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Abstract

Physical and functional constraints on biological networks lead to complex topological pat-

terns across multiple scales in their organization. A particular type of higher-order network

feature that has received considerable interest is network motifs, defined as statistically reg-

ular subgraphs. These may implement fundamental logical and computational circuits and

are referred to as “building blocks of complex networks”. Their well-defined structures and

small sizes also enable the testing of their functions in synthetic and natural biological exper-

iments. Here, we develop a framework for motif mining based on lossless network compres-

sion using subgraph contractions. This provides an alternative definition of motif

significance which allows us to compare different motifs and select the collectively most sig-

nificant set of motifs as well as other prominent network features in terms of their combined

compression of the network. Our approach inherently accounts for multiple testing and cor-

relations between subgraphs and does not rely on a priori specification of an appropriate

null model. It thus overcomes common problems in hypothesis testing-based motif analysis

and guarantees robust statistical inference. We validate our methodology on numerical data

and then apply it on synaptic-resolution biological neural networks, as a medium for compar-

ative connectomics, by evaluating their respective compressibility and characterize their

inferred circuit motifs.

Author summary

Networks provide a useful abstraction to study complex systems by focusing on the inter-

play of the units composing a system rather than on their individual function. Network

theory has proven particularly powerful for unraveling how the structure of connections

in biological networks influence the way they may process and relay information in a vari-

ety of systems ranging from the microscopic scale of biochemical processes in cells to the

macroscopic scales of social and ecological networks. Of particular interest are small ste-

reotyped circuits in such networks, termed motifs, which may correspond to building

blocks implementing fundamental operations, e.g., logic gates or filters. We here present a

new tool that finds sets of motifs in networks based on an information-theoretic measure

of how much they allow to compress the network. This approach allows us to evaluate the
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collective significance of sets of motifs, as opposed to only individual motifs. We apply

our methodology to compare the neural wiring diagrams, termed “connectomes”, of the

tadpole larva Ciona intestinalis, the ragworm Platynereis dumerelii, and the nematode

Caenorhabditis elegans and the fruitfly Drosophila melanogaster at different developmental

stages.

Introduction

Network theory has highlighted remarkable topological features of many biological and social

networks [1–3]. Some of the main ones are the small world property [4–7], which refers to a

simultaneous high local clustering of connections and short global distances between nodes;

scale-free features, most notably witnessed by a broad distribution of node degrees [8–11];

mesoscopic, and in particular modular, structuring [12–14]; and higher-order topological fea-

tures [15], such as a statistical over-representation of certain types of subgraphs, termed net-
work motifs [16–18].

We here focus on network motifs. They were first introduced to study local structures in

social networks [19–21]. In biological networks, they are hypothesized to capture functional

subunits (e.g., logic gates or filters) and have been extensively studied in systems ranging from

transcription and protein networks to brain and ecological networks [2, 16–18, 22–24]. In con-

trast to most other remarkable features of biological networks, the well-defined structure and

small size of network motifs mean that their function may be probed experimentally, both in

natural [25, 26] and in synthetic experiments [25].

The prevailing approach to network motif inference involves counting or estimating the

frequency of each subgraph type, termed a graphlet, and comparing it to its frequency in ran-

dom networks generated by a predefined null model. Subgraphs that appear significantly more

frequently in the empirical network than in the random networks are deemed motifs. While

this procedure has offered valuable insights, it also suffers from several fundamental limita-

tions which can make it statistically unreliable [27–32] (see S1 Text for an overview). Addition-

ally, a flaw of testing-based approaches is that they cannot compare the significance of

different motifs. Candidate motifs are usually treated independently. With increasingly richer

and larger datasets, such methods thus risk detecting an exceedingly large amount of motifs

(see, e.g., S1 Fig), which defies the original intent behind motif analysis as a means to capture

essential, low-dimensional, mesoscopic properties of a network.

Information theory tells us that the presence of statistical regularities in a network makes it

compressible [33]. Inspired by this fact, we here propose a methodology, based on lossless

compression [34] as a measure of significance, that implicitly defines a generative model

through the correspondence between universal codes and probability distributions [33, 35].

Through the minimum description length (MDL) principle [35, 36], our method infers the set

of most significant motifs, as well as other node- and edge-level features, such as node degrees

and edge reciprocity, by measuring how much they collectively allow to compress the network.

We demonstrate how this approach allows to address the shortcomings of hypothesis testing-

based motif inference. First, it naturally lets us account for multiple testing and correlations

between different motifs. Furthermore, we can evaluate and compare even highly significant

collections of motifs. Finally, our method selects not only the most significant motif configura-

tion, but also node- and edge-level features, without needing to select the null model

beforehand.
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We first validate our approach on numerically generated networks with known absence or

presence of motifs. We then apply our methodology to discover microcircuit motifs in syn-

apse-resolution neuron wiring diagrams, the connectomes, of small animals which have

recently become available thanks to advances in electron microscopy techniques and image

segmentation [37–40]. We compare the compressibility induced by motif sets and other net-

work features found in different brain regions of different animals. We namely analyze the

connectome of Caenorhabditis elegans at different developmental stages, and the connectomes

of different brain regions of both larval and adult Drosophila melanogaster, in addition to the

complete connectomes of Platynereis dumerelii and larval Ciona intestinalis. We stress the

exhaustive aspect of this diverse dataset: these constitute all the animals for which the complete

anatomical, microscale wiring diagrams have presently been mapped. We find that all the con-

nectomes are compressible, implying significant non-random structure. We find that the com-

pressibility varies between connectomes, with larger connectomes generally being more

compressible. We infer motif sets in most connectomes, but we do not find significant evi-

dence for motifs in several of the smaller connectomes. The typical motifs tend to be dense

subgraphs. We compare several topological measures of the motif sets, which show high simi-

larity between connectomes, although with some significant differences.

Materials and methods

In this section, we develop our methodology for compression-based inference of network

motif sets. In “Graphlets and motifs”, we first brush up on graph theory basics. In “Subgraph

census”, we describe the subgraph census procedure deployed to list subgraph occurrences. In

“Compression, model selection, and hypothesis testing”, we briefly review the MDL principle

for model selection based on lossless compression. In “Graph compression based on subgraph

contractions” we develop our code, corresponding to a probabilistic model, for network motif

inference using subgraph contractions. In particular, we model a network with a prescribed

motif set as an expanded latent graph, where expansion points designate the subset of latent

nodes that embody motifs. In “Base codes and null models” we list the codes supporting the

latent graph description, as well as codes providing purely dyadic representations. The latter

serve as references that allow to quantify the significance of motif sets as compared to their

respective best-fitting motif-free null model. In “Optimization algorithm” we describe our sto-

chastic greedy optimization algorithm for selecting motif sets. Finally, in “Datasets” we present

the artificial networks used for numerical validation and the neural connectomes that serve as

real-world applications of our motif-based inference framework. All code and scripts are pub-

licly available at gitlab.pasteur.fr/sincobe/brain-motifs.

Graphlets and motifs

Network motif analysis is concerned with the discovery of statistically significant classes of

subgraphs in empirically recorded graphs. We here restrict ourselves to directed unweighted

graphs, but the concepts apply similarly to undirected graphs and may be extended to weighted

graphs [41, 42], time-evolving and multilayer graphs [43–46], and hypergraphs [47, 48]. As is

usual in motif analysis, we consider weakly connected subgraphs [16, 25]. This ensures that

the subgraph may represent a functional subunit where all nodes can participate in informa-

tion processing.

Let G ¼ ðN ; EÞ denote the directed graph we want to analyze. For simplicity in comparing

different representations of G, we consider G to be node-labeled. Thus, the nodes N ¼
ð1; 2; . . . ;NÞ constitute an ordered set. The set of edges, E � N �N indicates how the nodes

are connected. By convention, a link ði; jÞ 2 E indicates that i connects to j. Note that, since G
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is directed, the presence of ði; jÞ 2 E does not imply the existence of ðj; iÞ 2 E. We denote by

E ¼ jEj the number of edges. We only consider network data that form simple directed graphs,

where E does not contain repeated elements: this is the definition of a set. The model we pro-

pose, however, makes use of multigraphs where E is a multi-set, which may contain

repetitions.

A standard representation of a graph’s connectivity is its adjacency matrix—denoted A—

with entries given by Aij ¼ jfði0; j0Þ 2 E : ði0; j0Þ ¼ ði; jÞgj. If the graph is simple, then the adja-

cency matrix is boolean, i.e., Aij = 1 if ði; jÞ 2 E, otherwise Aij = 0. When dealing with a multi-

graph, entries of the adjacency matrix take non-negative integer values, i.e., Aij� 1 if ði; jÞ 2 E.

