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Mérouane Debbah, Fellow, IEEE, H. Vincent Poor, Life Fellow, IEEE,

and Lajos Hanzo, Life Fellow, IEEE

Abstract

Stacked intelligent metasurfaces (SIM) are capable of emulating reconfigurable physical neural

networks by relying on electromagnetic (EM) waves as carriers. They can also perform various com-

plex computational and signal processing tasks. A SIM is fabricated by densely integrating multiple

metasurface layers, each consisting of a large number of small meta-atoms that can control the EM

waves passing through it. In this paper, we harness a SIM for two-dimensional (2D) direction-of-arrival

(DOA) estimation. In contrast to the conventional designs, an advanced SIM in front of the receiver

array automatically carries out the 2D discrete Fourier transform (DFT) as the incident waves propagate

through it. As a result, the receiver array directly observes the angular spectrum of the incoming signal. In

this context, the DOA estimates can be readily obtained by using probes to detect the energy distribution

on the receiver array. This avoids the need for power-thirsty radio frequency (RF) chains. To enable

SIM to perform the 2D DFT, we formulate the optimization problem of minimizing the fitting error

between the SIM’s EM response and the 2D DFT matrix. Furthermore, a gradient descent algorithm

is customized for iteratively updating the phase shift of each meta-atom in SIM. To further improve
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the DOA estimation accuracy, we configure the phase shift pattern in the zeroth layer of the SIM to

generate a set of 2D DFT matrices associated with orthogonal spatial frequency bins. Additionally, we

analytically evaluate the performance of the proposed SIM-based DOA estimator by deriving a tight

upper bound for the mean square error (MSE). Our numerical simulations verify the capability of a

well-trained SIM to perform DOA estimation and corroborate our theoretical analysis. It is demonstrated

that a SIM having an optical computational speed achieves an MSE of 10−4 for DOA estimation.

Index Terms

Stacked intelligent metasurface (SIM), direction-of-arrival (DOA) estimation, reconfigurable intel-

ligent surface, diffractive neural network, wave-based computing.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation using multiple antenna technology has long been a

crucial task with compelling applications in areas such as astronomy, navigation, and the emerg-

ing integrated sensing and communication systems of the sixth-generation (6G) networks [1]–

[9]. Traditionally, DOAs have been estimated using the classic beamforming method, which

can be efficiently implemented via the fast Fourier transform technique [10], [11]. However,

the angular resolution of this method is fundamentally restricted by the array aperture [12].

The Rayleigh criterion indicates that a pair of signal sources can only be distinguished, when

their angular separation exceeds the antenna beamwidth. To address this problem, several super-

resolution DOA estimation approaches have been developed [2]–[5]. The two most prominent

techniques are the multiple signal classification (MUSIC) [2] and the estimation of signal

parameters via rotational invariance techniques (ESPRIT) [3]. Specifically, MUSIC leverages

the orthogonality of the signal and noise subspaces to construct a spatial spectrum [2], and then

the DOA parameters of the received signals are identified via spectral peak search. By contrast,

ESPRIT exploits the spatial rotational invariance property of the signal subspace [3], avoiding

spectral search and substantially improving the computational efficiency. Since then, a variety

of modifications of MUSIC and ESPRIT have been proposed for different scenarios [5].

While these methods provide significant performance advantages, they require increased com-

putational and storage resources for performing eigenvalue decomposition of the spatial co-
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variance matrix. However, their performance degrades noticeably, when only a small number

of snapshots are available. Moreover, traditional DOA estimation methods assume ideal signal

conditions and perfect antenna arrays, which cannot be satisfied in practical systems. Various

imperfections like non-ideal transceiver design, station location errors, and background radiation

significantly degrade the performance of parametric methods, which are impervious to modeling

and calibration using conventional techniques [13]–[15].

Fortunately, advanced machine learning (ML) techniques provide effective approaches for

estimating the DOAs. In contrast to model-based conventional methods, ML-based approaches

are data-driven and thus have the potential to adapt to complex electromagnetic (EM) environ-

ments and be more robust against practical array imperfections. For instance, the authors of [16]

introduced a deep neural network (DNN) based framework having two parts. A multitasking

autoencoder first decomposed the input signals into multiple components falling into distinct

angular intervals. Then the results of multiple parallel classifiers were combined to reconstruct

the angular-domain spectrum and to estimate the signal directions with enhanced robustness.

Furthermore, the authors of [17] formulated the DOA estimation of multiple sources as a multi-

label classification problem. The phase components of the received signals’ short-term Fourier

transform coefficients were directly fed into a well-trained convolutional neural network (CNN) to

localize speakers in dynamic acoustic scenarios. Additionally, in [18] a deep convolution network

(DCN) was designed for learning the transformation from the undersampled array covariance

matrix to the angular spectrum. In contrast to conventional sparse recovery methods requiring

complex iterations, the DCN framework has superior computational efficiency. Leveraging the

sparsity also improves the DOA estimation accuracy. Nevertheless, DL-based methods require a

complex model training phase, resulting in high hardware and computational complexity [16].

It is also challenging to obtain a large training dataset covering all possible signal distributions,

especially in the face of high-Doppler scenarios.

Traditional DNNs rely on commercial processors or dedicated chips to perform computations,

whose speed is limited by digital hardware. Recently, a novel diffractive deep neural network

(D2NN) was developed using three-dimensional (3D) printed diffractive layers [19], [20]. D2NN

allows large-scale parallel calculations and analog signal processing to be carried out at the speed
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of light [21]. However, once fabricated, the wave-based D2NN architecture presented in [20] is

fixed, hence limiting its functionality in practice. Motivated by advances in metasurface technolo-

gies [22]–[29], the authors of [30] customized a reconfigurable D2NN using stacked intelligent

metasurfaces (SIMs). Specifically, a SIM employs an array of programmable metasurface layers,

each containing many programmable meta-atoms that can manipulate the EM wave behavior

as waves pass through it [31]. Adapting the bias voltage via a customized field-programmable

gate array (FPGA) module allows each meta-atom to act as a reprogrammable artificial neuron

having tunable weights.

When EM waves pass through a meta-atom within the SIM, the transmitted wave is determined

by multiplying the incoming wave with the meta-atom’s complex transmission coefficient [32].

According to the Huygens-Fresnel principle [20], the wave propagating through each meta-

atom acts as a secondary source that illuminates all the meta-atoms on the next layer. All

transmitted waves impinging at a neuron on the next layer are superimposed, acting as the

corresponding aggregate incident wave. This process continues through each metasurface layer

in the SIM. As a consequence, the forward propagation model in the SIM implicitly defines

a fully connected artificial neural network (ANN), whose architecture can be reconfigured for

realizing sophisticated processing functions [30], [31].

Several pioneering efforts have been made using SIMs for performing various signal processing

tasks in the EM wave domain. Specifically, the authors of [30] experimentally evaluated a

SIM’s capabilities for image classification. They built a SIM prototype having five programmable

metasurface layers and used it for recognizing handwritten digits. The first metasurface layer

acted as a digital-to-analog converter (DAC), converting each input image to greyscale and

configuring its transmission coefficients to match the pixel values. The remaining four layers

formed the image recognition neural network. Test on the MNIST dataset demonstrated that

the well-trained SIM achieved an accuracy of 90.76% at recognizing the digits 0 ∼ 9. In

[31], the authors harnessed a SIM for implementing multiple-input multiple-output (MIMO)

communications [33]. In contrast to conventional MIMO designs, a pair of SIMs deployed at

the transmitter and receiver can automatically accomplish MIMO-oriented transmit precoding

and receiver combining as the EM waves propagate through them. This allows each spatial
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Fig. 1. A SIM-aided array system.

stream to be directly radiated and recovered from its corresponding transmit and receive ports,

while significantly reducing the number of radio frequency (RF) chains needed. Furthermore, in

[34], [35] the authors integrated a SIM into the BS to facilitate downlink multiuser beamforming,

while eliminating the conventional digital beamformer and high-resolution DACs at the BS.

Nevertheless, DOA estimation using an advanced SIM has hitherto remained unexplored.

Hence this is the first paper on this intriguing subject, in which we design a new SIM-based

physical DOA estimator. The underlying philosophy is that by appropriately optimizing the SIM

to carry out the two-dimensional (2D) discrete Fourier transform (DFT), the incident EM waves

can be transformed into the angular frequency domain, as they propagate through the SIM [1].

By detecting the energy levels of the different receiver probes – each corresponding to a unique

DOA – we can read the signal’s direction from the probe having the strongest energy. As a

result, the receiver hardware is substantially simplified as the analog-to-digital converters (ADC)

are no longer needed. Most remarkably, in contrast to previous DOA estimators relying on array

signal processing, the calculation within the SIM occurs naturally without incurring extra delay.

