate. In fact, instead of providing an explicit continuos expression of Ri in terms
of u−w and p, the RIS model is often formulated in a time semi-discrete framework by setting the valve resistance at time
level n, Rn

Γi
, as a function of Rn−1

Γi
, un−1−wn−1 and pn−1 via the procedure reported in Algorithm 1 (see [2]). Furthermore,

refractory times and continuous transitions of the resistance are often necessary to mitigate the impact of pressure oscillations
observed during the opening and closing of the valves.

2.3.2 Velocity-constrained valve model

We introduce here a novel reduced model for the valves, which, unlike the RIS model, has a sound mathematical formulation.
The main idea of this modeling approach consists in enforcing unidirectional flow via an inequality constraint on the normal
relative velocity at the interface Γi. This yields the optimality conditions

(u−w) · nf ≥ 0, Jσ(u, p)nfK · nf ≥ 0, Jσ(u, p)nfK · nf(u−w) · nf = 0 on Γi, (16)

with i ∈ {ao,mv}. Note that the stress jump Jσ(u, p)nfK · nf across the interface Γi corresponds to the (scalar) Lagrange
multiplier associated with the inequality constraint (u −w) · nf ≥ 0. Thus, the second relation simply enforces that it has
to be positive (when the valve is closed) or zero (when the valve is open). Finally, the third corresponds to the so-called
complementary condition.

<latexit sha1_base64="SfaclVWi7mojK25cr+9L1DjXPQo=">AAACHXicbVDLSsNAFJ3Ud31FXboZWgRXJRGpLkUXuqxgVWhKmEwm7dB5hJmJUEI+wC8Q3PgrgrhQxIWb4t84aV1o9cAwh3Pu5d57opRRbTzv06nMzM7NLywuVZdXVtfW3Y3NSy0zhUkbSybVdYQ0YVSQtqGGketUEcQjRq6iwUnpX90QpakUF2aYki5HPUETipGxUujuB5FksR5y+8EkzINTxDkKaQEDHEsDf9rC2orDpAjdutfwxoB/if9N6ke1oHZ79zRqhe5HEEuccSIMZkjrju+lppsjZShmpKgGmSYpwgPUIx1LBeJEd/PxdQXcsUoME6nsEwaO1Z8dOeK63NBWcmT6etorxf+8TmaSw25ORZoZIvBkUJIxaCQso4IxVQQbNrQEYUXtrhD3kULY2ECrNgR/+uS/5HKv4TcbzXObxjGYYBFsgxrYBT44AEfgDLRAG2BwDx7BC3h1Hpxn5815n5RWnO+eLfALzugLKlamSg==</latexit>

f�i
· nf

<latexit sha1_base64="3f/FkOLQcshVk+Nk+uCT5z8Jydc=">AAACJXicbVDLSgMxFM3UV62vUZduQotQEcuMi+rCRdGNywr2AZ1SMplMG5pJhiSjlKF/4Re48VfcuLCI0JW/YvpYtNUDISfn3EvuPX7MqNKOM7Yya+sbm1vZ7dzO7t7+gX14VFcikZjUsGBCNn2kCKOc1DTVjDRjSVDkM9Lw+3cTv/FEpKKCP+pBTNoR6nIaUoy0kTr2TdHzBQvUIDIXTOAFXHw/wzPo4UDoJZV3Uk9GMBx27IJTcqaAf4k7J4VK3jt/GVcG1Y498gKBk4hwjRlSquU6sW6nSGqKGRnmvESRGOE+6pKWoRxFRLXT6ZZDeGqUAIZCmsM1nKqLHSmK1GRCUxkh3VOr3kT8z2slOrxup5THiSYczz4KEwa1gJPIYEAlwZoNDEFYUjMrxD0kEdYm2JwJwV1d+S+pX5bccqn8YNK4BTNkwQnIgyJwwRWogHtQBTWAwSt4B59gZL1ZH9aX9T0rzVjznmOwBOvnF68Np8g=</latexit>

(u � w) · nf

<latexit sha1_base64="vnOFO5KyEl3eBQgUNDupscEUUko=">AAAB8nicbZDLSgMxFIbP1Fsdb1WXbgaL4KrMuKhuxKIblxXsBdqhZNJMG5pJQpIplKGP4caFIt36Hu7diG9jello6w+Bj/8/h5xzIsmoNr7/7eTW1jc2t/Lb7s7u3v5B4fCorkWqMKlhwYRqRkgTRjmpGWoYaUpFUBIx0ogGd9O8MSRKU8EfzUiSMEE9TmOKkbFWqz1EikhNmeCdQtEv+TN5qxAsoHjz4V7LyZdb7RQ+212B04RwgxnSuhX40oQZUoZiRsZuO9VEIjxAPdKyyFFCdJjNRh57Z9bperFQ9nHjzdzfHRlKtB4lka1MkOnr5Wxq/pe1UhNfhRnlMjWE4/lHcco8I7zp/l6XKoING1lAWFE7q4f7SCFs7JVce4RgeeVVqF+UgnKp/OAXK7cwVx5O4BTOIYBLqMA9VKEGGAQ8wQu8OsZ5dt6cybw05yx6juGPnPcfHPeUzw==</latexit>"

Figure 3: Graphical representation of the penalized velocity constraint (19) as a regularization of the ideal graph (dotted).

The optimality conditions (16) can equivalently be rewritten as the following non-linear identity (see, e.g., [19, Chapter
6]):

Jσ(u, p)nfK · nf =
1

ε

∣∣(u−w) · nf − εJσ(u, p)nfK · nf

∣∣
− on Γi (17)

for all ε > 0. In this work, we consider a penalized version of (17), which amounts to take ε sufficiently small, so that the
stress contribution εJσ(u, p)nfK · nf in the right-hand side of (17) can be neglected. Furthermore, we assume no tangential
friction, viz.,

Jσ(u, p)nfK · τ f = 0 on Γi, (18)
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where τ f denotes the tangential basis vectors on Γi. We hence consider the following expression for fΓi
:

fΓi
(u−w, p) = −1

ε
|(u−w) · nf |− nf on Γi, (19)

which is grapichally represented in Figure 3.
There are several fundamental differences between the reduced valve models given by (15) and (18)-(19). First, the open

and closing dynamics in (19) are entirely driven by the local sign of (u−w) ·nf on Γi, without the need of the explicit switch
between resistances of Algorithm 1. Second, in constrast to (15), the relation (19) can be straightforwardly combined with
an implicit time-stepping scheme. This introduces a genuine non-linear term in the discrete problem, which can be handled
in the fluid solver with a few Newton iterations (as in the numerical results of Section 4). Finally, it is worth noting that
(owing to (18)) the fluid can slip tangentially along the valve whenever it is closed, which is not the case of (15). This could
be avoided by adding a suitable penalty term on the tangential velocity in (18). This variant is not explored in this work.

2.3.3 Open valve configuration

In order to obtain a physiological flow pattern within the left ventricle (see, e.g., [48, 61]), the open configuration of the mitral
valve, denoted here by Γopen

mv (see Figure 4), must be integrated within the blood flow model (14). To this purpose, a term
similar to (15), supported on Γopen

mv and with associated resistance RΓopen
mv

, is added we add to the momentum conservation
equation (14)1.

Figure 4: Geometry of the mitral valve: closed configuration (in green) and open configuration (in purple).

In the case of the RIS valve model of Section 2.3.1, the value of RΓopen
mv

is simply given in terms of the RΓmv
(see, e.g.,

[2, 61]), that is,

RΓopen
mv

=

{
0 if RΓmv = Rclosed,

Rclosed if RΓmv = 0.

In the velocity-constrained model (Section 2.3.2), since there is no switch between resistances, the open configuration is

activated in terms of the relative flow rate across the closed configuration, Qmv
def
=
∫
Γmv

(u−w) · nf , as follows:

RΓopen
mv

=

{
0 if Qmv ≤ Qmin,

Rclosed if Qmv > Qmin,

where Qmin stands for an user-defined minimal flow tolerance which characterizes the closed valve configuration.

2.4 Model coupling approaches

In this work, cardiac hemodynamics are simulated by considering two different types of modeling coupling approaches on the
the left ventricle interface Γl: kinematical uncoupling or one-way approach (KU) and fluid-structure interaction (FSI).

2.4.1 Kinematically uncoupled model

In this modeling approach, the fluid system (14) is solved with a prescribed motion of the fluid cavity Ωf(t) through the
relations {

yf = L (ydata) , w = ∂tyf , A = IΩf
+ yf , Ωf(t) = A(Ωf , t),

u = w on Γl.
(20)

Here, ydata : Γl × R+ → R3 denotes a given displacement of the left ventricle endocardium Γl and the symbol L stands for
a (possibly nonlinear) lifting operator from Γl to Ωf . In practice, ydata can be obtained from imaging measurements (see,
e.g., [44, 43, 56, 18, 62, 40, 6, 7, 67]) or from electromechanical simulations (see, e.g., [3, 39, 61, 70, 68, 69]). In the latter
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Figure 5: One-way kinematical uncoupling approach in the left ventricle.

case, this amounts to solve (13) with a lumped parameter description of the fluid also in the left heart, namely, by adding
the relations 

F sΣ(E, ec)ns = −Plns on Γl,∫
Γl

Jsus · F−T
s ns = Ql

(
Pl, Par,l, Pat,l

)
,

(21)

where Pl, Pat,l and Par,l respectively stand for the pressure in the left ventricle, left atria and aorta, and Ql denotes a net flux
valve function similar to (11). Finally, a two-stage Windkessel model, similar to (12), is considered to describe the dynamics
of the unknown pressure Par,l. This approach is schematized in Figure 5.

