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Abstract 

This is a tutorial about regularization functions for feature selection using subspace learning. In 

this tutorial, sparse regularization, structure learning regularization, rank minimization, 

redundancy minimization, soft label learning, self-paced learning and contrastive learning were 

explained. For sparse regularization:     ,      (     ),       ,      and inner-product norms 

were explained. For structure learning; Laplacian graph, Hessian graph, dynamic graph learning 

and hyper graph were covered and explained. For rank minimization and low-rank constraint; 

nuclear norm and Schatten  -norm (     ) were explained. This tutorial is appropriate for 

researchers and students who are interested in dimensionality reduction and feature selection. 

Each of the regularization function are mathematically explained and derived. 

 

Keywords: Sparse regularization, structure learning regularization, rank minimization, 

redundancy minimization, soft label learning, self-paced learning and contrastive learning. 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 Introduction: 

The development of artificial intelligence (AI) and information technology (IT) has significantly 

increased the dimensionality of data. Moreover, the expansion of AI and IT has diversified data 

sources, further contributing to the growth in data dimensions. To address challenges such as 

computational complexity and overfitting, dimensionality reduction is an essential step in 

machine learning. Two primary techniques for reducing dimensionality are feature extraction and 

feature selection [1]. However, feature extraction methods, such as principal component analysis 

(PCA) [2], linear discriminant analysis (LDA) [3], and autoencoders [4], often suffer from a lack 

of interpretability. In contrast, feature selection offers a dimensionality reduction approach that 

retains interpretability. 

Filter, wrapper, embedded and hybrid are feature selection strategies. In filter strategy, there is no 

connection between feature selection and machine learning algorithm and features are selected 

based on their correlation and dependency with other features.  In wrapper strategy, the important 

features are selected based on the performance of machine learning algorithm. In embedding 

strategy, features selection is part of training phase such as decision tree and LASSO regression 

[5]. 

Feature selection techniques are categorized to supervised, unsupervised and semi-supervised in 

terms of label availability. In supervised, features are ranked and selected based on relevancy of 

features to the labels. In unsupervised, information is extracted based on structure of features 

without label information. In semi-supervised, information is extracted from both labeled and 

unlabeled data [5]. 

Computation metaheuristic-based techniques [6], information theory-based techniques [5,7], 

reinforcement learning-based techniques [8] and subspace learning-based techniques [9] are the 

mainstream of feature selection. In this tutorial, we focused on subspace learning and essential 

regularization to improve the feature selection. 

Subspace learning techniques look for a mapping function (matrix) to map data from original 

space to feature space with lower dimension [10]. In addition to projecting into lower dimension, 



subspace learning techniques can remove the noisy and redundant features using appropriate 

regularization [11]. 

The subtle point should be mentioned is that information can be missed during projection and 

noisy data can be remained after mapping into feature space. To address these challenges, 

different regularization functions have been introduced to preserve the information and remove 

the noisy data. Sparsity, structure learning (geometrical), rank minimization, correlation, label 

guided, self-paced learning and contrastive learning are the main regularization functions which 

are widely used for feature selection using subspace learning. The Taxonomy of the main 

regularization functions for subspace learning-based feature selection techniques, is shown in 

Figure 1.  

 

Figure 1. This figure shows the different types of regularization functions for subspace learning-

based feature selection techniques. 

2 Feature Selection using Subspace learning 

The concept of feature selection through subspace learning involves identifying a subset of 

features that effectively represents the entire feature set. In other words, feature selection using 

subspace learning seeks to find a subset of features that can span or approximate the full set of 

features. 



To explain more effectively, consider a data               , which has  -feature, and   

               , which is a subset of   such that    . Then, the matrix    is a submatrix 

of   (     . 

 The objective of feature selection using subspace learning is to approximate     as much as 

possible close to  . Consequently, feature selection using subspace learning is mathematically 

formulated as following: 

                                                                       (1) 

Where    is a metric to evaluate distance between all features and   selected features, and   is the 

number of selected features.  