An induced subgraph g = (ν, �) of G is the graph formed by a given subset n 2 N of the

nodes of G and all the edges � ¼ fði; jÞ : i; j 2 n ^ ði; jÞ 2 Eg connecting these nodes in G.

An undirected graph Gun is called connected if there exists a path between all pairs of nodes

in Gun. A directed graph G is weakly connected if the undirected graph obtained by replacing

all the directed edges in G with undirected ones is connected.

Two graphs g = (ν, �) and g0 = (ν0, �0) are isomorphic if there exists a permutation σ of the

node indices of g0, such that the edges in the graphs perfectly overlap, i.e., (i, j) 2 � if and only if

(σ(i), σ(j)) 2 �0. A graphlet, denoted by α, is an isomorphism class of weakly connected,

induced subgraphs [49], i.e., the set α = {g : gffi gα} of all graphs that are isomorphic to a given

graph, gα.

Finally, a motif is a graphlet that is statistically significant. Traditionally, a significant graph-

let is defined as one whose number of occurrences in G is significantly higher than in random

graphs generated by a null model [16]. Instead, we propose a method that selects a set of graph-

lets based on how well they allow to compress G. This lets us treat motif mining as a model

selection problem through the MDL principle as we detail below.

Subgraph census

The first step of a motif inference procedure is to perform a subgraph census, consisting in

counting the graphlet occurrences. Subgraph census is computationally hard and many meth-

ods have been developed to tackle it [50].

For graphs with a small number of nodes, e.g., hundreds of nodes, we implemented the par-

allelized FaSe algorithm [51], while for larger graphs, i.e., comprising a thousand nodes or

more, we rely on its stochastic version, Rand-FaSe [52]. The algorithms use Wernicke’s ESU

method (or Rand-ESU for large graphs) [53] for counting graphlet occurrences. It employs a

trie data structure, termed g-trie [54], to store the graphlet labels in order to minimize the

number of computationally costly subgraph isomorphism checks.

Since our algorithm relies on contracting individual subgraphs, we also need to store the

location of each subgraph in G. Due to the large number of subgraphs, the space required to

store this information may exceed working memory for larger graphs or graphlets (see discus-

sion in S2 Text). Our most computationally challenging application—inference of motifs

amongst all 3- to 5-node graphlets in the right mushroom body of the adult Drosophila con-

nectome—requires storing 1.3 TB of data. In such cases, we write heavy textfiles of subgraph

lists, one per graphlet, on the computer static memory, which are then retrieved individually

from disk, at inference time (see S3 Text).

All scripts were run on the HPC cluster of the Institut Pasteur, but the less computationally

challenging problem of inferring 3- to 4-node motifs can be run on a local workstation (see S2

Text).
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Compression, model selection, and hypothesis testing

The massive number of possible graphlet combinations and the correlations between graphlet

counts within a network make classic hypothesis testing-based approaches for motif mining

ill-suited for discovering motif sets. For example, there are approximately 10 000 different five-

node graphlets and exponentially more possible combinations of such graphlets, making mul-

tiplicity a critical problem for hypothesis testing. Additionally, these approaches define motif

significance by comparison with a random graph null model, and the results may depend on

the choice of null model [27, 29] (see “Numerical validation” in the results below). In the con-

text of motif mining, this choice can lead to ambiguities [27, 29, 30], thus rendering the analy-

sis unreliable.

To address these problems, we cast motif mining as a model selection problem. We wish to

select as motifs the multiset of graphlets, S∗
¼ ½a∗� that, together with a tractable dyadic graph

model, provides the most adequate model for G. The minimum description length (MDL)

principle [35] states that, within an inductive inference framework with finite data, the most

faithful representation of the observed system is given by the model that leads to the highest

compression of the data—that is, of minimum codelength. It relies on an equivalence between

codelengths and probabilities [33] and formalizes the well-known Occam’s razor, or principle

of parsimony. It is similar to Bayesian model selection and can be seen as a generalization of it

[36].

To each dataset, model and parameter values, we associate a unique code, i.e., a label that

identifies one representation. The code should be lossless, which means full reconstruction of

the data from the compressed representation is possible [33, 35]. In practice, we are not inter-

ested in finding an actual code, but only in calculating the codelength of an optimal code [33],

corresponding to our model.

Suppose we know the generative probability distribution of G, Pθ, parameterized by θ.

Then, we can encode G using a code whose length is equal to the negative log-likelihood [35],

LyðGÞ ¼ � log PyðGÞ; ð1Þ

where log denotes the base-2 logarithm. (Note that an actual code would be between 1 to 2 bits

longer than Eq (1) since real codewords are integer-valued and not continuous [35]). When

the correct model and its parameters are unknown beforehand, we must encode both the

model and the graph. To do this, we consider two-part codes, and, more generally, multi-part

codes (see below). In a two-part code, we first encode the model and its parameters, using L(θ)

bits, and then encode the data, G, conditioned on this model, using −log Pθ(G) bits. This results

in a total codelength of

LðG; yÞ ¼ � log PyðGÞ þ LðyÞ: ð2Þ

With multi-part codes, we encode a hierarchical model following the same schema, where

we first encode the model, then encode latent variables conditioned on the model, and then

encode the data conditioned on the latent variables and the model.

When performing model selection, we consider a predefined set of models,

M ¼ fPy : y 2 Yg, and we look for the one that, in an information-theoretic sense, best

describes G. Following the MDL principle we select the parametrization θ* 2 Θ that minimizes

the description length,

y
∗
¼ argmin

y2Y
LðG; yÞ: ð3Þ

Note that the second term in Eq (2), L(θ), quantifies the model complexity, which measures,

in bits, the volume for storing the model parameters—this is a lossless encoding. Thus, one
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must strike a balance between model likelihood and model complexity to minimize the

description length, inherently penalizing overfitting.

While we focus on model selection, we also provide the absolute compression of the opti-

mal model as an indicator of statistical significance. The link between compression and statisti-

cal significance is based on the no-hypercompression inequality [35]. It states that the

probability that a given model, different from the true generating model, compresses the data

more than the true model is exponentially small in the codelength difference. Formally, given

a dataset G (e.g., a graph) drawn from the distribution P0 and another description Pθ, then

P0½� log P0ðGÞ þ log PyðGÞ � K� � 2� K : ð4Þ

By identifying P0 with a null model and Pθ with an alternative model, the no-hypercompres-

sion inequality thus provides an upper bound on the p-value, i.e., p� 2−K. Note, however, that

the above relation is not guaranteed to be conservative for composite null models (such as the

configuration models that we consider below) [36, 55].

Graph compression based on subgraph contractions

In practice, we compress the input graph by iteratively performing subgraph contractions each

chosen from a set of possible graphlets, extending the approach of Bloem and de Rooij [34]

which focused on a single graphlet. The model describes G by a reduced representation, a mul-

tigraph H, with N(H)< N(G) and E(H) < E(G), in which a subset V � N ðHÞ of nodes are

marked as supernodes, each formed by contracting a subgraph of G into a single node (Fig 1A).

We let Γ designate a predefined set of graphlets, which is the set of all graphlets we are inter-

ested in. In the following, we will generally consider all graphlets from three to five nodes—in

which case |Γ| = 9579—but any predefined set of graphlets, or even a single graphlet, may be

used. We define S ¼ ½a� as a multiset of graphlets, corresponding to the subgraphs in G that

we contracted to obtain H. We define A ¼ fag as the set containing the unique elements of S
and let ma ¼ j½b 2 S : b ¼ a�j be the number of repetitions of α in S. We finally let Pϕ desig-

nate a dyadic random graph model, which is used to encode H. We consider four possible

such base models (see Fig 1B and “Base codes and null models” below).

The full set of parameters and latent variables of our model is y ¼ fH; �;S;V;Gg, and its

codelength can be decomposed into four terms,

LðG; yÞ ¼ LðG;SÞ þ LðH; �Þ þ LðVjH;SÞ þ LðGjH;V;S;GÞ ð5Þ

where (i) LðG;SÞ is the codelength for encoding the motif set; (ii) L(H, ϕ) is the codelength

needed to encode the reduced multigraph H using a base code corresponding to Pϕ; (iii)

LðVjH;SÞ accounts for encoding which nodes of H are supernodes and to which graphlets

they correspond (i.e., their colors, Fig 1A); (iv) LðGjH;V;S;GÞ corresponds to the information

needed to reconstruct G from H (node labels, the orientations of the contracted subgraphs,

and how the subgraph’s nodes are wired to their respective external neighborhoods, see Fig 1C

and 1D). We detail each of the four terms in turn.

