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SCRIPTWRITING AS A CATALYST FOR LINKING 
UNDERGRADUATE AND SCHOOL MATHEMATICS 

Abstract – Scripting tasks are a powerful tool for both mathematics 
education researchers and teacher educators, in part because the resultant 
dialogues provide insight into the scriptwriters’ mathematical 
understanding and pedagogical inclinations. In this paper, we argue that 
scripting tasks used in mathematics education also provide an opportunity 
to deliver follow-up lessons that link undergraduate and school 
mathematics. These lessons facilitate mathematical connections by 
building directly on scriptwriters’ experiences, as captured in their 
dialogues, and in turn, enrich their teaching practice. 
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INTRODUCTION 

The potential of scripted dialogues for teaching and learning 
mathematics was realized as early as the fourth century BC, when 
Plato recorded Socrates in conversation with his students. Modern 
authors—see, for example, Lakatos’ Proofs and Refutations (1976) 
and Pólya’s How to Solve it (1945)—have continued to leverage 
dialogue as a didactical tool at the intersection of mathematics and 
pedagogy. More recently, contemporary mathematics education 
researchers have used dialogue with supporting commentary to 
foster discourse on learning and teaching (e.g., Zazkis & Koichu, 
2015; Mason, 2018). 

In the Socratic tradition, these exemplary dialogues tend to 
describe an interaction between a knowledgeable expert and a 
pupil. The expert characters often represent the viewpoint of the 
scriptwriters, and thus, their explanations are reflective of a 
comprehensive understanding of the topic at hand. Recent 
applications of scriptwriting to mathematics education research, 
however, have taken to analyzing dialogues written by student 
authors; in this way, the dialogues act as a tool for gaining insight 
into the scriptwriters’ developing ways of thinking about 
mathematics and pedagogy. 

The emergence of these student-written scripts began with the 
lesson play (Zazkis et al., 2009; Zazkis et al., 2013). Originally 
introduced as a more robust form of lesson planning, lesson plays 
required teachers to first anticipate where in their lesson they 
would need to facilitate an important discussion with their class or 
attend to a particular question or misconception of a student. Then, 
they scripted this interaction in the form of a dialogue. Lesson 
plays are a means of instructional planning that simultaneously 
serve as an approximation of practice (as in Grossman et al., 2009), 
unlike the traditional method of organizing a future lesson’s 
planned activities in an outline. 

Scripting tasks extend the use of student-written dialogues 
beyond lesson planning to more general mathematical settings. In 
a scripting task, scriptwriters are invited to continue a hypothetical 
mathematical dialogue that is already underway. The first lines of 
this existing dialogue are provided to the scriptwriters and 
introduce an unexpected question, observation, or disagreement 
about the mathematical setting. The scriptwriters then seek to bring 
the problematic situation to a satisfying resolution within the 
remaining dialogue. 
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Scripting tasks have an extensive and varied history as tools for 

mathematics education and the research thereof (e.g., Bergman et 
al., 2023; Brown, 2018; Buchbinder & Cook, 2018; Kontorovich 
& Zazkis, 2016). Zazkis and Marmur (2021) review the benefits of 
such tasks, as described in the literature, for three different 
populations of interest. For researchers, scripting tasks are a “rich 
data source that can be examined from various perspectives” 
(Zazkis & Marmur, 2021, p. 85)—that is, they not only provide 
researchers with insight into the scriptwriters’ mathematical 
understanding but also into their perception of what constitutes 
effective pedagogy in practice. For students who compose the 
scripts, crafting a dialogue facilitates the growth of mathematical 
knowledge within an applicable pedagogical setting, and 
conversely, the development of pedagogical experience in a 
relevant mathematical context. We call attention to the fact that, 
for both populations, scripting tasks occupy a unique space at the 
intersection of mathematics and pedagogy. 

The cross-disciplinary benefits of scripting tasks are especially 
evident for the third population considered by Zazkis and Murmur 
(2021): mathematics teacher educators. Instructors who are 
responsible for the training and development of teachers can, like 
mathematics education researchers, use scripting tasks to better 
understand students’ mathematical and pedagogical content 
knowledge. Teacher educators, however, then have the unique 
opportunity to immediately leverage this insight to broaden and 
advance the emerging competencies of teachers. 

We submit that scripting tasks can also be leveraged in 
mathematics teacher education in order to highlight connections 
between secondary and undergraduate mathematics. In such tasks, 
the teacher-character’s dialogue within a prompt can point to a 
connection to more advanced mathematics, but this is not essential. 
Based on the completed scripts, a further connection to relevant 
mathematical ideas can be brought to teachers’ attention in follow-
up instruction, which may include explicit connections among 
mathematical topics or concepts as well as ideas on how these can 
be utilized pedagogically. 