More specifically, the detailed contributions of this paper are summarized as follows:

1) We conceive a SIM-based physical estimator to probe the DOA of radio waves impinging

from a single source. The SIM is made of multiple metasurface layers, each containing

a large number of small meta-atoms having adjustable EM properties. By manipulating

the wave propagation therein, the SIM becomes capable of performing the desired signal
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processing naturally, as the waves pass through each layer, which is significantly faster

than traditional digital calculations. A uniform planar array (UPA) is placed at the end of

the SIM. By appropriately configuring the SIM, it can transform the radio waves into the

angular domain. Each antenna then corresponds to a unique signal direction. Therefore,

the DOA can be readily determined by measuring the signal strength at each antenna in

the receiver array.

2) We formulate an optimization problem aimed at minimizing the Frobenius norm of the

error between the ideal 2D DFT matrix and the EM response of the SIM, subject to the

constraint that each meta-atom has a constant transmission level. Due to the non-convex

constraint and cascaded multiplications of phase shifts, finding the optimal phase shift

solution is non-trivial. To tackle this issue, we develop a gradient descent algorithm for

iteratively updating the SIM’s phase shifts to realize the desired 2D DFT function.

3) The outputs from the SIM can provide a coarse on-grid estimate of the DOA for a small

number of receiver probes. To further improve the DOA estimation accuracy, we adjust

the phase shifts in the zeroth layer of the SIM for each snapshot to generate a set of 2D

DFT matrices having mutually orthogonal spatial frequency bins. This allows the SIM to

focus the energy of the incident wave onto the specific grid point perfectly matching its

direction, yielding the strongest magnitude at the matched point. The number of snapshots

determines the trade-off between the estimation accuracy versus the observation time.

4) We theoretically evaluate the performance of the proposed DOA estimator by deriving an

upper bound for its mean square error (MSE). As the receiver array directly observes the

angular spectrum of the incident signal, the proposed DOA estimator differs fundamen-

tally from the existing techniques relying on phase-sensitive receivers and array signal

processing. Furthermore, using low-complexity energy detectors significantly reduces the

hardware costs without compromising the DOA estimation accuracy.

5) Numerical results demonstrate the effectiveness of SIM to perform DOA estimation. Ex-

tensive experiments are conducted to determine the optimal SIM setups for 2D DFT

for both (2, 2) and (4, 4) grid points. We also verify the convergence behavior of the

proposed gradient descent algorithm and corroborate the accuracy of our analytical results.
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Specifically, the SIM using the advanced wave-based computation conceived is capable of

estimating the DOA with an MSE of 10−4.

The rest of the paper is structured as follows. Section II introduces the system model of

SIM-based DOA estimation. Section III formulates our optimization problem and presents the

gradient descent algorithm designed for optimizing the SIM to realize 2D DFT. Furthermore,

Section IV introduces the practical estimation protocol as well as the specific procedures of

DOA estimation using the SIM. Section V analyzes the theoretical performance of the SIM-

based DOA estimator. Additionally, Section VI provides simulation results to verify our analysis

and evaluate the performance of the proposed estimator. Finally, Section VII concludes the paper

and discusses potential future directions.

Notation: Scalars are denoted by italic letters; Vectors and matrices are denoted by boldface

lowercase and uppercase letters, respectively; ℜ{z}, ℑ{z}, and |z| represent the real part,

imaginary part, and modulus of a complex number z, respectively; For a complex-valued vector

v, ‖v‖ denotes its Euclidean norm, and diag (v) is a diagonal matrix with the elements of v

along the diagonal; For any general matrix M , M ∗, MT , MH , ‖M‖F , rank (M), and [M ]i,j

denote its conjugate, transpose, Hermitian transpose, Frobenius norm, rank, and the (i, j)-th

element, respectively; M ⊗N represents the Kronecker product of the matrices M and N ,

while vec (·) represents the vectorization operator; IM denotes an identity matrix of size M ; 0

represents an all-zero matrix of appropriate dimensions; ⌈x⌉ refers to the nearest integer greater

than or equal to x; Moreover, E {·} represents the expectation operator; arcsin (·) and arctan (·)
are the four-quadrant inverse sine and inverse tangent functions, respectively; j is the imaginary

unit; Cx×y represents the space of x×y complex-valued matrices; ∇xf (x) denotes the gradient

of the function f with respect to (w.r.t.) the vector x; ∂f/∂x represents the partial derivative of

a function f w.r.t. the variable x. The distribution of a circularly symmetric complex Gaussian

(CSCG) random vector with mean vector v and covariance matrix Σ is denoted by ∼ CN (v,Σ),

where ∼ stands for “is distributed as”.
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Fig. 2. The top and front views of the SIM-based array systems.

II. SIM-BASED ARRAY SYSTEM MODEL

In this section, we present the system model for the SIM-based array used for performing

DOA estimation.

A. Incident Signal Model

As depicted in Fig. 1, we utilize a UPA placed on the ground (i.e., the x-y plane) to estimate the

DOA parameters. In contrast to conventional array-aided systems, a SIM consisting of (L+ 1)

metasurface layers is integrated with the UPA to transform the incident signal into its angular

spectrum. We assume that the SIM is positioned horizontally, with all metasurface layers parallel

to the x-y plane. To avoid ambiguity, the metasurfaces are labeled by 0 ∼ L from the top to the

bottom, as shown in Fig. 2(b). Let ϕ ∈ [0, 2π) and ϑ ∈ [0, π/2] represent the physical azimuth

angle and elevation angle of the DOA of the radiation source relative to the zeroth layer of the

SIM, which has N = NxNy meta-atoms, with Nx and Ny representing the number of meta-atoms

in the x- and y-directions, respectively. Additionally, the corresponding element spacings are dx

and dy. Therefore, the electrical angles ψx and ψy in the x- and y-directions are given by [36]

ψx = κdx sin (ϑ) cos (ϕ) , (1)

ψy = κdy sin (ϑ) sin (ϕ) , (2)

respectively, where κ = 2π/λ represents the wavenumber, with λ being the wavelength.

Hence, the steering vector w.r.t. the zeroth layer of SIM a (ψx, ψy) ∈ CN×1 is written as

a (ψx, ψy) = ay (ψy)⊗ ax (ψx) , (3)

February 14, 2024 DRAFT
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and the elements of the vectors ax (ψx) ∈ C
Nx×1 and ay (ψy) ∈ C

Ny×1 are defined as follows:

[ax (ψx)]nx
, ejψx(nx−1), nx = 1, · · · , Nx, (4)

[ay (ψy)]ny
, ejψy(ny−1), ny = 1, · · · , Ny. (5)

Let s ∈ C represent the signal transmitted from the radiation source1, which is modeled as a

CSCG random variable with zero mean and unit variance. Hence, the signal x ∈ CN×1 incident

upon the zeroth layer of the SIM can be expressed as

x = a (ψx, ψy) s. (6)

B. SIM Model

The middle of Fig. 1 shows a schematic diagram of a SIM device. For the sake of conceptual

simplicity, we assume that the L intermediate metasurface layers are each modeled as a UPA

having isomorphic arrangements. Additionally, we assume that the (L+ 1) metasurfaces are

evenly spaced. Let TSIM represent the thickness of the SIM. As such, the vertical spacing between

the adjacent layers is obtained by slayer = TSIM/L. In practice, the SIM is enclosed in a support-

ing structure surrounded by wave-absorbing materials, to prevent interferences from undesired

diffraction, scattering, and environmental noise [30]. As shown in Fig. 2, each metasurface layer

consists of M = MxMy meta-atoms, where Mx and My are the number of meta-atoms in the

x- and y-directions, respectively. Moreover, the corresponding spacings between the adjacent

meta-atoms on the intermediate layers are set to sx and sy.

As stated earlier, each meta-atom is capable of adjusting the phase shift of the EM waves

passing through it by controlling the bias voltage of the associated circuit [30], [31], [35]. Let

υl = [υl,1, υl,2, · · · , υl,M ]T ∈ CM×1, l = 1, · · · , L represent the complex-valued transmission

coefficient vector for the l-th layer, where υl,m = ejξl,m, m = 1, · · · ,M, l = 1, · · · , L with ξl,m ∈
[0, 2π) representing the phase shift of the m-th meta-atom on the l-th layer [31]. Furthermore, let

Υl = diag (υl) ∈ CM×M represent the corresponding transmission coefficient matrix for the l-th

layer. In particular, let υ0 = [υ0,1, υ0,2, · · · , υ0,N ]T ∈ CN×1 and Υ0 = diag (υ0) ∈ CN×N denote

1Since this is the first attempt in this area, we are considering the case of a single source for the sake of brevity.
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d′
m,n

=

√

[(

mx −
1 +Mx

2

)

sx −
(

nx −
1 +Nx

2

)

dx

]2

+

[(

my −
1 +My

2

)

sy −
(

ny −
1 +Ny

2

)

dy

]2

+ s2layer,

(11)

the complex-valued transmission coefficient vector and the corresponding matrix for the input

layer (i.e., the zeroth layer in Fig. 1), respectively, where we have υ0,n = ejξ0,n , n = 1, · · · , N
and ξ0,n denotes the phase shift of the n-th meta-atom on the zeroth layer.