In this tutorial we consider nonnegative matrix factorization (NMF) as subspace learning-based 

feature selection technique [10], and we solve feature selection with different regularization for 

NMF. NMF feature selection is described as follows: 

                                                              (2) 

Where     ,  ,   and   are Frobenius norm, data, feature weight matrix and coefficient matrix, 

respectively.    ,     and       are nonnegative constraint of feature weight matrix, 

nonnegative constraint of coefficient matrix and orthogonality constraint, respectively. The more 

frequent used notations are shown in Table 1.  

Table 1. Notations frequently used in this tutorial. 

Notation Representation 

       Data with n samples and d features 

  Feature weight matrix of NMF 

  Coefficient matrix of NMF 

  Identity matrix 

     
Frobenius norm:            

  
   

 
    

       
Mixed matrix norm:              

 

  
    

 

  

  pseudo inverse 

 

2.1 Sparsity Regularization 



The Euclidean norm of each row in the feature weight matrix   reflects the importance of each 

corresponding feature. Sparse regularization function is applied to preserve the global 

information of data and increase the robustness against outliers.  Although     -norm is the ideal 

regularization to peak the exact k-top informative features, it is not convex and its problem is 

NP-hard [12]. 

2.1.1 Sparsity Regularization-    -norm 

    -norm is a good approximation of     -norm and it can provide sufficient sparse solutions. 

Therefore, NMF feature selection (NMFFS) with      -norm regularization is expressed as 

follows: 

                                                                (3) 

Where   is the regularization coefficient to set a trade-off between the reconstruction error and 

regularization function. By applying partial derivative with respect to  , we have following for 

    -norm regularization. 

       

  
 

          

  
                                                   (4) 

Where Q is defined as following: 

       
 

    
 
  
                                                                    (5) 

Where    is i-th row of feature weight matrix   and   s a small value to stabilize the fraction. 

Therefore, matrix Q is a diagonal matrix whose diagonal elements are 
 

    
 
  

. 

2.1.2 Sparsity Regularization-    -norm 

The sparsity can be increased using     -norm (       rather than     -norm.        

         is like       , but the matrix   is defined as follows: 

       
 

    
 

   
  
                                                                (6) 

Although [13] reported the error of classification is reduced using        (       and        

outperforms     ,     -norm is neither convex nor Lipschitz continuous. Additionally, nonconvex 



regularization on matrices has considerable complexity [15], and Lipschitz discontinuity directly 

affects the derivative in each iteration. 

2.1.3 Sparsity Regularization-      -norm 

      -norm is a nonconvex but Lipschitz continuous matrix norm [17], which is a sparse 

regularization function for feature selection [16].       -norm has higher sparsity than     -norm 

and it is Lipschitz continuous in contrast to     -norm (     ). 

       -norm is the difference of      and Frobenius norm and defined as follows: 

                                                                      (7) 

      -norm regularization function is not convex since it is subtraction of two convex functions. 

ConCave-Convex Procedure (CCCP) technique can be applied to handle this nonconvexity.  To 

apply CCCP, consider minimization problem for subtraction of two convex functions as follows: 

                                                                        (8) 

Where           and           are two convex functions.      is nonconvex and 

minimization (2) is a nonconvex problem. For example,         and          are two 

convex functions. Function       is a nonconvex function and Figure 2 shows the function 

 . 

 



 

Figure 2. The plot of function       , where         and         . 

Problem (8) can be a convex function if and only if      is affine. CCCP can solve problem (8) 

by converting (8) into the series of convex subproblem. The main idea behind CCCP is the 

linearization of function      at each iteration in order to provide affine condition for second 

term. Therefore, CCCP solves (8) in the form of following iterations: 

 
    

      

  
                                                                           

                                  

                 (9) 

Where    the is linearized function of       at iteration   and     represents the inner product. 

Therefore,          norm can be written as convex function using CCCP as follows: 

                   
     

  
                                        (10) 

Where 
     

  
 at iteration   is defined as follows: 

     

  
  

  

     
        

                

                                                      (11) 

The derivative of (10) with respect to   to update this variable is obtained as follows: 



         

  
 

 

  
         

 

  
   

     

  
      

  

     
                     (12) 

Where   is defined in (5). 

