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IESTR: a novel method to analyze Introduction Effects in 27 

Space and Time on species Range dynamics. 28 

Abstract 29 

  Rapidly shifting climates will lead to species range shifts over the next 30 

century. Artificially introducing species in new locations to enhance species 31 

migration, termed assisted migration (AM), has been suggested as one possible 32 

strategy to avoid species extinction. While current methods are used to explore 33 

future areas of introduction, we lack a method able to identify the best sets of 34 

locations and timing for species introductions that maximizes AM outcomes.  35 

 We developed a novel method to explore the effects of species Introduction 36 

Effects in Space and Time on species Range dynamics (IESTR). The method uses 37 

transition matrices that combine spatial and temporal species suitability changes and 38 

dispersal information. A metaheuristic algorithm is run to achieve an objective target 39 

of range area optimizing introduction locations and times, while minimizing spatially 40 

explicit cost surfaces. We apply the method to a virtual species to showcase the 41 

potential of IESTR to explore range dynamics with artificial introductions. We assess 42 

optimal AM strategies under climate change and with different land use cost 43 

scenarios. We found a strong effect of early introductions enhancing species range 44 

shifts, as well as differences in introduction sites and timing under different cost 45 

scenarios. 46 

 IESTR is a fast and efficient technique for exploration of range shifts under 47 

artificial introductions, tackling both the spatial and temporal dimensions. The 48 

method has been developed in Cpp, available as an R package. Given the heated 49 

debate around AM and introductions, our method provides a new tool to explore 50 

strategies in spatial conservation planning in the Anthropocene. 51 

  52 
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1 Introduction 53 

 54 

Climate is changing at a speed rarely reached in the history of terrestrial climatology 55 

(Burke et al., 2018; Loarie et al., 2009). Evidence shows that past extinctions and the 56 

degree of endemism are related to climate stability (Harrison & Noss, 2017; Song et 57 

al., 2021), thus the fast-ongoing climate change will likely lead to an increase in 58 

species vulnerability and contribute to the ongoing sixth mass extinction (Barnosky et 59 

al., 2011; Cowie et al., 2022). 60 

 61 

Under such a current fast climate change, the outcome for species has been 62 

summarized as either resist new environmental conditions, adapt, move (i.e., change 63 

its distribution) or go extinct (Berg et al., 2010; Corlett & Westcott, 2013; Duputié et 64 

al., 2015). While some degree of adaptation and resistance is expected, evidence 65 

shows that range shifts are a common response to past and current climatic changes. 66 

Distribution shifts occur in many groups (Lenoir et al., 2020), such as butterflies 67 

(Habel et al., 2021) and plants (Graae et al., 2018). The direction of species range 68 

shifts has been hypothesized to counteract increasing temperatures by migrating 69 

poleward and upwards (Lenoir & Svenning, 2015), but these could follow other 70 

directions by tracking drivers other than temperature, such as water balance 71 

(Dobrowski et al., 2013; Serra-Diaz, Franklin, Dillon, et al., 2016), being influenced 72 

by human activities (Lenoir et al., 2020), and ultimately lead to several range shift 73 

directions other than isotherms (VanDerWal et al., 2013; Wason & Dovciak, 2017). 74 

 75 

Empirical and modeling studies suggest that the pace of climate change is faster than 76 

species ability to migrate (Corlett & Westcott, 2013; Serra-Diaz et al., 2014). This is 77 

especially true for terrestrial sessile organisms (Lenoir et al., 2020). Indeed, the slow 78 

migration rates do not allow species to readily track climate changes, leading to a 79 

disequilibrium between species distributions and climate (Svenning & Sandel, 2013), 80 

and a potential range reduction that increases species extinction risk. That is, ranges 81 

are reduced on the trailing edge but areas that become favorable at the leading edge 82 

are unoccupied. To cope with species migration lags, conservation sciences and 83 

natural resource managers may consider species translocations as one potential 84 

strategy to maintain biodiversity.  85 

 86 

Assisted migration (AM)– also termed assisted colonization, managed relocation, 87 

assisted range expansion and species translocation (Hällfors et al., 2014)– refers to the 88 

action of purposefully introducing a species to an area where it is not present, with the 89 

objective of supporting species natural migration as a consequence of climate change 90 

(Hayward, 2009; Heller & Zavaleta, 2009; Hewitt et al., 2017; Hoegh-Guldberg et al., 91 

2008; Richardson et al., 2009). AM could be an effective strategy to compensate for 92 

the slow movement of some species in order to prevent their decline or extinction 93 

(Hällfors et al., 2018; Peterson St-Laurent et al., 2018). Nevertheless, AM is still a 94 

contentious conservation strategy (Aubin et al., 2011; Hunter, 2007; McLachlan et al., 95 
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2007; Ricciardi & Simberloff, 2021; Vitt et al., 2010), as it could lead to a number of 96 

undesired outcomes like disease transmission (Simler et al., 2019), unintended 97 

establishment of invasive species (Mueller & Hellmann, 2008) or lack of local 98 

adaptation (Tíscar et al., 2018). While there are unknowns on how to identify such 99 

potential issues before an AM action is undertaken, part of the challenge in assessing 100 

potential AM plans is to identify where and when it is more effective to perform AM 101 

to reach a migration goal. Specifically, we lack methods able to identify what are the 102 

time frames and locations where species would benefit the most from AM to track 103 

climate change considering species characteristics, biological risks, economic costs, 104 

and future climatic time-series. 105 

 106 

Current tools allow modeling species distribution shifts using correlative approaches 107 

and mapping suitable conditions at snapshot in time (Franklin, 2010a) – typically 108 

using 20 to 30 year averages. Static climate change projections that produce a 109 

snapshot under future conditions may provide future suitable areas of colonization. 110 