Furthermore, let W l ∈ CM×M , l = 1, · · · , L − 1 characterize the EM wave propagation

between the adjacent layers in the SIM. Specifically, the element at the m-th row and m̆-th

column of W l represents the attenuation coefficient between the m̆-th meta-atom on layer l and

the m-th meta-atom on layer (l + 1). Based on the Rayleigh-Sommerfeld diffraction equation

[31], [37], [W l]m,m̆ is determined as follows:

[W l]m,m̆ =
Ameta-atomslayer

2πd3m,m̆
(1− jκdm,m̆) ejκdm,m̆ , (7)

where Ameta-atom denotes the area of each meta-atom, and dm,m̆ represents the corresponding

propagation distance, which is calculated as follows:

dm,m̆ =
√

(mx − m̆x)
2 s2x + (my − m̆y)

2 s2y + s2layer, (8)

with my and mx being defined by

my , ⌈m/Mx⌉ , (9)

mx , m− (my − 1)Mx, (10)

Similarly, m̆y and m̆x are obtained by replacing m in (9) and (10) with m̆.

Furthermore, let W 0 ∈ CM×N represent the attenuation coefficient matrix between the input

layer and the first layer. The (m,n)-th entry of W 0, denoted by [W 0]m,n, is obtained by replacing

dm,m̆ in (7) with the corresponding propagation distance d′m,n, which is calculated using (11),

as shown at the top of this page, where we have

ny , ⌈n/Nx⌉ , (12)

February 14, 2024 DRAFT
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nx , n− (ny − 1)Nx. (13)

Similarly, let W L ∈ CN×M represent the attenuation coefficient matrix between the L-th

metasurface layer and the output layer, i.e., the receiver antenna array. The receiver is a UPA

arranged in the same pattern as the zeroth layer of SIM, and it is placed at slayer meters away

from layer L. It is clear that W L and W 0 exhibit symmetry. Thus, we have W L = W T
0 .

As a result, the overall forward propagation process through the SIM G ∈ CN×N is described

as

G = W LΥLW L−1 · · ·W 2Υ2W 1Υ1W 0. (14)

C. Received Signal Model

As mentioned earlier, the receiver is a UPA consisting of N = NxNy receiver antennas. For

a single source transmitting a waveform s, the complex signal vector r ∈ CN×1 received at the

array can be expressed as

r =
√
̺GΥ0x+ u =

√
̺GΥ0a (ψx, ψy) s + u, (15)

where ̺ denotes the SNR, and u ∈ CN×1 is the measurement noise vector at the receiver array,

which is modeled as a CSCG random vector satisfying u ∼ CN (0, IN). It is also assumed that

s and u are uncorrelated.

Remark 1: In contrast to the conventional array-aided system, the received signal in (15) has

undergone a controllable analog transformation using the SIM. By appropriately configuring the

SIM’s phase shifts, the receiver antenna array may directly observe the angular spectrum of the

incident signal. This would substantially simplify both the hardware design and the subsequent

signal processing, while also reducing the energy consumption.

Remark 2: Although G in (14) involves a large number of matrix multiplications, it is important

to note that these operations occur automatically at the speed of light as the incoming signal

passes through each layer of the SIM. This advanced wave-based computing paradigm enables

the calculations to be completed in nanoseconds. Additionally, the inherent parallel processing
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capability of the SIM means that the calculation time is independent of the number of meta-atoms

per layer.

III. SIM OPTIMIZATION FOR REALIZING 2D DFT

To achieve the expected DOA estimation capability, we need to guide the SIM to output the

angular spectrum. In this section, we formulate an optimization problem for implementing the

2D DFT in the wave domain and devise a gradient descent algorithm to find a high-quality

near-optimal solution for the phase shifts.

A. Optimization Problem

Specifically, for the 2D DFT matrix F ∈ CN×N of N = NxNy grid points, its (n, n̆)-th entry

is defined as follows:

fn,n̆ = [F ]n,n̆ , e−j2π
(nx−1)(n̆x−1)

Nx e
−j2π

(ny−1)(n̆y−1)
Ny , (16)

where ny and nx are as defined in (12) and (13), while n̆y and n̆x are obtained upon replacing

n by n̆.

To evaluate the accuracy of the SIM’s response fitting the 2D DFT matrix, we employ the

Frobenius norm of the fitting error between each target entry and the EM response of the SIM.

Specifically, the loss function L is defined as

L = ‖βG− F ‖2F , (17)

where β ∈ C represents the scaling factor used for keeping the SIM’s response at the required

normalized value.

Remark 3: Note that in (17) we are not actually multiplying the received signal by an extra

coefficient β. Multiplying G by a scaling factor is only used for ensuring that the error is

normalized to the same level for a fair comparison.

February 14, 2024 DRAFT
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To minimize the loss function in (17), the optimization problem of matching the SIM’s

response to the 2D DFT matrix is formulated as

min
{ξl,m}

L = ‖βG− F ‖2F (18a)

s.t. G = W LΥLW L−1 · · ·W 2Υ2W 1Υ1W 0, (18b)

Υl = diag
(

[

ejξl,1, ejξl,2, · · · , ejξl,M
]T
)

, (18c)

ξl,m ∈ [0, 2π) , m = 1, · · · ,M, l = 1, · · · , L, (18d)

β ∈ C. (18e)

Note that due to the non-convex constant modulus constraint and the fact that the phase shifts

associated with different metasurface layers are highly coupled, the problem in (18) is non-trivial

to solve optimally. In the subsequent subsection, we customize a gradient descent method for

efficiently finding a near-optimal solution to (18).

B. Proposed Gradient Descent Algorithm

The popular gradient descent algorithm iteratively adjusts the phase shifts of the SIM for

gradually minimizing the loss function in (18a). Specifically, gradient descent involves two main

procedures: i) calculating the derivative; and ii) updating the parameters.

1) Derivative Calculation: For a tentative SIM model, the gradient of the loss function L
w.r.t. the phase shift vector ξl of the l-th layer in a SIM is calculated by

∇ξl
L = 2

N
∑

n=1

ℑ
{

β∗
Υ
H
l P

H
l,n (βgn − fn)

}

, (19)

for l = 1, · · · , L, where gn ∈ CN×1, n = 1, · · · , N and fn ∈ CN×1, n = 1, · · · , N represent the

n-th column of G and F , respectively. Furthermore, P l,n ∈ C
N×M , n = 1, · · · , N, l = 1, · · · , L

denotes the equivalent coefficient matrix associated with the l-th metasurface layer activating the

n-th meta-atom on the input layer, satisfying P l,nυl = gn. Specifically, P l,n is defined as

P l,n = W LΥLW L−1 · · ·W l+1Υl+1W ldiag
(

ql,n
)

, (20)
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with ql,n ∈ C
M×1 representing the complex signal component illuminating the l-th layer of the

SIM from the n-th meta-atom in the zeroth layer, defined as

ql,n = W l−1Υl−1W l−2 · · ·W 2Υ2W 1Υ1w0,n, (21)

for n = 1, · · · , N, l = 1, · · · , L, where w0,n ∈ CM×1 represents the n-th column of W 0. Please

refer to Appendix A for the detailed procedures showing the derivation of (19).

Remark 4: Note that the derivative of the cost function w.r.t. each layer in (19) depends on an

intermediate variable that is a product of the phase shift matrix and the attenuation coefficient

matrix, starting from the final layer and moving backward to the current layer. By storing and

recursively updating this intermediate variable, we can prevent redundant calculations of the

multiplications and efficiently determine the derivatives for all layers.

2) Parameter Update: Once all the gradients w.r.t. the SIM’s phase shift vectors have been

calculated, we simultaneously update the phase shift values ξl in the specific direction that

decreases the loss function value. At each iteration, the update formula is as follows:

ξl ← ξl − η∇ξl
L, (22)

where η > 0 represents the learning rate. To ensure a stable convergence, the learning rate η

also decreases over time. Specifically, we have

η ← ηζ, (23)

with ζ representing the decay parameter.

Additionally, the auxiliary scaling factor β also has to be updated during each iteration to

maintain the required normalized level. Specifically, given a tentative SIM response matrix G,

the optimal value of β can be readily obtained by utilizing the least squares method, yielding

β =
(

gHg
)−1

gHf , (24)

where we have g = vec (G) and f = vec (F ).