For example, Zazkis and Marmur (2018; 2021) describe the 
ways in which they use scripting tasks as a springboard for future 
lessons designed to make such connections. In the following 
section we summarize how they accomplished this goal with a 
scripting task based on secondary students’ perception of the 
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function concept. We then explore how additional connections to 
teaching might appear in further study of the function concept. 

After considering how the work of Zazkis and Marmur (2018; 
2021) could be extended, the next sections introduce and extend 
other studies that feature scripting tasks. In these studies, Zazkis 
and Cook (2018) use scripting tasks in a mathematics classroom to 
probe undergraduate students’ understanding of zero divisors; 
meanwhile, Kercher et al. (2023) features scripting in a 
mathematics education classroom as a way to record teachers’ 
investigations of star polygons. In each case, we consider how 
follow-up lessons could build on the thinking exhibited in the 
scripted dialogue in order to highlight connections to secondary 
mathematics. 

ON FUNCTIONS: CONNECTIONS FROM A SCRIPTING 
TASK 

Zazkis and Marmur (2018; 2021) presented the prompt seen in 
Figure 1 to a group of secondary teachers in a professional 
development course. In addition to continuing the presented 
dialogue, the teachers were asked to explain the pedagogical 
choices made by the teacher-characters in their scripts and to 
elaborate on how their own understanding of the function concept 
might extend beyond what is evident from the dialogue. 

 

 
Figure 1. - The prompt used by Zazkis & Marmur (2021, p. 87). 

Zazkis and Marmur (2018; 2021) considered the dialogues and 
supplementary explanations in order to identify two themes that 
characterized certain limitations of the scriptwriters’ understanding 
of function. In response to each theme, Zazkis and Marmur (ibid.) 
planned and implemented a follow-up lesson that sought to address 
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these limitations while simultaneously presenting the teachers with 
important mathematical connections. 

Theme 1: Expanding Teachers’ Conceptions of Function 
Within the first theme, Zazkis and Marmur (2018; 2021) found 
evidence suggesting that the personal example spaces (see Sinclair 
et al., 2011) of the scriptwriters were mainly limited to functions 
continuous on the entire real line. Furthermore, certain interactions 
within the dialogue—such as when a teacher-character accepts a 
student’s claim that, for any function, “Each output can only have 
1 input” (Zazkis & Marmur, 2021., p. 89)—indicated that some 
teachers also had incomplete or incorrect understanding of the 
definition of function. Taken together, these observations resulted 
in dialogues that explored only a small subset of possible functions 
that could be represented by the chart in Figure 1. 

The follow-up activity associated with this theme first tasked 
the teachers, working in groups, to write a formal definition of 
function. Then, the groups were presented with a collection of 
definitions sourced from both mathematical history and modern 
textbooks. These definitions were supplemented by incorrect 
“definitions” that exhibited some of the explicit errors observed in 
the scripted dialogues. The teachers then sorted the collection of 
definitions into categories and compared them to their own 
definitions. Ultimately, the goal of this activity was to refine the 
teachers’ concept image and concept definition of function (in the 
sense of Tall & Vinner, 1981) to include a wider variety of 
functions and to more correctly align with the formal concept 
definition, respectively. 

Achieving this goal highlighted an important connection 
between secondary and undergraduate mathematics. Several of the 
definitions presented to the teachers conceptualized functions as 
sets of ordered pairs. Such a definition is not likely to be 
appropriate for secondary mathematics classrooms; however, this 
advanced perspective helped draw attention to the existence of 
functions with discrete or disconnected domains. The historical 
definitions—in particular, the way they were seen to capture 
additional nuance over time with more precise language—
emphasized the arbitrary nature of the relationship captured by a 
function. By responding to evidence from the dialogues that 
teachers held a view of function limited to continuous functions on 
the real numbers, Zazkis and Marmur (2018; 2021) grew teachers’ 
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mathematical content knowledge with an appropriate follow-up 
lesson. 

Theme 2: Constructing a Polynomial 
The second theme was related to many teachers’ belief that only a 
linear function can contain the set of points described in Figure 1. 
However, the realization that the set of points itself already defines 
a function raised a question about the possibility of other nonlinear 
functions that contain the four colinear points given in the prompt. 
Zazkis and Marmur (2018; 2021) report on scripts wherein a 
teacher-character relied on a computer program to generate such a 
polynomial; purported to have found a higher-degree polynomial, 
which was revealed to be linear when simplified; and argued for 
the existence of such a polynomial without attempting to find a 
specific example. Zazkis and Marmur (ibid.) recognized in these 
responses an opportunity to broaden the scriptwriters mathematical 
understanding by introducing methods for constructing a family of 
nonlinear polynomials that all could contain points from the chart 
in Figure 1. 