However, such static projections do not inform how a given introduction or 111 

colonization affects subsequent migration dynamically. Alternatively, there exist 112 

mechanistic or dynamic distribution modeling which explicitly account for key 113 

migration processes such as dispersal (Lehsten et al., 2019), evolution (Bocedi et al., 114 

2021; Bush et al., 2016), disturbances (Liang et al., 2018; Serra-Diaz et al., 2015), and 115 

species interactions (Keyel et al., 2016). However, those models involve high level of 116 

parametrization and/or require computationally intensive simulations of range shifts. 117 

Such computationally demanding models preclude exploring spatial and temporal 118 

introduction effects on species range dynamics. Indeed, it becomes unfeasible to 119 

simulate species range shifts with mechanistic models by testing all – potentially 120 

billions – combinations of species introductions in each spatial unit (cell, pixel) at 121 

every time step of the simulation, with the goal of optimizing species range shift 122 

outcomes.  123 

 124 

To date, quantifications for the need of assisted migrations have used metrics derived 125 

from species distribution models (Hällfors et al., 2016, 2017), but to our knowledge 126 

no spatial conservation planning method has dealt with the issue of assisted migration 127 

with efficiently allocate species assisted migration efforts in space and time. (Chu & 128 

Beasley, 1998)(Chu & Beasley, 1998) 129 

 130 

Here, we present a new method implemented through an R package that explores the 131 

effects of introductions in space and time on species range shifts, and further 132 

optimizes the allocation of introductions to obtain a probabilistic target on species 133 

range size – typically a minimum range area that would preclude extinction. We call 134 

this novel mathematical framework IESTR (Introduction Effects in Space-Time on 135 

species Range dynamics). IESTR can determine, with a minimum of computation 136 

load, the effect of establishing a population at a given location at a given time on 137 

species range area. We use this framework to optimize AM choices in space and time, 138 
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by means of metaheuristic algorithms. The method has also been implemented in an R 139 

package available on GitHub upon manuscript acceptance.  140 

 141 

2 Methods 142 

The method is divided into two phases: preprocessing and optimization (Fig. 1). First, 143 

during the preprocessing stage we create the transition matrices which will be used in 144 

the second phase, the optimization phase, where the choice of species introduction is 145 

identified in space and time.   146 

The study area is represented as a grid. The size of a cell may vary according to data 147 

characteristics. We discretize the time period studied in a regular time step. Two key 148 

dynamics are considered in the system: the dispersal of the species and the survival of 149 

a species according to the conditions of a cell at a given time. 150 

The algorithm needs at least three input data and optimization parameters. Additional 151 

parameters can be added to the model to specify the behavior of the optimization 152 

phase.  153 

2.1 Input data and parameters 154 

IESTR requires three types of input data and an optional input (Fig. 1, left box). The 155 

first user-input required data is the migration kernel. For a given species and a given 156 

grid map, the migration kernel corresponds to the chance that the species spread into 157 

the neighboring cells during one step time. This migration kernel should be a function 158 

cell size and the dispersal capacity of the species. The second required user-input are 159 

the suitability matrices over time. For each discrete time t, we define a suitability 160 

matrix as a grid with values between 0 and 1 corresponding to the survival chance of 161 

the species in each cell of the map between time t and time t + 1. Suitability indices 162 

may be derived from climatic condition and/or other factors such as land use, soil 163 

properties or species interactions. Third, the algorithm needs the occurrence map of 164 

the species at the initial time. This is a grid with value of 0 for the absence of the 165 

species and 1 for the presence.  166 

The algorithm needs the user to input the optimization goals of introduction (Fig 1, 167 

left box). IESTR is currently designed to deal with two types of AM problems, both 168 

mathematically corresponding to a constrained objective optimization function: (1) 169 

minimizing cost while ensuring a fixed target range size or (2) maximizing the range 170 

size with a limited budget. Mathematically, these constraints lead to a problem similar 171 

to the knapsack problem: we want to assess a set of introduction choices in space and 172 

time that optimizes an objective function (maximizing the species range size, 173 

minimizing the cost) while verifying the constraints (limiting the budget, maintaining 174 

the size of the area where the species is present).  175 
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Optional inputs can be added to control the optimization phase. The first optional 176 

input data is the introduction cost matrix. By default, the algorithm considers the cost 177 

of introduction to be the same for every cell, but they can be changed to account for 178 

spatial differences in costs. These costs may reflect in economic terms (financial costs 179 

involved in the introduction), management and land tenure (public/private, 180 

conservation area) or an ecological value (introduction risk for recipient ecosystems). 181 

