
HAL Id: hal-04733122
https://hal.science/hal-04733122v1

Preprint submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Strong (2, 2)-Conjecture for more classes of graphs
Julien Bensmail, Morgan Boivin, Igor Grzelec, Clara Marcille

To cite this version:
Julien Bensmail, Morgan Boivin, Igor Grzelec, Clara Marcille. The Strong (2, 2)-Conjecture for more
classes of graphs. 2024. �hal-04733122�

https://hal.science/hal-04733122v1
https://hal.archives-ouvertes.fr

The Strong (2, 2)-Conjecture for more classes of graphs

Julien Bensmaila, Morgan Boivinb, Igor Grzelecc, Clara Marcilleb

aUniversité Côte d’Azur, CNRS, Inria, I3S, France
bUniv. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

cDepartment of Discrete Mathematics, AGH University of Krakow, Poland

Abstract

The Strong (2, 2)-Conjecture asks whether, for all connected graphs different from K2 and K3, we can
assign red and blue labels with value 1 or 2 so that no two adjacent vertices have the same sum of
incident red labels or the same sum of incident blue labels. This conjecture, which can be perceived as
a generalisation of the so-called 1-2-3 Conjecture, as, thus far, been proved only for a handful number
of graph classes. In this work, we prove the Strong (2, 2)-Conjecture holds for more classes of graphs.
In particular, we prove the conjecture for cacti, subcubic outerplanar graphs, graphs with maximum
average degree less than 9

4 , and Halin graphs, among others.

Keywords: Strong (2, 2)-Conjecture; proper labelling; 3-colourable graph.

1. Introduction

In this work, we essentially prove the so-called Strong (2, 2)-Conjecture for new classes of graphs.
So that the extent of our contribution is clear, we first start by recalling the context of this conjecture.

Let G be a graph, and l, k ≥ 1 be two integers. An (l, k)-colouring of G is an assignment ℓ : E(G) →
{1, . . . , l} × {1, . . . , k} of coloured labels to the edges, where each edge e gets assigned a label ℓ(x, y) by
ℓ, with colour x and value y. Now, for every vertex v of G and any i ∈ {1, . . . , l}, one can compute
the i-sum σi

ℓ(v) of v by ℓ, which is, essentially, the sum of labels with colour i assigned to the edges
incident to v. Now, depending on certain parameters, we consider that two adjacent vertices of G are
distinguished by ℓ, or conflicting otherwise. More precisely, we are mainly interested in three distinction
conventions, introduced in [3]:

• ℓ is weak if, for any two adjacent vertices u and v, there is i ∈ {1, . . . , l} such that σi
ℓ(u) ̸= σi

ℓ(v);

• ℓ is standard if, for any two adjacent vertices u and v such that uv is assigned a label with colour
i ∈ {1, . . . , l} by ℓ, we have σi

ℓ(u) ̸= σi
ℓ(v);

• ℓ is strong if, for any two adjacent vertices u and v, we have σi
ℓ(u) ̸= σi

ℓ(v) for all i ∈ {1, . . . , l}
such that σi

ℓ(u), σi
ℓ(v) ̸= 0.

Obviously, a strong colouring is standard and a standard colouring is weak, but the contrary is not
always true. These three types of colourings were mostly introduced, in [3], because they generalise
a number of other types of distinguishing labellings, such as labellings distinguishing adjacent vertices
by their incident sums (standard (1, k)-colourings – notions lying behind the 1-2-3 Conjecture [14]),
labellings distinguishing adjacent vertices by their incident multisets (weak (1, k)-colourings – notions
lying behind the multiset version of the 1-2-3 Conjecture [1]), and edge-colourings distinguishing adjacent

Preprint submitted to ...

vertices by their coloured degrees (standard (l, 1)-colourings – notions lying behind the Local Irregularity
Conjecture [4]).

In the line of the related conjectures and problems, the main goal, given a graph G, is to figure out
whether G admits weak, standard, and strong (l, k)-colourings with l and/or k as small as possible.
First off, under the assumption that l and k can be anything, it can be observed that weak, standard,
and strong (l, k)-colourings exist for all connected graphs different from K2 (for instance, the 1-2-3
Conjecture, which holds for all such graphs [15], implies they all admit strong (1, 3)-colourings). The
main topic of this paper is when l, k ≤ 2. For the weak convention, we say a graph is nice if it does not
contain K2 as a connected component, while for the standard and strong conventions we say a graph
is nice if it does not contain K2 or K3 as a connected component. We can now state the three main
conjectures of interest here, all raised in [3]:

Weak (2, 2)-Conjecture. Every nice graph admits weak (2, 2)-colourings.

Standard (2, 2)-Conjecture. Every nice graph admits standard (2, 2)-colourings.

Strong (2, 2)-Conjecture. Every nice graph admits strong (2, 2)-colourings.

Out of the three conjectures, only the weakest one has been proved to date. Namely, it was observed
in [5] that the 1-2-3 Conjecture, if proved true, would imply the Weak (2, 2)-Conjecture; since the 1-2-3
Conjecture was recently proved [15], the Weak (2, 2)-Conjecture thus also holds. This apart, the other
two stronger conjectures are wide open in general, despite a few works on the topic [3, 5, 8, 17, 18]. In
brief, the Standard (2, 2)-Conjecture was mainly proved for 2-degenerate graphs, subcubic graphs, and
graphs with large minimum degree. Regarding the Strong (2, 2)-Conjecture, it was mostly proved for
complete graphs and bipartite graphs (thus also the Standard (2, 2)-Conjecture holds for these).

