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Change Detection and Model Update Framework
for Accurate Long-Term Localization

Stefan Larsen1, Ezio Malis1, El Mustapha Mouaddib2, Patrick Rives1

Abstract— The ability to perform long-term robotic opera-
tions in dynamic environments remains a challenge in fields
such as surveillance, agriculture and autonomous vehicles. For
improved localization and monitoring over time, this paper
proposes a novel model update framework using image-based
3D change localization and segmentation. Specifically, shallow
image data is used to detect and locate significant geometric
change areas in a pre-made 3D model. The main contribution
of this paper is the ability to precisely segment and locate both
new and missing objects from few observations, and to provide
consistent model updates. The applied method for geometric
change detection is robust to seasonal, viewpoint, and illumina-
tion differences that may occur between operations. Qualitative
and quantitative tests with both our own and publicly available
datasets show that the model update framework improves on
previous methods and facilitates long-term localization.

I. INTRODUCTION

Model update is a crucial part to enable long-term robotic
autonomy in dynamic environments. Many methods for
localization and monitoring rely on stable and accurate maps,
and struggle over time in outdoor (peri)-urban environments.
Periodic changes from weather, vegetations and illuminations
may cause errors for most vision-based methods. Dynamic
objects like cars and pedestrians may change a scene dur-
ing or in-between operations, causing uncertainty also for
scanner-based approaches. Without precise and consistent
model updates, scene changes may have significant impacts
on the long-term performance of autonomous systems.

Research on update of environmental representation is
increasing in popularity, due to the many demands from real-
world applications. Autonomous vehicles need accurate maps
to localize and maneuver safely and efficiently over time
[1]. Monitoring systems for surveillance or environmental
purposes rely on change detection (CD) for precise scene
understanding [2]. Robots in agriculture must deal with
changing vegetation and scenery on a regular basis [3].

The ability to detect changes and update a 3D model
depends on the available sensor data. Typically during explo-
ration, robots are equipped with systems of multiple high-
end sensors like IMU, GPS-RTK, RGBD and LiDAR. The
robots often perform thorough mapping of the scene, via
teleoperation or pre-defined trajectories, until the entire scene
is captured. Although this enables dense and advanced CD
and model update methods, it is not a realistic scenario for
all autonomous, low-cost robotic systems in the near future.
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For example, an autonomous robot equipped with only a
subset of low-cost sensors is asked to deliver a package or
maneuver towards its target location. Although the sensors
enable it to navigate using a pre-build 3D map or image
database, it will not take the time to monitor in details the
entire scene around it, and its sensors are not able to update
the model with the same quality in any case. However, the
robot might still get glimpses of scene changes through a
sensor, like a monocular RGB camera. This data could be
used for continuous and consistent model updates, without
the need of specific mapping operations.

The main objective of this paper is to address the problem
of using shallow image data to detect changes and update a
dense, pre-made 3D model. The data can be acquired during
a generic mission, not necessarily dedicated to model update.
An existing image-based method for 3D change detection
based on geometrical ambiguities is used to detect scene
change areas [4]. Then, this paper proposes to combine mesh
segmentation and voxel grids to remove missing objects, and
add new objects using an image-to-mesh network [5].

II. RELEVANT WORK

Existing works with simultaneous localization and map-
ping (SLAM) already show impressive performance in chal-
lenging environments. Short-term dynamics are typically
dealt with by ignoring dynamic objects or image pixels
suceptible to change. However, less work have looked into
the problem of long-term spatio-temporal representations [6],
and how it can facilitate model-based localization. At the
same time, it is seen that many pose estimation methods
struggle over time from changes in viewing conditions be-
tween reference and query models [7], which motivates the
need for consistent and accurate reference model updates.

To avoid costly remappings of the entire scene, an intuitive
approach for model update starts with detecting changes in
the scene. While some recent CD works try to detect sig-
nificant geometric change areas directly in 2D images using
deep neural networks (DNNs) [8], methods incorporating 3D
data show improved robustness to viewpoint and illumination
differences [2]. Some of these works find inconsistencies
between images and 3D models [4][9], while others use
grids for point cloud comparisons [10]. Unfortunately, most
methods only give rough estimates of change locations, like
change ellipsoids [4][9], instead of updating the scene model.