The phase shift values are updated repeatedly until either the loss function L converges or the
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Algorithm 1 The Gradient Descent Algorithm Proposed for Optimizing the SIM’s Phase Shifts.

1: Input: F , W l, l = 0, 1, · · · , L.

2: Randomly initialize all phase shift values ξl, l = 1, · · · , L by sampling from a uniform

distribution.

3: Calculate the current loss function L.

4: Repeat

5: Calculate the derivatives for each layer using (19).

6: Update the phase shift vectors ξl, l = 1, · · · , L using (22);

7: Adjust the learning rate η using (23);

8: Adjust the scaling factor β using (24);

9: Until the fractional reduction in L falls below a preset threshold or the maximum number

of iterations is reached.

10: Output: {ξ1, ξ2, · · · , ξL}.

number of iterations achieves the maximum tolerable value. To summarize briefly, the general

procedure of the proposed gradient descent algorithm is outlined in Table 1.

C. The Choice for M

In this subsection, we briefly discuss the SIM parameter selection for achieving the desired

2D DFT functionality.

Theorem 1: A necessary condition for achieving L = 0 is that M ≥ N .

Proof: If M < N , the rank of G will be limited to rank (G) ≤ rank (W 0) ≤ min (N,M) =

M < N . As a result, the SIM’s response matrix G having arbitrary phase shift values can

no longer accurately fit the 2D DFT matrix F , whose rank is rank (F ) = N . This proves the

theorem. �

Remark 5: By employing a SIM to implement the 2D DFT in the wave domain, the system

can directly generate the angular spectrum at the receiver array and provide an on-grid estimate

of the DOA parameters for the incident signal. However, this may result in a coarse estimate

with limited precision for a small value of N . To achieve high DOA estimation accuracy, this

requires employing a large number of probes at the receiver, which is not practical due to

both the physical space and cost limitations. Additionally, accurately implementing the 2D DFT

associated with arbitrary grid points requires a huge number M of meta-atoms on each layer.

While the unit price is reasonable, the entire SIM would be costly. Fortunately, the zeroth layer
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Fig. 3. The proposed SIM-based DOA estimation protocol.

provides an extra design degree of freedom (DoF), which can be exploited for generating a set of

2D DFT matrices associated with different frequency bins. This has the potential of substantially

improving the DOA estimation accuracy of a moderate-size SIM, as it will be discussed further

in Section IV.

IV. SIM-BASED DOA ESTIMATION

In this section, we first introduce the proposed SIM-based DOA estimation protocol by

appropriately configuring the phase shift values of the zeroth layer, i.e., Υ0. We then present

the specific DOA estimation procedure based on this configuration.

A. Estimation Protocol

As shown in Fig. 3, the proposed protocol divides the total observation time T into Ty blocks,

each of length Tx, so that T = TxTy. The phase shift vectors for the first to the L-th layers are

determined by employing the optimization process described in Section III-B and remain the

same during T snapshots. By contrast, the phase shift vector for the zeroth layer of the SIM

is reconfigured at each time slot in order to generate a set of DFT matrices having orthogonal

spatial frequency bins. Specifically, at the t-th snapshot, the phase shift of the n-th meta-atom

on the zeroth layer is configured as

ξ0,n,t = −2π
(nx − 1) (tx − 1)

NxTx

− 2π
(ny − 1) (ty − 1)

NyTy

, (25)
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where ny and nx are defined by (12) and (13), ty and tx represent the block index and the time

slot index within that block, respectively, which are defined by

ty , ⌈t/Tx⌉ , (26)

tx , t− (ty − 1)Tx. (27)

Note that upon right-multiplying G (i.e., the well-fitted version of F ) by Υ0,t, the SIM im-

plicitly characterizes a set of 2D DFT matrices whose frequency bins are all mutually orthogonal

to each other.

B. SIM-Based DOA Estimator

Under the noiseless received signal model, the EM waves propagating through the optimized

SIM are automatically focused on the specific antenna index and snapshot index corresponding

to the on-grid DOA estimate and spatial frequency offset component of the incoming signal,

respectively. As a result, the DOA parameters of the incoming signal can be readily estimated

by measuring the energy distribution across the receiver antenna array, which is in contrast to

conventional DOA estimation algorithms relying on phase-sensitive receivers and array signal

processing.

Specifically, let rn,t represent the signal received at the n-th probe in the t-th snapshot. After

collecting the received signals over T snapshots, we then search for the index of the strongest

signal magnitude. The 2D index of the peak is obtained as follows:

[

n̂, t̂
]

= arg max
n=1,··· ,N,

t=1,··· ,T

|rn,t|2 . (28)

Therefore, the corresponding electrical angles of the incident signal are obtained by

ψ̂x = mod

[

2

(

n̂x − 1

Nx

+
t̂x − 1

NxTx

)

+ 1, 2

]

− 1, (29)

ψ̂y = mod

[

2

(

n̂y − 1

Ny

+
t̂y − 1

NyTy

)

+ 1, 2

]

− 1, (30)

respectively, where n̂y and n̂x are obtained by substituting n̂ into (12) and (13), respectively,

while t̂y and t̂x are obtained by substituting t̂ into (26) and (27), respectively.
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Based on (29) and (30), the estimated azimuth and elevation angles ϕ̂ and ϑ̂ are given by

ϕ̂ = arctan

(

ψydx

ψxdy

)

, (31)

ϑ̂ = arcsin

(

1

κ

√

ψ2
x

d2x
+
ψ2

y

d2y

)

. (32)

Remark 6: The parameter T strikes a flexible tradeoff between the estimation accuracy and

the number of snapshots needed. Increasing the number of snapshots can enhance the estimation

accuracy, but this requires increasing the switching speed of the FPGA controlling the zeroth

layer in order to collect more observations within a given period.

Remark 7: In conventional radar systems, the antenna arrays first receive signals and down-

convert them to baseband signals before estimating the DOAs. Again, the SIM operates in a

fundamentally different way by directly processing the received RF signals, without the need

for an individual RF chain and ADC at each antenna element. This substantially mitigates both

the hardware cost and energy consumption, which has great potential for onboard applications

such as employing a SIM on a drone to probe the DOA of ground targets.

V. PERFORMANCE ANALYSIS

Due to the measurement noise at the receiver array, the peak index may be incorrectly

identified, leading to estimation error. In this section, we analyze the performance of the proposed

SIM-based DOA estimator by theoretically deriving the upper bound for its MSE2. Specifically,

let ψ̄x and ψ̄y represent the true electrical angles of the incident signal. Hence, the MSE of the

SIM-based DOA estimator is calculated by

MSEψx
=

N
∑

n=1

T
∑

t=1

(

ψ̄x − ψ̂x,n,t

)2

Pr (n, t) , (33)

MSEψy
=

N
∑

n=1

T
∑

t=1

(

ψ̄y − ψ̂y,n,t

)2

Pr (n, t) , (34)

2For notational brevity, we evaluate the MSE of the electrical angles instead of the azimuth and elevation values. The MSE

of the azimuth and elevation angles can be readily obtained by substituting those estimated values according to (31) and (32)

into (36) and (37).
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where ψ̂x,n,t and ψ̂y,n,t represent the estimated values of ψx and ψy, respectively, for the case

when rn,t has the highest energy, and Pr (n, t) represents the probability of detecting rn,t having

the highest magnitude, which is defined as

Pr (n, t) = Pr

{

|rn,t|2 = max
ñ=1,··· ,N,

t̃=1,··· ,T

∣

∣rñ,t̃
∣

∣

2

}

. (35)

Furthermore, the upper bounds for MSEψx
and MSEψy

are summarized in Theorem 2.

Theorem 2: The analytical expressions for (33) and (34) are upper-bounded by:

MSEψx
≤

N
∑

n=1

T
∑

t=1

(

ψ̄x − ψ̂x,n,t

)2

×Q





9hn,t 3

√

bn,t

hn,t
− 9hn,t + 2

2



 , (36)

MSEψy
≤

N
∑

n=1

T
∑

t=1

(

ψ̄y − ψ̂y,n,t

)2

×Q





9hn,t 3

√

bn,t

hn,t
− 9hn,t + 2

2



 , (37)

where we have

hn,t =µ
3
2,n,t/µ

2
3,n,t, (38)

bn,t =hn,t − µ1,n,t

√

hn,t
µ2,n,t

, (39)

µi,n,t = (−1)i
(

2 + i
∣

∣

∣

√

2̺g̃Hn̆ Υ0,t̆a
(

ψ̄x, ψ̄y

)

s
∣

∣

∣

2
)

+ 2 + i
∣

∣

∣

√

2̺g̃Hn Υ0,ta
(

ψ̄x, ψ̄y

)

s
∣

∣

∣

2

, (40)

for i = 1, 2, 3, g̃Hn ∈ C1×N and g̃Hn̆ ∈ C1×N represent the n-th and n̆-th rows of G, respectively.