Our main goal in this work is to prove the Strong (2, 2)-Conjecture for more classes of graphs of
interest. More precisely, we focus on classes of graphs that are either dense, or 3-colourable (w.r.t. the
chromatic number). Regarding the latter graphs, this is mainly because this is a common way to proceed
in the field. Indeed, partitioning the vertices of a graph into a very restricted number of independent
sets provides a layout for designing distinguishing labellings, in the sense that we can build upon sets
of vertices that will never be in conflict (the best illustration being that, in nice 3-colourable graphs,
we can design strong (1, 3)-colourings where adjacent vertices have distinct sums modulo 3, following
a proper 3-colouring serving as a layout [14]). Since the Strong (2, 2)-Conjecture was proved for nice
bipartite graphs in [3], the next natural step to make is thus to focus on 3-colourable graphs. Regarding
the former graphs, namely dense graphs, this is mainly because they tend to have unbounded chromatic
number, which allows us to attack the Strong (2, 2)-Conjecture on another angle. Also, dense graphs
behave in some expected way structure-wise, allowing for an easier design of distinguishing labellings.

Throughout this work, we thus focus on proving the Strong (2, 2)-Conjecture for more classes of
graphs, focusing on graphs with low chromatic number or large density. Namely, we prove the conjecture
for cacti in Section 2, for subcubic outerplanar graphs in Section 3, for graphs with maximum average
degree less than 9

4 in Section 4, for Halin graphs in Section 5, and for planar graphs with girth at
least 16 in Section 6, which, roughly speaking, are classes of graphs with chromatic number at most 3.
We also prove the Strong (2, 2)-Conjecture for classes of graphs with unbounded chromatic number,
namely powers of cycles in Section 7, and complete k-partite graphs in Section 8. We finish off with a
few concluding words in Section 9.

2

(a) A cactus G. (b) The tree representation T (G) of G.

Figure 1: An example of a cactus G (a), with the corresponding tree representation T (G) (b) as introduced in the proof of
Theorem 1. Black vertices are vertex nodes of T (G), while white vertices are subgraph nodes. This example is taken from
[6].

Terminology

Note that, in the context of the Strong (2, 2)-Conjecture, we are only interested in strong (l, k)-
colourings with l = k = 2. For this reason, it is more convenient to see (2, 2)-colourings as labellings
assigning, say, red and blue labels, with value 1 or 2. Thus, in any graph, by any (2, 2)-colouring ℓ,
for every vertex v we derive a red sum, which we denote by σr

ℓ (v), and a blue sum, which we denote
by σb

ℓ(v). Under that terminology, the Strong (2, 2)-Conjecture asks whether every nice graph admits a
labelling ℓ assigning red and blue 1’s and 2’s so that, for every two adjacent vertices u and v, we have
σr
ℓ (u) ̸= σr

ℓ (v) and σb
ℓ(u) ̸= σb

ℓ(v), unless 0 ∈ {σr
ℓ (u), σr

ℓ (v)} or 0 ∈ {σb
ℓ(u), σb

ℓ(v)}, respectively.

2. Cacti

Recall that a cactus is a connected graph in which no two cycles share an edge. That is, cacti
generalise trees in that, when contracting cycles to vertices, we essentially get a tree. Let us remind
that cacti are 2-degenerate, and thus 3-colourable. Also, it is worth recalling that nice trees verify the
Strong (2, 2)-Conjecture, essentially because they all admit strong (1, 2)-colourings (see e.g. [16]).

In the next result, we prove the Strong (2, 2)-Conjecture for nice cacti. In the following, for n ≥ 0,
we denote by Kn the complete graph of order n, and by Cn the cycle on n vertices. Let us bring to the
attention of the readers that, in the upcoming proof and in later ones as well, several configurations will
be introduced through the notation “Ck”, which should not be confused with “Ck”.

Theorem 1. If G is a nice cactus, then G is strongly (2, 2)-colourable.

Proof. Before starting, we claim that every cactus G has a tree representation T (G) where:

• all nodes of T (G) are either vertex nodes, associated to a vertex of G, or subgraph nodes, associated
to an induced tree or to an induced cycle of G;

• all leaves of T (G) are subgraph nodes;

• the set of vertex nodes, as well as the set of subgraph nodes, are both independent sets;

• two subgraph nodes associated to H1, H2 are adjacent to a vertex node u iff V (H1)∩V (H2) = {u}.

3

u v v1

Figure 2: A particular case of Configuration C1, with only one degree-1 vertex. In this figure and in later ones as well,
dotted edges are incident edges in G′.

Such a tree representation is very close to the block representation of cacti (see e.g. [6]) with addi-
tional nodes representing connected components that are not cycles. It can be computed by adding a
subgraph node associated to every maximal biconnected component, and a tree node associated to every
remaining edge (not in a biconnected component). We complete it by adding a vertex node associated
to every vertex shared by two or more subgraph nodes. Altogether, the representation is indeed a tree,
as otherwise one edge would be either shared by two cycles, or a tree node would belong to some cycle,
which is not possible. An example is given in Figure 1.

Let us consider G a minimal counterexample (w.r.t. the number of edges) to Theorem 1. Assuming
T (G) is rooted at some vertex, we call terminal cycle (resp. terminal tree) of G an induced cycle (resp.
tree) represented by a leaf of maximal depth in T (G). Our goal is to prove that G cannot contain
a certain number of configurations (C1 to C6c below), from which we can eventually contradict the
existence of G. Remark that since, below, we are proving that some configurations do not appear in
a minimal counterexample, we are free to consider any way to root T (G) as long as we do not assume
anything on the position of a node w.r.t. the root.

Let us thus first prove that G, due to its minimality, cannot contain some configurations.