Other optional inputs are the parameters of the genetic algorithm, that can drive the 182 

speed and the precision of the package. These parameters are calculated by default 183 

depending on the map size but can be adjusted (see code). 184 

 185 
Figure 1: Scheme of the IESTR workflow. The workflow is divided into two main 186 

phases from inputs two outputs: (1) pre-processing of inputs (light blue box), and (2) 187 

optimization for introduction choices in space and time (dark blue box). Arrows detail 188 

inputs and outputs for each process. 189 

 190 

2.2 Preprocessing 191 

 192 

2.2.1 Step 1: Spread matrix 193 

The first part of the preprocessing builds the spread matrix. This matrix defines 194 

species accessibility in space over one-time step. It is here calculated using the 195 

migration kernel and it contains the probability of colonization site to site given 196 

optimal environmental conditions. If the user possesses more precise information 197 
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about species spread, he/she can directly calculate it instead of using a migration 198 

kernel. This can be useful if the dispersal potential isn’t spatially uniform. 199 

 200 

The migration kernel allows us to directly evaluate how the presence in one unique 201 

cell drives the probability of potential colonization in every other cell after one 202 

timestep. If a species is present in multiple cells initially, the probability of presence 203 

after one timestep in a cell is exactly the probability that at least one of the initial cells 204 

with presence colonizes the cell. 205 

For ease of notation, we introduce the special addition operator,   , such as for a and b 206 

with values between 0 and 1 (Eq1):  207 

                   208 

 209 

Specifically, by summing the probabilities of two Bernoulli events with this operator, 210 

we obtain the probability of the union of the two events.  211 

 212 

Let t be a time-step, i and j two sites of the map, N the number of sites,      the 213 

probability that a presence in the site j leads to a presence in the site i at the next 214 

timestep, and   
 the probability of presence in the site j and at the time t of the 215 

species. Then the probability   
   that the site i is colonized by the species at the time 216 

t+1 is, with our notation (Eq2): 217 

 218 

  
           

 

 

       

       

 219 

This formula can be seen as a scalar product without linear properties. Let X and Y 220 

be two vectors of size N with values between 0 and 1. We define the operator between 221 

two vectors       as (Eq3), with the special sum described in (Eq1) : 222 

          

 

       

          

As we defined an operator between two vectors of the same size, we can associate 223 

a matrix product with it. Let A and B be two matrices of a size M*N and N*L 224 

respectively, with values between 0 and 1. Then we define the operator between two 225 

matrices    as (Eq4):  226 
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 227 

With this notation, we can express the vector      with the spread matrix M and 228 

the vector of presence at the time t (Eq5): 229 

      
  
   

 
  
   
    

       
  

 
       

  
                

 230 

2.2.2 Step 2: Building the transition matrices 231 

The transition matrices merge the information of the spread matrix (step 1) and the 232 

species suitability of each site over time (Fig. 1). Transition matrices thus allow to 233 

calculate the probability of presence in a future time step, while considering the 234 

initial distribution of the species. 235 

 236 

Let   
 

 be the suitability value of the species in the site i, at time t. The probability of 237 

species occurrence in the site i at the time t +1,   
   , is calculated as the probability 238 

that the site is colonized at t+1 (  
   ) multiplied by the probability of the species 239 

establishment and survival (suitability)   
  in this cell (Eq6):  240 

  
        

   
           

By doing this for the whole vector     , we obtain a formulation for the transition 241 

matrix       that allows us to calculate presence probabilities from    to      (Eq7): 242 

      
  
   

 
  
   
    

  
        

  

 
  
        

  
    

   
       

  

 
   
       

  
             

         

                
  
        

     
   

  
        

     

  243 

The formula is recursive. Let t1 and t2 be two times such as t1 < t2, then we can 244 

obtain a formulation of             , by combining the different transition 245 

matrices we already have (Eq8) (Eq9): 246 
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The calculation of        in (Eq9) must be made in the right order for the equation 247 

to be true, as the    operator is not associative. With this equation, we can calculate the 248 

probability of presence of the species at any point in time, knowing the probability of 249 

presence at a particular time in the past and these transition matrices.  250 

To be able to evaluate and compare species introduction(s) effect, we set the last 251 

time-step of study,        as a target time-step, and focus on all the transition matrix of 252 

the form         . These matrices allow calculating the effect of introduction(s) on the 253 

probability of the presence of a species in any cell, at any time. An introduction in a 254 

cell   and a time   leads to a probability of presence in each of the cells at the end equal 255 

to the vector                256 

The effect of the multiple species presence can be summed up, as the probability of 257 

presence in a cell in the final system state is the probability that at least one of the 258 

present species (initially present or introduced) establishes in this cell. Let    be the 259 

initial time, K the number of introductions,                   The different choices of 260 

introduction defined as pairs of a cell (i) and a time-steps (t). Then, the probability of 261 

presence in all the cells in the final state of the system is (Eq10): 262 

                   
                   

 

       

         

The construction of these transition matrices makes it possible to obtain the results 263 

of a simulation of the introduction of species over time by a direct calculation. A 264 

quantitative worked example of its use can be found in Appendix S1. 265 

2.3 Optimization 266 

We calculate the effect of introducing the species in different sites and times based on 267 

transition matrices and implement optimization algorithms to evaluate alternative 268 

introduction schemes. 269 

 270 
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2.3.1 Optimization problem formulation  271 