2.1.4 Sparsity Regularization-    -norm 

As we mention in above,     -norm is exact sparse norm and is approximated by     -norm since 

it is not convex.     -norm and     -norm are not optimal and explicitly meaningful [18]. 

Additionally,     -norm and     -norm are the only slack versions of     -norm.     -norm and 

    -norm cannot select exact top-k features and only they can rank the features based on their 

score [18]. For example, we have four features   ,   ,    and    such that             in 

terms of score. We consider    and    If we want to pick two top features based on their score 

using     -norm and     -norm. Whereas the combination of    and    can provide better 

separability in subspace [19]. Figure 3 illustrates the difference between     -norm and     -

norm. 

 



Figure 3. Different effect of sparsity     -norm and     -norm for feature selection. In this 

example, we set selected features equal to three (k=3). 

As aforementioned, solving     -norm is difficult and leading to NP-hard problem. To 

circumvent     -norm challenge, a new optimization technique was proposed for feature 

selection using     -norm constraint directly [20]. To main challenge using     -norm constraint 

directly is that it cannot be applied for all types of feature selection objective function. To this 

end, consider following feature selection problem: 

                                                           (13) 

Where    is a projection matrix,   is positive semidefinite matrix (PSD) and   shows the exact 

selected top features. 

If we consider the dimension of subspace equal to  , we have two scenarios for solving (13) 

including;           and          .  

A)          : full rank decomposition   is considered as follows: 

                                                                  (14) 

Where   is indicator matrix (selection matrix) and matrix   is all nonzero rows of  . Therefore, 

           and satisfy        , and      , where   is the dimension of features. We 

know           , then we can consider                                

         . Therefore, the problem (13) is converted into following form: 

                                                                (15) 

Where                                  The solution of maximization problem 

(13) is top-   diagonal elements of   and this solution is global maximum [20, Algorithm 1] . To 

solve the maximization problem (15), we have three steps as follows: 

1- Sorting diagonal elements of   . 

2- Assigning the rows and columns corresponding to top-   element to obtain  -order 

principal submatrix    of X (          

3- Applying eigen-decomposition on    to obtain  . 

 

B)          : In this scenario, strategy           cannot be used for since 

              
 
 . To use strategy          , we first need to construct a low-rank 

proxy PSD matrix such that           . Consequently, matrix   is defined as 

follows: 

                                                           (16) 



Where   is pseudo inverse. Matrix   is the best approximation of matrix  . We can solve 

problem (16) for P same problem (13) for   [20, Algorithm 2]. 

    -norm constraint can be directly applied for feature selection using other objective function. 

[21] used Linear Discriminant Analysis (LDA) objective function for feature selection using  

    -norm constraint, and [22] used latent representation learning objective function. 

2.1.5 Sparsity Regularization-Inner product-norm 

    -norm regularization is lonely not appropriate to obtain both the high sparsity and low 

redundancy. Inner-product norm regularization was proposed to preserve the sparsity and to 

determine the independence of variables [23]. Concretely, inner-product norm is the combination 

of   -norm for     and   -norm for  . Inner-product norm is formulated as follows: 

                 
                                     

                  (17) 

The derivative of (17) with respect to   in order to update this variable is obtained as follows: 

           
         

  
                                                   (18) 

 

2.2 Structure Learning Regularization-Manifold Information Preservation 

2.2.1 Laplacian Graph Matrix 

Structure (local) learning regularization is essential to preserve data geometry information 

(Topology of data) in subspace learning [24]. More precisely, structure learning aims to preserve 

the geometry of data after projection into subspace. The idea behind structure learning (manifold 

learning) is that if we have two samples    and    are close in original space of data (before 

mapping), the corresponding samples     and     in the subspace should be close (after mapping). 