(C1) Let us first assume that T (G) has a leaf T associated to a tree of depth greater or equal to 2. In
particular, we can assume that, up to seeing T as two trees sharing a vertex, the depth of T is
exactly 2. More intuitively, this configuration contains an induced tree of depth greater or equal
to 2 where at most one vertex is adjacent to vertices outside the tree (see Figure 2). We denote by
u the parent vertex in T , and by v the unique neighbour of u in T . Since T is of depth at least 2,
let us denote by v1, . . . , vk the children of v in T , and consider G′ = G − {v1, . . . , vk}. Note that
either G′ is nice, or G is a star in which case, clearly, strong (2, 2)-colourings exist. Since G′ is
a cacti, and G is a minimal counterexample to Theorem 1, graph G′ is strongly (2, 2)-colourable;
we denote by ℓ′ a (2, 2)-colouring. From now on, and in several instances throughout this work,
our goal is to extend ℓ′ by assigning labels to the edges of E(G) \ E(G′) so that the resulting
(2, 2)-colouring of G is strong (thereby contradicting that G is a counterexample, and that G
cannot contain the current configuration). In the present case, assuming w.l.o.g. that σb

ℓ′(v) > 0,
it suffices to assign blue label 1 to vv2, . . . , vvk, and to assign to vv1 whichever blue label makes
σb
ℓ(v) differ from σb

ℓ(u).

(C2) Assume T (G) has a leaf C associated to a C3, with a parent vertex v, where the vertex node v is
also adjacent to an induced tree T where v is a leaf of T . We further assume that the degree of v in
T (G) is exactly 2, and denote by u the only neighbour of v in T . More intuitively, this configuration
corresponds to a triangle hanging at the end of an edge (see Figure 3). We denote by v1, v2 the
two vertices of C other than v, and consider G′ = G − {v1, v2}. Unless V (G) = {u, v, v1, v2} (in
which case it is easy to notice that G is not a counterexample to Theorem 1), G′ is nice and
thus strongly (2, 2)-colourable, and we consider ℓ′ strong (2, 2)-colouring. Assuming w.l.o.g. that
σb
ℓ′(v) > 0, we assign to vv1 whichever blue label makes σb

ℓ(v) differ from σb
ℓ(u). We then assign

to vv2 whichever red label makes σr
ℓ (v) differ from σr

ℓ (u), and to v1v2 whichever red label makes
σr
ℓ (v1) differ from σr

ℓ (v) (which happens to be the value we did not pick for vv2).

4

u v

v1

v2

Figure 3: Configuration C2.

u

v

w

v1

w1

Figure 4: A particular case of Configuration C3, where each of v and w is adjacent to only one degree-1 vertex. In this
figure and in later ones as well, white vertices are vertices that might not exist.

(C3) Assume there exists a subgraph node C of T (G) associated to a C3 with vertices u, v, w, where,
if the vertex nodes v, w exist, then they are adjacent to C and to subgraph nodes associated with
trees (that can be assumed to be of depth 1, as otherwise G would contain Configuration 1). We
further assume there is at least one such tree. More intuitively, this configuration corresponds
to a C3 with at least one degree-1 vertex attached (see Figure 4). We denote by u the parent
vertex node of C, and by v, w the other two vertices of C. We also denote by v1, . . . , vk (resp.
w1, . . . , wl) the degree-1 vertices of the children of v (resp. w). Unless u is of degree 2 in G (in
which case G is completely revealed and it is easy to find a strong (2, 2)-colouring of G), graph
G′ = G− {v1, . . . , vk, w1, . . . , wl} is strongly (2, 2)-colourable; so let ℓ′ be a strong (2, 2)-colouring
of G′. Note that v and w are completely interchangeable in G′, and note also that vw must have
the same colour (say blue, w.l.o.g.) by ℓ′ as one of its adjacent edges, say uv.

There are two cases to consider.

– Assume uw is also blue by ℓ′. Up to swapping v and w in G′, we can assume σb
ℓ′(v) > σb

ℓ′(w)
and k ≥ l. If l = 0, then we assign to vw whichever red label makes σr

ℓ (w) and σr
ℓ (u) differ

(note that with the colour change we operated, v and w still have distinct blue sums). We
finish by assigning red label 1 to vv2, . . . , vvk, and assigning to vv1 whichever red label makes
σr
ℓ (v) and σr

ℓ (u) differ. It can be checked that this results in a strong (2, 2)-colouring of G.

We can now assume l, k ≥ 1. If σb
ℓ′(u) = σb

ℓ′(v) + k (that is, assigning blue label 1 to every
vvi for 1 ≤ i ≤ k yields a colouring that is not strong), then we assign blue label 1 to every
wwj with 1 ≤ j ≤ l, blue label 1 to every vvi with 2 ≤ i ≤ k, and blue label 2 to vv1. This
way, σb

ℓ(u) = σb
ℓ′(v)+k = σb

ℓ(v)−1, and σb
ℓ(w) ≤ σb

ℓ(v)−2. Conversely, if σb
ℓ′(u) = σb

ℓ′(w)+ l,
then we assign blue label 2 to vv1 and ww1, and blue label 1 to all other edges. By similar
arguments, this results in a strong (2, 2)-colouring of G.

– We assume now that uw is assigned a red label by ℓ′. Up to swapping v and w in G′, we
can also assume that k ≥ l. If l = 0, then we swap the labels assigned to uv and uw by ℓ′

so that uv is now coloured red. Then, we assign red label 1 to vv2, . . . , vvk, and we assign to
vv1 whichever red label makes σr

ℓ (v) and σr
ℓ (u) differ; this results in a strong (2, 2)-colouring

of G. We can now assume k, l ≥ 1. By similar arguments as earlier, we assign blue (resp.
red) label 1 to vv2, . . . vvk (resp. ww2, . . . wwl), and we assign to vv1 (resp. ww1) whichever
blue (resp. red) makes the blue (resp. red) sums of u and v (resp. w) differ. Again, it can
be checked that this results in a desired strong (2, 2)-colouring of G.