The aim is to find the best set of introductions (site, time) to satisfy the constraint 272 

while optimizing the objective function. Two kinds of problems are currently 273 

implemented in IESTR: (1) the target range area (TRA) and (2) the best allocation of 274 

a budget (BAB). In TAR we optimize the minimum cost needed to maintain the 275 

species at a targeted range size, whereas in BAB we maximize species range area 276 

given a maximum budget. 277 

To implement these optimizations, we need to define a choice evaluation function 278 

(CEF), that allows us to summarize the efficiency of a set introductions. This function 279 

takes as parameters a set of introductions choices, the probability of presence in each 280 

of the sites at the end of the period without introductions (e.g. suitability and 281 

dispersal), the transition matrices, and a precision factor α. The function returns the 282 

minimal number of sites colonized at the end of the period considering introduction 283 

choices, with a α% certainty. The two problem formulations are currently expressed 284 

in Eq. 11 for the TRA problem, and Eq. 12 for the BAB problem, with VC being the 285 

set of viable choices of introductions to choose from: 286 

 
 
 

 
    

    
        

       

               
                   

       

                            

         

 
 
 

 
    
    

               
                  

       

   

        

       

                   

         

In case the costs are not specified, the sum of costs becomes equivalent to the number 287 

of introductions. 288 

 289 

2.3.2 Step 3: Pre-evaluation of introductions and occurrence probability predictions 290 

without introductions. 291 

We reduce all potential combinations of introductions in space and time to a 292 

smaller set by using two filters. The result of this pre-evaluation will lead us to assess 293 

the optimization only using this subset of viable solutions among the panel of all 294 

introduction sets. 295 

 The first filter assesses the effectiveness of the introduction at a site at a given time. 296 

Each cell and time of introduction (i,t) is assigned in the transition matrices a 297 

probability vector of presence at the end of the study period. Summing the values of 298 
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this vector gives the mean number of sites where the species will be present at the end 299 

of the period by introducing the species at that site at the corresponding time (Eq13): 300 

                  
                 

       

         

 301 

A threshold parameter controls, for each potential choice of introduction, if this 302 

choice offers a mean number of colonized sites by the end of the study period 303 

sufficient. We have set a default value of 1 for this threshold, which is low enough not 304 

to miss any low efficient sites that could be used for the solution. This threshold can 305 

nevertheless be modified. In particular, many possibilities for a small number of 306 

introductions could lead to a more drastic elimination of the inefficient sites, and 307 

therefore a need to increase the threshold. 308 

The second filter discards sub-optimal times of introduction. For a set of times of 309 

introduction for a given site, the filter eliminates all the times that are giving lower 310 

probabilities of presence at the end of the period for all sites, compared to the other 311 

sites. In other words, if it’s strictly better to introduce a species at a time compared to 312 

another time, the second time will be discarded from potential solutions, as there 313 

would be no reason to choose him over the other. 314 

 315 

2.3.3 Genetic algorithm 316 

We implemented a genetic algorithm to optimize the introductions in space and time 317 

for a given goal (see input parameters) on set of viable solutions (see Pre-evaluation 318 

section). A genetic algorithm is an evolutionary algorithm whose goal is to find the 319 

most optimal solution to an optimization problem, potentially under constraints, with 320 

a mechanism inspired by biological evolutionary phenomenon (Chu & Beasley, 321 

1998). The objective here for the algorithm is to find the set of pairs of cells and time 322 

solution to the problems (2.3.1). Details on the algorithm workflow and 323 

parametrization are specified in Appendix  S2. 324 

 325 

2.4 A case study on assisted migration 326 

IESTR aims to be a general method, which can be adapted to the size of the study 327 

area. Input data changes with the scale of the problem and must be determined on a 328 

case-by-case basis. We provide some guidance about products and scales that could 329 

be used to build such applications with a special focus on tree species as programs of 330 

assisted migration are already underway (Appendix S3). We decided to use a virtual 331 

case study rather than a direct application. Unlike a real case study, where our results 332 

would be idiosyncratic to the choice of species and the the study area environmental 333 
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structure, the virtual case study allows for better understanding of models’ behavior 334 

under different constraints. 335 

 336 

We applied IESTR to a case study of assisted migration of a plant species. The study 337 

area consists of a simulated circular island characterized by a range of climate 338 

conditions structured by a mountain range with a diagonal orientation (Fig 2a). The 339 

surface of the island is represented by a 50-column by 50-row grid, each cell being a 340 

potential site of presence/absence of the species. Climate change projections are 341 

simulated as a shift in temperature conditions on the island of 1.5 C on average, but 342 

with warming occurring at a faster rate in the high altitude of the island (Fig 2b & 2c). 343 

The target species is initially present in 50 sites, situated in the margin of its 344 

ecological niche (Fig. 2d), divided in two disjunct populations on the island (Fig. 2e). 345 

Our objective is to identify potential assisted migration sites and time steps to 346 

introduce the species in order to prevent species range reduction under climate change 347 

from 2030 to 2060. That is, keeping the species range area to 50 sites (cells). To 348 

simulate a simplified distribution area, we will only consider temperature for the 349 

calculation of the suitability of the theoretical species. The temperature in a cell is 350 

determined by three factors: altitude (it is colder at high altitudes), latitude (it is 351 

warmer in the south than in the north) and elapsed time (it gets warmer everywhere). 352 

The climate change simulation is divided into 30 time-steps, one for each year of the 353 

period. 354 

The equation used is the following, with altitude, latitude and time factors between 355 