In the follow-up lesson that was designed to accomplish this 
goal, the teachers were initially asked to find a nonlinear 
polynomial 𝑓(𝑥) that had four distinct zeros. Then, they searched 
for a way to use 𝑓 as the foundation for a function that passed 
through the four colinear points from the table in Figure 1. They 
eventually created a linear combination of 𝑓 and the linear function 
𝑔(𝑥) = 3𝑥 to yield the family of functions ℎ!(𝑥) = 𝑘𝑓(𝑥) +
𝑔(𝑥). This process is visualized in Figure 2. Following this first 
activity, the class attended to an example, pulled directly from a 
script, of a third-degree polynomial that appeared to match the 
values given in the prompt. A discussion on the fundamental 
theorem of algebra (in particular, the fact that a third-degree 
polynomial has at most three real roots) explored how the teachers 
could use their knowledge of this advanced mathematical fact to 
recognize that the proposed function cannot include all the points 
in Figure 1. Thus, the conclusion could have been reached without 
conducting algebraic manipulations until the expression is 
recognized as a “linear function in disguise”. 
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Figure 2. - Constructing a family of nonlinear polynomials. 

Zazkis and Marmur (2021) argue that “the utility of advanced 
mathematical knowledge as a tool to instantly recognise student 
mistakes” (p. 96) is an important application of advanced 
mathematical knowledge to the work of teaching. The scripting 
task was a pivotal aspect of making this connection in that the 
motivating example of a “hidden” linear function was sourced 
directly from a dialogue. Furthermore, the challenge of finding a 
valid nonlinear polynomial to fit the required four points was 
directly relevant to the teachers because, as demonstrated in the 
scripts, they themselves had difficulty constructing such a function. 
In this way, the scripting task was a key aspect of the teachers’ 
mathematical learning. 

Exploring Further Connections Involving Functions 
Because of the ubiquity of the function concept in both secondary 
and undergraduate mathematics, there are more opportunities to 
make connections than just those presented by Zazkis and Marmur 
(2018; 2021). In this section, we draw attention to other studies that 
have engaged learners in meaningful conversation on the function 
concept. Although these studies do not necessarily use scripting 
tasks to prompt such conversations, we propose ways that scripting 
tasks might naturally emerge from the existing mathematical 
groundwork. 

Mirin et al. (2021) present two different definitions for 
function, each accepted as mathematically valid within the greater 
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mathematics community, which nevertheless result in conflicting 
answers when questions are asked about certain functions. The 
authors motivate their study by first presenting a short dialogue 
between two students who are in disagreement about whether a 
diagram similar to the one in Figure 3 represents a function. The 
disagreement centers around whether a function 𝑓: 𝑋 → 𝑌 must act 
on every element of the domain 𝑋 or else if it is allowed to “ignore” 
some elements. 

 
Figure 3. – Is the relationship pictured a function? 

The argument captured by this initial dialogue in Mirin et al. (2021) 
could be translated almost directly into an interesting prompt for a 
scripting task. Just as in Zazkis and Marmur (2021), a hypothetical 
follow-up activity could focus on the diversity of definitions for 
function. However, Mirin et al. (ibid.) also illustrate that such a 
task could invite teachers to question the implications for choosing 
one definition over another. For example, in Halmos’ (1960) 
definition of a function as a set of ordered pairs, the domain is the 
set that results from collecting all of the input values from these 
pairs and the codomain is the set that results from collecting all the 
output values; on the other hand, Bourbaki’s (1968) definition 
describes the domain and codomain first, then characterizes a 
function as some subset of the cross-product. Under these 
definitions, proponents of Bourbaki’s definition would recognize 
the relationship in Figure 3 as a function—whereas those who 
prefer Halmos’ definition would not. Whether the domain comes 
before or after the specification of the function relationship also 
has a direct effect on when two functions should be considered “the 
same”, and on what conditions are necessary for a function to have 
an inverse. In particular, does the condition for invertibility consist 
of injection and surjection or is injection alone sufficient? 

This advanced perspective on the definition of function 
connects to school mathematics by illustrating how choice of 
definition can affect subsequent mathematical claims. Inverse 
functions, also taught in secondary mathematics, could be 
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presented as an immediate consequence of the way functions are 
defined. 

Functions and their inverses are also the topic of an 
undergraduate calculus lesson described in Burroughs et al. (2023). 
In that study, connections to teaching are presented in the form of 
“applications to teaching” problems such as pictured in Figure 4. 

 
Figure 4. – Student work illustrating how to find the inverse of a 

function, originally in Burroughs et al. (2023). 
Again, questions of domain and codomain arise and are used to 
motivate teachers to address the common method of “switching 𝑥 
and 𝑦, then solving for 𝑦” often presented in secondary 
mathematics classrooms as a way to find an inverse of a function. 
Burroughs et al. (2023) argue that the limitations of this approach 
have repercussions in future classrooms—such as when obtaining 
the derivative of the inverse trigonometric functions in a calculus 
course. Highlighting these limitations acts as a connection between 
secondary and undergraduate mathematics for the benefit of 
prospective teachers taking an introductory calculus course. 