The first term in Eq (5), LðG;SÞ is given by

LðG;SÞ ¼
X

a2A

log jGj þ LNðjGjÞ þ
X

a2A

logmmax þ LNðmmaxÞ; ð6Þ

where mmax ¼ maxa2A ma is the maximal number of repetitions of any of the graphlets in A,

and LNðnÞ ¼ log½nðnþ 1Þ� is the codelength needed to encode an integer [35]. The first term

in Eq (6) is the codelength needed to encode the identity of each inferred motif. Since there are

|Γ| possible graphlets, this requires log |Γ| bits per motif. The second term is the cost of
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encoding the number |Γ|. The third term is the cost of encoding the number of times each of

the motifs appears, requiring log mmax bits per motif. The fourth term is the cost of encoding

mmax.

The second term in Eq (5), L(H, ϕ), depends on the base model used to encode H. We con-

sider several models and detail their codelengths in the “Base codes and null models” section

below.

The third term of Eq (5) is equal to

LðVjH;SÞ ¼ log
NðHÞ
jSj

� �

þ log
jSj!
Q

a
ma!

; ð7Þ

where the first part corresponds to the cost of labeling jSj nodes of H as supernodes—equal to

the logarithm of the number of ways to distribute the labels—and the second part corresponds

Fig 1. Graphlet-based graph compression. (A) Reduced representation of a graph G obtained by contracting subgraphs into colored supernodes
representing the subgraphs. (In this example, two different graphlets, colored in blue and green, are selected) The cost for encoding the reduced

representation can be split into two parts: (i) encoding the multigraph H obtained by contracting subgraphs in G, L(H, ϕ) (See “Base codes and null

models” section), and (ii) encoding which nodes in H are supernodes and their color, designating which graphlet they represent, LðVjH;SÞ [Eq (7)]. (B)

Hierarchy of the four different dyadic graph models [56] used as base codes. Each node in the diagram represents a model. An edge between two nodes

indicates that the upper model is less random than the lower. The models are: the Erdős-Rényi model P(N,E) (cyan); the directed configuration model

P kþ ;k�ð Þ (orange); the reciprocal Erdős-Rényi model PðN;Em ;EdÞ (pink); and the reciprocal configuration model P κm ;κþ ;κ�ð Þ (yellow). (C-E) Encoding the

additional information necessary for lossless reconstruction of G from H, incurs a cost LðGjH;V;S;GÞ (Eq (8)) that is equal to the sum of three terms

for each supernode, corresponding to encoding the labels of the nodes inside the graphlet, i.e., the graphlet’s orientation (C), and how the graphlet’s

nodes are wired to other nodes in H (D,E). (C) Encoding the orientation of a graphlet is equivalent to specifying its automorphism class. For the

graphlet shown in the example there are 3 possible distinguishable orientations, leading to a codelength of log 3. (D) Encoding the connections between

a simple node and a supernode involves designating to which nodes in the graphlet the in- and out-going edges to the supernode are connected. In this

example, there are 4

2

� �
possible wiring configurations for both the in- and out-going edges, leading to a wiring cost of log 36 (see Eq (9)). (E) Encoding

the wiring configuration of the edges from a supernode i to another supernode j involves designating the edges from the group of nodes of supernode i
to the group of nodes in j in the bipartite graph composed of the two groups (the edges from j to i are accounted for in the encoding of j). Here, there are

20

1

� �
such configurations, leading to a rewiring cost of log20 bits.

https://doi.org/10.1371/journal.pcbi.1012460.g001
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to the labeling of the supernodes to show which graphlet they each correspond to—equal to

the logarithm of the number of distinguishable ways to order S.

The fourth and last term in Eq (5) is given by

LðGjH;V;S;GÞ ¼ log
NðGÞ!
NðHÞ!

þ
X

a

ma log
na!

jAutðaÞj
þ
X

is2V

‘rewðis;HÞ: ð8Þ

Here, the first term is the cost of recovering the original node labeling of G from H. The second

term encodes the orientation of each graphlet to recover the subgraphs found in G (Fig 1C)—

for a given graphlet α (consisting of nα nodes) there are nα!/|Aut(α)| distinguishable orienta-

tions, where |Aut(α)| denotes the size of the automorphism group of α. The third term is the

rewiring cost which accounts for encoding how edges in H involving a supernode are con-

nected to the nodes of the corresponding graphlet. Denoting by ns the number of nodes in the

subgraph s that the supernode is replaces, the rewiring cost for one supernode is given by

‘rewðis;HÞ ¼
X

j2N ðHÞnV

log
ns

Aisj

 !
ns

Ajis

 !

þ
X

js0 2V

log
nsns0

Aisjs0

 !

; ð9Þ

where the first term is the cost for designating which of the possible wiring configurations

involving the nodes inside a supernode and adjacent regular nodes corresponds to the configu-

ration found in G (Fig 1D), and the second term is the cost of encoding the wiring configura-

tions for edges from the nodes of the given supernode to the nodes of its adjacent supernodes

(Fig 1E).

Base codes and null models

The latent graph code. To encode the latent reduced graph H, we use two-part codes of

the form L(H, ϕ) = −log Pϕ(H) + L(ϕ) (Eq (2)), where L(ϕ) encodes the parameters of the cho-

sen dyadic random graph model—the model’s parametric codelength—and Pϕ(H) is a uniform

probability distribution over a multigraph ensemble conditioned on the value of ϕ. Note that,

while G is a simple graph, the subgraph contractions may generate multiple edges between the

same nodes in H, which consequently is a multigraph. The models Pϕ correspond to maximum

entropy microcanonical graph ensembles [56–58], i.e., uniform distributions over graphs with

certain structural properties ϕ(H), e.g., the node degrees, set to match exactly a given value,

ϕ(H) = ϕ*. The microcanonical distribution is given by

P�ðHÞ ¼

1

O�

for �ðHÞ ¼ �∗;

0 elsewise;

8
><

>:
ð10Þ

where the normalizing constant Oϕ = |{H: ϕ(H) = ϕ*}| is known as the microcanonical parti-

tion function. The codelength for encoding H using the model Pϕ can be identified with the

microcanonical entropy,

� log P�ðHÞ ¼ logO� � S�; ð11Þ

leading to a total codelength for encoding the model and the reduced graph of

LðH; �Þ ¼ S�ðHÞ þ Lð�ðHÞÞ: ð12Þ

As base codes we consider four different paradigmatic random graph models, namely the

Erdős-Rényi (ER) model, the configuration model (CM), and their reciprocal versions (RER
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and RCM, respectively). For the ER model, the parameters are the number of nodes and edges,

while the configuration model constrains the nodes’ in- and out-degrees and their reciprocal

versions additionally constrain the number of reciprocated edges. Both the degree distribu-

tions and the edge reciprocity have been found to be significantly non-random in biological

networks, and they have been shown to influence the networks’ topology and function [8–11,

26, 40, 59–62]. Thus, it is natural to include these features in the base models, and the corre-

sponding models have been widely employed as null models for hypothesis testing-based

motif inference [2, 3, 16, 17, 21–23, 25].

Microcanonical models are defined by the features of a graph that they keep fixed [56] (see

Eq (10)). We list them for each of the four models below and we give in Table 1 expressions for

their entropy Sϕ and their parametric codelength L(ϕ) (see Section A in S4 Text for details).

• The Erdős-Rényi model (ER) fixes the number of nodes and edges, ϕ = (N, E).

• The configuration model (CM) fixes the nodes’ in- and out-degrees (the number of incom-

ing and outgoing edges), ϕ = (k+, k−).

• The reciprocal Erdős-Rényi model (RER) fixes the number of nodes, the number of recip-

rocal edges, and the number of non-reciprocated edges, ϕ = (N, Em, Ed). Formally, for a

Table 1. Base- and null-model codelenghts. The codelength of a model is equal to L(H, ϕ) = Sϕ + L(ϕ) (Eq (12)), with

the entropy Sϕ and the model complexity L(ϕ) given by the appropriate expressions in the table. The entropy of multi-

graph models are given in the first four lines and the entropy of the simple graph models are given in the next four.