0 and 1, and with           ,           ,           ,                 as external 356 

factors: 357 

                                                                                               

The species input parameters to the algorithm consists of a migration core matrix, a 358 

set of matrices describing species suitability index over space and time, and a matrix 359 

identifying the current species distribution. We set the migration kernel as a 3x3 matrix 360 

with a value of 1 in the center representing the current presence of the species and 0.01 361 

in all other cells. That is, a 0.01 probability of colonizing each year each of the eight 362 

cells around the center cell. The suitability matrices are based on species climatic 363 

suitability on the island along the time series analyzed. It is a temperature 364 

    compatible with the survival of the species. The suitability is calculated from the 365 

temperature as follows, with the ordered external variables                   ,     and 366 

        , where    and      represent species niche margins while          and 367 

         limit the optimal part of the range where the survival rate is the highest (Fig. 368 

2d).  369 

 370 
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 371 

Figure 2. Topographic and climatic conditions of the simulation, and species 372 

suitability characteristics. The surface of the island is represented by a 50-column by 373 

50-row grid, each cell being a potential site of presence/absence of the species. (a) 374 

Virtual island with a Southwest-Northeast mountain range, (b) initial climate 375 

conditions with a decreasing temperature gradient both with altitude and toward NW 376 

direction and (c) final temperature conditions at the end of the simulation period (30 377 

time steps) showing a uniform temperature increase of 1.5 °C (d) Species niche 378 

parameters for the study species for temperature  and (e) initial presence of the 379 

species at 50 sites (cells),  and suitable area  dynamics under simulated climatic 380 

change. 381 

 382 

We applied IESTR to three assisted migration situations: Experiment 1 – range 383 

dynamics without assisted migration operations (Experiment 1, Fig. 3); Experiment 2 384 

– with assisted migration using equal costs among all land (Fig. 4), and Experiment 3 385 

– using introduction costs decreasing with the altitude (Experiment 3, Fig. 5). 386 

Because the optimization stems from a pseudo-stochastic process, we evaluated part 387 

of the uncertainty of the algorithm by running 100 repetitions of the algorithm and 388 

comparing the stability of the results for Experiment 2 and 3. Experiment 1 does not 389 

optimize any introduction thus repetitions are not necessary. 390 

 391 

3 Results  392 

 393 
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 The algorithm run during 4’05’’, with a use of 525 Mb memory on RAM on an 394 

Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz for each of the two cost scenarios. 395 

Experiment 1, where no optimization is performed, was performed in 0’05’’. 396 

 397 

3.1 Experiment 1: Presence predicted without introduction(s) 398 

Species disappeared where the climate becomes unfavorable – southern section of the 399 

island – and colonize its new range, according to the shifts of the climate suitability 400 

through time (Fig. 3). At the end of the period, the species is present in 18 sites: 10 401 

initial sites (Fig. 3, blue cells) and at least 8 colonized sites (with a probability of 402 

90%) (Fig. 3 in green cells), while it was present in 50 sites at the start. This first 403 

output of the method thus shows species range change without introductions, and it is 404 

calculated with the transition matrix         . 405 

406 
Figure 3. Species distribution shifts obtained through IESTR algorithm after 30 407 

timesteps of climate change. The output shows occurrences that maintained (blue) or 408 

lost (red) as a result of shifts in climate suitability. The probability of species 409 

colonization (green gradient) along the 30 years of climate change accounts for both 410 

dispersal and climate (via species suitability) at each site. Species occurrence shifts 411 

are overlaid on climate suitability shifts in gray. 412 

 413 

 414 
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3.2 Experiment 2: Introductions with uniform costs to maintain range area 415 

At the end of 30 years (time steps) of simulated climate change, the species survived 416 

in 10 sites (Fig. 4a, blue points), and it was necessary to introduce it in 7 sites (yellow 417 

to brown points) to maintain species range area to 50 sites. Not-assisted colonization 418 

was estimated to occur in at least 33 sites with a 0.9 probability. Note that the 419 

algorithm does not directly predict where colonization occurs. It identifies at the end 420 

of the period what are the probabilities of presence in each cell. 421 

 422 

Introductions are found in the north and south of the island, in areas with more 423 

favorable suitability gradients (Fig. 2b-c). 424 

 425 

The results of the model suggested that planting as early as possible is an optimal 426 

solution to enhance species migration (Fig. 4b). Introductions in areas that become 427 

unsuitable were never selected, nor introductions in areas that become suitable during 428 

the studied period.  429 

 430 

431 
Figure 4: Introduction scheme according to IESTR output in order to maintain the 432 

initial range area of 50 cells: (a) Introduction sites in space and time and their effect 433 

on the probability of presence of the species at the end of the period (30-time steps), 434 

and (b) temporal distribution of introduction events, with N the number of 435 

introductions at each time-step. The final range area comprises 10 initial sites, 7 436 

introduced sites and at least 33 sites colonized via species dispersal (e.g. colonization 437 

probability >0.90). 438 

 439 

 440 

3.3 Experiment 3: Introduction with spatially heterogeneous costs to maintain 441 

range area.  442 

 443 

If costs surfaces are provided to the algorithm (Fig. 5a), the introduction choices 444 

achieved by IESTR differed from those obtained with uniform cost (Experiment 2). 445 
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At the end of 30 years (time-steps) of simulated climate change, the species persisted 446 

in 10 sites (Fig. 5b, blue points) and was expected to colonize 18 sites without 447 

assisted migration (at probability >0.90, Fig. 5b). Thus, introductions in 7 sites were 448 

necessary to maintain species range area to 50 sites (Fig. 5b, yellow to brown points). 449 