2.4.2 Coupled fluid-structure interaction model

In this modeling approach, the dynamics of the solid (13) and of the fluid (14) are coupled through the following standard
interface coupling conditions on the endocardial interface Γl:

yf = L (y|Γl
) , w = ∂tyf , A = IΩf

+ yf , Ωf(t) =A(Ωf , t),

u = us ◦A−1
t on Γl(t),

F sΣns = −Jσ̂(u, p)F−Tn̂f on Γl.

(22)

The first relation enforces the so-called geometrical compatibility condition, the second corresponds to the kinematic con-
tinuity while the third enforces the dynamic equilibrium at the fluid-solid interface Γl. This approach is schematized in
Figure 6.

We conclude this section by providing an a priori energy estimate for the coupled system given by (13), (14) and (22).

A priori energy estimate. We define the total energy of the system as

E(t) def
=

ρf
2
∥u∥20,Ωf (t)

+
ρs
2
∥us∥20,Ωs

+

∫
Ωs

We(y) +
1

2

∫
Ωs

Es|es|2 +
∫
Ωs

Uc +
a

2
∥y∥2Γa∪Γb

+
Cp,r

2
|Par,r|2 +

Cd,r

2
|Pd,r|2,

where the first two terms represent the instantaneous kinetic energy of the fluid and the solid, respectively. The third term
corresponds to the elastic energy of the solid and the fourth term to the (passive) elastic energy of the heart fibers. The fifth
term accounts for the microscopic elastic energy of the actin-myosin bridges, with Uc denoting the density of elastic energy
stored in the sarcomeres and whose dynamics are given by the following relation (see [16]):

U̇c = − (|ue|+ αd |ėc|)Uc + τcėc + n0U0|ue|+, (23)

where U0 > 0 stands for the initial elastic energy in the sarcomeres.

9



TV

<latexit sha1_base64="uECGSUZkdcAQgioaapNLOspuu5M=">AAAB+3icbVDLSsNAFJ3UV219xLp0M1gFF1ISwcey6EZwU8U+oA1hMp20QyeTMDMplpBfceNCEbf6A/6BOz9E107aLrT1wOUezrmXuXO8iFGpLOvTyC0sLi2v5FcLxbX1jU1zq9SQYSwwqeOQhaLlIUkY5aSuqGKkFQmCAo+Rpje4yPzmkAhJQ36rRhFxAtTj1KcYKS25ZunKTZKOCCBSh1m7SVPXLFsVaww4T+wpKVf3vt7eh8Xvmmt+dLohjgPCFWZIyrZtRcpJkFAUM5IWOrEkEcID1CNtTTkKiHSS8e0p3NdKF/qh0MUVHKu/NxIUSDkKPD0ZINWXs14m/ue1Y+WfOQnlUawIx5OH/JhBFcIsCNilgmDFRpogLKi+FeI+EggrHVdBh2DPfnmeNI4q9knl+FqncQ4myIMdsAsOgA1OQRVcghqoAwzuwD14BE9GajwYz8bLZDRnTHe2wR8Yrz8qH5hR</latexit> K
a
t,

R

<latexit sha1_base64="QqTI5PllBn9XyosO7SD8JVSuaLk=">AAAB+3icbVC7TsMwFHV4lpZHKCOLRUFiQFWCxGOsYGEsiD6kNqoc12mt2k5kOxVVlF9hYQAhVvgB/oCND4EZp+0ALUe6ukfn3CtfHz9iVGnH+bQWFpeWV1Zza/nC+sbmlr1drKswlpjUcMhC2fSRIowKUtNUM9KMJEHcZ6ThDy4zvzEkUtFQ3OpRRDyOeoIGFCNtpI5drHaSpC05RPooazdp2rFLTtkZA84Td0pKlf2vt/dh4bvasT/a3RDHnAiNGVKq5TqR9hIkNcWMpPl2rEiE8AD1SMtQgThRXjK+PYUHRunCIJSmhIZj9fdGgrhSI+6bSY50X816mfif14p1cO4lVESxJgJPHgpiBnUIsyBgl0qCNRsZgrCk5laI+0girE1ceROCO/vleVI/Lrun5ZNrk8YFmCAHdsEeOAQuOAMVcAWqoAYwuAP34BE8Wan1YD1bL5PRBWu6swP+wHr9ATIImFY=</latexit>

Pat,R

<latexit sha1_base64="vdjVPGjMt0ULEMNgQ3kxruFJ+xY=">AAAB+3icbVC7TsMwFHV4lpZHKCOLRUFiQFWCxGOsYGEsiD6kNqoc12mt2k5kOxVVlF9hYQAhVvgB/oCND4EZp+0ALUe6ukfn3CtfHz9iVGnH+bQWFpeWV1Zza/nC+sbmlr1drKswlpjUcMhC2fSRIowKUtNUM9KMJEHcZ6ThDy4zvzEkUtFQ3OpRRDyOeoIGFCNtpI5drHaSpC05RPIoazdp2rFLTtkZA84Td0pKlf2vt/dh4bvasT/a3RDHnAiNGVKq5TqR9hIkNcWMpPl2rEiE8AD1SMtQgThRXjK+PYUHRunCIJSmhIZj9fdGgrhSI+6bSY50X816mfif14p1cO4lVESxJgJPHgpiBnUIsyBgl0qCNRsZgrCk5laI+0girE1ceROCO/vleVI/Lrun5ZNrk8YFmCAHdsEeOAQuOAMVcAWqoAYwuAP34BE8Wan1YD1bL5PRBWu6swP+wHr9AS7wmFQ=</latexit>

Par,R

PV

<latexit sha1_base64="x4ne1ElKgMAgj45i3yrVItM4x6U=">AAAB/HicbVDLSsNAFJ3UV219RLt0M1gFF1ISwcey6EZwU8U+oA1hMp20QyeZMDMphFB/xY0LRdz2B/wDd36Irp20XWjrgcs9nHMvc+d4EaNSWdankVtaXlldy68XihubW9vmzm5D8lhgUseccdHykCSMhqSuqGKkFQmCAo+Rpje4yvzmkAhJeXivkog4AeqF1KcYKS25ZunGTdOOCCCV/Djrd6ORa5atijUBXCT2jJSrB1/j92Hxu+aaH50ux3FAQoUZkrJtW5FyUiQUxYyMCp1YkgjhAeqRtqYhCoh00snxI3iolS70udAVKjhRf2+kKJAyCTw9GSDVl/NeJv7ntWPlXzgpDaNYkRBPH/JjBhWHWRKwSwXBiiWaICyovhXiPhIIK51XQYdgz395kTROKvZZ5fRWp3EJpsiDPbAPjoANzkEVXIMaqAMMEvAInsGL8WA8Ga/G23Q0Z8x2SuAPjPEPCbqY0Q==</latexit> K
is

o
,R

Cp,R

Cd,L
Rp,R

Rd,R

Kar,R

Γmv

Γao

Pat,L(t)

Rp,L
Cp,L

<latexit sha1_base64="0nPKIc2Iv+Yj6oDHIcwBgCFJLA0=">AAAB+3icbVC7TsMwFHV4lpZHKCOLRUFiQFWCxGOsYGFgKBJ9SG1UOa7TWrWdyHYqqii/wsIAQqzwA/wBGx8CM07bAVqOdHWPzrlXvj5+xKjSjvNpLSwuLa+s5tbyhfWNzS17u1hXYSwxqeGQhbLpI0UYFaSmqWakGUmCuM9Iwx9cZn5jSKSiobjVo4h4HPUEDShG2kgdu1jtJElbcojkUdau07Rjl5yyMwacJ+6UlCr7X2/vw8J3tWN/tLshjjkRGjOkVMt1Iu0lSGqKGUnz7ViRCOEB6pGWoQJxorxkfHsKD4zShUEoTQkNx+rvjQRxpUbcN5Mc6b6a9TLxP68V6+DcS6iIYk0EnjwUxAzqEGZBwC6VBGs2MgRhSc2tEPeRRFibuPImBHf2y/Okflx2T8snNyaNCzBBDuyCPXAIXHAGKuAKVEENYHAH7sEjeLJS68F6tl4mowvWdGcH/IH1+gMlzJhO</latexit>

Par,L

Figure 6: FSI coupling approach in the left ventricle.

Remark 2. As outlined in [16], from the relation (3) it follows that kc ∈ [0, k0], provided that kc(0) ∈ [0, k0]. Furthermore,
it follows from (23) that Uc ≥ τ2c /(2kc) ≥ 0.