For data       , a mapping function   is used to project   into subspace          such 

that      . We considered     
        

   to measure the smoothness of   along the 

geodesic of data (     is submanifold and   E is gradient of   with  ).     
  cannot be 

obtained in continuous form, since submanifold     is not known. To address this,     
  must be 

discretely approximated as follows [25]: 

    
  

 

 
            

 
    

 

 
     

      
 
   

 
   

 

 
     

      
 
   

 
   

 
   

 
   

      
    

 
   

 
                          (19) 



Where    and        are projected sample and symmetric affinity matrix (    is element of 

matrix  ), respectively. Degree matrix is         
 
    and equation (19) can be reformulated as 

follows: 

    
  

 

 
       

 
          

 
 
 
   

 
   

 
         

          
         

 
        (20) 

Where        
 
    is matrix of samples in subspace (projected matrix) and       is graph 

Laplacian of matrix  .   is the number of samples. The affinity matrix is calculated using heat 

kernel as follows: 

          
        

 

 
                                   

 

                       (21) 

Where        is the set of K-nearest neighbours of sample          .   is the Gaussian scale 

parameter and it is recommended to be set as follows [26]: 

   
         

 

  
 
                                                                (22) 

The structure learning (locally preserving) regularization term is              for NMFFS 

and derivative with respect to   to update this variable is obtained as follows: 

             

  
                                                        (23) 

2.2.2 Hessian Graph Matrix 

Geodesic and null space consideration are two main limitations for Laplacian graph 

regularization. Laplacian graph regularization may face difficulty to preserve manifold of data 

after projection due to bias towards a constant geodesic function [27]. Hessian regularization is 

an alternative to circumvent Laplacian graph regularization limitations. Hessian regularization 

has rich null space and can preserve the geometrical information of data (manifold) stronger than 

Laplacian graph regularization. 

For smooth manifold     , Eelles-energy is defined for mapping function       as 

follows: 

                           
      

 

 
                                       (24) 

Where   
   is local tangent space for point    ,  mapping function and       is the second 

covariant derivative of  .       is the natural volume element on manifold   [28]. Normal 

coordinates system is needed to evaluate Hessian energy function on manifold  . Normal 

coordinates    centered at   is estimated as follows: 



                
    

   

      
   

                                            (25) 

(25) shows that the norm of second order derivative is the Forbenius norm of the Hessian of   in 

normal coordinates at point  . 

To construct local normal coordinate, K-nearest neighbors (       ) is used and for the local 

tangent space   
   estimation, principal component analysis (PCA) is used. Therefore, local 

tangent space   
   is utilized to estimate normal coordinates    of a point            where 

     . The Hessian of   at    is estimated as follows: 

   

      
 
        

   
  

 
   

                                                      (26) 

Where          and     
   

 is a local Hessian operator of sample    in the normal coordinates 

   of a point          . A second-order polynomial      is fitted to calculate     
   

 in normal 

coordinates to         
  as follows: 

                
        

    
   

 
   

 
                      (27) 

Where       is the zeroth-order term. (27) is the second-order Taylor expansion of   around the 

point    with zero neighborhood size. Then,    and     are 

   
  

   
      ,        

 

 

   

      
                                                (28) 

with symmetric property        . By using standard linear squares for fitting the polynomial, 

we have following: 

                                 
                                     (29) 

Where         is the design matrix with     
      

 
. The basis functions of   are the 

monomials of the normal coordinates (centered at   ) of           up to second order. 

      is the solution of (29), where               
     and          . 

Assuming          , Forbenius norm of the Hessian   at    is approximated as follows: 

       
         

   
  

 
              

    
     

 
                             (30) 

Where    
   
      

   
    
    

     .  Finally, the Hessian energy function is derived as follows: 

                
   
      

        
 
        

 
                                        (31) 

Where         
   . The Hessian matrix is computed by following steps: 

1- Use KNN (K-nearest neighbors) to construct a neighbour matrix, which can be called K-

matrix. 



2- Apply singular value decomposition (SVD) on k-matrix to obtain a tangential coordinate 

system. 

3- Use least square method to estimate the Hessian energy. 

4- Calculate Structure learning regularization using 

               
   
      

        
 
        

 
   . Where    is neighbor matrix,   shows 

the rows and   shows the columns. 