Moreover, n̆ and t̆ represent the antenna and snapshot indices associated with the highest energy

under the noiseless condition, defined by

[

n̆, t̆
]

= arg max
n=1,··· ,N,

t=1,··· ,T

∣

∣g̃Hn Υ0,ta
(

ψ̄x, ψ̄y

)

s
∣

∣

2
. (41)
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TABLE I

THE NORMALIZED LOSS FUNCTION VALUE (IN DB) OF UTILIZING A SIM TO FIT 2D DFT MATRIX WITH (2, 2) GRID POINTS.

The first-round experiment with coarse granularity

M TSIM
sx = sy = 2λ/3 sx = sy = 2λ/6 sx = sy = 2λ/9

L = 3 L = 6 L = 9 L = 3 L = 6 L = 9 L = 3 L = 6 L = 9

9
3λ −9.04 −9.22 −5.10 −2.34 −3.10 −3.82 −1.40 −2.67 −1.28
6λ −3.72 −15.39 −10.59 −1.33 −1.39 −1.75 −1.10 −1.25 −1.25
9λ −2.03 −5.34 −12.16 −1.22 −1.27 −1.25 −0.91 −1.25 −1.25

36
3λ −21.40 −17.70 −6.44 −19.89 −27.84 −14.24 −4.98 −4.64 −3.00
6λ −16.43 −51.35 −77.43 −3.98 −7.35 −3.94 −2.12 −2.42 −1.29
9λ −12.16 −21.44 −45.99 −2.11 −2.44 −3.88 −1.40 −1.36 −1.25

81
3λ −32.90 −19.59 −5.42 −20.93 −15.51 −32.51 −11.39 −8.93 −4.22
6λ −34.65 −186.34 −174.09 −11.17 −21.12 −11.03 −4.02 −6.64 −5.23
9λ −20.34 −183.78 −149.94 −4.40 −7.17 −11.21 −1.80 −3.32 −2.81

The second-round experiment with moderate granularity

M TSIM
sx = sy = 2λ sx = sy = 2λ/3 sx = sy = 2λ/5

L = 4 L = 6 L = 8 L = 4 L = 6 L = 8 L = 4 L = 6 L = 8

49
4λ −1.58 −0.56 −0.38 −38.69 −27.79 −19.27 −22.74 −67.44 −19.13
6λ −8.24 −2.11 −0.83 −21.11 −64.99 −41.89 −13.64 −13.34 −41.31
8λ −23.36 −13.06 −2.18 −21.03 −39.62 −50.57 −6.39 −10.69 −15.80

81
4λ −1.66 −0.52 −0.38 −39.88 −27.21 −28.59 −39.46 −49.97 −143.56
6λ −9.47 −2.48 −0.96 −40.76 −186.34 −55.88 −23.20 −176.10 −20.38
8λ −21.78 −5.61 −3.37 −31.07 −71.25 −182.64 −11.90 −33.63 −9.54

121
4λ −1.28 −0.54 −0.36 −32.92 −74.72 −16.65 −183.27 −115.42 −182.88
6λ −10.29 −2.46 −1.40 −62.48 −179.98 −179.26 −45.93 −96.94 −199.67
8λ −24.44 −8.73 −3.35 −61.87 −199.91 −192.93 −28.65 −194.52 −35.18

The third-round experiment with fine granularity

M TSIM
sx = sy = 2λ/2 sx = sy = 2λ/3 sx = sy = 2λ/4

L = 5 L = 6 L = 7 L = 5 L = 6 L = 7 L = 5 L = 6 L = 7

100
7λ −34.33 −31.57 −40.62 −52.49 −183.68 −185.46 −78.29 −174.16 −65.66
8λ −181.78 −141.26 −65.18 −47.77 −190.77 −100.66 −194.17 −114.11 −182.10
9λ −75.05 −186.58 −28.49 −52.09 −59.48 −188.36 −40.13 −68.04 −192.96

121
7λ −43.44 −36.41 −17.11 −66.08 −188.02 −181.77 −194.05 −188.23 −187.96
8λ −72.48 −82.82 −180.05 −78.40 −199.91 −194.52 −93.94 −192.73 −177.78
9λ −165.68 −103.64 −185.65 −39.28 −78.45 −183.62 −117.50 −183.12 −208.78

144
7λ −35.95 −163.67 −34.67 −195.45 −191.91 −192.13 −186.43 −188.46 −179.55
8λ −84.74 −181.21 −91.63 −72.60 −183.46 −201.35 −52.73 −183.36 −178.34
9λ −183.27 −105.71 −186.88 −111.27 −174.52 −199.73 −44.56 −180.33 −178.95

Proof: Please refer to Appendix B. �

VI. SIMULATION RESULTS

In this section, we report on our numerical simulations to evaluate the performance of the

SIM-based DOA estimator. The system layout of estimating the DOA is shown in Fig. 1. The

system operates at 60 GHz. Unless otherwise specified, we consider a square UPA having Nx×Ny

elements. The array spacing is set to dx = dy = λ/2.

A. Ablation Study

First, we conduct extensive simulations to examine the optimal SIM designed for implementing

2D DFT having grid points of (2, 2) and (4, 4), respectively. Specifically, a SIM has four

key parameters: i) The thickness TSIM of the SIM; ii) The number L of metasurface layers;
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iii) The number M of meta-atoms per layer; and iv) The spacing between elements in the

x and y directions, namely sx and sy. For brevity, we characterize a SIM using a four-tuple

(TSIM, L,M, sx), assuming sx = sy. Since testing over all four parameters across many possible

values would be extremely time-consuming, we design a three-round ablation study having

successively improved granularity. Taking the number of layers L as an example, in the first

round we consider L = 3, 6, 9 along with a step size of 3. After identifying the best SIM

configuration, we narrow the search range around the optimal value and reduce the step size to

2. Similarly, the step size is further reduced to 1 in the third round. The other parameters are

listed in the following tables. For brevity, we assume ux = uy = λ/2.

Table I shows the results of a SIM fitting the 2D DFT matrix having (2, 2) grids. All results

are obtained by averaging 100 independent experiments. The optimal solution found in the first

round of experiments is used as the center point for the second-round experiment associated with

moderate granularity. The same process is repeated for the third-round experiment. After the three

rounds, it is observed that the optimal SIM designed for fitting the 2D DFT matrix having (2, 2)

grids is (9λ, 7, 121, 2λ/4), achieving a normalized MSE of −208.78 dB. Furthermore, we also

mark those SIM setups that achieve satisfactory results (defined as L ≤ −170 dB) in bold blue

font. As the experiments progress, more SIM setups are examined to achieve NMSE values

lower than the target. This verifies that the optimal SIM setup is not exclusively determined and

a practical system needs to adaptively design the SIM.

Moreover, Table II shows the results for the 2D DFT having (4, 4) grid points. Those SIM

setups that achieve an NMSE less than −15 dB are marked in bold blue font. After three rounds

of experiments, the optimal SIM design for the 2D DFT having (4, 4) grid points is found to be

around (12λ, 13, 225, 4λ/9). It is important to note that due to the challenge of fitting a larger

2D DFT matrix, the fitting NMSE in Table II is higher than that in Table I. Nevertheless, later

we will demonstrate that this has a negligible effect on the DOA estimation performance.

Based on the results in Tables I and II, there exist fundamental tradeoffs between the four

parameters of the SIM. More specifically, we summarize our pivotal findings as follows:

• For a fixed number of layers L, the inter-layer propagation matrix W l may become singular,

as the thickness of the SIM TSIM increases without limit, while a very thin SIM causes W l
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to become nearly diagonal, both lacking the diversity for accurately fitting the 2D DFT

matrix.

• For a fixed thickness TSIM, increasing the number of layers L results in a denser metasurface

arrangement, rendering W l nearly diagonal. Too few metasurface layers may lack the

adequate DoF to leverage all wave propagation components in the SIM.

• An excessive number of meta-atoms would result in unnecessary links within the SIM and

even introduce adverse wave propagation components to fit the 2D DFT matrix. However,

too few meta-atoms may violate Theorem 1 and restrict the SIM to fit F accurately.

• For an excessive element spacing sx, the inter-layer propagation matrix W l tends towards

diagonal, while a low element spacing may result in identical values across all entries,

resulting in a rank-one matrix unable to fit the 2D DFT matrix of rank N .

Therefore, we should carefully design the SIM for practical applications. The rigorous evaluation

of the fitting capability of SIM may involve complex matrix decomposition theory, warranting

future efforts.