We also introduce the total energy dissipation rate of the system as

D(t)
def
=2µf ∥ε(u)∥20,Ωf (s)

ds+
∑

i∈{mv,ao}

∫
Γi

fΓi
· u+

∫
Ωs

(
|ue|+ αd|ėc|

)
Uc +

∫
Ωs

µc|ėc|2 +
∫
Ωs

∂Wv

∂Ė
: Ė

+ b∥us∥2Γa∪Γb
+

(
Kar,r |Pr − Par,r|2+ +Kat,r|Pr − Pat,r|2− +

|Pd,r − Par,r|2
Rp,r

+
|Pd,r|2
Rd,r

)
.

Here, the first and second terms correspond to the dissipation induced, respectively, by the viscosity of the fluid and by the
reduced modeling of the valves. Note, in particular, that the second term is non negative whenever the valves are fixed (i.e.,
w|Γi = 0). The third term represents the energy dissipated during the binding and unbinding mechanisms and the fourth
the passive dissipation within the sarcomeres. Finally, the last two terms correspond respectively to the passive viscosity of
the cardiac tissue and the dissipation induced by the reduced valve and circulation models.

The next result provides an a priori energy estimate for the coupled system (13), (14) and (22).

Theorem 1. Let (y,us, ec, kc, τc,yf ,u, p, Pr, Par,r, Pd,r) be solution of the coupled system (13), (14) and (22). The following
energy identity holds

E(t) +
∫ t

0

D(t) = E(0) +
∫ t

0

∫
Ωs

n0U0|ue|+ −
∑

i∈{pv,ao}

∫ t

0

∫
Γi

Piu · nf +

∫ t

0

(
Pvs,rPd,r

Rd,r
−Kat,rPat,r|Pr − Pat,r|−

)
, (24)

where the second term in the right-hand side represents the positive work produced by the actin-myosin engines and the third
and fourth terms the work delivered by the external pressures.

Proof. The proof follows by combining energy arguments from [27] and [16]. We first proceed by taking the scalar product
of (13)1 with us and of (14)1 with u. By integrating the resulting expressions over Ωs and Ωf(t), respectively, and by adding
them and using the interface conditions (22) and the boundary conditions in (13) and (14), we get the following fundamental
identity:∫

Ωf (t)

ρf∂tu|A · u+ ρf

∫
Ωf (t)

(u−w) ·∇u · u+ 2µ

∫
Ωf (t)

|ϵ (u) |2 +
∑

i∈{mv,ao}

∫
Γi

fΓi
· u+

∑
i∈{pv,ao}

ρf
2

∫
Γi

∣∣u · nf

∣∣
−|u|

2

︸ ︷︷ ︸
T1

+ ρs

∫
Ωs

∂tus · us +

∫
Ωs

Σ : DyE · us +

∫
Γa∪Γb

(ay + bus) · us︸ ︷︷ ︸
T2

+Pr

∫
Γr

JsF
−T
s ns · us︸ ︷︷ ︸

T3

= −
∑

i∈{pv,ao}

∫
Γi

Piu · nf , (25)

10



where the linear operator DyE is defined as

DyE · vs
def
=

1

2

(
FT

s ∇vs + (∇vs)
T
F s

)
.

We now proceed by estimating each term Ti, i = 1, 2, 3, separately. Using a change of variables, the identity ∂tJ = J d̂ivw,
integration by parts in the convective term and (22), it follows that (see, e.g., [27]):

T1 =
ρf

2

d

dt

∫
Ωf (t)

|u|2 + 2µ

∫
Ωf (t)

|ϵ (u) |2 +
∑

i∈{mv,ao}

∫
Γi

fΓi
· u.

As regards the solid contributions, we first note that owing to (13)2 and to (8) we have∫
Ωs

Σ : Ė =

∫
Ωs

(
∂We

∂E
+

∂Wv

∂Ė

)
: Ė +

∫
Ωs

σaa
TĖa. (26)

On the other hand, by differentiating in time (8) and by using (7) and then (4) and (5), we get∫
Ωs

σaa
TĖa =

∫
Ωs

σaėa =

∫
Ωs

σsės +

∫
Ωs

σcėc =

∫
Ωs

Esesės +

∫
Ωs

τcėc +

∫
Ωs

µcė
2
c .

By inserting this relation into (26) and using (23), we have

T2 =
d

dt

(
ρs

2

∫
Ωs

|us|2 +
∫
Ωs

We +
1

2

∫
Ωs

Es|es|2 +
∫
Ωs

Uc

)
+

∫
Ωs

∂Wv

∂Ė
: Ė

+
a

2
∥y∥2Γa∪Γb

+ b∥us∥2Γa∪Γb
+

∫
Ωs

µcė
2
c +

∫
Ωs

(
|ue|+ αd|ėc|

)
Uc −

∫
Ωs

n0U0|ue|+.

Finally, for the third term, using (13)9 we get

T3 = PrQr = Pr|Qr|+ − Pr|Qr|− = (Pr − Par,r) |Qr|+ + Par,r|Qr|+ − Pr|Qr|−. (27)

Owing to the expression of the valve function (11), we have

(Pr − Par,r) |Qr|+ = Kar,r |Pr − Par,r|2+ .

On other hand, using a standard energy argument in (12), we obtain

Par,r|Qr|+ =
d

dt

(
Cp,r

2
|Par,r|2 +

Cd,r

2
|Pd,r|2

)
+

|Par,r − Pd,r|2
Rp,r

+
|Pd,r|2
Rd,r

− Pvs,rPd,r

Rd,r
.

For the last term in (27), using (11) again, we have

−Pr|Qr|− = − (Pr − Pat,r) |Qr|− + Pat,r|Qr|− = Kat,r|Pr − Pat,r|2− +Kat,rPat,r|Pr − Pat,r|−.

Finally, the energy equality (24) follows by gathering all the above relations into (25) and by integrating the resulting
expression over the time interval (0, t). This completes the proof.

Remark 3. It should be noted that by using the Young’s, Cauchy–Schwarz, trace and Korn’s inequalities in the right-hand
side of (24), we can absorb the velocity and Windkessel pressures contributions into D(t), which yields the a priori energy
bound in terms of the problem data

E(t) + 1

2

∫ t

0

D(t) ≤ E(0) +
∫ t

0

∫
Ωs

n0U0|ue|+ +
CTCK

µ

∑
i∈{pv,ao}

∫ t

0

∫
Γi

|Pi|2 +
1

2

∫ t

0

(
|Pvs,r|2 +Kat,r|Pat,r|2

)
,

where CT, CK > 0 denote denote the constants of the trace and Korn’s inequalities, respectively. In particular, since w|Γi = 0
for i ∈ {mv, ao}, we have fΓi

· u ≥ 0, so that D(t) ≥ 0.

3 Numerical approximation

This section is devoted to the numerical approximation of the non-linear coupled system (13), (14) and (22).
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3.1 Time semi-discretization: Robin-based loosely coupled scheme

The time interval (0, T ) is discretized into N sub-intervals (tn, tn+1), where tn
def
= τn, T = tN , and τ denoes the time-step

length. In what follows, we shall make use of the following standard notation:

∂τf
n+1 def

=
1

τ
(fn+1 − fn), fn+ 1

2
def
=

fn + fn+1

2
,

for the first-order backward finite difference and the midpoint value, respectively.
The fluid subproblem (14) is discretized in time using a first-order backward Euler scheme with a semi-implicit treatment

of the convective term. For the solid subproblem (13), a modified mid-point scheme is considered for the momentum
conservation equation (13)1 with the so-called Gonzalez correction of the stresses, given by (see [35]):

Σ
n+ 1

2
g

def
=

∂τWe(E
n+1)− ∂We

∂E
(En+ 1

2 ) : Ėn+ 1
2∣∣Ėn+ 1

2

∣∣2 Ėn+ 1
2 , (28)

with the definitions

En+ 1
2

def
= E(yn+ 1

2 ), Ėn+ 1
2

def
= ∂τE

n+1, (29)

Owing to (1), the discrete passive stress tensor is given by

Σ
n+ 1

2
p

def
=

∂We

∂E
(En+ 1

2 ) +
∂Wv

∂Ė
(Ėn+ 1

2 ),

where, using the applying the chain rule and (2), the viscous-pseudo potential contribution yields

∂Wv

∂Ė
(Ėn+ 1

2 )
def
= νDyE

n+ 1
2 · un+ 1

2
s . (30)

Following [16], the dynamics of the active component are discretized in time using a first-order backward Euler scheme in

terms of the discrete variables en+1
c , ϱn+1 def

= τn+1
c /

√
kn+1
c and γn+1 def

=
√

kn+1
c , which guarantees the positiveness of kn+1

c

and the bound on the discrete elastic energy in the sarcomeres (see Remark 4 below).
For the time-discretization of the interface conditions (22), we build on the loosely coupled approach proposed in [12]

(see also [55, 11]). This basically consists in combining an explicit treatment fo the geometrical compatibility (22)1 with the
following Robin-Robin discretization of the kinematic/dynamic coupling conditions (22)2,3: F

n+ 1
2

s Σ
n+ 1

2ns + αu
n+ 1

2
s = αûn − Jnσ̂(un, pn)(F n)−Tn̂f on Γl,

Jn+1σ̂(un+1, pn+1)(F n+1)−Tn̂f + αûn+1 = αu
n+ 1

2
s + Jnσ̂(un, pn)(F n)−Tn̂f on Γl,

(31)

where α > 0 is the so-called Robin parameter (user-defined). A salient feature of (31), notably with respect alternative
loosely coupled schemes reported in the literature (see, e.g., [5, 28, 57, 33, 32, 9]), is that the scheme can be proved to deliver
unconditional stability and nearly optimal accuracy (see [12]).