The parametric complexity of the models is the same for multi- and simple graphs and are listed in the following four

lines. Finally, expressions for common parametric codelengths are given in the last four lines. For multigraph codes,

the asymmetric and symmetric parts of the adjency matrix are denoted by Aasym
ij ¼ maxðAij � Aji; 0Þ and

Asym
ij ¼ minðAij;AjiÞ, respectively. For reciprocal models (RER and RCM), Ed ¼

P
i;j A

asym
ij is the number of non-recip-

rocated edges and Em ¼
P

i<j A
sym
ij is the number of reciprocated edges. For the configuration model (CM), kþi ¼P

jAij denotes the out-degrees and k�i ¼
P

j Aji the in-degrees. For the reciprocal CM (RCM), kþi ¼
P

j A
asym
ij and

k�i ¼
P

j A
asym
ji are the non-reciprocated out- and in-degrees, and km

i ¼
P

j A
sym
ij are the reciprocal degrees. (Details

can be found in S4 Text).

Model Multigraph entropy Sϕ

ER E log½NðN � 1Þ� � log E!Q
i6¼j

Aij !

RER ðEm þ EdÞ log½NðN � 1Þ� � log ð2EmÞ!!Ed !Q
i<j

Asym
ij !Aasym

ij !Aasym
ji !

CM log E!Q
i
kþi !k�i !

�
P

i6¼j log Aij!

RCM log ð2E� 1Þ!!Q
i
kmi !kþi !k�i !

�
P

i<j log Asym
ij !Aasym

ij !Aasym
ji !

Simple graph entropy Sϕ

ER log NðN� 1Þ

E

� �

RER log ½NðN� 1Þ=2�!

½NðN� 1Þ=2� Em � Ed �!Em !Ed !
þ Ed

CM log E!Q
i
kþi !k�i !

� 1

2 ln 2

hkþi 2ihk�i 2i

hkþi ihk
�
i i

RCM log ð2EmÞ!!Q
i
kmi !
þ log Ed !Q

i
kþi !k�i !

� 1

2 ln 2

1

2

hðkmi Þ
2i2

hkmi i
2 þ

hðkþi Þ
2ihðk�i Þ

2i

hkþi ihk
�
i i
þ
hkþi k

�
i i

2

hkþi ihk
�
i i
þ
hkmi k

þ
i ihk

m
i k
�
i i

hkmi ihk
þ
i i

� �

Model complexity L(ϕ)

ER LNðNÞ þ LNðEÞ
RER LNðNÞ þ LNðEmÞ þ LNðEdÞ

CM Lseq(k+) + Lseq(k−)

RCM Lseq(κm) + Lseq(κ+) + Lseq(κ−)

(Continued)
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simple graph, a (non-)reciprocated edge is conveyed by (a)symmetric entries of the adja-

cency matrix. That is, an edge (i, j) is reciprocal if Aij = 1 and Aji = 1 and non-reciprocated if

Aij = 1 and Aji = 0. The definition for multigraphs extends this idea to integer counts by

defining the reciprocal part of a multiedge as the minimum of Aij and Aji and the non-recip-

rocated part as the rest [63] (details can be found in Section A in S4 Text).

• The reciprocal configuration model (RCM) fixes the nodes’ reciprocal degrees—the num-

ber of reciprocal edges each node partakes in—as well as the non-reciprocated in- and out-

degrees, � ¼ κm; κþ; κ�ð Þ.

The different base models respect a partial order in terms of how random they are, i.e., how

large their entropy is (Fig 1B) [56]. We stress that the model with the smallest entropy does not

necessarily provide the shortest description of a graph H due to its higher model complexity

(see Section A in S4 Text).

Motif-free reference codes. To assess the significance of inferred motif sets, we compare

the motif-based graph codes to their purely dyadic counterparts. In Table 1, we also list expres-

sions for the entropy of dyadic simple graph codes for the ER, CM, RER, and RCM models

(see Section A in S4 Text for details and Section B in S4 Text for a derivation of the entropy of

the simple graph RCM). The parametric complexity of the simple graph models are identical

to the ones of the multigraph base models. Including these purely dyadic codes in the set of

possible models M ensures that our motif inference is conservative and does not find spurious

motifs in random networks (see “Numerical validation” in Results below).

Optimization algorithm

To infer a motif set, we apply a greedy iterative algorithm that contracts the most compressing

subgraph in each iteration. Since the number of n-node subgraphs grows super-exponentially

in n, it is not convenient to consider all subgraphs at once. Thus, we developed a stochastic

algorithm that randomly samples a mini-batch of subgraphs in each iteration and contracts

the one that compresses the most among these (Fig 2). We give in Algorithms 1–4 pseudocode

for its implementation and describe below each of the main steps involved.

Algorithm 1 Greedy motif inference
Input: Graph G, graphlet set Γ, base model P�, subgraph minibatch size
B
1: t  0
2: H0  G
3: S0;V0  ;; ;

4: y0  ðH0; �ðH0Þ;S0;V0;GÞ

5: Θ  {θ0}
6: C SUBGRAPHCENSUSðG;GÞ
7: while C is not ; do

Table 1. (Continued)

Parametric codelengths

Integer LNðnÞ ¼ nðnþ 1Þ

Sequence LseqðxÞ ¼ minfLUðxÞ; Ll¼1ðxÞ; Ll¼1=2ðxÞg þ log 3þ LNðnÞ, with n = |x|

Uniform LUðxÞ ¼ n log ðD � dþ 1Þ þ LNðDÞ þ LNðdÞ, with n = |x|, Δ = max(x) and δ = min(x)

Dirichlet-

multinomial
Ll xð Þ ¼ � log G Lð Þ

G nþLð Þ
þ L

l
log G lð Þ �

P

d � m � D
m 2 N

log G lþ
Pn

i¼1
d xi;mð Þ

� �
, with n = |x|, Δ =

max(x), δ = min(x), and Λ = (Δ − δ + 1)λ

https://doi.org/10.1371/journal.pcbi.1012460.t001
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8: t  t + 1
9: C;B SUBGRAPHBATCHESðB;G; CÞ
10: a;sa  MOSTCOMPRESSINGSUBGRAPHðG;B; yt� 1Þ

11: Ht;St;Vt  SUBGRAPHCONTRACTIONðHt� 1;Vt� 1;St� 1; a;saÞ
12: yt  ðHt; �ðHtÞ;St;Vt;GÞ

13: Θ  Θ[{θt}
14: end while
Output: argminθ2Θ{L(G,θ)}

Algorithm 2 Sample subgraph batches
1: function SUBGRAPHBATCHESðB;G; CÞ
2: B ;
3: for α 2 Γ do
4: Ba  ;

5: while jBaj < B and |Sα| > 0 do
6: sa  SAMPLEGRAPHLETINSTANCEðCaÞ
7: if NONOVERLAPPINGSUBGRAPH(H,sα) then
8: Ba  Ba [ fsag
9: else Ca  Ca n fsag
10: end if

Fig 2. Greedy optimization algorithm. (A) Illustration of a single step of the greedy stochastic algorithm. The putative compression ΔL(G, θ, s) that would be obtained

by contracting each of the subgraphs in the minibatch is calculated, and the subgraph contraction resulting in the highest compression is selected (highlighted in blue).

(B) Example of motif set inferred in the connectome of the right hemisphere of the mushroom bodies (MB right) of the Drosophila larva. (C) Evolution of the codelength

during a single algorithm run. The algorithm is continued until no more subgraphs can be contracted. The representation θ* = θt with the shortest codelength is selected;

here, after the 31st iteration (indicated by a vertical black dashed line). The horizontal orange dashed line indicates the codelength of the corresponding simple graph

model without motifs (see Motif-free reference codes). (D) The algorithm is run a hundred times for each dyadic base model and the most compressing model ŷ is

selected. Histograms represent the codelengths of models with motifs after each run of the greedy algorithm; colors correspond to the different base models (blue: ER

model, orange: configuration model, pink: reciprocal ER model, yellow: reciprocal configuration model, see Fig 1B and Table 1); vertical dashed lines represent the

codelengths of models without motifs, and the black dashed line indicates the codelength of the shortest-codelength model—here the configuration model with motifs.

https://doi.org/10.1371/journal.pcbi.1012460.g002
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11: end while
12: B B [ Ba

13: Ca  Ca n Ba

14: end for
15: return C;B
16: end function
1: function SAMPLEGRAPHLETINSTANCEðCaÞ
2: return sα, a subgraph sampled uniformly from Ca
3: end function
1: function NONOVERLAPPINGSUBGRAPH(H,sα)
2: b  True
3: for i 2 sα do
4: if i=2N ðHÞ then
5: b  False ▷ Delete node labels of already

contracted subgraphs
6: end if
7: end for
8: return b
9: end function

Algorithm 3 Find most compressing subgraph.
1: function MOSTCOMPRESSINGSUBGRAPH(G,B; y)
2: s∗  argmaxs2BfDLðG; y;sÞg ▷see Section C in S4 Text.
3: Let α 2 Γ be the graphlet such that gα ffi s*.
4: return α, s*
5: end function

Algorithm 4 Subgraph contraction
1: function SUBGRAPHCONTRACTIONðH; V;S; a;saÞ
2: for ði;jÞ 2 EðsaÞ do
3: Aij(H) 0
4: end for
5: N ðHÞ  N ðHÞ n sa
6: Let iα be the label of a new supernode
7: N ðHÞ  N ðHÞ [ fiag
8: V  V [ fiag
9: S  S [ fag
10: for l 2 @sα do
11: AialðHÞ  0

12: for i 2 N ðsaÞ do
13: AialðHÞ  AialðHÞ þ AilðHÞ
14: end for
15: end for
16: return H;V;S
17: end function

Subgraph census. (SUBGRAPHCENSUS in Algorithm 1). We first perform a subgraph census

to provide a set of lists of the graphlet occurrences in G, C ¼ fCa : a 2 Gg with Ca ¼ fg �
G½n� : n � N ^ g ’ ag (see the “Subgraph census” section above). We consider in the

“Results” section below Γ to be all graphlets of three, four, and five nodes, but any predefined

set of graphlets may be specified in the algorithm.