B. Convergence Behavior of the Proposed Gradient Descent Algorithm

Fig. 4 evaluates the convergence behavior of the proposed gradient descent algorithm for

optimizing a SIM to fit a 2D DFT matrix of (2, 2) grid points. According to Table I, the

optimal SIM is fabricated by inserting L = 7 layers into a cube having a thickness of TSIM =

9λ. Each square metasurface contains M = 121 meta-atoms associated with sx = sy = λ/2

element spacing. First, Fig. 4a plots the normalized loss function value L versus the number of

iterations for three cases with different decay parameter values, namely ζ = 0.75, 0.80, 0.90.

It demonstrates that as the iterations proceed, the proposed gradient descent method gradually

converges for a moderate decay parameter value, such as 0.80. For a value of ζ close to 1, the

algorithm may overshoot frequently and need a higher number of iterations to converge. While

the gradient descent method may reduce the loss function rapidly, namely within less than 50

iterations for ζ = 0.75, it may get stuck at a locally optimal point. To further demonstrate the

effect of decay parameters, Fig. 4b examines the resultant loss function value of L after 100

iterations versus the decay parameter ζ . Specifically, 50 independent experiments are conducted,
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TABLE II

THE NORMALIZED LOSS FUNCTION VALUE (IN DB) OF UTILIZING SIM TO FIT 2D DFT MATRIX WITH (4, 4) GRID POINTS.

The first-round experiment with coarse granularity

M TSIM
sx = sy = 4λ/6 sx = sy = 4λ/9 sx = sy = 4λ/12

L = 6 L = 9 L = 12 L = 6 L = 9 L = 12 L = 6 L = 9 L = 12

36
6λ −3.90 −4.07 −3.81 −3.13 −4.36 −4.76 −1.58 −1.75 −1.32
9λ −4.27 −5.95 −6.22 −2.04 −3.00 −3.42 −1.24 −1.45 −1.11

12λ −3.43 −6.14 −6.71 −1.91 −2.19 −2.13 −0.88 −1.04 −0.59

81
6λ −7.65 −7.97 −4.55 −8.26 −11.80 −11.24 −5.00 −5.62 −5.15
9λ −9.21 −10.82 −10.06 −6.64 −10.02 −10.83 −3.71 −3.94 −2.74

12λ −8.71 −11.69 −11.13 −5.12 −8.15 −9.44 −2.46 −2.83 −2.72

144
6λ −11.03 −10.41 −5.83 −13.60 −15.94 −15.41 −10.73 −11.31 −6.99
9λ −12.38 −15.41 −13.55 −12.65 −17.24 −18.01 −8.32 −9.08 −9.12

12λ −12.20 −15.09 −15.87 −9.66 −14.86 −15.91 −6.12 −7.93 −8.38

The second-round experiment with moderate granularity

M TSIM
sx = sy = 4λ/7 sx = sy = 4λ/9 sx = sy = 4λ/11

L = 10 L = 12 L = 14 L = 10 L = 12 L = 14 L = 10 L = 12 L = 14

100
7λ −15.16 −14.05 −14.25 −12.63 −13.66 −13.82 −9.42 −8.45 −8.49
9λ −14.44 −15.22 −14.62 −12.40 −12.02 −14.92 −7.83 −6.44 −3.23

11λ −14.35 −15.21 −15.28 −11.96 −11.69 −12.18 −6.71 −4.90 −4.00

144
7λ −15.31 −16.06 −15.45 −17.70 −19.31 −17.58 −13.06 −12.42 −8.87
9λ −14.38 −17.73 −17.49 −17.88 −18.01 −17.93 −14.08 −12.55 −10.60

11λ −15.51 −17.38 −18.73 −16.42 −17.26 −19.75 −11.81 −10.89 −6.55

196
7λ −15.73 −15.81 −16.27 −20.95 −17.34 −19.12 −16.46 −17.67 −16.87
9λ −16.43 −17.37 −20.88 −19.07 −21.38 −19.48 −15.01 −17.81 −14.50

11λ −18.23 −19.42 −19.43 −19.94 −22.20 −21.04 −16.34 −17.60 −16.35

The third-round experiment with fine granularity

M TSIM
sx = sy = 4λ/8 sx = sy = 4λ/9 sx = sy = 4λ/10

L = 11 L = 12 L = 13 L = 11 L = 12 L = 13 L = 11 L = 12 L = 13

169
10λ −19.48 −17.72 −17.97 −16.58 −19.43 −22.67 −15.92 −16.34 −17.18
11λ −17.69 −19.86 −20.27 −16.04 −19.74 −17.21 −17.31 −18.26 −14.77
12λ −18.47 −17.58 −21.00 −18.26 −19.80 −18.34 −13.74 −15.71 −14.44

196
10λ −18.17 −21.06 −22.02 −20.05 −24.15 −20.46 −20.03 −18.22 −19.07
11λ −18.87 −19.10 −18.82 −17.20 −22.20 −20.37 −17.49 −19.92 −16.18
12λ −20.52 −18.69 −20.56 −21.07 −20.95 −19.14 −19.42 −18.69 −17.27

225
10λ −19.65 −20.32 −20.24 −21.69 −20.79 −22.17 −17.59 −20.13 −18.84
11λ −20.23 −19.69 −22.92 −22.16 −19.80 −22.52 −19.28 −19.62 −20.61
12λ −19.94 −21.87 −20.15 −20.58 −18.60 −24.17 −21.41 −20.27 −19.90

and both the average value and potential range (shown as the red zone) are plotted. It can be

seen that as ζ increases, the SIM’s fitting performance first improves and then degrades, which is

consistent with our analysis. A decay parameter of about ζ = 0.80 achieves the best performance

under the worst-case condition.

Furthermore, Fig. 5 verifies the convergence behavior of the gradient descent algorithm for

leveraging a SIM to fit a 2D DFT matrix of (4, 4) grids. The SIM hardware parameters are set to

(12λ, 13, 225, 4λ/9) based on the results in Table II. Three different decay parameter values of

ζ = 0.90, 0.95, 0.99 are considered. As shown in Fig. 5a, a moderate decay parameter value, such

as ζ = 0.95, is capable of accurately fitting the 2D DFT matrix at an NMSE of less than 10−3

after about 200 iterations. Larger or smaller decay parameters would deteriorate the performance

of the gradient descent method, and this trend is similar to Fig. 4a. Again, due to the challenge of

utilizing a SIM to fit the 2D DFT matrix with more grid points, the resultant fitting performance
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is poorer than that for the (2, 2)-grid scenario, even though a larger SIM is used. Moreover, Fig.

5b evaluates the effects of ζ in this scenario by running 50 independent experiments. The optimal

ζ that minimizes the normalized loss function value within 100 iterations is about ζ = 0.95. This

validates the necessity to judiciously adjust the learning rate during iterations. In summary, in

early iterations, a lower ζ would be preferred to allow for larger phase shift changes, and then

it should be appropriately increased for maintaining a smooth learning rate update to fine-tune

the SIM’s response.

C. 2D DFT Capability of SIM

To demonstrate the 2D DFT’s capability in the SIM, we next examine the angular spectrum

of the incoming signal by first considering the case of Nx = Ny = 2 and Tx = Ty = 64.

Specifically, following the protocol outlined in Section IV-A, we collect the received signal

passing through a well-trained SIM in each snapshot. The SIM has been pre-optimized using

the gradient descent method along with ζ = 0.8 over 200 iterations. We then use the outputs

from T = 4096 snapshots3 to generate the angular spectrum of the incoming signal, as shown

in Fig. 6a. The spectrum peak is normalized. Moreover, the electrical angles corresponding

to the x and y directions are set to ψ̄x = 0.48 and ψ̄y = 0.23, respectively, as marked by a

red cross in the figure. Note that the spectrum generated by the SIM succeeds in focusing the

beam toward the true DOA position. This allows estimating the DOA parameters by simply

searching for the antenna and snapshot having the strongest received magnitude. Furthermore,

Fig. 6b plots the spectrum using 2D DFT in the digital domain under the same protocol. Upon

comparing Figs. 6a and 6b, we note that the SIM outputs almost the same signal spectrum as the

2D digital DFT. Nevertheless, the wave-based computing paradigm is totally different from the

conventional digital approach. As the computations are carried out naturally as signals propagate

through the SIM, the computing delay is significantly reduced and the hardware design can also

be accordingly simplified.

3For the sake of illustration, here we use a large value of T , but later we will evaluate the DOA estimation performance of

the SIM for a moderate number of snapshots.

February 14, 2024 DRAFT



DRAFT 25

0 50 100 150 200

Number of iterations

10-20

100

 = 0.75

 = 0.80

 = 0.90

(a) The normalized loss function value L versus the
number of iterations;

(b) The normalized loss function value L versus the
decay parameter ζ .

Fig. 4. The convergence behavior of the proposed gradient descent algorithm for optimizing a SIM to fit a 2D DFT matrix

with (2, 2) grid points.
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100
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 = 0.95
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(a) The normalized loss function value L versus the
number of iterations;

(b) The normalized loss function value L versus the
decay parameter ζ .