The proposed time semi-discrete approximation of the coupled problem (13), (14) and (22) reads therefore as follows: For
n ≥ 0:

1. Solve active solid: Find yn+1 : Ωs → R3, un+1
s : Ωs → R3, en+1

c : Ωs → R ϱn+1 : Ωs → R, γn+1 : Ωs → R+ and
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(Pn+1
r , Pn+1

ar,r , Pn+1
d,r ) ∈ R3 such that u

n+ 1
2

s = ∂τy
n+1 and



ρs∂τu
n+1
s − div

(
F

n+ 1
2

s Σ
n+ 1

2

)
= 0 in Ωs,

Σ
n+ 1

2 = Σ
n+ 1

2
p +Σ

n+ 1
2

g +
Es

(
aTEn+ 1

2a− e
n+ 1

2
c

)(
1 + 2e

n+ 1
2

c

)2 a⊗ a in Ωs,

γn+1ϱn+1 + µc∂τe
n+1
c = Es

(
aTEn+ 1

2a− e
n+ 1

2
c

)(
1 + 2aTEn+ 1

2a
)(

1 + 2e
n+ 1

2
c

)3 in Ωs,

∂τ (γ
n+1)2 = −

(
|un+1

e |+ αd

∣∣∂τen+1
c

∣∣) (γn+1)2 + n0k0|un+1
e |+ in Ωs,

∂τϱ
n+1 = γn+1∂τe

n+1
c +

n0σ0|un+1
e |+

γn+1

(
1− k0

2σ0γn+1
ϱn+1

)
− 1

2

(
|un+ 1

2
e |+

∣∣∂τen+1
c

∣∣) ϱn+1 in Ωs,

F
n+ 1

2
s Σ

n+ 1
2ns = −(ayn+ 1

2 + bu
n+ 1

2

s,h ) on Γa ∪ Γb,

yn+1 = 0 on Γv,

F
n+ 1

2
s Σ

n+ 1
2ns = −P

n+ 1
2

r ns on Γr,∫
Γl

J
n+ 1

2
s u

n+ 1
2

s ·
(
F

n+ 1
2

s

)−T
ns = Qr

(
P

n+ 1
2

r , P
n+ 1

2
ar,r , P

n+ 1
2

at,r

)
,

F
n+ 1

2
s Σ

n+ 1
2ns + αu

n+ 1
2

s = αûn − Jnσ̂(un, pn)(F n)−Tn̂f on Γl,

Cp,r∂τP
n+1
ar,r +

P
n+ 1

2
ar,r − P

n+ 1
2

d,r

Rp,r
= |Qn+ 1

2
r |+,

Cd,r∂τP
n+1
d,r +

P
n+ 1

2

d,r − P
n+ 1

2
ar,r

Rp,r
=

Pvs,r(tn+ 1
2
)− P

n+ 1
2

d,r

Rd,r
.

(32)

2. Fluid domain update:

yn+1
f = L

(
yn+1|Γl

)
, wn+1 = ∂τy

n+1
f , An+1 = IΩf

+ yn+1
f in Ωn+1

f = An+1(Ωf). (33)

3. Solve fluid: Find ûn+1 : Ωf → R3 and p̂n+1 : Ωf → R such that

ρf∂τu
n+1|A + ρf(u

n −wn+1) ·∇un+1 − divσ(un+1, pn+1) +
∑

i∈{mv,ao}

fn+1
Γi

δΓi
= 0 in Ωn+1

f ,

divun+1 = 0 in Ωn+1
f ,

un+1 = 0 in Γla ∪ Γaw,

σ(un+1, pn+1)nf +
ρf
2
|un · nf |− u = −Pn+1

pv,aonf on Γpv ∪ Γao,

Jn+1σ̂(un+1, pn+1)(F n+1)−Tn̂f + αûn+1 = αu
n+ 1

2
s + Jnσ̂(un, pn)(F n)−Tn̂f on Γl.

Remark 4. As shown in [16], the scheme (32) preserves the sign properties of kn+1
c ∈ (0, n0k0) as well as the bound

Un+1
c ≥ (τn+1

c )2/(2kn+1
c ) ≥ 0.

3.2 Finite element approximation: fully discrete scheme

For the spatial approximation of the time semi-discrete scheme introduced in the previous section, we adopt a finite element
methodology. To this purpose, we let Ts,h and Tf,h be simplicial triangulations of the reference domains Ωs and Ωf , respectively,
where the subscript h > 0 indicates the level of spatial refinement. We assume that Ts,h and Tf,h match on the fluid-solid
interface Γl, and that Tf,h is also fitted to the immersed surfaces Γcl

mv, Γ
cl
ao and Γop

mv. We define the following finite element
spaces for the fluid velocity, fluid pressure and fluid domain displacement, respectively,

V f,h
def
=
{
v̂f,h ∈ [C0(Ωf)]

3 : v̂f,|K ∈ [P1(K)]
3 ∀K ∈ Tf,h

}
,

Qf,h
def
=
{
q̂h ∈ C0(Ωf\

(
Γcl
mv ∪ Γcl

ao ∪ Γop
mv

)
: q̂h|K ∈ P1(K) ∀K ∈ Tf,h

}
,

W f,h
def
=
{
yf,h ∈ V f,h : yf,h = 0 on Γcl

mv ∪ Γcl
ao ∪ Γop

mv

}
.

(34)
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Note that the discrete pressure space Qf,h is made of piece-wise affine functions which are globally continuous in Ωf except
across the immersed valves Γcl

mv, Γ
cl
ao and Γop

mv. This is fundamental in order to guarantee interfacial mass conservation across
the valves. For the approximation of the solid displacement and velocity, we consider the finite elements space

V s,h
def
=
{
vs,h ∈ [C0(Ωs)]

3 : vs,h|K ∈ [P1(K)]
3 ∀K ∈ Ts,h, vs,h|Γv

= 0
}
.

We also introduce the interface matching trace space

Λh
def
=
{
vs,h|Γl

: vs,h ∈ V s,h

}
=
{
v̂f,h|Γl

: v̂f,h ∈ V f,h

}
,

which will be used in the formulation of the spatial discrete counterpart of (31). Finally, we denote by Lh : Λh → W f,h a
given discrete counterpart of the lifting operator L involved in (33).

The dynamics of the active mechanics variables en+1
c , ϱn+1 and γn+1 in (32) are discretized in space (element-wise) using

a collocation scheme at each quadrature point ql, l = 1, . . . , Nq,h, where Nq,h
def
= |Ts,h|nq and nq denotes the number of

quadrature points in each element of the triangulation Ts,h. This yields a total number of Nq,h degrees of freedom for each
discrete unknown, viz., given by the arrays

en+1
c,h

def
=
{
en+1
c,l

}Nq,h

l=1
, ϱn+1

h
def
=
{
ϱn+1
l

}Nq,h

l=1
, γn+1

h =
{
γn+1
l

}Nq,h

l=1
. (35)

The proposed fully discrete approximation of the non-linear coupled problem (13), (14) and (22) is detailed in Algorithm 2.

In the solid step (36), the symbols al,E
n+ 1

2

l ,Σ
n+ 1

2

p,l ,Σ
n+ 1

2

g,l ,Σ
n+ 1

2

l indicate the evaluation of the corresponding field at the
quadrature point ql, l = 1, . . . , Nq,h. Note that the stress along the fibers at ql is evaluated in terms of the discrete unknowns
(35), which is then integrated via quadrature formula in the discrete principle of virtual work of the solid. It is also worth
noting that, at each Newton iteration of (36), the increments associated to the unknowns (35) can be eliminated from the
solid tangent system by a static condensation procedure (see, e.g., [51]).

As in [12], the fluid trilinear form the fluid sub-problem (38) is given by the relation

aΩn+1
f

(
un
h,w

n+1
h ; (un+1

h , pn+1
h ), (vf,h, qh)

) def
= ρf

∫
Ωn+1

f

(un
h −wn+1

h ) ·∇un+1
h · vf,h +

ρf
2

∫
Ωn+1

f

(divun
h)u

n+1
h · vf,h

− ρf
2

∫
Γn+1
l

(un
h − u

n+ 1
2

s ) · nfu
n+1
h · vf,h

+ 2µf

∫
Ωn+1

f

ϵ(un+1
h ) : ϵ(vf,h)−

∫
Ωn+1

f

pn+1 div vf,h +

∫
Ωn+1

f

qh divu
n
h

+ sf,h
(
un
h,w

n+1
h ; (un+1

h , pn+1), (vf
h, qh)

)
.

(40)

The second term in the right-hand side corresponds to the so-called Temam’s trick (see, e.g., [59]), to cope with the fact that
the discrete fluid velocities are not divergence-free. The third term is a strongly consistent interfacial stabilization, introduced
in [12], which serves to balance the contributions of the convective term on the interface, by noting that un|Γl

̸= wn+1|Γl
=

u
n+ 1

2
s |Γl

. Finally, the last term in (40) corresponds to the Streamline Upwind Petrov-Galerkin (SUPG)/Pressure-Stabilized
Petrov-Galerkin (PSPG) stabilization (see, e.g., [60]), which guarantees robustness for high local Reynolds numbers and with
respect to the lack of inf-sup stability in the fluid velocity/pressure discrete spaces V f,h/Qf,h.