5

a b c

a′ c′

a1 b1 c1

Figure 5: A particular case of Configuration C4, where each of a, b, c is adjacent to one degree-1 vertex.

(C4) Assume there exists C, a node of T (G) associated to a cycle with three consecutive vertices a, b, c
of C such that none of them is shared by another node of T (G) other than maybe a leaf tree node
(see Figure 5). If they exist, we denote the vertices (other than a, b, c) of those trees by a1, b1, c1,
respectively. Note that G′ = G − {b} is always nice, so let ℓ′ be a strong (2, 2)-colouring of G′.
We denote by a′ (resp. c′) the only neighbour of a (resp. c) in G′.

– Assume first that aa′ and cc′ have the same colour by ℓ′, say blue. We assign to ab (resp.
bc) whichever red label makes σr

ℓ (a) and σr
ℓ (a′) differ (resp. c, c′). If a1 or c1 exists, then we

assign to their incident edges whichever blue label makes σb
ℓ(a) and σb

ℓ(a
′) differ (resp. c, c′).

If b1 exists, then we assign red label 1 to bb1.

– Now assume, say, that aa′ is coloured red and cc′ blue by ℓ′. We assign, if it exists, red (resp.
blue) label 1 to aa1 (resp. cc1). We then assign to ab whichever red label makes σr

ℓ (a) and
σr
ℓ (a′) differ, and to bc whichever blue label makes σb

ℓ(c) and σb
ℓ(c

′) differ. If b1 exists, then
we also assign to bb1 whichever red label makes σr

ℓ (b) differ from σr
ℓ (a).

Both cases, it can be checked that we obtain a strong (2, 2)-colouring of G.

(C5) Assume there exists a vertex node u such that exactly one node of T (G) adjacent to u is not a
leaf of T (G), and all other nodes of T (G) adjacent to u are associated with either a tree or a
C3. Intuitively, this configuration encapsulates the cases where there are k trees and l triangles
hanging from a single vertex (see Figure 6). We denote by w1, . . . , wk the k ≥ 0 vertices of the
trees other than u (remember they are of depths at most 1), and by v1, v

′
1, . . . , vl, v

′
l the l ≥ 0

vertices of the cycles other than u (where viv
′
i is an edge of some triangle, for every i ∈ {1, . . . , l}).

Let us consider G′ = G − {v1, . . . , v′l, w1, . . . , wk}, where k + l ≥ 2 (the case where k + l ≤ 1 will
be handled later, in Configurations 6a to 6c). Note that the degree of u in G′ is 2. Since there
exists a non-leaf node of T (G) adjacent to u in T (G), necessarily G′ is nice.

– Assume first k + l ≥ 4. We can assume w.l.o.g. that σb
ℓ′(u) > 0. We pick A, a set of four

vertices a1, a2, a3, a4 in G − V (G′) such that if, for some 1 ≤ i ≤ l, we have vi ∈ A, then
v′i ∈ A. More intuitively, this means we pick arbitrarily either four degree-1 vertices, a cycle
and two degree-1 vertices, or two cycles. For 1 ≤ i ≤ k, if wi /∈ A, then we assign blue label
1 to uwi. For 1 ≤ j ≤ l, if vj /∈ A (hence v′j /∈ A as well), then we assign blue label 1 to uvi,
red label 2 to uv′i, and red label 1 to viv

′
i. W.l.o.g., we can assume that a1, a3 do not share

a cycle. We assign to ua1, ua3 (resp. ua2, ua4) whichever choice of red (resp. blue) labels
makes σr

ℓ (u) (resp. σb
ℓ(u)) differs from the red (resp. blue) sums of both its neighbours in

G′. Finally, if two vertices of A are adjacent, then we assign blue label 1 to the edge incident
to both of them. Let us prove that this results in a strong (2, 2)-colouring of G. It is easy
to check that u is distinguished in both colours from its neighbours in G′. Since a1 and a3
received incident blue labels and a2, a4 received incident red labels, u is distinguished from

6

u

v1 v′1 v2 v′2 w1w2

Figure 6: A particular case of Configuration C5, where k = l = 2.

every of its degree-1 neighbours. Let us now consider vi and v′i for 1 ≤ i ≤ l. If vi ∈ A,
then, w.l.o.g., σb

ℓ(vi) = 2, σb
ℓ(v

′
i) = 1, σr

ℓ (vi) = 0, and σb
ℓ(v

′
i) = 1. Note then that vi and v′i

do not have the same red sum. We are thus left to prove that σb
ℓ(u) > 2. This holds because

σb
ℓ′(u) > 0, and at least two edges of E(G) \ E(G′) incident to u were assigned blue labels.

– Assume now k ≥ 2 and l = 0. We denote by v1, . . . , vk the children of u in T , and consider
G′ = G − {v1, . . . , vk}. Note that the degree of u in G′ is 2. Unless G′ is a C3 (in which
case it is easy to produce a strong (2, 2)-colouring of G), G′ is nice; let thus ℓ′ be a strong
(2, 2)-colouring of G′. We assign to uv3, . . . , uvk blue label 1, then assign blue labels to uv1
and uv2 so that σb

ℓ(u) differs from the blue sums of both its neighbours in G′, which is always
possible since we can alter the blue sum of u in three distinct ways.