The task presented in Figure 4 could be translated into a 
scripting task by including a discussion amongst the students as 
they compare their methods for finding an inverse of a function. 
This dialogue could motivate teachers to consider the role that the 
definition of an inverse function played in Jordan and Kelly’s 
work, and whether the three students in fact arrived at the same 
function. Like in previous studies, we note that this conversation 
would lay similar groundwork for a comparison of different 
definitions of function; however, the proposed scripting task might 
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also facilitate discussion about a teacher’s obligation to explain 
why the common methods that they teach are mathematically valid. 

EXTENDING SCRIPTING TASKS TO HIGHLIGHT 
CONNECTIONS 

In this section, we follow Zazkis and Marmur’s (2018; 2021) 
example by proposing how existing scripting tasks from recent 
literature can serve as a foundation for subsequent lessons that 
highlight connections between secondary and undergraduate 
mathematics. We elaborate on these connections, their value to 
prospective and practicing teachers, and suggest directions for 
activities that might leverage the content of student-generated 
dialogues to make these connections meaningful. 

Star Polygons 
Kercher et al. (2023) introduced the scripting journey as a 
modification of the typical scripting task. In a scripting journey, 
the scriptwriters construct an entire dialogue, without any initial 
prompt, based on their own experiences engaging with a novel 
mathematical setting. Kercher et al. (ibid.) consider the scripting 
journey to be a practical method of collecting data on students’ 
activities during problem-solving tasks or mathematical 
investigations, supplementing other methods such as video 
recordings (e.g., Rott et al., 2021), problem-solving journals 
(Liljedahl, 2007), or portfolios (Gourdeau, 2019). 

In Kercher et al. (2023), the participants’ scripting journeys 
were inspired by their investigations of star polygons and their 
properties. A star polygon is an equiangular and equilateral 
polygon that is typically self-intersecting (see Figure 5 for 
examples) and is represented using a Schläfli symbol (𝑛, 𝑘). 
Geometrically, this notation represents 𝑛 vertices equally spaced 
around the circumference of a circle wherein every vertex 𝑝" is 
connected to the vertex 𝑝"#! (or 𝑝"#!$%, when 𝑖 + 𝑘 > 𝑛) by a line 
segment—in this sense, 𝑘 dictates the distance around the 
circumference one must “skip” in order to connect two vertices. 
Algebraically, star polygons can be associated with the notion of 
cyclic subgroups of ℤ under addition modulo 𝑛. That is, for any 
number of “skips” 𝑘 ∈ ℤ, the subgroup ⟨𝑘⟩ = {𝑎𝑘	|	𝑎 ∈ ℤ} under 
addition modulo 𝑛 is a star polygon. We note that, when 
GCD(𝑛, 𝑘) = 1, 𝑘 is a generator of the group ℤ&. In the geometric 
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interpretation, this corresponds to a unicursal connection joining 
every vertex. 

 
Figure 5. – A (5, 2) and (7, 3) star polygon. 

Prospective and practicing teachers (𝑛 = 27) who engaged with 
the investigation of star polygons in Kercher et al.’s (2023) study 
were not provided with the above definitions; instead, they 
engaged with a star polygon task. In this task, working in groups, 
the teachers generated and refined their own definition and 
characterized the values of 𝑘 that would result in a star polygon for 
some given number of vertices 𝑛. Afterwards, they wrote a 
scripting journey inspired by their group’s shared progress. These 
scripting journeys exhibited a variety of advancing mathematical 
activities (in the sense of Rasmussen et al., 2015; Rasmussen, et 
al., 2005). An analysis of the scripting journeys revealed that the 
teachers communicated their understanding through symbols; 
extrapolated and refined definitions from the examination of 
examples; executed algorithms, which they then attempted to 
generalize to different or more abstract settings; and made, tested, 
and justified conjectures. In particular, Kercher et al. (2023) note 
the interdependence of these advancing mathematical activities—
for example, student-characters in the scripting journeys 
constructed multiple star polygon symbols according to an agreed-
upon algorithm, and in comparing these symbols, proposed 
definitions or made conjectures. 

Although the teachers in Kercher et al.’s (2023) study do not 
attend to star polygons using the language of group theory, some 
student-characters in the scripting journeys do provide 
explanations that informally capture ideas from abstract algebra. 
Furthermore, some scripting journeys feature explicit reference to 
important concepts from number theory. It is from these 
observations that we anticipate one way of making connections 
between secondary and undergraduate mathematics. 
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Connections between Mathematical Disciplines 
Star polygons are clearly geometrical in nature, and in exploring 
their properties, teachers are likely to reconsider their 
understanding of related topics familiar to geometry curricula in 
secondary schools. To illustrate: consideration of the (5, 1) star 
polygon calls into question whether regular polygons are in fact a 
subset of star polygons. This issue arose naturally in the scripting 
journeys of participants in Kercher et al. (2023). We propose that 
a follow-up lesson that builds on students’ observations would 
facilitate teachers in assimilating star polygons into their existing 
geometry schemas. This practice is in line with Skemp’s (1971) 
definition of understanding, and in this case, the understanding 
gained by teachers also allows them to connect school and 
undergraduate mathematics. 