On the other hand, to cope with the stability issues related to the lack of discrete geometric conservation law (see, e.g.,
[24]), the fluid sub-problem (38) includes the following weakly consistent stabilization term (from [58, Chapter 5]):

sn+1
GCL(u

n
h,w

n+1
h ;un+1

h ,vf,h)
def
= − ρf

2τ

(∫
Ωn+1

f

un+1
h · vf,h −

∫
Ωn

f

un+1
h · vf,h

)
+

ρf
2

∫
Ωn+1

f

(divwn+1)un+1
h · vf,h. (41)

Finally, it is also worth noting that the relation (39) in Algorithm 2 is nothing but the spatial discrete counterpart of
(34)2, in which the intermediate variable λn+1

h approximates the interfacial fluid stress on the reference configuration
Jn+1σ̂(un+1, pn+1)(F n+1)−Tn̂f as a variational residual (see [12, 11]).

3.3 Discrete energy bound: unconditional stability

The purpose of this section is to derive an energy bound for the numerical approximation of the coupled problem (13), (14)
and (22) provided by Algorithm 2. For n ≥ 1, the discrete energy and the discrete is defined as

En
h

def
=

ρf
2
∥un

h∥20,Ωn
f
+

ρs
2

∥∥un
s,h

∥∥2
0,Ωs

+

∫
Ωs

We(E
n) +

τ

2

(
α ∥ûn

h∥
2
0,Γl

+
1

α
∥λn

h∥20,Γl

)
+

∫
Ωs

Es

2
|ens,h|2 +

∫
Ωs

Un
c

+
a

2
∥yn

h∥2Γa∪Γb
+

Cp,r

2
|Pn

ar,r|2 +
Cd,r

2
|Pn

d,r|2,
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Algorithm 2 Fully discrete Robin-based loosely coupled scheme.

For n ≥ 0:

1. Solve active solid: Find (yn+1
h ,un+1

s,h , en+1
c,h ,ϱn+1

h ,γn+1
h , Pn+1

r , Pn+1
ar,r , Pn+1

d,r ) ∈ V s,h×V s,h×RNq,h ×RNq,h × (R+)Nq,h ×
R× R× R with u

n+ 1
2

s,h = ∂τy
n+1
h and such that

ρs

∫
Ωs

∂τu
n+1
s,h · vs,h +

∫
Ωs

Σ
n+ 1

2 : DyE
n+ 1

2 · vs,h + α

∫
Γl

u
n+ 1

2

s,h · vs,h +

∫
Γa∪Γb

(
ay

n+ 1
2

h + bu
n+ 1

2

s,h

)
· vs,h =

+ α

∫
Γl

ûn
h · vs,h −

∫
Γl

λn
h · vs,h −

∫
Γr

J
n+ 1

2
s P

n+ 1
2

r (F
n+ 1

2
s )−Tvs,h · ns,

Σ
n+ 1

2

l = Σ
n+ 1

2

p,l +Σ
n+ 1

2

g,l +
Es

(
aT
l E

n+ 1
2

l al − e
n+ 1

2

c,l

)
(
1 + 2e

n+ 1
2

c,l

)2 al ⊗ al,

γn+1
l ϱn+1

l + µc∂τe
n+1
c,l = Es

(
aT
l E

n+ 1
2

l al − e
n+ 1

2

c,l

)(
1 + 2aT

l E
n+ 1
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(36)

for all vs,h ∈ V s,h and l = 1, . . . , Nq,h.

2. Update fluid domain:

yn+1
f,h = Lh(y

n
h|Γl

), wn+1
h = ∂τy

n+1
f,h , An+1

h = IΩf
+ yn+1

f,h , Ωn+1
f = An+1

h (Ωf). (37)

3. Solve fluid: Find (ûn+1
h , p̂n+1

h ) ∈ V f,h ∈ Qf,h such that

ρf∂τ
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+ α

∫
Γl

ûn+1
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u
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2
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λn
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Pn+1
pv,aovf,h · nf (38)

for all (v̂f,h, q̂h) ∈ V f,h ×Qf,h.

4. Interfacial fluid stress update: Set λn+1
h ∈ Λh with

λn+1
h = λn

h + α(u
n+ 1

2

s,h − ûn+1
h ) on Γl. (39)

and the discrete dissipation rate as
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The following result establishes the energy stability of the discrete approximation provided by Algorithm 2. A salient
feature of this results is that, up to some numerical dissipation, Algorithm 2 satisfies an energy estimate similar to the one
provided by Theorem 1 for the continuous coupled problem (13), (14) and (22).

Theorem 2. Let
{(
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h ,un+1
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h ,λn+1

h

)}N−1

n=0
⊂ V s,h × V s,h ×RNq,h ×RNq,h ×RNq,h × V f,h ×

Qf,h ×Λh be given by Algorithm 2. The following energy estimate holds:
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Proof. The proof builds on the energy arguments reported in [12] and [16]. We first proceed by taking vs,h = u
n+ 1

2

s,h in (36).

Owing to the relation DyE
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n+1 and by using (28), the stiffness term yields∫
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2

+

∫
Ωs

σ
n+ 1

2
a a⊗ a : ∂τE

n+1,

=

∫
Ωs

∂τWe(E
n+1) +

∫
Ωs

∂Wv

∂Ė
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where, according to (10) and (8), we have used the notations
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for l = 1, . . . , Nq,h. It hence only remains to estimate the las term in (43) coming from the active contribution. It should be
noted that a little abuse of notation is made in this term, where the integral over Ωs has to be read as a quadrature formula.
To this purpose, we also introduce the notations
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Additionally, we also introduce the collocated discrete elastic energy stored in the sarcomeres
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By combining the above relations, we have
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Therefore, by using (44), we finally get∫
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By gathering all the above contributions, the energy balance of the solid system yields
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Finally, for the last term on the right endocardial boundary, we have∫
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so that, by proceeding in a similar fashion as in the proof of Theorem 1, we have
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The energy balance of the fluid subproblem is obtained by taking (v̂f,h, q̂h) = (ûn+1
h , p̂n+1

h ) in (38). By integrating by

parts in the convective term, using the relation wn+1
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By combining this bound with (41) and (39), we finally get the following energy estimate for the fluid:
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We now proceeding by adding the relations (45) and (46), and after some mathematical manipulations, it only remains
to control the following interfacial terms on the right-hand side:
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These terms can be handled as in [12], which yields
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The energy bound (42) then follows by multiplying by τ the resulting expression and then summing over m = 0, . . . , n − 1,
which completes the proof.

We conclude this section by noting that, using an argument as in Remark 3, the following energy bound can be inferred
from (42):
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which guarantees the unconditional stability of Algorithm 2 in the energy norm.
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4 Numerical results

In this section, we present the numerical results of the left heart hemodynamics obtained using both the kinematical uncou-
pling approach (Section 4.1) and a fluid-structure interaction model in the left ventricle (Section 4.2.2). The computational
geometries used in the numerical examples were obtained from the Zygote heart model. For the solid we isolate the right and
left ventricles and the endocardial surfaces are smoothed, with the 3-matic software (Materialise), by removing trabeculae
and papillary muscles (see Figure 7(a)). For the fluid, the endocardial surface of the left ventricle is first extracted and a
volume mesh of the left ventricle cavity is constructed, which ensures the interface matching nature of the fluid and solid
meshes (see Figure 7(b)). The endocardial surfaces of the left atrium and of the ascending aorta are then extracted from
the Zygote heart model, and volume meshes of these cavities are then generated, by incorporating the closed configuration
of the immersed mitral Γclosed

mv and aortic Γclosed
ao valves, and the open configuration of the mitral valve Γopen

mv in the fluid
domain. These immersed surfaces are duplicated in the fluid mesh (cracked mesh), which facilitates the introduction of strong
discontinuities in the pressure approximation across the valves. The solid and fluid volume meshes are made of tetrahedra,
and obtained using the 3D meshing software Gmsh (see [31]). More specifically, the solid mesh is composed of 45,584 vertices
and 106,747 tetrahedra, while the fluid mesh is composed of 28,090 vertices and 148,333 tetrahedra.

(a) Solid mesh. (b) Fluid mesh. (c) Combined fluid-solid mesh.

Figure 7: Computational meshes for the fluid and the solid sub-domains.

All the numerical computations have been performed using the fluid solver of the FELIScE1 library and the cardiac
mechanics solver of the MoReFEM2 library. Owing to the genuine partitioned nature of Algorithm 2, the FSI coupling is
performed by linking the two softwares in a segregated fashion, via an external coupling interface based on the ZeroMQ3

message passing library.

4.1 Kinematical uncoupling

In this section, we use the kinematic uncoupling modeling approach to delve into the influence on the left heart hemodynamics
of the reduced valve models introduced in Sections 2.3.1 and 2.3.2. First, the 3D-0D cardiac mechanics problem (13) and (21)
is solved with an analytical electrical input ue, which mimics the FitzHugh-Nagumo dynamics (see [29, 46]), and initiates at
the apex of the heart. Afterwards, the fluid problem (14) and (20) is solved separately, using the left endocardial motion
provided by 3D-0D cardiac mechanics solve, for both the RIS and the velocity-constrained reduced valve models.