 (The matlab code to construct Hessian matrix is found https://www.ml.uni-

saarland.de/code/HessianSSR/HessianSSR.htm) 

Hessian regularization can be added to objective function like Laplacian graph regularization. 

Therefore, Hessian regularization in the form of              is added to NMFFS, where   is 

Hessian matrix. 

2.2.3 Dynamic Graph Learning (Adaptive affinity matrix) 

The main limitation of Laplacian graph matrix with fixed affinity matrix is that input data matrix 

       can be noisy and has outliers. Therefore, the constructed affinity matrix is affected by 

noisy data and outliers, and Laplacian graph matrix is subsequently destructed.   

For affinity matrix       , each element     is the probability of connectivity between two 

samples    and   . Two close samples have larger     than two far samples, which shows that 

higher probability to be neighbors. To have dynamic Laplacian graph, affinity matrix must be 

updated in each iteration. Consequently, the structure learning regularization with adaptive graph 

is formulated as follows [29]: 

                 
 
        

                                             (32) 

Where    is a vector with all elements one and       is the probability of sample   and   are 

neighbours.   is feature weight matrix of NMFFS.   is an important coefficient to avoid the 

trivial solution, since without   the optimal solution is        if two samples are neighbors.  To 

solve minimization (32) with respect to     , The problem (32) for  th sample can be expressed as 

follows: 

                 
 
        

                                        (33) 

Let have        with elements                 
 
. Therefore, (33) is reformulated as 

follows: 

        
 

  
   

 

 

           
                                        (34) 

Using augmented Lagrangian technique we have following: 

           
 

 
    

 

  
   

 

 

     
        

                      (35) 

https://www.ml.uni-saarland.de/code/HessianSSR/HessianSSR.htm
https://www.ml.uni-saarland.de/code/HessianSSR/HessianSSR.htm


Where   and    are Lagrangian multipliers and the optimal solution of    is achieved by Karush-

Kuhn-Tucker conditions. Lagrangian multiplier   is obtained as follows:  

  =
 

 
 

 

    
    
 
                                                        (36) 

where   is the number of connected neighbors to  th sample [30]. The optimal solution of    is 

obtained as follows: 

      
 

   
                                                        (37) 

Parameter   with   neighbors connected to  th sample is obtained as follows:  

   
 

 
       

 

 
    
 
                                                    (38) 

Each element of affinity matrix   is updated by     (37) and thus Laplacian matrix   is updated at 

each iteration.  

2.2.4 Dynamic Graph Learning-Rank Constrained Laplacian Graph  

The ideal scenario is that affinity matrix   has exact   connected components (  is the number of 

sample categories), which is not possible for real world dataset. However, affinity matrix   can 

have exact   connected components by applying rank constraint on graph Laplacian matrix. 

Therefore,              must be considered as a constraint for structure learning 

regularization [31]. It is proven that          is equivalent to           
    where    is ith 

small singular value of Laplacian matrix and   is the number of sample categories. The 

constraint             is not convex. To this end, Ky Fan’s theorem [32] is applied to 

reformulate          constraint to following solvable problem. 

                      
                   ,                                  (39) 

 

The optimization problem (39) is an eigen problem and the optimal solution for variable   is 

obtained by the  -eigenvector of   corresponding to the   smallest eigenvalues.   can preserve 

the structure of cluster. Rank constrained is applied to preserve the structure of clusters as 

following: 

   
              

 
        

                  

   
                                    

                      (40) 

Where   is the regularization coefficient and                    
 
    . Problem (40) is 

solved like (34). Let we introduce matrix               
 
 and matrix        with 

elements              
 
 and then we have vector             . Therefore, we have 



problem (34) here and we can update     by (37). The steps of adaptive affinity matrix and 

dynamic Laplacian graph are as follows: 

1-  Initialize affinity matrix  . 

2- Calculate Laplacian graph matrix  . 

3- Obtain optimal matrix   by (39): the  -eigenvector of   corresponding to the   

smallest eigenvalues. 