For example, if we accept regular polygons as a subset of star 
polygons, what familiar properties and theorems for regular 
polygons are then special cases of properties for star polygons—
and what are the more general statements of these theorems? The 
sum of the interior angles of a regular polygon is often calculated 
in secondary schools using the formula 𝑆% = 180(𝑛 − 2). Is this 
formula also applicable to star polygons? To answer this, 
undergraduate students must first recontextualize what they 
understand to be an “interior angle” for something like a (5, 2) star 
polygon (Figure 5). There is also a derivative relationship between 
the areas and perimeters of regular polygons (see Mamolo & 
Zazkis, 2012). Like the question of interior angles, deciding what 
to count as the perimeter and area of a self-intersecting shape is 
nontrivial. But once these terms have been clarified, does the same 
derivative relationship hold for star polygons? 

Kercher et al. (2023) also note that they chose the star polygons 
task for their study in part because it allows for approaches that 
utilize multiple mathematical disciplines. For example, star 
polygons provide a geometric foundation for explorations in 
concepts from abstract algebra and number theory. One connection 
to the former subject has already been made in a preceding 
paragraph, but it can be extended. Consider the (7, 3) and (7,4) 
star polygons; because 3 + 4 ≡ 0 (mod 7), these star polygons are 
the same shape. One can further justify this sameness by pointing 
to the cyclic subgroups ⟨3⟩ and ⟨4⟩ of ℤ under addition modulo 7 
(i.e., the cyclic subgroups generated by 3 and 4, respectively) and 
noting that they are comprised of the same integers. 

An interesting complication to this interpretation arises when 
the same shape appears on different numbers of vertices. For 
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example, Kercher et al. (2023) reported that two separate scripting 
journeys represented the (9, 3) and (12, 4) star polygons as 
equilateral triangles, respectively. Neither group individually 
explored whether these star polygons were in fact the same, but a 
class discussion making this question explicit could lead to a 
follow-up lesson on group isomorphisms. That is, the cyclic 
subgroups of ℤ corresponding to these star polygons are clearly 
different: they are {0, 3, 6} under addition modulo 9 and {0, 4, 12} 
under addition modulo 12, respectively. But because the star 
polygons are the same shape, there is still something intuitively 
“the same” about these groups. Formalizing this intuition creates a 
powerful connection between disciplines and prompts students to 
search for isomorphism and group structure in unexpected places. 

With respect to number theory, a key element of many of the 
scripting journeys reported on in Kercher et al. (2023) was relative 
primacy. Student-characters were particularly interested in finding 
values of 𝑘 that were both less than and relatively prime to some 
given number of vertices 𝑛, and simultaneously, counting how 
many such 𝑘 exist. This led to scripting journeys that partially 
rediscovered Euler’s totient function, also called Euler’s phi 
function—a function which provides exactly such a count and is 
signified by 𝜙. The student-characters who began to recreate 
Euler’s phi function only explored cases in which 𝑛 could be 
decomposed into relatively few prime factors. An example of a 
meaningful task for a follow-up lesson would be to present teachers 
with a hypothetical student who wonders how many different 
values of 𝑛 exist such that %

'((
 is a proper fraction in lowest terms. 

This situation introduces an application for Euler’s phi function in 
the context of teaching, creating a practical connection to 
secondary mathematics. Deriving a version of the phi function that 
works for larger values (i.e., understanding how to calculate 
𝜙(100)) could help teachers to grow the nascent ideas seen in the 
scripting journeys into general claims, engaging them in related 
questions of divisibility and combinatorics. 

A Formal Language for Informal Ideas 
Multiple strands of mathematics education research promote 
pedagogies that utilize student’s ideas as the foundation for 
building mathematical theory—for example, realistic mathematics 
education (Gravemeijer & Doorman, 1999). For teachers who 
choose to employ one of these styles of instruction in their 
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classrooms, a key skill to develop is the ability to help students 
convert their informal intuitions about mathematical situations into 
the formal mathematical register (see Zazkis, 2000). This act of 
translation might manifest as a notational challenge, in which 
students must capture the nuances of spoken language with 
mathematical symbols. Additionally, we perceive a parallel 
challenge: helping students to align their potentially informal 
standards for argumentation and justification with the more 
rigorous standards of mathematical proof-writing. 