Parameter Left Ventricle Right Ventricle
µ1 (Pa) 0.0 0.0
µ2 (Pa) 0.0 0.0
C0 (Pa) 1.9 · 103 1.9 · 103
C1 1.1 · 10−1 1.1 · 10−1

C2 (Pa) 1.9 · 103 1.9 · 103
C3 1.1 · 10−1 1.1 · 10−1

ν (N sm−1) 70. 70.
κ (Pa) 2 · 105 2 · 105

Table 1: Passive physical parameters of the cardiac mechanics model.

1https://gitlab.inria.fr/felisce
2https://gitlab.inria.fr/MoReFEM
3https://zeromq.org
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Parameter Left Ventricle Right Ventricle
αd 1.5 1.5
σ0 (Pa) 4.6 · 105 3.72 · 105
Es(Pa) 3 · 107 3 · 107
k0 (Pa) 1 · 105 1 · 105
η (N sm−1) 70. 70.

Table 2: Active physical parameters of the cardiac mechanics model.

Parameter Left Ventricle Right Ventricle

Cp (m3 Pa−1) 2 · 10−9 2 · 10−10

Rp (Pa sm−3) 2 · 107 1 · 107
Cd (m3 Pa−1) 5.05 · 10−9 1 · 10−8

Rd (Pa sm−3) 2 · 108 3 · 107
Pvs (Pa) 1 · 103 1 · 103

Table 3: Parameters Windkessel model

Parameter Left Ventricle
ρf (kgm

−3) 1006
µf (Pa s) 0.004

R
Γ{mv,ao}
closed (kgm−2 s−1) 107

Ropen (kgm−2 s−1) 107

ε (Vel. Constrained) (m2 s kg−1) 10−7

Table 4: Physical parameters of the fluid model.

The values of the considered physical parameters for the cardiac and fluid models are reported in Tables 1–4. The
ventricles are assumed to be initially in a pre-loaded confiuration, corresponding to the beginning of the diastolic phase.
This initial configuration is obtained by solving a static version of (13) (i.e., time derivatives are set to zero) with a preload
pressure of Pr = 25 Pa in the right ventricle and of Pl = 500 Pa in the left ventricle. The initial configuration of the fluid
domain is then retrieved by lifting the initial solid displacement via (20)1. The fluid is assumed to be initially at rest.

The electromechanical and fluid simulations cover a complete heart beat with a duration of t = 0.85 s. We consider a
fixed time step of τ = 5 · 10−4 seconds for the solid domain, and τ = 10−3 seconds for the fluid domain. The smaller time
step in the solid is necessary to ensure convergence during the ventricular contraction phase.

(a) t = 150 ms. (b) t = 300 ms. (c) t = 450 ms.

Figure 8: Deformed left heart cavity configurations and snapshots of the endocardial displacement magnitude at three
different time instants.
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(a) t = 150 ms. (b) t = 300 ms. (c) t = 450 ms.

Figure 9: Long axis snapshots of the pressure and velocity fields at three different time instants.
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(a) RIS model.
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(b) Velocity-Constrained model.

Figure 10: Simulated Wiggers diagrams.

Figure 8 provides some snapshots of the endocardial displacement magnitude. During the filling phase (Figure 8(a)), the
fluid domain primarily displaces laterally. In contrast, during the ejection phase (Figure 8(b)), a significant displacement is
observed near the apex of the left ventricle, representing its contraction. The isovolumic relaxation phase (Figure 8(c)) shows
a slight decrease in the displacements due to the isovolumetric constraint.

In Figure 9 we have reported the fluid pressure and velocity fields obtained with the velocity constrained model on a long
axis cut plane of the left heart at three different time instants. Similar results are obtained with the RIS model, which are
omitted here for the sake of conciseness. At the filling phase (Figure 9(a)), the emergence of a single vortex that rotates
clockwise is clearly visible, which is in agreement with available physiological observations (see, e.g., [21, 22]). At this stage,
the pressure in the left atrium is slightly large than in the left ventricle, which induces blood flow from the left atrium to
the left ventricle. On the other hand, the pressure in the aorta is higher than in the left ventricle, indicating that the aortic
valve is closed, and there is no flux in that region. During the ejection phase (Figure 9(b)), there is a flux from the left
ventricle to the aorta, with a slightly higher pressure in the former region. At this stage, the pressure in the left atrium is
lower than in the left ventricle, indicating that the mitral valve is closed, and there is no flux in this region. Finally, during
the iso-volumetric relaxation phase, the pressure inside the left ventricle is higher than in the left atrium but lower than in
the aorta, indicating that both the mitral and aortic valves are closed.
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Figure 10 presents the numerical Wiggers diagrams obtained with the RIS model and the velocity constrained reduced
valve models. For comparison purposes, the 0D left ventricular pressure provided by the cardiac mechanics model (13) is
also shown. One can clearly see that both models produce strong spurious oscillations in the ventricular pressure, which are
not observed in cardiac mechanics simulation. The peak pressure occurs at t = 225 and t = 226 ms with values of 1.7 · 107
Pa and 44101.3 Pa for the RIS and the velocity constrained model, respectively. Lower oscillations are thus observed in the
latter. Moreover, the RIS model exhibits a more pronounced delay in the onset of iso-volumetric relaxation. However, the
oscillations persist irrespective of the valve model considered. These results suggest that the presence of spurious oscillations
may be more related to the type of model coupling approach between the fluid and solid than to the reduced model considered
for the valves.

4.2 Fluid-structure interaction

The purpose of this section is twofold. We first consider a representative simplified two-dimensional setting in which numerical
evidence on the accuracy of Algorithm 2 is provided (Section 4.2.1). The impact of the free Robin coefficient α and of the
number of corrections iterations is addressed in this example. Finally, in the context of the coupled FSI problem (13), (14)
and (22), we delve into the capabilities of Algorithm 2 to provide physiological simulations of the left heart hemodynamics
(Section 4.2.2), notably with respect to KU results of the previous section.

4.2.1 Academic test case

We consider a simplified two-dimensional geometrical setting which retains the main fundamental ingredients of the cardiac

cycle phases in the left ventricle. The fluid domain Ωf is assumed to be partitioned in three disjoint sub-domains Ωf,1
def
=

[0, 2.5] × [0, 3], Ωf,2
def
= [2.5, 11.5] × [0, 3], and Ωf,3

def
= [11.5, 14] × [0, 3] which respectively correspond to the atrium, the left

ventricle and the aorta. The mitral and aortic valves are described by the immersed interfaces Γ12
def
= ∂Ωf,1∩Ωf,2 and Γ23

def
=

∂Ωf,2∩Ωf,3, respectively. The boundaries are partitioned as follows: ∂Ωf,1 = Γin
f,1∪Γt

f,1∪Γb
f,1∪Γ12, ∂Ωf,2 = Γl∪Γb

f,2∪Γ12∪Γ23

and ∂Ωf,3 = Γout
f,3 ∪ Γt

f,3 ∪ Γb
f,3 ∪ Γ12, see Figure 11.

x

y

Figure 11: Geometrical configuration.

Flow in the fluid cavities is described by the Navier-Stokes system (14) with the RIS model (15) for the valves. The
dynamics of the myocardial wall Γl are described by a non-linear Timoshenko beam model (see, e.g., [15]), with the following
source term which replicates the effect of the active contraction/relaxation:

f b (x, t) =

{
5075 tanh (100 (t− (0.1 + T ))) + 5075 for 0 ≤ t ≤ 0.18 + T,

−5075 tanh (100 (t− (0.2 + T ))) + 5075 for 0.18 + T < t ≤ T,

where T represents the period of the volumetric force, with T = 0.225 s. As regards the boundary conditions, the solid
domain is clamped at its extremities. A non-slip condition is imposed on the fluid upper wall Γt

f,1 ∪ Γt
f,3, and a symmetry

condition on the fluid bottom walls of the fluid domains Γb
f,1 ∪ Γb

f,2 ∪ Γb
f,3. Finally, the following Neumann conditions at the

inlet and outlet fluid boundaries:
σ(u, p)nf = −100nf on Γin

f,1,

σ(u, p)nf = −
(
10000 +R

∫
Γout
f,3

u · nf

)
nf on Γout

f,3 .

with R = 1.5 · 104Pa sm−3. The fluid and the solid are assumed to be initially at rest. As material properties, the fluid
density is set to ρf = 1006 kgm−3, and the dynamic viscosity is µ = 0.004 Pa s . For the the solid density is ρs = 1200
kgm−3, the Young’s modulus is E = 105 Pa, and the Poisson ratio is ν = 0.5.