This represents the same introduction number than in the case of uniform costs.  450 

 451 

Optimal introductions are located in the Southern section of the island (Fig. 5b), 452 

which is in stark contrast with the Northern introductions suggested in Experiment 2 453 

(Fig. 4b). For these sites, it should also be noted that the optimal introduction time is 454 

the same as in Experiment 2 (Fig. 4c). 455 

 456 

With a decreasing introduction cost with altitude, the algorithm seeks to minimize 457 

costs by favoring areas that have a lower cost concentrated on the north west. 458 

 459 

 460 
Figure 5. : Introduction scheme according to IESTR output in order to maintain the initial range 461 

area of 50 sites under non-uniform cost surfaces: (a) Cost map used for the case study, modeled 462 

as higher costs on lowlands and lower costs in the mountain tops (see Fig. 2), (b) Introduction 463 

sites in space and time and their effect on the probability of presence of the species at the end of 464 

the period, and (c) temporal distribution of introduction events. The final range area comprises 465 

10 initial sites, 7 introduced sites and at least 33 sites colonized via species dispersal 466 

(colonization probability >0.90). 467 

 468 

3.4 Output uncertainty 469 

Since the optimization algorithm is metaheuristic, it returns a single solution 470 

according to a stochastic algorithm. However, the algorithm may find different sets of 471 

introduction sites as solutions under multiple iterations with the same input 472 

parameters. We explored the uncertainty around AM costs using 100 iterations with 473 

the same inputs.  474 

 475 
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We observed that none of the sites were constituently selected more than 50% of the 476 

times for uniform costs, and only one more than 10% of the times (Fig. 6a grey cells). 477 

For the non-uniform costs, 3 sites were selected more than 50% of the times and 10 478 

were selected between 10% and 49% of the times (Fig. 6b, grey & black cells). 479 

 480 

We observed an overall larger area of potential introduction sites under uniform than 481 

non-uniform cost surfaces (Fig 6, light grey area), albeit with low selection rates (i.e., 482 

less than 1% of the iterations selecting the site). 483 

 484 

 485 

 486 

Figure 6: Uncertainty around introduction prioritization from 100 model repetitions. 487 

Percentages show the rate at which each of the cells is selected as an introduction 488 

site, in the (a) uniform costs scenario and (b) heterogenous costs scenario. 489 

 490 

 491 

4 Discussion 492 

 493 

The results of our case study showcase that IESTR can produce the desired outcome 494 

of maintaining species range size, favoring range shifts and quantifying the 495 

uncertainty around introductions in space and time. Specifically, we found that under 496 

smooth climate gradients and theoretical conditions (uniform costs), the algorithm 497 

suggests planting early in the simulation to enhance species range shifts. This is still 498 

the case when simulations introduce costs that may counteract that effect. These 499 

results suggest that as risks or costs vary in space, and as temporal variation increases 500 

– typically the conditions expected in real case studies, e.g. extreme events— it will 501 

become crucial to identify the precise time and space where to help species migrate in 502 

the landscape.   503 

 504 

Our results, however, show that there is uncertainty in our virtual species case study 505 

(Fig. 6). We argue here that our designed case study represents a strong test as the 506 
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surfaces modelled for climate and costs are modelled as smooth gradients, making 507 

introduction solutions harder to optimize. In more heterogenous landscapes (species 508 

suitability and costs) optimization of introductions choices would be reduced, 509 

lowering the variability in the IESTR outputs. That is likely to be the case in 510 

mountain regions where there is a high spatial variability in climates and 511 

microclimates (Davis et al., 2019; He et al., 2017). Likewise, in highly seasonal 512 

ecosystems and areas affected by strong climatic perturbations (e.g. el Niño) may 513 

produce highly temporal variation in colonization and extinctions (Davis et al., 2016; 514 

Serra-Diaz, Franklin, Sweet, et al., 2016) that will likely reduce the introduction sets. 515 

Finally, such reduction in the introduction choices may also be found in landscapes 516 

where the spatial structure of costs is highly heterogenous with complex agro-forestry 517 

mosaics and strong conservation policies where introductions may not be possible 518 

(Fahrig, 2003; Laforge et al., 2022).  519 

 520 

IESTR is based on data and assumptions that need to be carefully considered in each 521 

case. Our model inherits the same key simplifications of the KISSmig model (Nobis 522 

& Normand, 2014): the entire colonization process is described by the probability of 523 

direct spread from a presence area, thus integrating the set of complex processes of 524 

reproduction, dispersal and establishment into a single value over time. Indeed, our 525 

dispersal kernel does not vary in space and time and does not reflect variation in 526 

dispersal effort via reproduction (Ronce et al., 2000), or variation in dispersal vectors 527 

such as wind or animals (González-Varo et al., 2021; Kling & Ackerly, 2021; Pires et 528 

al., 2018). This information (albeit static) in IESTR is considered when adjusting the 529 

migration kernel that, for instance, could be based on traits (Tamme et al., 2014). 530 