Once the subgraph census is completed, we perform stochastic greedy optimization by iter-

ating the following steps.

Subgraph sampling. (SUBGRAPHBATHCHES, Algorithm 2). In each step, the algorithm sam-

ples a minibatch of subgraphs, Bt, consisting of B subgraphs per graphlet selected uniformly

from C. The SUBGRAPHBATHCHES function also discards subgraphs in C that overlap with already

contracted subgraphs. Indeed, from a biological point of view, overlapping supernodes
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correspond to nested circuit motifs, whose significance differs from the standard circuit

motifs, where each node is identified with a single unit (e.g., a neuron). Furthermore, this con-

straint guarantees a faster algorithmic convergence by progressively excluding many sub-

graphs candidates. The number of subgraphs per graphlet, B, is a hyperparameter of the

algorithm. We tested different values of B and found similar results for values in the range 10–

100 (see S8 Fig).

The check of overlap is performed by a boolean sub-function NONOVERLAPPINGSUBGRAPH (see

Algorithm 2). It asserts whether a node of a subgraph s is already part of a supernode of Ht−1.

Finding the most compressing subgraph. (MOSTCOMPRESSINGSUBGRAPH, Algorithm 3).

We calculate for each subgraph s 2 Bt how much it would allow to further compress G com-

pared to the representation of the previous iteration, i.e., the codelength difference

DLðG; yt; sÞ ¼ LðG; ytÞ � LðG; ~ytðsÞÞ, where ~ytðsÞ represents the putative parameter set after

contraction of s (see Section C in S4 Text for expressions of codelength differences). The sub-

graph s* for which ΔL is maximal is selected for contraction.

Subgraph contraction. (SUBGRAPHCONTRACTION, Algorithm 4). The reduced graph Ht is

obtained by contraction of the subgraph s*� sα (isomorphic to the graphlet α) in Ht−1. The sub-

graph contraction consists of deleting in Ht−1 the regular nodes and simple edges of sα, and replac-

ing them with a supernode iα that connects to the union of the neighborhoods of the nodes of sα,

denoted @sα, through multiedges. We refer to @sα as the subgraph’s neighborhood, which, by

design, is identical to the supernode’s neighborhood. Nodes of sα that share neighbors will result

in the formation of parallel edges, affecting the adjacency matrix according to Aia j
¼
P

i2sa
Aij.

Stopping condition and selection of most compressed representation. At each iteration

t, the algorithm generates a compressed version of G, parametrized by θt. We run the algo-

rithm until no more subgraphs can be contracted, i.e., until there are no more subgraphs that

are isomorphic to a graphlet in Γ and do not involve a supernode in Ht. We then select the

representation that achieves the minimum codelength among them (Fig 2C),

y
∗
¼ argminfLðG; ytÞg: ð13Þ

Repeated inferences for each base code. Since different base models lead to different

inferred motif sets (see S2 Fig), we run the optimization algorithm independently for each base

model, and since the algorithm is stochastic, we run it 100 times per connectome and base

model to gauge its variability and check that the inference is reasonable (Fig 2D). We select the

model ŷ with the shortest codelength among all these, and its corresponding motif set if the

best model is one with motifs,

ŷ ¼ argminfLðG; y∗Þg: ð14Þ

Datasets

Artificial datasets.

Randomized networks. To quantify the propensity of our approach and of hypothesis test-

ing-based methods to infer spurious motifs (i.e., false positives), we apply them to random net-

works without motifs. To generate random networks corresponding to the different null

models, we apply the same Markov-chain edge swapping procedures [59] used for hypothesis-

testing based motif inference (see more details in S1 Text).

Planted motif model. To test the ability of our method to detect motifs that genuinely are

present in a network (i.e., true positives), we generated random networks according to a
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planted motif model which generates networks with placed motifs by inverting our compres-

sion algorithm according to the following steps: (i) generate a random latent multigraph H
according to the ER model; (ii) designate at random a predetermined number of the nodes as

supernodes; (iii) expand the supernodes by replacing them with the motif of choice, oriented

at random and with its nodes wired at random to the supernode’s neighbors in H.

Empirical datasets.

We apply our method to infer microcircuit motifs in synapse-resolution neural connectomes

of different small animals obtained from serial electron microscopy (SEM) imaging (see

Table 2 for descriptions and references of the datasets). All input raw and processed connec-

tomes can be found in our GitLab project, in the data folder(gitlab.pasteur.fr/sincobe/brain-

motifs/-/tree/master/data).

Results

Numerical validation

To test the validity and performance of our motif inference procedure, we apply it to numeri-

cally generated networks with a known absence or presence of higher-order structure in the

form of motifs (see “Artificial datasets”in Methods).

Table 2. Connectome datasets. For each connectome, we list its number of non-isolated nodes, N, its number of directed edges, E, its density ρ = E/[N(N − 1)], the features

of the most compressing model for the connectome, its compressibility ΔL*, the difference in codelengths between the best models with and without motifs, ΔLmotifs, and

the reference to the original publication of the dataset. The absolute compressibility ΔL*measures the number of bits that the shortest-codelength model compresses com-

pared to a simple Erdős-Rényi model (Eq (15)). The difference in compression with and without motifs, ΔLmotifs, quantifies the significance of the inferred motif sets as the

number of bits gained by the motif-based encoding compared to the optimal motif-free, dyadic model. For datasets where no motifs are found, this column is marked as

“N/A”. All datasets are available at https://gitlab.pasteur.fr/sincobe/brain-motifs/-/tree/master/data.

Species Connectome N E ρ Best model ΔL* ΔLmotifs Ref.

C. elegans Head Ganglia—Hour 0 187 856 0.025 RCM 354 N/A [39]

C. elegans Head Ganglia—Hour 5 194 1108 0.030 RCM 494 N/A [39]

C. elegans Head Ganglia—Hour 8 198 1104 0.028 RCM 626 N/A [39]

C. elegans Head Ganglia—Hour 15 204 1342 0.032 RCM 722 N/A [39]

C. elegans Head Ganglia—Hour 23 211 1801 0.041 RCM 957 N/A [39]

C. elegans Head Ganglia—Hour 27 216 1737 0.037 RCM 939 N/A [39]

C. elegans Head Ganglia—Hour 50 222 2476 0.050 RCM 1428 N/A [39]

C. elegans Head Ganglia—Hour 50 219 2488 0.052 RCM 1562 N/A [39]

C. elegans Hermaphrodite—nervous system 309 2955 0.031 RCM+Motifs 2167 286 [64]

C. elegans Hermaphrodite—whole animal 454 4841 0.024 CM+Motifs 7605 2661 [65]

C. elegans Male—whole animal 575 5246 0.016 CM+Motifs 8979 2759 [65]

Drosophila Larva—left AL 96 2142 0.235 RCM 1550 N/A [66]

Drosophila Larva—right AL 96 2218 0.244 RCM 1527 N/A [66]

Drosophila Larva—left & right ALs 174 4229 0.140 RCM+Motifs 4117 105 [66]

Drosophila Larva—left MB 191 6449 0.167 CM+Motifs 8050 1369 [67]

Drosophila Larva—right MB 198 6499 0.178 CM+Motifs 8191 1529 [67]

Drosophila Larva—left & right MBs 387 16956 0.114 RCM+Motifs 23764 5348 [67]

Drosophila Larva—motor neurons 426 3795 0.021 CM 4762 N/A [68]