The resulting coupled problem is approximated numerically using Algorithm 2 as in Section 3, with the exception that
the Timoshenko beam is discretized using MITC beam elements. In particular, the fluid mesh is composed of 2202 triangles,
while the solid mesh is composed of 40 segments.
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Figure 12: Temporal evolution of the area |Ωn
f,2| obtained with the strongly coupled scheme and Algorithm 2 for different

values α and three correction iterations.
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Figure 13: Time history of pressure obtained with the strongly coupled scheme and Algorithm 2 for α = 104 and different
time-step lengths.
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Figure 14: Time history of the area |Ωn
f,2| obtained with the strongly coupled scheme and Algorithm 2 for α = 104 and

different time-step lengths.
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Figure 15: Pressure-area loops obtained with the strongly coupled scheme and Algorithm 2 for α = 104 and different time-
step lengths.

Figure 12 provides the temporal evolution of the ventricular area |Ωn
f,2| obtained with Algorithm 2 for different values of

α, with τ = 10−4, and considering three iteration corrections. We recall that one correction iteration amounts to perform
once more the three steps of Algorithm 2 with updated Robin conditions. For comparison purposes, the results obtained
with a strongly coupled scheme are also reported. We can clearly see that the accuracy of Algorithm 2 is sensitive to the
values of α. In particular, small and large values of α can compromise accuracy. These results are also in agreement with
the error estimates provided in [12], which postulate an optimal value scaling as α = O(

√
ρsE).

Figure 13 shows the evolution of the average pressure within the ventricular cavity Ωn
f,2 for different time-step lengths

τ ∈ {10−3, 2 · 10−4, 10−4} and corrections iterations in Algorithm 2. The value of the Robin parameter is fixed and set to
α = 104 kgm−2 s−2, based on the results of Figure 12. Once more, for comparison purposes we also show the results obtained
with a strongly coupled scheme, with a fixed time step of τ = 10−4. As the number of corrections iteration increases or the
time-step length τ decreases, the pressure approximation provided by Algorithm 2 converges to the reference provided by
the strongly coupled scheme. For large τ , further correction iterations are necessary for accuray. However, for moderate and
small values of τ , the approximation is close to the reference solution irrespectively of the number of corrections iterations.
Regardless of the improvement in accuracy when increasing the number of corrections iterations or decreasing the time-step
lengths, there are no significant differences in the evolution of the pressure with respect to these user-defined parameters.

The temporal evolution of the area of the fluid domain Ωn
f,2 is reported in Figure 14. We can clearly observe that the area

is more sensitive than the pressure to the time-step length and the number of correction iterations. Particularly, the evolution
of the area is underestimated for large values of τ or a small number of correction iterations. A salient feature of the results
of Figure 14, is that it provided numerical evidence on that Algorithm 2 can accurately capture phases of constant areas (the
isovolumetric phases in the cardiac hemodynamics setting) by reducing τ or by increasing the number of correction iterations.
Similar conclusions can be inferred from Figure 15, which provides the pressure-area loops obtained with the strongly coupled
scheme and Algorithm 2 for α = 104 and different time-step lengths. The maximum pressure remains similar for all cases,
regardless of the time-step length or the number of correction iterations. Nevertheless, the impact of these user-defined
parameters on the area is evident. In general, the smaller the time-step lengths, the fewer iteration corrections are necessary
to capture the iso-area phases.

4.2.2 Left heart hemodynamics

The purpose of this section is to illustrate numerically the capabilities of Algorithm 2 to provide meaningful left heart
hemodynamics simulations, via the approximation of the coupled FSI problem (13), (14) and (22). We also compare the
impact on these simulations of the two reduced valve dynamics models presented in Section 2.3. The geometrical setting,
initial conditions and computational meshes are the same as in Section 4.1. The considered physical parameters are also
those reported in Tables 1–4. We simulate three heartbeats, each with a duration of t = 0.85 s. Based on the results of
Algorithm 2 in the simplified cardiac example of Section 4.2.1, we set τ = 2.5 · 10−4 s, α = 104kgm−2 s−2 and two correction
iterations are performed at each time-step, to accurately capture the isovolumetric phases. In the following, we only present
the results of the last heartbeat, that is, for the time interval [1.7s, 2.55s].

Figure 16 presents the pressure and volume time-histories of the left ventricle and the associated pressure-volume loops
obtained with Algorithm 2 and the two reduced valve models. Both reduced models yield similar results, which is also
consistent with the results presented in Section 4.1. However, unlike the kinematic uncoupling approach, here no spurious
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Figure 16: Pressure and volume time-histories obtained with Algorithm 2, with τ = 2.5 · 10−4, α = 104 and two correction
iterations.

(a) t = 1.8 s (b) t = 1.9 s (c) t = 2.0 s

(d) t = 2.1 s (e) t = 2.2 s (f) t = 2.3 s

Figure 17: Snapshots of the solid displacement magnitude (deformed configuration) at different time instants, obtained with
Algorithm 2, with τ = 2.5 · 10−4, α = 104 and two correction iterations.

pressure oscillations are seen. This provides numerical evidence on that, as postulated in the introduction, the artificial
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(a) t = 1.8 s (b) t = 1.9 s (c) t = 2.0 s

(d) t = 2.1 s (e) t = 2.2 s (f) t = 2.3 s

Figure 18: Snapshots of the fluid velocity magnitude at different time instants (deformed configuration) obtained with
Algorithm 2, with τ = 2.5 · 10−4, α = 104 and two correction iterations.

pressure oscillation observed with the kinematic uncoupling approach are due the lack of compatibility between the kinematical
constraint and the status of the reduced valve model. It is also worth noting that the results of Figure 16 show a good
reproduction of isovolumic phases.

For illustration purposes, snapshots of the displacement, velocity and pressure fields of the solid and the fluid are presented
in Figures 17, 18 and 19, respectively. The cycle starts with the ventricles entering a phase of passive filling. During this
phase, the mitral and tricuspid valves are open, allowing blood flow from the atria to the ventricles (see Figure 18(a)). At
this stage, the fluid forms a jet immediately after the mitral valve, leading to the generation of a vortex ring that rotates
clockwise, located almost at the intermediate section of the left ventricle, as shown in Figure 19(a). This is consistent with
biomedical literature (see, e.g., [22, 21]). This flow induces an increase in volume in the left ventricle, and also in the right
ventricle due to the lumped parameter fluid coupled with it (see Figure 17(a)). The rate of volume rise remains nearly
constant from the mid-to-late diastolic phase. The filling phase continues until the ventricles begin to contract, which marks
the end of the diastolic phase. During this phase, the flow from the left atrium to the left ventricle remains relatively constant
at a rate of 57.56 mL s−1 . The end-diastolic volume (EDV) is EDVl = 105.85 mL for the right ventricle and EDVr = 125.72
mL for the left ventricle, consistently with physiological values reported in literature (see, e.g., [20, 34, 42]).

At the end of the diastolic phase, the cardiac cycle transitions into the systolic phase, marked by the ventricular con-
traction. This contraction leads to an increase in the intraventricular pressure of the right and left ventricles. The increase
in the intraventricular pressure induces a backflow from the ventricles to the atrium, leading to the closure of the tricuspid
and mitral valves in the right and left ventricle, respectively. This marks the beginning of the isovolumic contraction phase,
during which both cavities are closed while the ventricles contract. During this stage, the intraventricular pressure increases
but remains lower than the aortic pressure, as seen in Figure 19(b). The displacements, on the other hand, remain similar to
those of the end-diastolic stage (see Figure 17(b)). Figure 18(b) illustrates the velocity field, which becomes more homogeneus
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(a) t = 1.8 s (b) t = 1.9 s (c) t = 2.0 s

(d) t = 2.1 s (e) t = 2.2 s (f) t = 2.3 s

Figure 19: Snapshots of the fluid pressure and velocity fields at different time instants (deformed configuration) obtained
with Algorithm 2, with τ = 2.5 · 10−4, α = 104 and two correction iterations.

due to the contraction of the myocardium.
The isovolumic contraction phase persists until the pulmonary and aortic valves open, as the intraventricular pressures

increases to a value higher than the pressures in the pulmonary artery and aorta. This results in the opening of the pulmonary
and aortic valves, marking the beginning of the ejection phase. This phase is characterized by the ejection of the blood from
the right ventricle into the pulmonary artery and from the left ventricle into the aorta. This phenomenom is evidenced by
the substantial deformation in both the right and left ventricles, accompanied by a downward movement of the ventricular
base, as it can be appreciated in Figures 17(c) and 17(d). During the first part of this phase, the intraventricular pressures
continue to increase reaching maximum values of pl,max = 22849 Pa and pr,max = 4494.78 Pa at t = 2.004 s and t = 1.99825
s, respectively, consistently with the physiological ranges reported in the literature (see, e.g., [1, 14, 50]). The fluid in the left
ventricle reduces as the ventricle contracts, reducing gradually the intraventricular pressure and the blood flux from the left
ventricle into the aorta. Figures 18(c), 18(c) illustrate the unsteady nature of the flow, with a maximum flow rate of 319.13
mL s−1 at t = 2.00875 s followed by a constant decrease towards the end of the ejection phase, in correspondence with the
small deformations of the ventricles.

The ejection fraction (EF) represents the percentage of blood leaving the heart during contraction, given by EF
def
=

SV/EDV where SV represents the stroke volume, computed as SV
def
= EDV − ESV, with EDV representing end-diastolic

volume, and ESV representing end-systolic volume. The ejection fraction of the left ventricle is EF = 0.457, within the
physiological range reported in the literature (see, e.g., [20, 65]).