Importantly, in our example, the dispersal kernel does not consider low probability of 531 

long-distance dispersal. Long distance dispersal has been key in plants shifting their 532 

distribution in past climatic changes (Nathan, 2006), and it is still important under 533 

present conditions (Alsos et al., 2007; Baltzinger et al., 2019). We argue that in its 534 

current version, IESTR is rather designed not rely on such low probability events to 535 

guide (assisted) migration. Nevertheless, migration kernels could be modified to 536 

reflect long-distance dispersal events.   537 

 538 

Similarly, species fitness has been reduced to a single parameter which we modelled 539 

via an ecological niche model or species distribution model. There is still a 540 

contentious debate whether the outputs of such model reflect species biomass growth, 541 

establishment, or population parameters (Serra-Diaz et al., 2013; Thuiller et al., 542 

2014). Our choice in this case study reflects the widely use metric of species 543 

suitability as a metric of overall exposure to climate change (Dawson et al., 2011), 544 

and is interpreted as population survival. However, other metrics could be used. For 545 

instance, the population growth rate output from integral projection models (Merow, 546 

Latimer, et al., 2014) represents an informative metric based on species demography. 547 

Furthermore, it is possible to decompose the suitability values by life stage, by 548 

aggregating different models thus better informing different aspects of vulnerability 549 

between juveniles and adults (Serra-Diaz, Franklin, Sweet, et al., 2016). The choice 550 
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on how to build that fitness and survival metric will be dependent on the ecological 551 

knowledge, data and models at hand for a given species.   552 

 553 

The novel method implemented here draws from heuristic algorithms used in spatial 554 

conservation planning such as Zonation (Lehtomäki & Moilanen, 2013), but it 555 

incorporates spatio-temporal dynamics at high resolution. Therefore, we could further 556 

our quantification for the need (or not) of species assisted migration beyond the 557 

suitability outputs of species distribution models (Hällfors et al., 2016).  Crucially, the 558 

introduction of the time scale integrates the temporal stochasticity and the effects of 559 

extreme events on spatial conservation planning. This is especially important given 560 

the increase of disturbance and extreme events under climate change (Fischer et al., 561 

2021; Seidl et al., 2017) , as well as their effect on species tracking their niches (Early 562 

& Sax, 2011; Liang et al., 2018, 2023; Serra-Diaz et al., 2015).  563 

 564 

Borrowing from spatial conservation planning, we introduced the cost matrix 565 

allowing to tackle with both biological processes and/or anthropogenic costs. We 566 

observed a stark shift in introduction sites as well as the time of introduction (Fig. 4 567 

vs Fig. 5). Such behavior is in line with spatial conservation prioritization algorithms, 568 

where the design of different cost surfaces shifts the spatial allocation of conservation 569 

areas (Jung et al., 2021; Moilanen et al., 2011). It is important to note, however, that 570 

those costs may not necessarily reflect land use economic values, or AM 571 

implementation costs, but could also reflect ecological values or a combined effect of 572 

the two types. For instance, these could reflect the potential risk to the ecosystem 573 

hosting a new species. A current limitation is that these costs are not dynamic through 574 

time, although we expect land use type and intensity to change according to 575 

socioeconomic pathways projected in the 21
st
 century (Schrammeijer & Verburg, 576 

2019). Such land use intensity shifts are observed in current conservation areas in 577 

groups such as trees (Guo et al., 2022) where AM plans are being undertaken. 578 

 579 

The optimization process of IESTR has been specifically designed to explore 580 

different scenarios of species assisted migration. We provide some guidance about 581 

products and scales that could be used to build such applications with a special focus 582 

on tree species as programs of assisted migration are already underway (Appendix 583 

S3). However, the outputs from the model could be used in other applications. For 584 

instance, transition matrices can provide site-level information on the effects of 585 

planting at a given site and time. Indeed, the use of transition matrix could inform 586 

invasion biology. That is, the optimization process and its parameters could be 587 

modified to identify sites that maximize the spread of an invasive, thus identifying 588 

high risk invasion sites beyond the use of climate similarity or raw outputs of species 589 

distribution models (Cardador et al., 2022; Redding et al., 2019). Another potential 590 

application could be developed in paleoecology, to hindcast the most likely past 591 

refugia from which species could have been spread to result in current species 592 

distributions. These widely used applications were formerly used either through static 593 

models, or through time-costly simulations.  594 
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 595 

The large effects of climate change on species redistributions require flexible 596 

methods that aid decision-making. Given the importance and yet contentious debate 597 

on introductions (either purposely or not), IESTR will help explore the risks and 598 

potential schemes for assisted migration based on quantitative analysis. It will 599 

provide insights into effects of species introduction based on data available for many 600 

species and support new research perspectives on conservation ecology. 601 

 602 

 603 

 604 

 605 
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Appendices 869 

 870 

Appendix S1: Example of transition matrix use  871 

Let us consider a species and its presence and absence at four sites, A, B, C and D, on 872 

two time-steps. The species is present at the initial time at site C. We want to quantify 873 

the effect of a species introduction on the state of the system at the end of the two 874 

time-steps, on each site and in each time step. On the first time-step, the species 875 

suitability (understood as a proxy of survival) is 1 in sites A and C, and 0.5 in sites B 876 

and D. These values are reversed for the second time step. Migration potential 877 

between sites are also set (A↔B: 0.5; A↔C: 0.8; A↔D: 0; B↔C: 0.4; B↔D:0; 878 

C↔D: 0.2). The transition matrix at each time step is represented in (Eq14) and 879 