Note that this case, along with Configuration 1, prevents any vertex of a minimal counterex-
ample to Theorem 1 from being adjacent to multiple tree subgraph nodes that are leaves.

– Assume next that k + l = 3.

∗ If k = 2 and l = 1, then we assign blue label 2 to uv1, blue label 1 to uv′1 and v1v
′
1, and

then assign blue labels to uw1 and uw2 so that σb
ℓ(u) differs from the blue sums of both

its neighbours in G′.

∗ If k = 1 and l = 2, then we assign red label 2 for uw1, blue (resp. red) labels to uv1 and
uv2 (resp. uv′1, uv2) so that σb

ℓ(u) (resp. σr
ℓ (u)) differs from the blue sums of both its

neighbours in G′, and red label 1 to v1v
′
1, v2v

′
2.

∗ If l = 3, then we assign blue label 1 to v3v
′
3, red label 2 to uv3, and blue label 2 to uv′3.

We apply the exact same process as in the last case for all other edges.

In all cases, we obtain a strong (2, 2)-colouring of G.

– Assume finally that k + l = 2 and l ̸= 0.

∗ Assume first k = 0. We assign blue label 1 to v1v
′
1, v2v

′
2, and blue (resp. red) labels to

uv1 and uv2 (resp. uv′1, uv2) so that σb
ℓ(u) (resp. σr

ℓ (u)) differs from the blue sums of
both its neighbours in G′. W.l.o.g., we can assume σb

ℓ′(u) > 0, so we obtain σb
ℓ(u) > 2.

∗ Assume now k = l = 1. We denote by a, b the two neighbours of u in G′. We first
handle the case where {σr

ℓ′(a), σr
ℓ′(b)} = {σr

ℓ′(u) + 4, σr
ℓ′(u) + 5} and {σb

ℓ′(a), σb
ℓ′(b)} =

{σb
ℓ′(u) + 4, σb

ℓ′(u) + 5}. In this case, we assign blue label 1 to uv1 and uw1, red label 2 to
uv′1, and we assign to v1v

′
1 whichever red label makes σr

ℓ (v1) and σr
ℓ (u) differ. We now

consider cases where, for instance, one of σr
ℓ′(a), σr

ℓ′(b) is different from both σr
ℓ′(u) + 4

and σr
ℓ′(u)+5. Here, we assign red label 1 to uv1 and v1v

′
1, red label 2 to uv′1, and to uw1

whichever red label makes σr
ℓ (u) differ from the red sums of its neighbours in G′, which

always exists because one of σr
ℓ′(a), σr

ℓ′(b) is different from both σr
ℓ′(u) + 4 and σr

ℓ′(u) + 5.

In all cases, we again obtain a strong (2, 2)-colouring of G.

7

(C6a) Assume there exist two leaf nodes C, C ′ associated to two C3’s, where C (resp. C ′) is adjacent
to a vertex node u1 (resp. u2), and u1 and u2 are adjacent in G. We further assume that, C,C ′

apart, nodes u1, u2 are only adjacent to some subgraph node N of T (G). This configuration is
illustrated in Figure 7. In particular, d(u1) = d(u2) = 4 (as otherwise we would have Configuration
2). We denote by v1, v

′
1 (resp. v2, v

′
2) the other two vertices of C (resp. C ′), and consider

G′ = G− {v1, v′1, v2, v′2, u1u2}. We additionally denote by w1 (resp. w2) the only neighbour of u1
(resp. u2) in G′. Since G′ is nice (as otherwise G would contain Configuration 5), there is ℓ′, a
strong (2, 2)-colouring of G′. We split our arguments into two main cases.

– Assume first that w1u1 and w2u2 are assigned the same colour by ℓ′, say blue. W.l.o.g.,
we can assume σb

ℓ′(u1) ≥ σb
ℓ′(u2). We assign blue label 1 to u1v1 and v′1v1, and blue label

2 to u1v
′
1. We then assign to u2v2 whichever red label makes σr

ℓ (u2) and σr
ℓ (w2) differ.

We assign to v2v
′
2 whichever red label makes σr

ℓ (v′2) and σr
ℓ (u2) differ. We assign to u1u2

whichever blue label makes σb
ℓ(u1) and σb

ℓ(w1) differ. Finally, we assign to u2v
′
2 whichever

blue label makes σb
ℓ(u2) and σb

ℓ(w2) differ. Since σb
ℓ′(u1) ≥ σb

ℓ′(u2), note that σb
ℓ(u1)−σb

ℓ(u2) =
σb
ℓ′(u1) + 3 − (σb

ℓ′(u2) + ℓ(u2v
′
2)) > 0; hence, we obtain a strong (2, 2)-colouring of G.

– Assume now that w1u1 is assigned a blue label by ℓ′, while w2u2 is assigned a red label. If
σr
ℓ′(w2) ̸= σr

ℓ′(u2) + 3, then we assign red label 1 to u2v2 and v2v
′
2, and red label 2 to u2v

′
2.

Otherwise, we assign blue label 1 to u2v2, and to u2v
′
2 and v2v

′
2 the same red label, with the

value being the one that is not chosen by ℓ′ for u2w2. Then, we assign to u1u2 whichever blue
label makes σb

ℓ(u2) and σb
ℓ(w2) differ. We assign to u1v1 whichever red label makes σr

ℓ (u1)
and σr

ℓ (w1) differ, and to v1v
′
1 whichever red label makes σr

ℓ (v′1) and σr
ℓ (u1) differ. Finally,

we assign to u1v
′
1 whichever blue label makes σb

ℓ(u1) and σb
ℓ(w1) differ.