Some works present new mapping or classification tech-
niques to better locate, segment and track important changes.
One initial approach used map differencing and object
segmentation learning [11]. Signed distance functions can



reconstruct dense scenes from point clouds and images
[12][13][14], while neural descriptor fields can perform
robust object-level CD indoors [15]. Others attempt to clas-
sify or segment maps using random forest classifiers or
DNNs [16]. While they show promising results, it remains
a challenge to precisely distinguish new, moved and missing
objects, both indoors and outdoors, regardless of object sizes
and types. Additionally, these methods require streams of
RGBD data to construct and update the environment, which
is not feasible if only a few images are available.

Other methods show how only sparse change informa-
tion can be enough to improve long-term localization. One
technique uses dynamic occupancy grids to estimate the
robot pose and environment state [17], while some others
update feature-based maps to reduce localization error over
time [1][18]. Semantic scene graphs can relocate the robot
in changing indoors environments [19], which seems like
a promising direction, but would require more available
change-data for training.

Contrary to most existing approaches, this paper looks to
update a dense, pre-made model using only shallow query
image data. While previous work generally have dense query
input data from RGBD video streams or LiDAR scanners,
this paper considers the case where only the original envi-
ronmental model is collected with high-resolution sensors.
The query data comes from few samples of inexpensive
sensors like monocular RGB camera. In this case, it is
counterproductive to continuously update the entire model to
incorporate changes. Instead, timely and precise local change
updates will provide consistent model updates without prop-
agations of errors. This work shows how recent methods
for image-based 3D CD can assist visual localization, and
provides the following main contributions:

• Segmentation and localization of changes in 3D model
using shallow image query data

• Experiments showing how consistent model updates
improve long-term accuracy of vision based localization

III. PROPOSED FRAMEWORK

The proposed 3D model update framework, with steps to
locate and segment changes in the scene, is described in
Fig. 1. The initial 3D model is reconstructed as a surface
mesh, to enable query images to detect significant change
areas for both new and missing objects. For more precise
change estimation, this paper proposes 3D reconstruction
from change masks to generate newly discovered objects,
and mesh segmentation and voxel grids to remove missing
objects. The framework is designed to run offline, in-between
robotic tasks. The updated model can then be used to localize
the robot online during the subsequent operations.

A. Input Data

The initial 3D point cloud of an urban or peri-urban scene
is typically acquired using cameras, possibly with depth
estimates, or using LiDAR scanners. The proposed scheme
for model update is designed for flexibility, and works for
any dense point clouds. Then, the point cloud must be
reconstructed into a mesh model with surfaces, preferrably
into two different models: dense for CD and sparse for
segmentation. The CD method used in this paper relies on
accurate image to model correspondences, and gets more
accurate image reprojections with a dense mesh. Meanwhile,
the proposed segmentation method utilizes distinct shape
differences, which are more apparent in sparse meshes.

Model updates are given by images from later inspections
of the same scene, using RGB cameras. The camera intrinsic
parameters and poses relative to the initial 3D model are
needed, either directly from measurements, or from estimates
using techniques like VO or SLAM with initial registration.
For the proposed CD scheme using shallow data, a minimum
of three images are needed from different viewpoints around
each change area.

B. Image-Based 3D Change Detection

While there exists different approaches for 3D CD, as
presented earlier, this paper choses to apply the methods for

Fig. 1. Complete model update framework. 1. Surface mesh reconstruction. 2. Image based 3D change detection. 3. Geometric mesh segmentation. 4.
Change ellipsoid and segment pairing for missing objects. 5. Voxelization of change segments. 6. Point occupancy collection. 7. Change mesh projection
for new objects. 8. 3D change localization. 9. Detected changes. 10. Model update.



finding geometrical ambiguities [4][9]. These methods use
pairs of query images to detect significant changes in a scene
represented by an outdated 3D mesh. The images should
be acquired within a narrow time frame to avoid structural
or lighting changes between them. Objects that are moving
during the acquisition should be filtered out using other
methods, as the proposed framework only considers objects
that have changed in-between the tasks. Typical examples
are static pedestrians, parked cars and scooters, and changes
to vegetation and construction sites.

For detecting inserted objects, 2D change masks are esti-
mated for each reference image [9]. Each reference image is
compared with reprojections of every other reference image
from its own point of view, via the outdated 3D model.
Changes in the foreground scene causes color ambiguities
between each reference image and the reprojected images.
The differences are stored in delta maps, and combined to
reduce noise and improve accuracy of detected changes.
Change location in 3D is estimated by triangulating the
image changes based on the delta maps, resulting in 3D
change ellipsoids, up to scale with the model.