(Eq15): 880 

 881 
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 883 

Reading the third column of the matrix      (Eq15) allows us to calculate, for 884 

example, that according to the model, since we know that the species is present at site 885 

C, we have a 65% chance of the species being present in A, 71% in B, 68% in C and 886 

28% in D. Then, if we want to artificially add the species to site B during the second 887 

time step, we can calculate the chances of presence in each site at the end (Eq16): 888 
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 890 

According to the model, we will have a 73% chance of the species being present in 891 

A, 100% in B, 70% in C and 28% in D. This gives us exactly the chances of presence 892 

in each site, depending on the choices made in terms of assisted migration. 893 

 894 

Appendix S2: The Genetic Algorithm 895 

 896 

In this section we will detail exactly how the genetic algorithm works. We proceed as 897 

follows: Firstly, from all the possibilities of introduction at sites s and times t to plant, we 898 

calculate the eval value (Eq. 13) to rank the sites. We then calculate, with Xi,t as the vector of 899 
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presences by the end of the period in each site due to the introduction of the species in site i 900 

at time t; for each site s and each time , the weight W as :  901 

 902 

        
           

            
 
       

 
          

 

  903 

A set of pairs -sites s and time t- is called an individual. An individual corresponds to a 904 

complete introduction schedule. A set of individuals is called a population. A population is 905 

therefore a set of possible plans for the introduction of the species. A first parameter involved 906 

in genetic algorithms is the size of the population used. Here we set the size of this initial 907 

population at 10000 as a good balance between good results and a low calculation time, after 908 

testing multiple population size (Fig. S2.1). Each individual initially contains a number of 909 

pairs (s,t) equal to the number of sites required to meet the constraint. These pairs are chosen 910 

randomly, according to a weight that has been calculated according to their eval value.  911 

We subsequently check for each individual whether it meets the constraints of the problem. If 912 

it does not meet the constraints, the algorithm tries to correct it by adding or removing a site. 913 

If this still does not work, the individual is considered defective. If the individual checks the 914 

constraints, then we check if it can gain or lose a site in order to improve the objective 915 

function. The non-defective individuals are then sorted according to their value with the 916 

objective function. Among the population, we will keep only a proportion of “best” 917 

individuals (named “survivors” hereafter), that satisfies the objective function the most for 918 

the next generation. Here we have used 10% as the proportion. The lower the proportion, the 919 

faster the algorithm will tend towards the solution of the problem, but also the greater the 920 

chance of missing an unexpected optimal solution.  921 

The rest of the population is then replaced by “children” of the survivors. Each child 922 

individual is constructed by randomly selecting two “survivor” individuals. Each of these two 923 

individuals gives half of its introductions (s,t) to the ”child” individual. For each “child” 924 

individual, there is also a chance that one of the sites will be randomly changed from the new 925 

set of available sites. We set this probability to 1% in our example, for each site. Finally, the 926 

next population is made up of the best individuals of the previous generation, and 927 

recombined elements from its best elements. The process is repeated for a number of 928 

generations (default of 30). At some point, we get an individual who will be optimized. 929 

Because the algorithm stems from a stochastic process, it is not guaranteed that the obtained 930 

solution is absolutely optimal, but rather an approximate solution. 931 
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 932 

 933 

 934 

Figure S2.1: Number of introductions found by the IESTR model using the genetic 935 

algorithm with different population size, with a survivor rate of 10% and 30 936 

generations, under the map condition of the case study (Experiment 3). 937 

 938 

Appendix S3: Guidance on the application of IESTR to real case studies  939 

 940 

 941 

Scale of the study Continental  Regional 

Size of the cells From 1km² to 20 km² From 100m² to 1km² 

Obtaining the map of presence 

of the species. 

Presences derived from the 

Global Biodiversity Information 

Network or any other presence 

database. IUCN species ranges 

Presences derived from the 

Global Biodiversity Information 

Network or any other presence 

database. IUCN species ranges 

Example of how to calculate 

suitability over time 

Species Distribution Models 

(Kearney & Porter, 2020), 

(Franklin, 2010b) ; (Merow, 

Dahlgren, et al., 2014) 

With the use of climatic data 

prediction at a local scale, 

edaphic data and a niche model. 

We can consider more local 

specificities that can drive the 

dynamic of the species in or 

niche model.  
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How to calculate the migration 

kernel 

If possible, find precise 

measurement of the potential 

speed of the species to set the 

migration Kernel. In most cases 

it is impossible, then use global 

values of speed of migration 

based on paleoecological studies. 

Use dispersal kernels based on 

species traits and/or available 

published information. 

Optimization goals examples Find the minimum cost of an 

assisted migration plan in a 

given region, that must ensure 

that the species covers X% of the 

surface area of a species in 

danger of extinction in that 

region. 

Find the minimum cost of an 

assisted migration plan to assist 

the migration of a species in the 

mountains to higher altitudes, 

with a minimal presence over 

Xkm², to prevent its extinction. 

Table S3.1 Examples of products and goals to apply to IESTR to assisted migration 942 

studies.  943 

 944 