Let us comment on the fact that this does result in a strong (2, 2)-colouring of G. In particular,
let us check that u1, u2, v2, v

′
2 are not in conflict. Since u2v

′
2 was assign either blue label 1 or

a red label, and u1 has two incident edges distinct from u1u2 assigned a blue label, vertices u1
and u2 indeed have distinct blue sums. Moreover, σr

ℓ (u1) ≤ 2 while σr
ℓ (u2) ≥ 3; hence, u1 and

u2 are distinguished in both colours. All pairs involving u2, v2, v
′
2 are trivially distinguished

in blue, while σr
ℓ (v′2) ≤ 2 from which we deduce u2 and v′2 are distinguished in red. Now,

either u2v
′
2 was assigned a red label and it is easy to check that ℓ is as desired, or u2v

′
2 was

assigned blue label 1. In that case, since we assigned the same red label to u2v2 and v2v
′
2,

note that σr
ℓ (v2) and σr

ℓ (v′2) are both even, while, since we assigned to both the value that was
not assigned to u2w2, we have that σr

ℓ (u2) is odd, guaranteeing another distinction. From
these arguments, it is not too complicated to be convinced that ℓ has the desired properties.

(C6b) Assume there exist two leaf nodes C, T associated to a C3 and a tree, respectively, where C
(resp. T) is adjacent to a vertex node u1 (resp. u2), and u1 and u2 are adjacent in G. We
further assume that, C and T apart, u1, u2 are only adjacent to some subgraph node N of T (G)
(see Figure 7). We denote by v1, v

′
1 (resp. v2) the other vertices of C1 (resp. T), and consider

G′ = G− {v1, v′1, v2, u1u2}. Also, we denote by w1 (resp. w2) the only neighbour of u1 (resp. u2)
in G′. Since G′ is nice (as otherwise G would contain one of Configurations 1 and 5), we consider
ℓ′, a strong (2, 2)-colouring of G′. Assuming w.l.o.g. that w1u1 is assigned a blue label by ℓ′, we
consider two main cases.

– Assume first σb
ℓ′(u2) > σb

ℓ′(u1) (hence that w2u2 is assigned a blue label by ℓ′, and ℓ′(w1u1) = 1
while ℓ′(w2u2) = 2). We assign red label 1 to u1v1 and v1v

′
1, and red label 2 to u1v

′
1. We then

8

u1 u2

v1 v′1 v2 v′2

u1 u2

v1 v′1 v2

u1 u2

v1 v′1

Figure 7: Configurations C6a to C6c.

assign to u1u2 whichever red label makes σr
ℓ (u1) and σr

ℓ (w1) differ, and to u2v2 whichever
red label makes σr

ℓ (u2) and σr
ℓ (w2) differ.

– Assume second σb
ℓ′(u2) ≤ σb

ℓ′(u1). We here assign blue label 1 to u1v1 and v1v
′
1, and blue

label 2 to u1v
′
1. We then assign to u1u2 whichever blue label makes σb

ℓ(u1) and σb
ℓ(w1) differ,

and to u2v2 whichever blue label makes σb
ℓ(u2) and σb

ℓ(w2) differ.

In both cases, it is easy to check that this results in a strong (2, 2)-colouring of G.

(C6c) Assume there exists a leaf node C associated to a C3, where C is adjacent to a vertex node u1
adjacent to a vertex u2 in G where u2 is not a vertex node of T (G). We further assume that, C
apart, vertex u1 is only adjacent to some subgraph node N of T (G) (see Figure 7 for an illustration).
In particular, remark that u2 must be a vertex of N . We can further assume u2 is of degree 2 in
G (as otherwise we would fall back into Configuration 6b). We consider G′ = G− {u1u2, v1, v′1},
where v1 and v′1 are the vertices of C. We additionally denote by w1, w2 the respective neighbour
of u1, u2 in G′. Since G′ is nice (as otherwise G would contain one of Configurations 1 and 5), we
can consider ℓ′, a strong (2, 2)-colouring of G′. Again, we focus on two main cases.

– Assume first u1w1 is assigned a blue label while u2w2 is assigned a red label by ℓ′. We assign
to u1u2 whichever red label makes σr

ℓ (u2) and σr
ℓ (w2) differ. Then, if σr

ℓ′(w1) = 3, then
we assign red label 1 to u1v1, v1v

′
1 and red label 2 to u1v

′
1. Otherwise, we assign to u1v1

whichever blue label makes σb
ℓ(u1) and σb

ℓ(w1) differ, and to u1v
′
1, v1v

′
1 the red label with the

value that we did not assign to u1u2. By argument similar as earlier, this yields the desired
properties.

– Assume now u1w1, u2w2 are assigned a blue label by ℓ′. We consider k ∈ {1, 2}, the value such
that assigning blue label k to u1u2 makes σb

ℓ(u2) and σb
ℓ(w2) differ. If σb

ℓ′(u1)+k+3 ̸= σb
ℓ′(w1),

then we assign blue label k to u1u2, blue label 1 to u1v1 and v1v
′
1, and blue label 2 to u1v

′
1.

Otherwise, we assign to u1u2 whichever red label makes σr
ℓ (u2) and σr

ℓ (w2) differ. We then
assign to u1v1 whichever red label makes σr

ℓ (u1) and σr
ℓ (w1) differ. Finally, we assign to

u1v
′
1, v1v

′
1 the same blue label, with the value being different from the label assigned to u1w1.

By arguments similar as before, this results in a strong (2, 2)-colouring of G.