Drosophila Larva—whole brain 2952 110140 0.013 RCM+Motifs 149521 28793 [40]

Drosophila Adult—right AL 761 36901 0.064 RCM+Motifs 76007 61 [69]

Drosophila Adult—right LH 3008 100914 0.011 RCM+Motifs 109473 583 [69]

Drosophila Adult—right MB 4513 247863 0.012 RCM+Motifs 429773 13657 [69]

C. intestinalis Larva—whole brain 222 3085 0.063 RCM+Motifs 3805 263 [70]

P. dumerelii Larva—whole brain 2728 11433 0.002 RCM+Motifs 15733 325 [71]

https://doi.org/10.1371/journal.pcbi.1012460.t002

PLOS COMPUTATIONAL BIOLOGY Compression-based inference of network motif sets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012460 October 10, 2024 14 / 29

https://gitlab.pasteur.fr/sincobe/brain-motifs/-/tree/master/data
https://gitlab.pasteur.fr/sincobe/brain-motifs/-/tree/master/data
https://gitlab.pasteur.fr/sincobe/brain-motifs/-/tree/master/data
https://doi.org/10.1371/journal.pcbi.1012460.t002
https://doi.org/10.1371/journal.pcbi.1012460


Null networks. We first test the stringency of our inference method and compare it to

classic, hypothesis testing-based approaches. We test whether they infer spurious motifs in

random networks generated by the four dyadic random graph models (See “Randomized net-

works” in the Methods). Since these random networks do not have any non-random higher-

order structure, a trustworthy inference procedure should find no, or at least very few, signifi-

cant motifs.

Hypothesis testing-based approaches to motif inference consist of checking whether each

graphlet is significantly over-represented with respect to a predefined null model (we detail the

procedure in S1 Text). This approach is highly sensitive to the choice of null model and infers

spurious motifs if the chosen null model does not correspond to the generative model (Fig

3A–3D). Nevertheless, when the chosen null model is the generative model, almost no

Fig 3. Performance of compression-based motif inference on numerically generated networks. (A-D) Number of spurious motifs inferred using our compression-

based method with MDL-based model selection and using hypothesis testing with four different null models in random networks generated from the same four null

models: (A) the Erdős-Rényi model (ER); (B) the configuration model (CM); (C) the reciprocal ER model (RER); and (D) the reciprocal CM (RCM). The x-axis labels

indicate which method was used for motif inference: our method (MDL) or classic hypothesis testing with each of the four null models as reference. The corresponding

generative model is highlighted in boldface. To make hypothesis testing as conservative as possible, we applied a Bonferroni correction, which multiplies the raw p-values

by |Γ| = 9576 and we set the uncorrected significance threshold to 0.01. The random networks in (A-D) are all generated by fixing the values of each null model’s

parameters to those of the Drosophila larva right MB connectome (e.g., N = 198 and E = 6499 for the ER model). (E-H) Ability of our method to correctly identify a placed

graphlet as a motif as a function of the number of times it is repeated, mα. We show results for two selected 5-node graphlets: an hourglass structure (top row) and a clique

(bottom row). The clique is the densest graphlet and is totally symmetric (the number of orientations, i.e., the number of non-automorphic node permutations, is equal to

one). The hourglass has intermediary density, ρα = 2/5, and symmetry, with 60 non-automorphic orientations within a possible range of 1 to 5! = 120. The generated

networks in (E-H) contain N = 300 nodes and an edge density of either ρ = E/N(N − 1) = 0.025 (E,G) or ρ = 0.1 (F,H). Each point is an average over five independently

generated graphs. (E,F) The discovery rate is the estimated probability that the planted motif belongs to the inferred motif set, i.e., h1 − δ(mα, 0)i. (G,H) Average inferred

number of repetitions of the planted motif, hmαi.

https://doi.org/10.1371/journal.pcbi.1012460.g003
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spurious motifs are found using the approach (Fig 3A–3D). However, since there is no general

protocol for the choice of null model in the frequentist approach, this sensitivity to null model

choice is a major concern in practice.

By casting motif inference as a model selection problem, our approach allows us to select

the most appropriate model, including amongst a selection of null models. In our test, our

approach consistently selects the true generative model for the networks, i.e., one of the four

null models, and thus does not infer any spurious motifs (Fig 3A–3D).

Planted motifs. To evaluate the efficiency of our method in finding motifs that are pres-

ent in a network, we apply it to synthetic networks with planted motifs (see “Planted motif

model” in the Methods).

We show in Fig 3E–3H the ability of our algorithm to identify a motif (Fig 3E and 3G) and

its occurrences (Fig 3F and 3H) in numerically generated networks as a function of the num-

ber of times the motif is repeated in the network. We show in S3–S6 Figs a more in-depth anal-

ysis including additional motifs, different network sizes, and an extended range of network

densities. The performance of the algorithm is affected by both the frequency of the planted

motif (Fig 3E–3H) and its topology, with denser motifs generally being easier to identify (Fig

3E–3H, see also S3 and S6 Figs). The size of the network does not have a significant effect on

our ability to detect motifs, but its edge density does (compare S3 and S4 Figs to S5 and S6

Figs). The latter is expected since motifs whose density differs significantly from the network’s

average density are easier to identify than motifs with a similar density. This is similar to

hypothesis testing-based approaches based on graphlet frequencies where dense motifs tend to

be highly unlikely under the null model and thus easier to detect. However, we stress that our

method does not rely on the same definition of significance—compression instead of over-

representation—so the motifs that are easiest to infer are not necessarily the same with the dif-

ferent approaches (S2 Fig).

Neural connectomes

We apply our method to infer circuit motifs in structural connectomes and characterize the

regularity of the connectivity of synapse-resolution brain networks of different species at dif-

ferent developmental stages (see Table 2). We consider boolean connectivity matrices that rep-

resent neural wiring as a binary, directed network where each node represents a neuron and

an edge represents the presence of synaptic connections from one pre-synaptic neuron to a

post-synaptic neuron. To keep in line with the usual definition of a motif, we exclude self-con-

nections of neurons onto themselves, but they can be included if one wants to investigate such

motifs.

We measure the compressibility of a connectome G as the difference in codelength between

its encoding using a simple Erdős-Rényi model, i.e., encoding the edges individually, and its

encoding using the most compressing model,

DL∗ ¼ LðG; ðN;EÞÞ � LðG; y∗Þ: ð15Þ

As Fig 4 and Table 2 show, all the empirical connectomes are compressible, confirming

their non-random structure (see S7 Fig for a comparison of all the models considered). Signifi-

cant higher-order structures in the form of motifs are found in all the whole-CNS and whole-

nervous-system connectomes studied here (Fig 4A) as well as in many connectomes of indi-

vidual brain regions (Fig 4B and 4C). Besides motifs, we find significant non-random degree

distributions of the nodes in all connectomes (Fig 4). This is consistent with node degrees

being a salient feature of many biological networks, including neuronal networks [2]. Recipro-

cal connections are also a significant feature of almost all connectomes studied, in alignment
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with empirical observations from in vivo experiments [40, 60, 61, 72, 73] where modulation of

neural activity is often implemented through recurrent patterns. Note that reciprocal connec-

tions are often considered a two-node motif. We chose to encode it as a dyadic feature of the

base model since this is more efficient and allows for a higher compression, but it is entirely

possible to encode them as graphlets by allowing also two-node graphlets as supernodes in the

reduced graph (instead of restricting to 3–5 node graphlets as we did here).

For several smaller, regional connectomes, we do not find statistical evidence for higher-

order motifs (Fig 4C and 4D), indicating the absence of significant higher-order circuit pat-

terns (i.e., involving more than two neurons) in these connectomes. Note that network size did

not have a significant effect on motif detectability in our numerical experiments above (see

S3–S6 Figs), so the absence of motifs in these connectomes are likely due to their structural

particularities rather than simply their smaller size. In particular, we do not find evidence for

motifs in the C. elegans head ganglia (brain) connectomes at any developmental stage (Fig

4D). Note, however, that we do detect significant edge and node features (as encoded by the

reciprocal configuration model), highlighting the non-random distribution of neuron connec-

tivity and the importance of feedback connections in these connectomes. Furthermore, we do

find higher-order motifs in the more complete C. elegans connectomes that also include

Fig 4. Compressibility of neural connectomes. Compressibility (measured in number of bits per edge in the network) ΔL*/E of different connectomes as compared to

encoding the edges independently using the Erdős-Rényi simple graph model (see Table 1). Two types of models are shown for the datasets: the best simple network

encoding and the best motif-based encoding when this compresses more than the simple encoding. Asterisks highlight connectomes where motifs permit a higher

compression than the reference models. (A) Whole-CNS and whole-animal connectomes. (B) Connectomes of three different regions of the adult Drosophila right

hemibrain. Note that while the relative increase in compressibility of these connectomes obtained using motifs is relatively small, the motifs are highly significant due to

the large size of these connectomes (Table 2). (C) Connectomes of different brain regions of first instar Drosophila larva. (D) Connectomes of C. elegans head ganglia at

different developmental stages, from 0 hours to 50 (adult). While no higher-order motifs are found, the compressibility increases with maturation (and thus the size) of

the connectome.

https://doi.org/10.1371/journal.pcbi.1012460.g004
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sensory and motor neurons (Fig 4A), in line with what was found earlier using hypothesis-test-

ing based motif mining [16, 65].