4- Update Matrix   by (37), where             ,             
 
 and   

            
 
. 

5- Update Laplacian graph matrix  . 

 

2.2.5 Dynamic Graph Learning-Maximizing the Information Entropy of Similarity Matrix 

While the central concept in graph theory is that high similarity between two samples suggests 

they belong to the same class, constructing a highly detailed similarity matrix can increase model 

complexity and the risk of overfitting. Maximizing the information entropy of similarity matrix 

is an approach to have adaptive affinity matrix [42]. Based on maximum entropy theorem, the 

similarity matrix can be optimized by :                
 
   

            
 
   

 
   . To add dynamic 

graph learning to NFFS based on maximum entropy adaptive affinity matrix, 

   
                          

 
   

                     
 
   

 
    must be added to objective 

function of NMFFS. 

 

2.2.6 Hyper Graph Learning 

The classical graph structure learning extract geometrical information based on data points and 

their neighbors [34]. Therefore, the high-order relationships among the points are omitted. 

Hyper-graph regularization is an approach to consider the high-order relationships for data points 

[33,34]. A hypergraph            is created by edges               , vertex   

            , and hyper-edge weight   . Figure 4 shows an example of hypergraph [37]. 



 

Figure 4. This figure shows a hypergraph with three edges and 13 vertices. 

There are three sequential steps to construct a hypergraph for data points. In first step, the 

incidence matrix, which shows the binary vertex-edge relationship, must be constructed [35]. 

The incidence matrix is obtained as follows: 

          
                 
           

                                                     (41) 

In second step, hyper-edge weight   , which measures the importance of hyperedges, must be 

obtained. In the last step, the normalized Laplacian matrix of the hyper-graph must be calculated 

[36]. 

Hyper edge    can be calculated by following formula: 

                                                                   (42) 

Where            measures the similarity between two samples    and    (cosine similarity and 

Euclidean distance) and    is the average distance between sample    and rest of the samples. 

Affinity matrix formula (21) can be used to initialize the    as follows: 

  
             

                                                     (43) 



Where     represents the element of affinity matrix. 

The degree of each vertex and the degree of each hyper-edge are calculated as following: 

                     
                                               (44) 

                
                                                         (45) 

Therefore     is a diagonal matrix whose elements are associated with vertex degrees and the     

is a diagonal matrix of hyper-edge degree.  

Unnormalized Laplacian hyper graph is obtained as follows: 

               
                                               (46) 

And normalized Laplacian hyper graph is obtained as follows: 

           
         

      
                           (47) 

       is embedded into                   and added to NMFFS objective function. 

 

2.3 Rank Constraint-Low Rank Learning 

2.3.1 Nuclear Norm-     

Imposing a rank constraint on an optimization problem reduces feature redundancy and 

facilitates the extraction of the true low-rank structure of the matrix. Solving an optimization 

problem with rank constraint is led to a nonconvex problem. To tackle this problem, rank 

constraint is approximated by nuclear norm [38]. For NMFFS with rank minimization we have 

following: 

                                                                      (48) 

Where      and   represent nuclear norm (sum of singular values) and regularization coefficient, 

respectively. Although      is the main challenge to solve problem (48), derivative with respect to 

  can be directly applied and no auxiliary function needed.  

Derivative of      with respect to  : 

Let consider singular value decomposition of  ,            , where    and   are 

orthonormal matrices (    =I,     =I) and   is diagonal matrix. Derivative of      with 

respect to   is formulated as follows [47]: 
     

  
                                                        (49) 



Where   is the Moore-Penrose pseudo-inverse.  The nuclear norm can be defined as follows: 

                        
 
                                       (50) 

By applying the circularity property of trace, we obtain                              . 

Therefore, the subgradient problem is obtained as follows:  
     

  
 

        

  
 

        

  
                                                       (51) 

The subdifferential set of diagonal matrix     is  
    

  
      

  

  
                                                     (52) 

Substituting (52) into (51), we obtain: 
        

  
 

           

  
                                                      (53) 

Addition, we know 

                                                            (54) 

Which can be expressed as follows: 

                                                             (55) 

By multiplying   from right-side and    form left side to (55) we obtain following: 

  =                                                         (56) 

 

In this step we need to have                       to obtain 
     

  
.  