This method was extended for removal detection [4]. In
a sense, the problem was reverted, to focus on areas that
should be occluded during the image reprojection process.
Areas that result in the least change signify a previously oc-
cluded area, meaning foreground objects that are missing. By
combining estimates from multiple images, missing objects
are detected in images and localized as 3D ellipsoids.

While these approaches succeed in locating changes, the
3D change ellipsoids are not directly useful for consistent
long-term model updates and localization. After a few it-
erations, the updated model would become crowded with
overlapping ellipsoids. Instead, the proposed framework goes
further, to use the image change masks and change ellipsoids
to segment and update the changed objects in the model.

C. Locating and Segmenting New Objects

Significant changes may occur from new objects in the
scene, like vehicles or construction work. Assuming new
objects will remain in the scene for the near future, they
must be added to the model. While it is possible to obtain
dense 3D reconstructions directly from images, this usually
requires multiple high quality images. However, the proposed
scheme should be flexible to a limited amount of images
depicting each change, and to less accurate change images.

Using the image data available, segmented images depict-
ing only the new objects are obtained from the 2D change
masks created during the CD method [9], as seen in Fig. 1.

For new-object localization, this paper proposes to di-
rectly insert the cut-out change images into a image-to-mesh
network [20]. This end-to-end deep learning architecture
produces a 3D mesh model directly from a few RGB images.
Using a graph-based DNN with a coarse-to-fine strategy,
further improved by leveraging cross view information, this
network shows high 3D shape estimation accuracy. As with
all DNN-based methods, this requires training data of similar
objects. The quality of the results also depends on the quality

of the object image, in this case from the size and accuracy
of the change mask produced during the CD step.

Another key step for locating the new objects is to obtain
the correct scale and 3D position of the newly created object
mesh. Without available dense maps, this must be done
through triangulation from the camera viewpoints. As the
proposed framework already estimates the position of 3D
change ellipsoids, the newly created object mesh is centered
at the corresponding ellipsoid, and scaled to the size of the
ellipsoid, as seen at step 8. in Fig. 1.

D. Locating and Segmenting Missing Objects

Other typical scene changes occur from objects missing
from the initial model. Assuming missing objects will not
return to the same location in the scene again, they must be
removed from the model. Here, the solution is to infer which
missing objects the removed-change ellipsoids have detected,
and extract them. This is done by segmenting the mesh
model, and pairing change ellipsoids with candidate mesh
segments. While well trained DNNs show impressive seman-
tic segmentation performance [21] geometry-based methods
are often easier to implement with equivalent results. The
implementation shown in Fig. 1 uses a geometric, clustering-
based approach [22]. For change pairing, each removed-
change ellipsoid is converted into dense 3D voxelgrids. Mesh
segments who are overlapping with a voxelized ellipsoid,
correspond to missing objects. This step requires an accurate
mesh segmentation and few close objects, to avoid extracting
nearby, unchanged parts of the scene.

To complete this change localization step, the correspond-
ing changed points in the initial 3D model must be deter-
mined. Many surface reconstruction methods simplify the
model, either by filtering nearby points, or by interpolating
new points for smoother surfaces. Thus, deleting the change
segment vertex points directly from the 3D model may not be
a straightforward task, at least not to remove all the changed
points. Here, from the idea of voxelization for occupancy
checks, the change segments are also voxelized, and the
initial 3D points contained within them can be marked as
change, as seen as the yellow points in Fig. 1.

E. Long-Term Model Update

Finally, the initial 3D model can be updated with any
new and missing objects. The new objects can be added as
vertex points, with or without triangle faces, and the points
of missing objects from the previous occupancy check can
be subtracted. However, removing points directly from a
3D model may create holes, depending on the model and
accuracy of the segmentation. If an application requires a
solid and refined update model, any small gaps could be
filled instantly with interpolation or hole filling algorithms
[22], or with new data during the next acquisitions.

For long-term tasks with multiple model update iterations,
the proposed framework must also be robust to initial models
with gaps or various densities. By design, any small gap
in the initial 3D model will be covered during the first
mesh reconstruction step, to provide a solid model for the



following detections using image reprojections, seen in Fig.
1, step 10. on the right. This effect motivates the use
of surface meshes for image reconstruction, compared to
image rendering from point clouds which are more prone
to gaps or sparse data. For image-based localization, the
gaps can simply be ignored using depth masks. Alternatively,
Gaussian splatting techniques [23] may create dense images
for image reprojections. However, accurate results would
require optimization with multiple images of the scene.