We are now ready to prove that there is no cactus other than K2 and K3 that does not contain any
of those configurations, which implies Theorem 1. Let us consider G, any cactus (different from K2

and K3) with a tree decomposition T (G), and root T (G) arbitrarily at any subgraph node. Let L be
a deepest leaf of T (G). Since G does not contain Configuration 4, L cannot be associated to a cycle of
length more than 4. Let us denote P the parent node of L in T (G). If L is a tree, then, since G does
not contain Configuration 1, L is of depth at most 1. We can assume L is either a tree or a C3. If P is a
tree, then w.l.o.g. L is a C3, and either u is of degree 3 and G would contain Configuration 2, or u has
degree greater than 4. Since L is a deepest leaf, any subgraph node adjacent to u is also a leaf node,

9

thus associated to either a C3 or a tree, and G would contain Configuration 5. Since G does not contain
Configurations 3 and 6c, P cannot be associated to a C3, hence P is associated to a cycle of length at
least 4. Let us consider the neighbours of u, the vertex shared by P and L. Because L is a deepest leaf,
at least one neighbour of u in G is not shared by P ′, the parent node of P in T (G); let us denote it by
v. Finally, let us denote by w the other neighbour of v in P . Since P is of length at least 4, vertices
u, v, w are pairwise distinct, and every node containing any of them is a leaf. Since G does not contain
Configuration 4, none of them is shared by a cycle of length more than 4 other than P . If one of them
is shared by a C3, then at least one of its neighbours in {u, v, w} is either shared by another C3 (and G
would contain Configuration 6a), a tree (and G would contain Configuration 6b) or none (and G would
contain Configuration 6c). Hence, none of them is shared by a C3 and G would contain Configuration
4. Hence, L must be the only node of T (G). If L is a cycle of length more than 4, we can conclude; so,
G is either K2 or K3.

3. Subcubic outerplanar graphs

Recall that a graph G is subcubic if ∆(G) ≤ 3 (where ∆(G) denotes the maximum degree of G), and
outerplanar if G admits an embedding on the plane such that all vertices lie on the outerface. It is well
known that outerplanar graphs are 2-degenerate, and thus 3-colourable.

In the next result, we prove the Strong (2, 2)-Conjecture for nice subcubic outerplanar graphs.

Theorem 2. If G is a nice subcubic outerplanar graph, then G is strongly (2, 2)-colourable.

Proof. The structure of the proof is the same as the proof of Theorem 1. First off, similarly, we claim
outerplanar graphs G have a tree representation T (G) where:

• all nodes are either vertex nodes, associated to a vertex of G, edge nodes, associated to an edge of
G, or subgraph nodes, associated to an induced tree or to an induced cycle of G;

• all leaves of T (G) are subgraph nodes;

• the set of vertex and edge nodes, as well as the set of subgraph nodes, are both independent sets;

• two subgraph nodes associated to H1, H2 are adjacent to a vertex node u iff V (H1)∩V (H2) = {u};

• two subgraph nodes associated to cycles H1, H2 are adjacent to an edge node uv iff V (H1) ∩
V (H2) = {u, v}.

To reach such a tree representation T (G) for any outerplanar graph G, one can consider any out-
erplanar embedding of G, and add to T (G) an edge node euv for every edge uv not on the outerface.
Note that uv is part of exactly two induced cycles without chords (as otherwise either uv would lie on
the outerface, or G would not be outerplanar). Then add to T (G) a subgraph node associated to every
chordless cycle of G, and, for each node euv, add to T (G) an edge between euv and the two subgraph
nodes associated to the chordless cycles containing uv. Then, for all bridges uv of G, add to T (G) a
subgraph node suv associated to a tree on the two vertices u, v. Finally, if two subgraph nodes S1, S2

share a vertex v (but not an edge), then add to T (G) a vertex node V associated to v and add an
edge between V and S1, as well as an edge between V and S2. Because of the adjacency rules we
provided, edge nodes and vertex node together induce an independent set, and the same goes for the
set of subgraph nodes. Note also that if T (G) contains a cycle C, then no subgraph node of this cycle

10

is a tree (as otherwise the associated tree would not be a bridge). If a vertex of C is an edge node,
then one vertex of G is not on the outerface, and hence C is made of vertex nodes and cycle subgraph
nodes. Moreover, let us consider U, V , two vertex nodes adjacent to a subgraph node S, where all tree
of them are vertices of C. We claim that u, v are adjacent in G. Assume this is not the case. Since S is
associated to a cycle, then there exists w, a vertex of S not on the outerface, which is a contradiction.
In particular, all the vertices of C form a chordless cycle of G sharing an edge uv with S, which is a
contradiction since C does not contain edge nodes.

In particular, note that all configurations treated along the proof of Theorem 1 still apply, as cacti
are outerplanar. Configurations 1 to 6c actually deal with subgraph nodes adjacent to vertex nodes.
To essentially extend the proof to subcubic outerplanar graphs, we must thus deal with cases covering
subgraph nodes adjacent to edge nodes.

(C7) Assume there exists a subgraph node C associated to a C3 adjacent to an edge node u1u2 where,
if we denote by v the last vertex of C, then v is adjacent to a leaf of T (G). In particular, since
G is subcubic, then it must be that v is of degree 2 in T (G). Moreover, we assume the tree
subgraph adjacent to v is of depth 1, and we denote by w its only vertex other than v. Finally,
we can assume d(u1) = d(u2) = 3 (as otherwise G would contain Configuration 3). Additionally,
we denote by u′1 (resp. u′2) the other neighbour of u1 (resp. u2). Intuitively, this configuration
corresponds to a triangle with a pendant edge incident to one vertex, and connected to the rest of
the graph by its other two vertices (see Figure 8). We consider G′ = G− {u1u2, v, w}; since G′ is
nice (as otherwise G would contain Configuration 3), we can consider ℓ′, a strong (2, 2)-colouring
of G′. W.l.o.g. we can assume u′1u1 is assigned a blue label by ℓ′.