Teaching students how to formalize ideas, create and use 
notation, and recognize the strengths or limitations of a 
justification are not typical elements of a mathematics 
curriculum—particularly in secondary schools. In this practical 
sense, it is not clear that these skills are “mathematics content”. We 
argue, however, that making connections between school 
mathematics and undergraduate mathematics transcends simply 
pointing to similarities between the mathematical content taught in 
both settings. Connections also include similarities in practice, an 
observation explored in more detail by Wasserman (2023a). 
Wasserman sought teachers’ input on which practices they 
associate with mathematics and which they associate with 
pedagogy, hoping ultimately to identify a selection of 
mathematical practices that are simultaneously effective 
pedagogical tools. Once these pedagogical mathematical practices 
have been identified, calling attention to their use in an 
undergraduate mathematics classroom creates a connection to 
school mathematics. 

But more effective than simply calling attention to these 
practices, we argue, is providing teachers with opportunities to 
personally engage with and reflect on these practices in their own 
mathematical work—such as when investigating star polygons and 
writing an accompanying scripting journey. As Kercher et al. 
(2023) observed, the dialogues written by teachers in these 
scripting journeys featured extensive use of symbolic notation and 
argumentation strategies. We believe that a follow-up lesson 
designed specifically to call attention to these aspects of 
mathematical practice would be more likely to be received by 
teachers as valuable pedagogical practices in light of their own 
recent experiences. 

For example, in Wasserman’s (2023a) study, one example of a 
pedagogical mathematical practice is using concrete examples to 
reason about a more general claim. This was a prominent strategy 
exemplified within the scripting journeys responding to Kercher et 
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al.’s (2023) star polygon task. An effective follow-up task could 
ask teachers to generate examples from secondary mathematics in 
which specific examples play an important role in helping students 
understand a more general concept. Discussion could later attend 
to situations in which concrete examples are (and importantly, are 
not) sufficient evidence to prove a general mathematical claim. 

Zero Divisors 
Zazkis and Cook (2018) argued for integrating scripting tasks into 
a set of more conventional data collection strategies, such as 
conducting interviews, teaching experiments, and collecting 
students’ written productions. The initial research of Cook (2014) 
identified students’ difficulties with the Zero Product Property 
(ZPP), which states that, in an integral domain, if 𝑎𝑏 = 0 then 𝑎 =
0 or 𝑏 = 0. The illustrative cases included students’ over-
generalizing the ZPP in a context where it is not applicable, such 
as when solving equations in a ring with zero divisors; conflating 
ZPP with its converse; and not taking advantage of the ZPP when 
an equation in ℝ was presented in a factored form. 

To further investigate students’ understanding of the ZPP, 
Zazkis and Cook (2018) designed a scripting task, in which the 
authors presented a flawed proof that invoked the ZPP where it was 
not applicable (in a ring with zero divisors). They invited 
undergraduate students (𝑛 = 17) to respond to this proof in the 
form of a dialogue between a teacher and her students, as if the 
proof were presented in class by a student. The scriptwriters were 
asked to identify the possibility for misconceptions or incomplete 
understanding as their characters worked on the presented proof. 
The scripts confirmed the findings of prior research regarding 
students’ difficulties with the ZPP. Even when the flaw in the 
presented proof was correctly identified, it was identified by a 
teacher-character responding to a student error. The authors 
considered this to be an instance of the scriptwriter’s reflection on 
a personal learning experience. The results also highlighted 
nuances in students’ understanding of rings, such as the tendency 
to infer existence of inverses from the existence of an identity 
element. The scripts also provided insights into students’ ideas 
about the notion of mathematical proof. 

We foresee a professional development session with teachers 
that capitalizes on the research results presented above and aims at 
establishing explicit connections between school mathematics and 
undergraduate mathematics. As reiterated in research literature, 
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such connections are not made by students without explicit 
instructional techniques, so they should be purposefully developed 
and articulated (Cuoco, 2001; Wasserman et al., 2017). Our claim 
is that such a session may not only establish or strengthen the 
connections, but also extend teachers’ understanding of the school 
mathematics they teach. 

Attention to Basic Assumptions 
According to Skemp (1971), “to understand something means to 
assimilate it into an appropriate schema” (p. 46). But how is it 
possible to understand better something that is already well 
understood? Zazkis (2008) contends that to understand something 
better means to assimilate it into a richer or more abstract schema. 

Assimilating a known fact into a more advanced schema often 
includes an explicit acknowledgement of the conventional 
assumptions the fact carries and the possible generalizations it 
suggests. For example, the statement, “A whole number is divisible 
by ten if and only if the last digit (i.e., the units digit) is zero” is 
true under the implicit assumption that the number is represented 
in base ten. This assumption limits the scope of applicability of this 
divisibility test, but also invites variation and generalization: “a 
number represented in base 5 (or in base B) is divisible by 5 (or by 
B) if and only if the last digit (i.e., the units digit) is zero”. So, a 
familiar property becomes a special case of a general property 
related to number representation. 