Proof                      : 

Based on trace property (              we can express           as follows: 

                                                              (57) 

Based matrix analysis, we know that      and       and therefore we have following 

expression: 

        (                                           (58) 

And following conclusion is achieved: 

                                                                (59) 

Consequently, (57) can be reformulated as follows: 

                                                                 (60)        

We found that                       which means that              =0. therefore, we 

proved that                      . We can conclude that   =      and 
     

  
 is as 

follows: 

     

  
 

        

  
 

           

  
 

              

  
 

              

  
                          (61) 

 



The partial derivative      with respect to   is            , where            . 

 

2.3.2 Schatten  -norm (      )-      
 

 

Schatten  -norm (      ) can be applied as rank constraint and studies showed that it has 

better rank approximation than nuclear norm [39,40]. Schatten  -norm can improve the abilty of 

feature selection algorithm to extract the inherent low-rank property of data [40]. Schatten  -

norm is defined as follows: 

     
     

            
         
                               (62) 

 

For NMFFS with Schatten  -norm regularization, we have following: 

                     
                                                   (63) 

To solve (63), we need to consider auxiliary variable  . Therefore, NMFFS with rank constraint 

is reformulated as follows [42]: 

                     
                                      (64) 

Using Lagrange augmented technique, we have following: 

            
 

 
        

 
        

  
 

 
        

   
 

 
     

 

  
  

 

 

 

 

  
     

 
                       (65) 

Where       ,        and        are Lagrange multipliers to guarantee that   

       and      , respectively.  

Feature weight matrix   is affected by   and   in each update.  

To update variable  , let consider     
 

 
  and then we have following problem: 

           
 
 
 

 
      

 
                                      (66) 

     
 

 is a non-convex relaxation term and must be converted to convex version. To this end, let 

have            ,             and      
 

 =Tr (   . By applying trace inequality of 

John von Neumann theorem [41] we have following: 

     
 

 
        

 

 
      

  
 

 
        

 

 
                           

 
 

 
        

 

 
                           

 

 
        

 

 
      

  (67) 



The equality in problem (67) can only be held if and only if     and    . As a result, the 

optimal solution of    is obtained by finding   (singular value of matrix  ) using following:  

                    
 

 
       

  
 

 
  
  

                                        (68) 

Where            and           . To solve problem (40) for    we have following: 

             
 

 
       

  
 

 
  
                                  (69) 

The second derivative       is  
             

 

 
  
      and    

 

       
 

 

    is the 

inflection point (   can be obtained by           . Obviously, the minimum value of (69) 

occurred when      . Therefore, the optimal solution can be obtained by following:  

    
                                   

                              
                                             (70) 

Where   is the stationary point and can be calculated by         .Consequently, the optimal 

solution of        by setting            using (70). 

Additionally, in each iteration, Lagrange multiplier   is updated by following: 

                                                            (71) 

And coefficient   is updated by following: 

                                                               (72) 

Where   is the parameter to increase   in each iteration (     and   are coefficients). 

Nuclear norm is Schatten  -norm for    .  

 

2.4 Minimum Redundancy-Correlation Minimization 

To guarantee minimum redundancy between the features, correlation between the rows of W can 

be model as regularization and added to NMFFS objective function [11]. The correlation of 

features for a data          (  samples and   features) can be formulated as follows: 

                
 

  
          

 

  
   

   
       

 

  
   

          
 
           (73) 

Where    is a vector, whose elements are one. 

To update feature weight matrix  , the partial derivative of (73) with respect to   is 
     

  
 

        . 