Fig. 5. The convergence behavior of the proposed gradient descent algorithm for optimizing a SIM to fit a 2D DFT matrix

with (4, 4) grid points.

Moreover, Figs. 7a and 7b show the angular spectra using the SIM and the 2D digital DFT,

respectively, considering a (4× 4) receiver array and Tx = Ty = 32. The angular spectrum of

the incoming signal is generated by collecting the received signals passing through the SIM over

T = 1024 snapshots. The SIM adopts the optimal hardware parameters listed in Table II and it is

optimized through 200 iterations with a decay parameter of ζ = 0.95. The electrical angles in the

x and y directions are set to ψ̄x = −0.58 and ψ̄y = −0.28, respectively. Thanks to the increased

array aperture, the angular spectra in Fig. 7 have reduced leakage compared to those in Fig. 6.

As such, one can obtain a more accurate DOA estimate under noiseless conditions. Again, we

note that the SIM is capable of generating the same angular spectrum as the 2D digital DFT for

the (4× 4) array and perfectly concentrating the received signal onto the antenna and snapshot

corresponding to the true DOA value.

February 14, 2024 DRAFT



DRAFT 26

D. Validation of Theoretical Analysis

Next, we verify the accuracy of our analytical results by examining the MSE of using a SIM for

DOA estimation. For brevity, we estimate the electrical angles, which can be mapped to the true

elevation and azimuth angles using a bijection. Firstly, Fig. 8a plots the MSE versus the effective

SNR, which is defined as ̺β2. We also consider different numbers of snapshots: Tx = Ty = 2

and Tx = Ty = 4. For each setup, we perform 1, 000 independent experiments, where the DOA

parameters of the single radiation source are uniformly distributed in the upper half-space of the

SIM, as shown in Fig. 1. The SIM hardware parameters are appropriately selected as in Table

I, while the phase shifts are optimized leveraging the gradient descent with ζ = 0.8. Moreover,

the theoretical MSE values are obtained by averaging 1, 000 corresponding values calculated

from Theorem 2. As expected, the estimation accuracy improves for all scenarios, as the SNR

increases. However, due to the discrete nature of the SIM, which can only return the on-grid

estimate of DOA parameters, the proposed SIM-based estimator eventually reaches an error floor

determined by the resolution in terms of angular bins. Nevertheless, the estimation performance

can be further improved by collecting more snapshots. For example, increasing the number of

snapshots from T = 4 to T = 16 provides about a 20 dB gain in terms of the SNR. Additionally,

the performance bound analytically derived from Theorem 2 serves as an upper bound in both

cases. As the SNR increases, the gap between the simulation and analytical results gradually

narrows, since the scaling in (47) becomes tight.

Fig. 8b evaluates the MSE of the SIM-based estimator versus the effective SNR, considering

a (4× 4) receiver array. The SIM’s hardware parameters and phase shifts remain the same as

in Fig. 7. Additionally, two different numbers of snapshots are considered: Tx = Ty = 4 and

Tx = Ty = 8. As seen in Fig. 8b, both the theoretical and simulation results indicate that the

MSE improves as the SNR and the number of snapshots increase. Specifically, when increasing

the number of snapshots from T = 16 to T = 64 at an effective SNR of 10 dB, the MSE

is reduced from 1.5 × 10−3 to 0.75 × 10−3, resulting in a 3 dB MSE improvement. Further

increasing the effective SNR to 30 dB provides an extra 3 dB of performance gain. At high

SNRs, the theoretical upper bound (i.e., green curves in Fig. 8) becomes asymptotically tight.
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(b) 2D DFT in the digital domain.

Fig. 6. Angular spectrum of the incoming signal using a (2× 2) receiver array, where we have ψ̄x = 0.48 and ψ̄y = 0.23. The

red cross represents the true DOA position on the spectrum.

-1 -0.5 0 0.5

x

-1

-0.5

0

0.5

y

0.2

0.4

0.6

0.8

1

(a) 2D DFT in the wave domain;

-1 -0.5 0 0.5

x

-1

-0.5

0

0.5

y

0.2

0.4

0.6

0.8

(b) 2D DFT in the digital domain.

Fig. 7. Angular spectrum of the incoming signal using a (4× 4) receiver array, where we have ψ̄x = −0.58 and ψ̄y = −0.28.

The red cross represents the true DOA position on the spectrum.

Moreover, compared to Fig. 8a employing a (2× 2) receiver array with Tx = Ty = 4, doubling

the array aperture reduces the MSE from 0.6× 10−2 to 1.3× 10−3, providing about a 6 dB gain

in MSE.

E. Performance Comparison with Conventional Beamforming Methods

Furthermore, we compare the performance of the proposed SIM-based DOA estimator to the

conventional beamforming-based method, which matches the steering vector to an estimated

array response. The simulation results shown in Fig. 9 consider the cases of Nx = Ny = 2 and

Nx = Ny = 4, respectively, while keeping all other parameters the same as in Fig. 8. Moreover,

the corresponding numbers of snapshots are set to T = 16 and T = 64, respectively. Fig. 9 shows

that the proposed SIM-based estimator performs similarly well to the digital beamforming-based

method under all setups. However, the digital method requires phase-sensitive receivers and
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Fig. 8. The MSE of the SIM-based DOA estimator versus the effective SNR.
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Fig. 9. Performance comparison of the SIM-based DOA estimator and the conventional approach via a 2D digital DFT.

digital signal processing, while the SIM-based estimator, relies on energy detection and wave-

based signal processing. Additionally, Fig. 9a also plots the MSE of an (8× 8) receiver array

in a single snapshot, which provides a lower bound for the SIM-based scheme. Observe that the

gap gradually narrows as the effective SNR increases. Similarly, the receiver array of (32× 32)

in a single snapshot characterizes the lower bound of the SIM-based estimator using a (4× 4)

receiver array and T = 64 snapshots, as shown in Fig. 9b. Although the digital method with a

(32× 32) array is capable of accurately estimating the DOA across all SNR regions, it requires

a large array aperture, whereas the SIM-based system estimates the DOA with a smaller array

and a moderate number of snapshots.
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F. Effects of Receiver Array Arrangement

Finally, we evaluate the effects of the receiver array arrangement on the SIM’s capability

of performing 2D DFT. As shown in Fig. 10, we consider two main parameters: i) the antenna

spacing ux = uy; and ii) the rotation angle ω. Fig. 11a shows the fitting NMSE versus the antenna

spacing ux, assuming Nx = Ny = 2 and ω = 0◦. In each case, the SIM phase shifts are optimized

by performing 100 iterations with a decay parameter of ζ = 0.8. The SIM’s hardware parameters

are the same as in Fig. 6, while we also consider different numbers of layers: L = 1, 3, 7. The

results are obtained by averaging 50 independent experiments, with the ranges also plotted.

Fig. 11a demonstrates that a SIM having fewer layers cannot fit the 2D DFT matrix well. A

SIM of seven metasurface layers is capable of accurately performing 2D DFT when ux ≥ λ/2.

Furthermore, Fig. 11b evaluates the effects of the rotation angle of the receiver array, considering

ux = λ/2 and different numbers of meta-atoms on each layer: M = 9, 49, 121. Fig. 11b shows

that a SIM having a small number of meta-atoms lacks sufficient inference capability. For a

SIM having M = 121 meta-atoms per layer, the fitting performance becomes insensitive to the

rotation angle of the receiver array. Nonetheless, for a rotation angle near ω = 45◦, the SIM

using the proposed gradient descent may have poorer robustness. In summary, this verifies the

effectiveness of our previous setups adopting ux = uy = λ/2 and ω = 0◦.

Fig. 12a evaluates the effects of the antenna spacing ux in the receiver array on the SIM’s

capability of performing 2D DFT with (4, 4) grid points. The SIM has the same hardware

parameters as in Fig. 7, while the SIM phase shifts are optimized through 100 iterations with a

decay parameter of ζ = 0.95. We consider different numbers of layers: L = 1, 5, 13. Similarly, a

SIM with fewer layers cannot fit the 2D DFT matrix well, while a SIM with L = 13 metasurface

layers is capable of accurately performing 2D DFT when ux ≥ λ/2. Moreover, Fig. 12b evaluates

the effects of the rotation angle ω of the receiver array, considering ux = λ/2 and different

numbers of meta-atoms on each layer: M = 9, 81, 225. A small number of meta-atoms results

in poor inference capability. For a SIM having an adequate number of meta-atoms (such as

M = 225) per layer, the fitting performance becomes less sensitive to ω. Again, this verifies

that the optimal receiver array should have an isomorphic arrangement with the input layer of
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Fig. 10. A SIM-aided array system.