IV. EXPERIMENTS AND DISCUSSION

Results are presented to illustrate how the proposed model
update framework performs on three different datasets, with
precise model updates for new and missing objects. Simula-
tions demonstrate how the proposed model update improves
localization in changing outdoor environments over time.

A. Experimental Setup and Datasets

Surface reconstruction and mesh segmentation is done
with CGAL [22]. 3D CD is done using the aforementioned
image-based method [4]. Reconstruction and mesh wrapping
is done with a pretrained model of the Pixel2Mesh++ net-
work [20]. Colors for mesh segmentation and new objects
are set arbitrarily in the figures. Feature based localization
[24] is combined with dense camera pose optimization [25].

B. Results with 2017 Palazzolo and Stachniss Dataset

This dataset contains five different urban scenes, where the
query images depict new structural elements not present in
the models. To demonstrate detection and update of missing
objects, 3D objects are inserted manually to the initial model.

The results with the statue scene are illustrated in Fig.
2. The proposed framework is able to detect the new statue
and the missing foreground objects, segment them and finally
update the model, see nr. 8 and nr. 9 in Fig. 2. This provides a
more detailed model update with respect to the initial change
ellipsoids [4][9] seen in nr. 3 in Fig. 2.

Three masks where used to recreate the new statue object
using [20]. Since the pre-trained network was not trained
on human-shapes, the obtained object shape is not accurate.
However, it is stored as a floating, watertight mesh within
the boundaries of the change ellipsoid. The intention is that
this added object provides more accurate information of the
current scene. Later, additional acquisitions around the statue
can be used to further refine the reconstruction.

Deleting foreground objects creates gaps, causing trouble
for some applications. Here, the holes were covered by a
remeshing of the updated model, as seen in nr. 9 in Fig. 2,
however hole filling techniques could also be applied [22].

C. Results with Fehr et al Dataset

This dataset consists of three indoor scenes mapped by a
handheld RGB-D camera. There are about 50-100% overlap
between each scene, where the changes mostly come from
moved furnitures. Due to the close-up camera viewpoints,
the changes are only partially visible in the images.

Results from the living room scene are shown in Fig. 3.
The framework detects two of the moved furnitures, a pouf
and a table, as missing objects, and updates the model. The
removal of the pouf left a hole, which was repaired using a
mesh hole filling technique [22], as seen in nr. 5 in Fig. 3.

Fig. 2. Results from statue data. 1. Initial mesh model. 2. A query image. 3. Mesh model with change ellipsoids. 4. A change mask. 5. Segmentation. 6.
New object mesh. 7. Pairing of missing objects. 8. Updated model point cloud. 9. Updated mesh reconstruction.

Fig. 3. Results from Fehr data. 1. A query image. 2. Initial mesh reconstruction with detected change ellipsoids. 3. Mesh segmentation. 4. Pairing of
missing objects. 5. Updated mesh model with hole filling reconstruction applied.



Fig. 4. Results from OCA data. 1. Initial model with pedestrians outlined in red. 2. A query image. 3. Mesh reconstruction with change ellipsoids. 4. A
change mask. 5. Segmentation. 6. New object mesh. 7. Pairing of missing objects. 8. Updated model point cloud. 9. Updated mesh reconstruction.

While it is accurate to say the objects were missing from
their original locations, it would be even more accurate
to describe them as moved. However, this would require
exploitation of semantic information, wheras this framework
is based on geometric appearences. The new positions of the
table and pouf could also be detected as new objects, but the
objects where not sufficiently visible in the available images.

D. Results with 2023-OCA Dataset

Due to the lack of datasets for long-term change de-
tection in outdoor scenes, the 2023-OCA dataset has been
created in the context of long-term shareable mapping for
collaborating multi-robot systems. Specifically, this dataset
contains two dense point clouds with rendered images. It
was obtained at the Observatory of Nice (OCA), using a
Leica RTC 360 LiDAR scanner with internal RGB camera.
The acquired models include object changes in the scene,
which are depicted in manually rendered query images. For
better demonstration in this paper, a group of pedestrians was
manually moved closer to the location of a scooter.

The results in Fig. 4 show how the framework detects
the changed objects and updates the model. The initial
model contains pedestrians (outlined in red), while the query
images show that the pedestrians are gone and a scooter has
appeared. The pedestrian segments are detected and removed
from the model, while the scooter is reconstructed and placed
in the scene, see nr. 8 and nr. 9 in Fig. 4.