During the last part of the ejection phase, the ventricles start to repolarize. This electrical change triggers the relaxation
of the heart muscles, gradually easing the contraction of the ventricles. As the ventricular contraction diminishes, the pressure
inside the ventricles drops below the pressure in the pulmonary artery and aorta (see Figure 19(e)). This drop in pressure
causes the pulmonary and aortic valves to close, while the tricuspid and mitral valves remain closed. This phenomenon signifies
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the start of the isovolumetric relaxation phase, during which both ventricular chambers remain closed as the ventricles continue
to relax and return to their original configuration, as seen in Figure 17(e). Similar to the isovolumetric contraction stage, the
velocity field becomes more homogeneous during this phase (see Figure 18(e)). During the isovolumetric relaxation phase,
the intraventricular pressure continues to decrease until its value is lower than the pressure in the atrium. Subsequently, the
tricuspid valve and mitral valve open, initiating the filling stage and starting a new heart cycle.

5 Conclusion

In this paper, we have introduced a novel reduced model of valve dynamics which circumvents the limitations of traditional
resistive immersed surface (RIS) approaches, where valve laws are given in a pure algorithmic fashion. The basic idea consists
in enforcing unidirectional flow through a penalized inequality constraint on the normal velocity of the fluid. The price to
pay (notably with respect to RIS) is a semi-smooth non-linearity in the fluid solver, which can however be efficiently handled
with a few Newton iterations. The numerical comparisons between RIS and the velocity constrained models indicate that,
though different in essence, they deliver rather similar results. In particular, artificial pressure oscillations are observed in
both when combined with a one-way kinematic uncoupling approach.

An alternative left heart hemodynamics modeling approach which combines the above mentioned reduced valve dynamics
models with a fluid-structure interaction (FSI) coupling in the left ventricle has also been proposed. In order to mitigate
the computational complexity of the coupled system, the interface coupling is solved with a Robin-Robin loosely coupled
scheme (Algorithm 2). A salient feature of the proposed method is that an a priori energy analysis (Theorem 2) guarantees
the unconditional stability of the fully discrete approximations. The left heart hemodynamics simulations showed that the
above mentioned spurious pressure oscillations are removed by the FSI coupling, irrespectively of the reduced valve model
considered. The results also showed that the proposed loosely coupled scheme is able to reproduce physiological isovolumetric
phases with a temporal grid of around 4000 time-steps per cardiac cycle (i.e., τ = 2 · 10−4s), a couple of correction iterations
and a judicious choice of the Robin coeficient α (previously tuned in a simplified cardiac setting). Finally, simulated bio-
markers such as ejection fractions, end-diastolic volume and min/max ventricular pressures where within the physiological
ranges.

Extensions of this work can explore several directions. A more comprehensive left heart hemodynamics model can be
considered by incorporating an FSI model of the mitral valve. A further extension of the present approach is to tackle the
question of second-order accuracy in the loosely coupled scheme. Finally, ongoing work focuses on the electromechanical
simulation of the atria using 3D-shell elements, that are known to facilitate the coupling with surrounding media.
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[25] M. Fedele, E. Faggiano, L. Dedè, and A. Quarteroni. A patient-specific aortic valve model based on moving resistive
immersed implicit surfaces. Biomechanics and Modeling in Mechanobiology, 16(5):1779–1803, 2017.

[26] L. Feng, H. Gao, B. Griffith, S. Niederer, and X. Luo. Analysis of a coupled fluid-structure interaction model of the left
atrium and mitral valve. International Journal for Numerical Methods in Biomedical Engineering, 35(11):e3254, 2019.

[27] M.-A. Fernández and J.-F. Gerbeau. Algorithms for fluid-structure interaction problems. In Cardiovascular mathematics,
volume 1 of MS&A. Model. Simul. Appl., pages 307–346. Springer, 2009.

28

https://inria.hal.science/hal-04258861
https://inria.hal.science/hal-04258861


[28] M.A. Fernández, J. Mullaert, and M. Vidrascu. Generalized Robin-Neumann explicit coupling schemes for incompressible
fluid-structure interaction: stability analysis and numerics. Internat. J. Numer. Methods Engrg., 101(3):199–229, 2015.

[29] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1(6):445–
466, 1961.

[30] H. Gao, L. Feng, N. Qi, C. Berry, B. Griffith, and X. Luo. A coupled mitral valve—left ventricle model with fluid–structure
interaction. Medical Engineering & Physics, 47:128–136, 2017.

[31] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing
facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[32] G. Gigante and C. Vergara. On the choice of interface parameters in Robin–Robin loosely coupled schemes for
fluid–structure interaction. Fluids, 6(6), 2021.

[33] G. Gigante and C. Vergara. On the stability of a loosely-coupled scheme based on a Robin interface condition for
fluid-structure interaction. Comput. Math. Appl., 96:109–119, 2021.

[34] J.C. Gilbert and S. A. Glantz. Determinants of left ventricular filling and of the diastolic pressure-volume relation.
Circulation research, 64(5):827–852, 1989.

[35] O. Gonzalez. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Computer
Methods in Applied Mechanics and Engineering, 190(13):1763–1783, 2000.

[36] J. Hart. Normal resting pulse rate ranges. Journal of Nursing Education and Practice, 5(8):95–98, 2015.

[37] G.A. Holzapfel and R.W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for
material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 367(1902):3445–3475, 2009.

[38] O. Jun-ichi, W. Takumi, S. Seiryo, and H. Toshiaki. Clinical and pharmacological application of multiscale multiphysics
heart simulator, UT-Heart. Korean J. Physiol. Pharmacol., 23(5):295–303, 2019.

[39] E . Karabelas, M.A.F. Gsell, C.M. Augustin, L. Marx, A. Neic, A.J. Prassl, L. Goubergrits, T. Kuehne, and G. Plank.
Towards a computational framework for modeling the impact of aortic coarctations upon left ventricular load. Front
Physiol., 9:538, 2018.

[40] E. Karabelas, S. Longobardi, J. Fuchsberger, C. Razeghi, O. a nd Rodero, M. Strocchi, R. Rajani, G. Haase, G. Plank,
and S. Niederer. Global sensitivity analysis of four chamber heart hemodynamics using surrogate models. IEEE Trans-
actions on Biomedical Engineering, 69(10):3216–3223, 2022.

[41] F. Kimmig, D. Chapelle, and P. Moireau. Thermodynamic properties of muscle contraction models and associated
discrete-time principles. Advanced Modeling and Simulation in Engineering Sciences, 6(1):1–36, 2019.

[42] C.H. Lorenz, E.S. Walker, V.L. Morgan, S.S. Klein, and T.P. Graham. Normal human right and left ventricular mass,
systolic function, and gender differences by cine magnetic resonance imaging. Journal of Cardiovascular Magnetic
Resonance, 1(1):7–21, 1999.

[43] J.O. Mangual, E. Kraigher-Krainer, De Luca. A., L. Toncelli, A. Shah, S. Solomon, G. Galanti, F. Domenichini, and
G. Pedrizzetti. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. Journal
of Biomechanics, 46(10):1611–1617, 2013.

[44] V. Mihalef, R.I. Ionasec, P. Sharma, B. Georgescu, I. Voigt, M. Suehling, and D. Comaniciu. Patient-specific modelling
of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac ct images. Interface Focus,
1(3):286–296, 2011.

[45] M. Mittal, J.H. Seo, V. Vedula, Y.J. Choi, H. Liu, H.H. Huang, S. Jain, L. Younes, T. Abraham, and R.T. George.
Computational modeling of cardiac hemodynamics: Current status and future outlook. Journal of Computational
Physics, 305:1065–1082, 2016.

[46] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse transmission line simulating nerve axon.
Proceedings of the IRE, 50(10):2061–2070, 1962.

[47] D. Nordsletten, M. McCormick, P.J. Kilner, P. Hunter, D. Kay, and N.P. Smith. Fluid–solid coupling for the investigation
of diastolic and systolic human left ventricular function. International Journal for Numerical Methods in Biomedical
Engineering, 27(7):1017–1039, 2011.

29



[48] G. Pedrizzetti and F. Domenichini. Left ventricular fluid mechanics: The long way from theoretical models to clinical
applications. Annals of Biomedical Engineering, 43(1):26–40, 2015.

[49] M. Peirlinck, F.S. i Costabal, J. Yao, J.M. Guccione, S. Tripathy, Y. Wang, D. Ozturk, P. Segars, T.M. Morrison,
S. Levine, and E. Kuhl. Precision medicine in human heart modeling. Biomechanics and Modeling in Mechanobiology,
20(3):803–831, 2021.

[50] Michael R Pinsky. The right ventricle: interaction with the pulmonary circulation. Critical Care, 20:1–9, 2016.

[51] J. Sainte-Marie, D. Chapelle, R. Cimrman, and M. Sorine. Modeling and estimation of the cardiac electromechanical
activity. Computers & structures, 84(28):1743–1759, 2006.

[52] N. Saito, Y. Sugitani, and G. Zhou. Energy inequalities and outflow boundary conditions for the Navier-Stokes equations.
In Advances in computational fluid-structure interaction and flow simulation, Model. Simul. Sci. Eng. Technol., pages
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