(a) The normalized loss function L versus the antenna
spacing ux;

(b) The normalized loss function L versus the rotation
angle ω.

Fig. 11. The effects of the receiver array arrangement: a 2× 2 array.

(a) The normalized loss function L versus the antenna
spacing ux;

(b) The normalized loss function L versus the rotation
angle ω.

Fig. 12. The effects of the receiver array arrangement: a 4× 4 array.

the SIM.
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VII. CONCLUSIONS

A novel SIM architecture has been proposed for estimating the 2D DOA parameters of a

single radiation source. This new design allows for a significant improvement in computation

speed and hardware complexity. By customizing a gradient descent method to guide the SIM to

perform a 2D DFT, the spatial EM waves can be automatically transformed into their angular

domain as they propagate through the SIM. Furthermore, we have developed a protocol to

generate a set of angular spectra with orthogonal spatial frequency bins. As a result, the DOA

can be estimated by searching for the antenna and snapshot having the strongest magnitude.

Also, we theoretically evaluated and numerically verified the MSE of the proposed SIM-based

DOA estimator. Extensive simulation results were provided to examine the optimal SIM hardware

parameters and hyperparameters for the gradient descent method. In particular, we summarize

our main findings as follows:

• A SIM having 9λ thickness and 7 metasurface layers, with 121 λ/2-spaced meta-atoms per

layer, is capable of minimizing the loss function for fitting the 2D DFT matrix of (2, 2)

grid points. For the (4, 4)-grid scenario, the optimal SIM design has a thickness of 12λ and

13 layers, each with 225 meta-atoms spaced 4λ/9 apart.

• The optimal decay parameter for the gradient descent method when fitting the 2D DFT

matrix of (2, 2) and (4, 4) grid points are ζ = 0.8 and ζ = 0.95, respectively.

• A well-trained SIM is capable of generating the angular spectrum of incoming signals and

providing a DOA estimate with an MSE of 10−4 under moderate conditions.

• The spacing between adjacent antennas in the receiver array should be no less than λ/2,

while an isomorphic arrangement between the receiver array and input layer achieves the

most robust performance.

Since this is the first paper on SIM-aided DOA estimation, there remain several open issues that

deserve further exploration. Firstly, further investigations are required to leverage SIM technology

to realize more advanced DOA estimation algorithms, such as super-resolution and compressed

sensing methods in the wave domain. The general scenario of multiple sources should also

be considered. Secondly, by integrating amplifiers into each meta-atom and operating them in

February 14, 2024 DRAFT



DRAFT 32

the non-linear regime, SIMs may be capable of fully realizing DNNs, while using waves for

forward computation. This would enable SIMs to process more complex tasks such as near-field

positioning. Moreover, the transmission coefficient of each meta-atom may not be continuously

controlled in practice. It is crucial to design appropriate algorithms for optimizing the discrete

phase shifts and to evaluate the SIM’s performance under more realistic response models.

Before concluding, we note that the inverse system of the SIM presented in this paper can

be utilized for implementing angular division multiplexing. By employing a SIM as a multi-

user precoder at the base station, the signal for each user can be transmitted directly from

the corresponding antenna. This would substantially simplify the hardware design of wireless

communications. Motivated readers also might like to refer to [31], [34]. In a nutshell, the

advanced SIM technology offers a new computational paradigm by directly processing EM

waves, which would profoundly influence future system designs for both wireless communication

and radar sensing applications.

APPENDIX A

PROOF OF (19)

First, we note that the gradient of the loss function L w.r.t. the phase shift vector of the l-th

layer ξl can be expressed as

∇ξl
L =

N
∑

n=1

∇ξl
‖βgn − fn‖2 , l = 1, · · · , L. (42)

Furthermore, the m-th entry of the gradient in (42) is obtained by taking the partial derivative

of ‖βgn − fn‖2 w.r.t. ξl,m. Applying the chain rule of derivatives yields

∂ ‖βgn − fn‖2
∂ξl,m

= 2ℜ
{

β∗
∂gHn
∂ξl,m

(βgn − fn)

}

(i)
= 2ℜ

{

β∗
∂ (P l,nυl)

H

∂ξl,m
(βgn − fn)

}

= 2ℜ
{

β∗
1

j
υ∗l,me

H
mP

H
l,n (βgn − fn)

}

= 2ℑ
{

β∗υ∗l,me
H
mP

H
l,n (βgn − fn)

}

, (43)
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for m = 1, · · · ,M, l = 1, · · · , L, where (i) holds due to the fact that gn = P l,nυl, and P l,n is

defined in (20), eHm represents the m-th row of the identity matrix IM .

By gathering the M partial derivatives in (43) into a vector, the gradient in (42) can be obtained

by

∇ξl
‖βgn − fn‖2 = 2ℑ

{

β∗
Υ
H
l P

H
l,n (βgn − fn)

}

. (44)

Substituting (44) into (42) completes the proof. �

APPENDIX B

PROOF OF THEOREM 1

Before proceeding further, we first provide a pair of relevant lemmas.

Lemma 1: (The Three-Moment χ2 Approximation) Consider a non-singular linear transforma-

tion X in the general form of

X =
K
∑

k=1

λkχ
2
hk

(

δ2k
)

, (45)

where λk are the non-zero coefficients, and χ2
hk

(δ2k) , k = 1, · · · , K represent a set of independent

noncentral χ2 variables with hk DoF and noncentrality parameter δ2k. The three-moment χ2

approximation for the distribution of X is given by:

X ∼=
√

µ2

h

(

χ2
h − h

)

+ µ1, (46)

where we have h = µ3
2/µ

2
3 such that both sides in (46) have equal third moments [38], and

µi ,
∑K

k=1 λ
i
k (hk + iδ2k) , i = 1, 2, 3.

The three-moment approximation can be used when µ3 > 0 [38]. Otherwise, the approximation

can instead be applied to the distribution of −X .

Lemma 2: (The Wilson-Hilferty Transformation) For a chi-square variable X with DoF h

(i.e., X ∼ χ2
h), taking the cube root of X divided by h (i.e., 3

√

X/h) results in a value that is

approximately normally distributed with mean of 1− 2/ (9h) and variance of 2/ (9h) [39].
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Now we continue by deriving an upper bound of the MSE. Note that the MSEψx
in (33) and

the MSEψy
in (34) only depend on the probability of detecting the corresponding index as the

peak position, which is defined as

Pr (n, t) , Pr

{

|rn,t|2 = max
ñ=1,··· ,N,

t̃=1,··· ,T

∣

∣rñ,t̃
∣

∣

2

}

6 Pr
{

|rn,t|2 ≥
∣

∣rn̆,t̆
∣

∣

2
}

= Pr
{

|rn,t|2 −
∣

∣rn̆,t̆
∣

∣

2 ≥ 0
}

= Pr {Dn,t ≥ 0} , (47)

where we have Dn,t = |rn,t|2 −
∣

∣rn̆,t̆
∣

∣

2
, and |rn,t|2 and

∣

∣rn̆,t̆
∣

∣

2
are distributed according to the

noncentral chi-squared distribution, satisfying

2 |rn,t|2 ∼ χ2
2

(

∣

∣

∣

√

2̺g̃Hn Υ0,ta
(

ψ̄x, ψ̄y

)

s
∣

∣

∣

2
)

, (48)

2
∣

∣rn̆,t̆
∣

∣

2 ∼ χ2
2

(

∣

∣

∣

√

2̺g̃Hn̆ Υ0,t̆a
(

ψ̄x, ψ̄y

)

s
∣

∣

∣

2
)

. (49)

According to Lemma 1, the three-moment χ2 approximation of 2Dn,t is obtained by

2Dn,t
∼=
√

µ2,n,t

hn,t

(

χ2
hn,t
− hn,t

)

+ µ1,n,t, (50)

where hn,t and µi,n,t, i = 1, 2, 3 are defined as in (38) and (40), respectively.

Hence, the probability Pr {Dn,t ≥ 0} amounts to taking

Pr {Dn,t ≥ 0} ∼= Pr
{

D̃n,t ≥ bn,t

}

= Pr







3

√

D̃n,t

hn,t
≥ 3

√

bn,t
hn,t







, (51)

where we have D̃n,t ∼ χ2
hn,t

and bn,t is defined in (39).

Upon applying the Wilson-Hilferty approximation in Lemma 2, we have

3

√

D̃n,t

hn,t
∼ N

(

1− 2

9hn,t
,

2

9hn,t

)

. (52)
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Therefore, we arrive at

Pr

{

3

√

D̃n,t/hn,t ≥ 3

√

bn,t/hn,t

}

=Q

(

9hn,t
2

3

√

bn,t
hn,t
− 9hn,t

2
+ 1

)

. (53)

Upon substituting (45) and (53) into (33) and (34), the proof is completed. �
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