While the pedestrians are properly detected by the frame-
work, the recreated scooter object is not very accurate. This
is because only one of the change masks produced by the
3D CD method [4] were of adequate quality. The masks
could be improved by previously mentioned DNN based CD
approaches. However, that requires registered images before
the change occured, and will be affected by illumination
variations between the new and old images. Since the focus
of the paper is mainly on CD for model update, only a
pretrained reconstruction model [20] was used, and it was not
able to recognize the scooter object type. Obviously, training
the network on more similar object types would improve the
results of this object reconstruction step.

E. Results from Long-Term Localization

Experiments have been conducted to show how the pro-
posed model update framework improves long-term localiza-
tion. A typical localization setup consists of feature based
localization for initial pose estimates, followed by pose
optimization. For this experiment, a hierarchical method
using Structure-from-Motion (SfM) and feature-based DNN
creates the initial estimates [24]. They are then optimized
using a dense, iterative method [25], to find the camera
transformation between the query and reference images,
using corresponding reference depth maps. Each estimated
query pose is compared to the true query pose to determine a
localization error. Changes between the reference model and
the model contained in the query images affect the results.

The data has been rendered from the OCA dataset. The
query images are chosen similar to nr. 2 in Fig. 4, such that
they depict the scooter area from different viewpoints.

To showcase the effects of model update for localization in
changing environments, references are rendered from three
different models. One set of references is taken from the
original model with pedestrians, as in Fig 4 nr. 1, denoted
Original. Another is taken from the original model with
pedestrians, including the blue ellipsoid from Fig 4 nr. 3
representing the detected scooter, denoted Roupin[4]. The
third set is taken from the updated model using the proposed
framework, which includes the reconstructed scooter and
removes the pedestrians, as in Fig. 4 nr. 9, denoted Ours.

In total, 10 reference images per model and 100 query
images are rendered around the change area, with splits of
10 queries per reference. There is a difference in translation
of 0-1 meters and rotation of 0-10 degrees between each
pair of query and reference pose. For each reference model,
Table I shows the total number of images that converged,
number of iterations for convergence, and the mean error of
translation ET and rotation ER and their standard deviations.
The averages are taken from when all models converged,
which was only 23 of the 100 query images.

The updated model Ours reduces the pose error compared
to the others, and converges faster and almost every time. The
residuals for all models can be explained by the imperfect



TABLE I
LOCALIZATION RESULTS FROM THREE MODELS OF OCA DATASET

Model Converged Iterations Mean pose errors
ET [cm] ER[deg]

Original 31 / 100 903 21.4 ± 11.4 4.11 ± 2.67
Roupin[4] 69 / 100 948 19.6 ± 11.2 3.62 ± 1.68

Ours 97 / 100 414 18.7 ± 10.2 1.23 ± 1.03

reference models used, and outliers and artifacts from vegeta-
tion. While each query and reference image are initially well
aligned by the feature-based localization [24], within 1 meter
from the true pose, the changes contained in the queries with
respect to the outdated references cause significant errors for
the optimization step. Particularly, removal of the pedestrians
is influential, as they occlude and cause divergence for the
outdated models. Original generally performs worse than
Roupin[4], since the added ellipsoid helps to cover artifacts
and potentially mismatched features from the scooter.

The differences between the ellipsoid and estimated
scooter mesh also affect the pixel comparisons of the pose
estimation. Neither of the shapes are accurate, and their
colors are not obtained, but manually painted black when
rendering images. However, the estimated scooter shape is
generally more accurate than the ellipsoid and creates less
occlusions, for improved pose estimation.

V. CONCLUSIONS AND FUTURE WORK

A novel framework for 3D model update is proposed for
long-term autonomous robotic operations like localization
and monitoring in (peri)-urban environments. It demonstrates
how surface reconstructions, model segmentations, voxel
grids and image-based reconstructions can be chained to-
gether to succesfully update a model with both new and
missing objects. It can be seen as an extension on previous
change detection methods [4][9]. While they only indicate
change locations in the scene, the proposed framework
provides precise segmentation and localization of changes for
consistent model updates. The usefulness of this approach is
demonstrated through localization experiments.

Improvements for more robust and precise model updates
could be to include semantic classification for mesh segmen-
tation and object tracking. Future work could also improve
the 3D CD step, to better handle reflections and occlusions.
Extensions could include pose estimation for missing camera
parameters, or LiDAR or depth images as query data.
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