We return here to the ZPP, which in school mathematics is 
presented explicitly as a valuable strategy in solving quadratic 
equations. That is, when a quadratic equation is written as a product 
of two factors, a reasonable and often preferred approach towards 
finding the solution set is to equate each factor to zero. This is an 
instantiation of the ZPP. However, as is usual in school 
mathematics, the basic assumption that limits the scope of this 
property—in this case, that the mathematical setting is the real 
numbers—is not mentioned explicitly. The same assumption is 
made when it becomes necessary to introduce the multiplicative 
inverse of a number, an idea often relevant to school mathematics 
(e.g., when multiplying by a reciprocal). In ℝ, every real number 
𝑦, other than zero, has a multiplicative inverse 𝑦’ so that 𝑦 × 𝑦) =
𝑦) × 𝑦 = 1. Zero is the only number that does not have 
multiplicative inverse because no number multiplied by zero 
results in 1. This lack of multiplicative inverse also serves as one 
of the explanations for why division by zero is undefined. 
However, both the ZPP and the idea of multiplicative inverses are 
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introduced well before students are aware of the field structure of 
the relevant number set. 

Exposure to abstract algebra, and ring theory in particular, 
highlights the scope of applicability of the ZPP and the existence 
of multiplicative inverses. For example, in the ring ℤ'*	 – the set 
{0, 1, 2, … , 11} with addition and multiplication modulo 12 – the 
product of 3 and 8 results in zero. This is a pair of zero divisors; 
other zero divisor pairs in this ring are 3 and 4, 2 and 6, and 4 and 
9. Further, zero divisors never have multiplicative inverses. 
Returning to ℤ'*	, for example, there is no number that when 
multiplied (modulo 12) by 3 results in 1. On the other hand, in ℤ'*, 
the number 5 is its own multiplicative inverse as 25 ≡
1	(𝑚𝑜𝑑	12). The same applies to the number 7, which when 
multiplied by itself results in 49 ≡ 1	(𝑚𝑜𝑑	12). As such, the idea 
of rings (that are not integral domains) invites teachers to 
reconsider the properties of zero as related to the ZPP and its 
uniqueness in terms of the non-existence of multiplicative inverses. 

We believe that a lesson that explicitly explores these issues is 
more valuable as a follow up to a scripting activity, similar to the 
one discussed by Zazkis and Cook (2018), as it helps teachers 
reflect and acknowledge their “met-befores” that may have 
overshadowed their newly learned abstract algebra. Álvarez et al. 
(2022) describe the structure of such a lesson, intended for use in 
an undergraduate abstract algebra course, that connects to 
secondary mathematics by asking teachers to reconsider basic 
algebraic assumptions that in fact are only true because ℝ is a field. 
Álvarez et al. (2022) motivate this conversation by featuring 
hypothetical student work, such as when one student incorrectly 
applies the ZPP in an inappropriate setting but arrives at a correct 
solution (Figure 6). 

 
Figure 6. – Applying the ZPP in ℤ,	 

 
Conversations arising from considering this student’s work can be 
extended to additional basic assumptions, such as geometry on a 
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plane or base ten positional representation, that are not 
acknowledged explicitly unless breached.  

The Many Faces of Multiplication 
One important issue, which is implied but not highlighted in the 
work of Cook (2014) and Zazkis and Cook (2018), relates to the 
notion of multiplication and the multiplication symbol. In their 
brief overview of the related background, Zazkis and Cook note 
that “3 ∙'* 4 = 0”. That is, the symbol “	∙'*” is carefully used by 
the authors to direct readers’ attention to the fact that this 
multiplication is carried out modulo 12. 

However, a few lines later they write “in ℤ'*, 5 is invertible 
because 5 ∙ 5 = 1“. Having established the applicable set in which 
the multiplication is performed, they choose not to emphasize that 
multiplication is performed modulo 12 and instead write the same 
symbol as is usually used when multiplication is performed with 
real numbers. This is a common trend in mathematics, where the 
meaning of a symbol depends on the context in which the symbol 
appears. That is, we call many operations “multiplication” and use 
the symbol for “familiar multiplication”, even when this familiar 
symbol and familiar word invite interpretations that may not be 
applicable in the given context. 

We believe that this trend—which is an example of polysemy 
of the word “multiplication” and its symbol—is a source of many 
confusions and errors. Polysemy is a notion in linguistics that 
refers to words with different but related meanings. This is to 
distinguish from the notion of homonymy, which relates to words 
with different meanings but the same pronunciation and often the 
same spelling. While the meaning of homonyms is usually implied 
by the context, for example, in distinguishing a deposit in a bank 
from a steep bank of a river, polysemous words often appear in the 
same context, such as a mathematics lesson. Zazkis (1998) 
discussed the polysemy of the word quotient, which has different 
(but related) interpretations in the context of division of whole 
numbers and division of rational numbers. In considering 13 
divided by 2, the whole number quotient is 6, but the quotient—as 
the result of rational number division—is 6.5. Note that in both 
cases, this division can be denoted by the same symbol: “13 ÷ 2 =
6.5” and “13 ÷ 2 = 6 remainder 1”. 