 

2.5 Soft Label Learning- Pseudo Label 



NMFFS is an unsupervised feature selection. The performance of NMFFS can be improved by 

learning the pseudo-label. With clustering approach, the labels can be modeled as the samples 

belong to clusters. The affinity matrix between each sample and the cluster centroids plays role 

as soft-label matrix. In contrast to hard-label, the soft-label is the probability of belonging the 

data point to cluster. Soft label learning not only considers sample point as a cluster, but also it 

considers the relationship with other clusters [43]. The objective function of soft-label learning is 

formulated as follows: 

                
 
               

               
   

 
                         (74) 

Where     and    represent the affinity degree of the  -th sample and the  -th cluster, and the 

cluster centroid of the  th cluster in the original feature space, respectively. Finally, soft label 

regression regularization is modeled as follows: 

          
       

                                             (75) 

Where        (  is the number of clusters) is the bias term and   is learnable regression matrix. 

Biased term is   
 

 
          . Consequently, NMFFS with soft label regularization is 

described as follows: 

             
                                  

                   

                        
                     (76) 

 

Where    is centering matrix       
 

 
    

 ,             
 
,           is a sparse 

constraint on   and   is a balancing parameter between NMFFS and soft label learning.   is a 

regularization coefficient.  

2.6 Self-paced learning 

Self-paced learning [44] is inspired by curriculum learning [45]. In curriculum learning, 

difficulty is gradually increased from easy to hard. In other words, the data is gradually added to 

training network from easy to hard, which leads to increased in the entropy of the training set. 

The main concern of curriculum learning is the metric of determining the priority of each 

sample. Self-paced learning aims to determine an optimal sequence of training samples to 

introduce during the learning process, with the goal of minimizing the impact of noise and 

improving overall model performance [46]. 

Self-paced learning objective function is described as follows: 

                     
 
     

  

   
 

 

 
                                      

  (77) 



Where    represents the weight of the i-th sample   . 
  

   
 

 

 is the mixture regularizer.   controls the 

‘‘fuzzy interval’’ between 0 and 1. The closer    is to 1,    is to be the more likely selected if the 

closer    is to 1, for the closer    is to 0 vice-versa.  

To update   , we consider   and   fixed variables, and we have following objective function: 
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Where             . For        , the problem (78) is decomposed into   independent 

sub-problems as follows: 
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The closed form solution of    is obtained as follows: 
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Parameter   is initialized and updated in each iteration by      (   ). 

2.7 Contrastive Learning 

Contrastive learning is a self-representation learning approach to maximize the similarity 

between positive pairs and minimize the similarity between negative pairs, which increase the 

discriminability of algorithm. Cross-entropy loss in contrastive learning is received great 

attention to provide maximum discrimination between positive pair and negative pair [48,49]. 

Graph contrastive learning is applied for feature selection as regularization function. This 

technique applies random corruption on nodes and edges to learn a correct node information. 

Then, contrastive regularizer is formulated as follows [50]: 

                  
         

    
 
   

    
 
                                                     (81) 

Where  ,    are the total number of samples and the k-nearest neighbors of node  -th, 

respectively. 

3 Example- NMFFS with Laplacian Graph and      -norm 

The objective function of NMFFS with Laplacian Graph and      -norm is described as follows: 
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Where   is Laplacian matrix (details in section 2.2.1).   and   are regularization coefficients and   

       can be replaced by          such that        
 

       
 

  is a diagonal matrix 

(details in section 2.1.1). 

The augmented Lagrangian function of (82) is as follows: 
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Where    and    are Lagrange multipliers for   and  , respectively. 

To solve problem (83), the matrix   is fixed and   is updated as follows:  

  

  
 

 

 
                                                 (84) 

then, 

                                         (85)                         

For  , the matrix   is fixed and   is updated as follows: 
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                                                                   (87) 

 

According to K.K.T conditions,          and          for all       and      . 

Therefore,   and   are updating in each iteration as follows: 
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                                                            (89) 

 

Other regularization functions, which are discussed in this tutorial, can be applied to (82). 

4 Conclusion  

This tutorial paper covered the theory of different variants of regularization function for features 

selection using subspace learning. First, sparse regularization function was explained. Then, 

structure learning regularization was explained followed by rank minimization regularization.  

Minimum redundancy in the context correlation regularization was explained. In last, Self paced 

learning and contrastive learning were explained.  
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