To study the structural properties of the inferred motif sets, we computed different average

network measures of the motifs of each connectome (see definitions in S6 Text). The density

of inferred motifs is much higher than the average density of the connectome (Fig 5A). While

the density of motifs is high for all connectomes, it does vary significantly between them in a

manner that is seemingly uncorrelated with the average connectome density. The motifs’ high

density means that half of their node pairs or more are connected on average, which would

lead to high numbers of reciprocal connections even if the motifs were wired at random. We

indeed observe a high reciprocity of connections in the inferred motifs, and that this reciproc-

ity is in large part explained by their high average density (Fig 5B), although we do observe sig-

nificant variability and differences from this random baseline. The average number of cycles in

the motifs is, on the other hand, in general completely explained by the motifs’ high density

(Fig 5C). To probe the higher-order structure of the inferred motifs we measure their symme-

try as measured by the graph polynomial root (GPR) [74]. As Fig 5D shows, the motifs are on

average more symmetric than random graphlets of the same density even if the individual dif-

ferences are often not significant. Thus, of the four aggregate topological features we investi-

gated, the elevated density is the most salient feature of the motif sets. This does not exclude

the existence of salient (higher-order) structural particularities of the motifs beyond their high

density, only that such features are not captured well by these simple aggregate measures.

Even though the inferred motif sets are highly diverse, we observe that several motifs are

found in a large fraction of the connectomes (Fig 6A). The same motifs also tend to be among

the most frequent motifs, i.e., the ones making up the largest fraction of the inferred motif sets

on average (Fig 6B). These tend to be highly dense graphlets, with the two most frequent motifs

Fig 5. Topological properties of motif sets. Graph measures averaged over the inferred graphlet multiset, S, i.e., for a network measure φ, one point corresponds to the

quantity mφðSÞ ¼
P

a2S φðaÞ=jSj. The density (A), reciprocity (B) and number of cycles (C) and are standard properties of directed networks [75]. The graph polynomial

root (D) measures the structural symmetry of the motifs [74]. Details can be found in S6 Text. Red squares indicate averages over the connectomes’ inferred motif sets.

Blue squares are reference values, computed from average over randomized graphlets with their density conserved. To obtain the fixed-density references per motif set,

we generate for each graphlet a collection of a hundred randomized configurations sharing the same density. The black dots of panel (A) show the connectomes’ global

density.

https://doi.org/10.1371/journal.pcbi.1012460.g005
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being the three and five node cliques, which are each found in roughly half of the connectomes

and are also the most frequent motifs in the motif sets on average. The ten most frequently

found motifs (Fig 6A) and the most repeated motifs (Fig 6B) do not perfectly overlap, though

six of the ten motifs are the same between the two lists.

Discussion

We have developed a methodology to infer sets of network motifs and evaluate their collective

significance based on lossless compression. Our approach defines an implicit generative model

and lets us cast motif inference as a model selection problem through the MDL principle. It

overcomes several common limitations of traditional hypothesis testing-based methods, which

are unable to compare the significance of different motifs and have difficulties dealing with

multiple testing, correlations between motif counts, the evaluation of low p-values, and the

often ill-defined problem of choosing the proper null model to compare against.

Our compression-based methodology accounts for multiple testing and correlations

between motifs, and it does not rely on approximations of the null distribution of a test statis-

tic. Note that such approximations are generally necessary for statistical hypothesis testing to

be computationally feasible. For example, there are about 10 000 possible five-node motifs, so

to control for false positives using the Bonferroni correction, raw p-values must be multiplied

by 10 000. Thus, one needs to be able to reliably estimate raw p values smaller than 5 � 10−6 to

evaluate significance at a nominal level of 0.05. To obtain an exact test, we must generate of the

order of a million random networks and perform a subgraph census of each, a typically unfea-

sible computational task. Furthermore, constrained null models are hard to sample uniformly

[30], and even in models that are simple enough for the Markov chain edge swap procedure to

be ergodic, correlations may persist for a long time, inducing an additional risk of spurious

results [28, 29].

Our method furthermore allows us to infer not only significant motif sets but also compare

and rank the significance of different motifs and sets of motifs and other network features

such as node degrees and reciprocity of edges. It thus overcomes the need for choosing the

null model a priori, which leads to spurious motifs if this choice is not appropriate.

Fig 6. Connectomes share common motifs. Most frequently appearing motifs in the motif sets inferred for all connectomes. (A) Most frequently found motifs: fraction

of connectomes in which each motif is found, pa ¼ 1

jGj

P
G2Gð1 � dmaðGÞ;0Þ. (B) Most repeated motifs: average graphlet concentration ca ¼ 1

jGj

P
G2G

maðGÞP
a
maðGÞ

.

https://doi.org/10.1371/journal.pcbi.1012460.g006
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Note that while our method enables statistically grounded inference of motif sets, it does

not provide an estimate of their intrinsic statistical variability since it relies on a greedy optimi-

zation algorithm—in the language of Bayesian inference, inferred motif sets correspond to

maximum a posteriori estimates. This variability could in principle be estimated via Markov

chain Monte Carlo (MCMC) sampling around the optimum motif set, but the development of

an efficient MCMC algorithm is an open problem. Thus, for the time being, the variability can

only be assessed experimentally by comparing multiple measurements.

Our method is conceptually close to the subgraph covers proposed in [76] which models a

graph with motifs as the projection of overlapping subgraphs onto a simple graph and relies

on information theoretic principles to select an optimum cover. That approach modeled the

space of subgraph covers as a microcanonical ensemble instead of the observed graph directly.

This makes it harder to fix node- and edge-level features such as degrees and reciprocity since

these are functions of the cover’s latent variables [77], although progress in inferring such fea-

tures has recently been made [78]. We instead based our methodology on subgraph contrac-

tions as proposed in [34], whose approach we extended to allow for collective inference of

motif sets and selection of base model features. In particular, we let the number of distinct

graphlets be free in our method, instead of being limited to one; to deal with the problem of

selecting between thousands of graphlets, we developed a stochastic greedy algorithm that

selects the most compressing subgraph at each step; we simplified the model for the reduced

graph by using multigraph codes, avoiding multiple prequential plug-in codes to account for

parallel edges and providing exact codelengths; and we developed two new base models to

account for reciprocal edges.

We emphasize that the method we extended [34] and ours are not the first ones to rely on

the MDL principle for network pattern mining (see, e.g., the survey in [79]). The SUBDUE

[80] and VoG [81] algorithms in particular are precursors of our work, though their focus was

on graph summarization rather than motif mining. The SUBDUE algorithm [80] deterministi-

cally (but not optimally) extracts the graphlet that can compress a fixed encoding of the adja-

cency matrix and edge list when a sample of isomorphic (and quasi-isomorphic) subgraphs

are contracted. The VoG algorithm [81] uses a set of graphlet types, e.g., cliques or stars, and

looks for the set of subgraphs (belonging exactly or approximately to these graphlet types) that

best compresses a fixed encoding of the adjacency matrix; the latter being distinct from the

one used in SUBDUE. These algorithms differ conceptually from ours in focusing not on

motif mining but on more specific regularities for the problem of graph summarization. Their

advantage is mainly computational as their implementations scale better with the input graph

size. While being computationally more expensive, our approach does not impose or reduce a

graphlet dictionary and the representation of the reduced graph is not constrained by a specific

functional form.

Exponential random graph models (ERGMs) provide another generative framework for the

problem of inferring important subgraphs of a network [82, 83]. Different from our approach,

ERGMs generally rely on global graphlet counts and not on contracting specific subgraphs.

This tends to make them unstable for general graphlets, making them hard to fit, due to issues

of near-degeneracy [83, 84]. This severely conditions the flexibility of ERGMs for motif infer-

ence since only a constrained set of particular combinations of motifs are known to ensure

convergence of model fits [32, 85, 86].