Mamolo (2010) extended the notion of polysemy of words to 
that of symbols. As in the example above, the same symbol is used 
to indicate different kinds of division. Similarly, when we work in 
group theory, we use “+” to indicate addition, whereas the specific 
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kind of addition may not be denoted explicitly. As a result, 
beginners in group theory mistakenly consider the group (ℤ-	, +) 
to be a subgroup of (ℤ.	, +), focusing on the subset relationship 
and not initially recognizing that the “+” symbol points to different 
operations. 

A famous quote from Henri Poincaré is that “Mathematics is 
the art of giving the same name to different things”. As such, it is 
the labor of the teacher (of undergraduate mathematics) to direct 
learners’ attention to the different things called by the same name 
and denoted by the same symbol, seeking to capitalize on the 
differences and similarities. A possible task for teacher education 
is to compare “regular” multiplication to multiplication in ℤ'*	and 
to identify similarities and differences. While the initial 
interpretation may involve listing the same results (such as 2 ⋅ 3 =
6 and 2 ⋅'* 3 = 6) and different results (such as 5 ⋅ 5 = 25, versus 
5 ⋅'* 5 = 1), it should proceed to exploring relationships in the 
related multiplication tables, properties of zero and 1, and the 
existence of inverses. Such an exploration may also extend to 
exploring different meanings of multiplication—for example, 
when considered as a binary operation, multiplication exemplifies 
a function of two variables (see further Wasserman, 2023b). 

DISCUSSION AND CONCLUSION 

We have demonstrated how engaging teachers with scriptwriting, 
either to envision interactions with students on a mathematical 
issue or to report on their mathematical investigations, can lead to 
follow-up instruction that strengthens the links between 
undergraduate and school mathematics. These links manifested in 
different ways, each with different pedagogical affordances. For 
example, Zazkis and Marmur (2021) demonstrated that knowledge 
of the fundamental theorem of algebra could allow teachers to 
quickly reason about an algebraically complex function suggested 
by a student. In Kercher et al. (2023), we identified opportunities 
for teachers to strengthen the mathematical practice of their 
students by amplifying mathematically normative symbol use and 
argumentation. Finally, in Zazkis and Cook (2018), knowledge of 
zero divisors leads to discussions about hidden assumptions within 
secondary mathematics. Each of these connections, and the 
consequent implications for teaching, was catalyzed by a different 
scripting task. 
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Obviously, the instructional activities described here can take 

place unrelated to the scripting tasks. However, we note explicit 
benefits when instruction follows scriptwriting. First, as a tool for 
data collection, writing a script allows students to prioritize the 
presentation and discussion of the most pivotal aspects of their 
mathematical understanding. This affordance is especially evident 
in scripting journeys, wherein the dialogue mirrors the most 
impactful episodes of the students’ authentic experiences. Second, 
we suggest that the possibility to connect to a personal experience, 
including personal stumbles when initially considering an 
appropriate response to a student, makes the learning more 
memorable. As a result, stronger mathematical knowledge informs 
a more thoughtful pedagogical response, that in turn supports 
students’ mathematics. 

For example, Zazkis and Kontorovich (2016) explored 
reactions of teachers to a student’s question regarding the exponent 
(-1). A student inquired whether this was the same symbol used to 
indicate the inverse of a function 𝑓, denoted 𝑓$', and the reciprocal 
of a number, as in 5$'. The teachers were asked to write a script 
that started by addressing the student’s question, “Have they ran 
out or symbols, or what?” Most participants highlighted the idea 
that the same symbol can be used for different purposes, and it is 
important to distinguish whether it applies to a number or a 
function. Only a few participants attempted to establish a 
connection between the two uses of the exponent (-1), pointing to 
the fact that in both cases it indicated “going backwards” or “doing 
the opposite”. The follow-up instruction highlighted the 
mathematical idea of inverse with respect to operation, comparing 
the operation of multiplication of numbers to the operation of 
composition of function. While such a perspective is informed by 
a study of group theory, we claim that it can be accessible to 
learners without any mention of groups. As such, we believe that 
this experience equipped teachers with ways to respond to a 
student’s curiosity regarding the exponent (-1), or possibly to 
prompt such curiosity. 

Recent research on scriptwriting outlined multiple benefits for 
teachers, teacher educators and researchers. In particular, with the 
assumption that the scripts reflect scriptwriters’ personal views, 
teachers’ scripts provide researchers and teacher educators with 
information about teachers’ perceptions of teaching. They also 
offer a glimpse into scriptwriters’ mathematical knowledge and 
their pedagogical aspirations. In this paper we have highlighted an 
additional important benefit—scriptwriting by teachers serves as a 
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springboard and catalyst for a subsequent exploration of 
connections between undergraduate and school mathematics. 
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