We applied our approach to uncover and characterize motifs and other structural regulari-

ties in synapse-resolution neural connectomes of several species of small animals. We find that

the connectomes contain significant structural regularities in terms of a high number of feed-

back connections (high reciprocity), non-random degrees, and higher-order circuit motifs. In

some smaller connectomes we do not find significant evidence for higher order motifs. This is
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in particular the case for connectomes of the head ganglia of C. elegans, both at maturity and

during its development. We still find significant reciprocity and non-random degrees in these

connectomes though, confirming the fundamental importance of these measures in biological

connectomes. A high reciprocity in particular translates to a large number of feedback connec-

tions in the animals’ neural networks, a feature whose biological importance has frequently

been reported [26, 40, 60–62].

The functional importance of higher-order motifs is less well known, but dense subgraphs

are known to have an impact on information propagation in a network [87] and several circuit

motifs have been proposed to carry out fundamental computations (e.g., feedforward and

feedback regulation [3, 16, 25], cortical computations [88–90], predictive coding [91], and

decision making [26]). With the advent of synaptic resolution connectomes, the stage is now

set for testing these hypotheses and comparing the structural characteristics of different net-

works with robust statistical tools such the method we introduced here. While we demon-

strated our methodology’s ability to detect the most significant circuit patterns in a network

among all possible graphlets, it may directly be applied to test for the presence of pre-specified

motifs such as the ones cited above by simply changing the graphlet set to include only those

circuits.

The mere presence of statistically regular features does not reveal their potential function,

nor their origin [92]. These questions must be explored through computational modeling and,

ultimately, biological experiments [24–26, 93]. In this aspect our methodology offers an addi-

tional advantage over frequency-based methods since it infers not only motifs but also their

localization in the network, making it possible to better inform physical models of circuit

dynamics and to test their function directly in in vivo experiments.

The compressibility of all the neural connectomes investigated here can be seen as a mani-

festation of the the genomic bottleneck principle [94], which states that the information stored

in an animal’s genome about the wiring of its neural connectome must be compressed or the

quantity of information needed to store it would exceed the genome’s capacity. Note however

that the codelengths needed to describe the connectomes we infer are necessarily upper

bounds on the actual codelengths needed to encode the neural wiring blueprints. First, our

model is a crude approximation to reality, and a more realistic (and thus more compressing)

model would incorporate the physical constraints on neural wiring such as its embedding in

3D space, steric constraints, and the fact that the nervous system is the product of morphogen-

esis. Second, our code is lossless, which means we perfectly encode the placement of each link

in the connectome, while the wiring of neural connections may partially be the product of ran-

domness. Thus a lossy encoding would be a more appropriate measure of a connectome’s

compressibility [95] but it introduces the difficulty of defining the appropriate distortion mea-

sure. Third, subgraph census quickly becomes computationally unfeasible for larger motifs,

which generally limits the size of motifs we can consider to less than ten nodes. Allowing for

overlapping contractions could be a way to infer larger motifs as combinations of smaller ones

(similar to [96]).

We proposed four different base models for our methodology, which allows to select and

constrain the important edge- and node-level features of reciprocity and degrees in our model.

It is straightforward to incorporate additional base models as long as their microcanonical

entropy can be evaluated efficiently. We envisage two important extensions to the base models.

First, block structure, which may be incorporated as a stochastic block model [97, 98], is ubiq-

uitous in biological and other empirical networks and has been shown to have an important

impact on signal propagation [99]. Second, the network’s embedding in physical space, as

modelled using geometric graphs or other latent space models [100, 101], is also meaningful. It
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should matter for neuronal networks due to considerations such as wiring cost [90], signal

latency [90], and steric constraints [90].

Our approach contributes both to the burgeoning field of higher-order networks [15] and

to the growing push towards principled statistical inference of network data [102] by providing

a robust generative framework for motif inference. The field of statistical network analysis is

still in its infancy and much work is still needed to make inference methods more robust.

Here, we have for example not considered the problems of noisy data and incomplete sam-

pling [103] which can influence the apparent structure and dynamic of network data in com-

plex ways [103–106]. It should be interesting to extend statistical inference to non-local higher

order structures, such as symmetry-group based structures [107] or, e.g., hierarchically nested

motifs which might be incorporated in a similar manner to the recent hierarchical extensions

of stochastic block models [97, 108]. A common barrier to the development of principled sta-

tistical inference of many network models is that they do not admit easily tractable likelihoods.

This is in particular the case for many higher-order models, such as the one of [107], and,

more famously, for the small world model of Watts and Strogatz [4] and the preferential

attachment model of Barabási and Albert [8]. Simulation-based inference [109] provides a

promising framework for bridging the gap between such models and statistical inference

[110].
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the reciprocal models are strictly more constrained than their directed counterparts, more

motifs are found with these null models than with the less constrained ones. (B) Overlap (Jac-

card index) between the inferred graphlets using the different null models. (C) Per null model,

fraction of uniquely found motifs compared to another null model. Formally, denoting by Mi

the motif set WRT the null model in the i-th row, and by Mj the motif set WRT the null

model in the j-th column, matrix entries are computed as jMi nMjj=jMij. A low ratio indi-

cates that Mj contains most of Mi, while a high ratio expresses strong dissimilarities between

the two emerged motif sets.

(EPS)

S2 Fig. Different motif sets obtained with the four base models. Inferred motif sets of the

best model for the right hemisphere of the Drosophila larva MB connectome. In this specific

application, over all inferences across base models, the configuration model has the lowest

codelength. We observe a particularly clear distinction in the main types of motifs between

Erdős-Rényi-like and configuration-like models.

(EPS)

S3 Fig. Probability of correctly identifying the embedded motif in the planted motif model

(N = 300). Probability of the inferred motif set containing at least one repetition of the true

planted motif as a function of the number of times the motif is planted for five different

planted motifs and for different network densities. The generated networks contain N = 300

nodes and the edge density ranges from ρ = 0.01 (leftmost) to ρ = 0.1 (rightmost). Each point

is an average over five independently generated graphs. Note that the maximum number of

motifs that can be inserted depends both on the number of nodes in the network and on the

networks density, as well as that of the motif; hence the range of the x-axis can vary.

(EPS)

S4 Fig. Number of occurrences of the planted motif inferred (N = 300). The number of

insertions in the generated graphs is plotted on the x-axis, and the inferred number, averaged

over five independent graphs, on the y-axis. The generated networks contain N = 300 nodes

and the edge density ranges from ρ = 0.01 (leftmost) to ρ = 0.1 (rightmost). Each point is an

average over five independently generated graphs. Note that the maximum number of motifs

that can be inserted depends both on the number of nodes in the network and on the networks

density as well as that of the motif; hence the range of the x-axis can vary.

(EPS)

S5 Fig. Probability of correctly identifying the embedded motif in the planted motif model

(N = 100). Probability of the inferred motif set containing at least one repetition of the true

planted motif as a function of the number of times the motif is planted for five different

planted motifs and for different network densities. The generated networks contain N = 100

nodes and the edge density ranges from ρ = 0.01 (leftmost) to ρ = 0.1 (rightmost). Each point

is an average over five independently generated graphs. Note that the maximum number of

motifs that can be inserted depends both on the number of nodes in the network and on the

networks density as well as that of the motif; hence the range of the x-axis can vary.

(EPS)

S6 Fig. Number of occurrences of the planted motif inferred (N = 100). The number of

insertions in the generated graphs is plotted on the x-axis, and the inferred number, averaged

over five independent graphs, on the y-axis. The generated networks contain N = 100 nodes

and the edge density ranges from ρ = 0.01 (leftmost) to ρ = 0.1 (rightmost). Each point is an

average over five independently generated graphs. Note that the maximum number of motifs
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that can be inserted depends both on the number of nodes in the network and on the networks

density as well as that of the motif; hence the range of the x-axis can vary.

(EPS)

S7 Fig. Compressibility per edge of the connectomes obtained with the different base mod-

els, with and without motifs. Difference in codelength between the simple Erdős-Rényi (ER)

model and each of the other seven models (RER: reciprocal ER model, CM: configuration

model, RCM: reciprocal configuration model, ER+Motifs: ER base model with motifs,

RER+Motifs: reciprocal ER base with motifs, CM+Motifs: configuration model with motifs,

RCM+Motifs: reciprocal configuration model with motifs).

(EPS)

S8 Fig. Dependence of the optimum model on the batch size. Mean codelength of the

inferred model (± SD) for different minibatch sizes B, where B is the number of occurrences of

each graphlet sampled. The inference is performed on the Drosophila larva right MB and run

100 times independently for each B value.

(EPS)
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