– Assume u′2u2 is assigned a red label by ℓ′. We assign to u1u2 whichever blue label makes
σb
ℓ(u2) and σb

ℓ(u
′
2) differ. We assign to u1v whichever blue label makes σb

ℓ(u1) and σb
ℓ(u

′
1)

differ. We assign to u2v whichever red label makes σr
ℓ (u2) and σr

ℓ (u′2) differ. If ℓ(u1u2) =
2, then we assign to vw whichever blue label makes σb

ℓ(u2) and σb
ℓ(v) differ. Note that

σb
ℓ(u1) ≥ ℓ(u1v) + 3; hence, no matter the label we assign to vw, vertices v and u1 must

be distinguished. Otherwise, we assign to vw whichever blue label makes σb
ℓ(u1) and σb

ℓ(v)
differ. Since σb

ℓ(u2) = 1, then we obtain a strong (2, 2)-colouring of G.

From now on, we can thus assume u′2u2 is assigned a blue label by ℓ′.

– Assume first ℓ′(u′1u1) = ℓ′(u′2u2) = 1. Assume that σr
ℓ′(u

′
1) ̸= 3. We assign to u1u2 whichever

red label makes σr
ℓ (u2) and σr

ℓ (u′2) differ, and to u1v a red label with the value in {1, 2} we
did not assign to u1u2. This way, σr

ℓ (u1) = 3. We then assign to u2v whichever blue label
makes σb

ℓ(u2) and σb
ℓ(u

′
2) differ. We assign to vw whichever blue label makes σb

ℓ(u2) and
σb
ℓ(v) differ. We can now assume σr

ℓ′(u
′
1) = σr

ℓ′(u
′
2) = 3. We assign red label 1 to vw and

u1v. We then assign to u1u2 whichever blue label makes σb
ℓ(u1) and σb

ℓ(u
′
1) differ, and to

vu2 whichever blue label makes σb
ℓ(u1) and σb

ℓ(u
′
1) differ. Unless ℓ(u1u2) = 1 and ℓ(vu2) = 2,

this results in a strong (2, 2)-colouring of G. However, that exceptional case occurs only if
σb
ℓ′(u

′
2) = 4 and σb

ℓ′(u
′
1) = 3, in which case we can just swap u1 and u2 in the choices made

above to be done the same way.

– Assume second ℓ′(u′1u1) = 2 and ℓ′(u′2u2) = 1. Assume first σr
ℓ′(u

′
2) ̸= 3. We assign to u1u2

whichever red label makes σr
ℓ (u1) and σr

ℓ (u′1) differ, and the red label with the other value to
u2v. We then assign to u1v whichever blue label makes σb

ℓ(u1) and σb
ℓ(u

′
1) differ, and to vw

11

u1 u2

u′1 u′2

v

w

Figure 8: Configuration C7.

whichever blue label makes σb
ℓ(u1) and σb

ℓ(v) differ. We can now assume σr
ℓ′(u

′
2) = 3. Assume

first σr
ℓ′(u

′
1) ̸= 3. We assign red label 1 to u1u2, u2v, vw, and red label 2 to u1v, to be done.

Assume now that σr
ℓ′(u

′
1) = σr

ℓ′(u
′
2) = 3. If σb

ℓ′(u
′
1) = 5 and σb

ℓ′(u
′
2) = 3, then we assign blue

label 2 to u1u2, u1v, vw, and blue label 1 to u2v. Otherwise, we assign red label 1 to u1v and
vw, to u1u2 whichever blue label makes σb

ℓ(u2) and σb
ℓ(u

′
2) differ, and to u1v whichever blue

label makes σb
ℓ(u1) and σb

ℓ(u
′
1) differ. This results in a strong (2, 2)-colouring of G, unless

σb
ℓ(v) = σb

ℓ(u2); in that case, we had to choose ℓ(u1u2) to have value 1 and ℓ(u1v) to have
value 2, a case we already covered.

– Assume third ℓ′(u′1u1) = ℓ′(u′2u2) = 2. Assume first that σr
ℓ′(u

′
1) ̸= 3. We assign to u1u2

whichever red label makes σr
ℓ (u2) and σr

ℓ (u′2) differ, and to u1v the red label with the value
we did not assign to u1u2. This way, σr

ℓ (u1) = 3. We then assign to u2v whichever blue label
makes σb

ℓ(u2) and σb
ℓ(u

′
2) differ. If ℓ(u2v) = 1, then we assign red label 2 to vw. Otherwise,

we assign blue label 1 to vw. We can now assume that σr
ℓ′(u

′
1) = σr

ℓ′(u
′
2) = 3. We assign to

u1u2 whichever blue label makes σb
ℓ(u1) and σb

ℓ(u
′
1) differ, and to u2v whichever blue label

makes σb
ℓ(u2) and σb

ℓ(u
′
2) differ. Here, we finally assign red label 1 to u1v and vw. In all

cases, it can be checked that we eventually obtain a strong (2, 2)-colouring of G.

(C8) Assume there exists a node C associated to a C4 such that C is adjacent to some edge node u1u2.
We denote by v1 and v2 the other two vertices of C. We further assume that if T (G) contains either
v1, v2, or v1v2 as a node, then all nodes adjacent to it other than C are leaves. More intuitively,
this configuration corresponds to a C4 where two vertices are adjacent to trees of depth 1 or to
a C3 (see Figure 9). Additionally, if it exists, then we denote by w1 (resp. w2) the child of the
vertex node v1 (resp. v2), where possibly w1 = w2. We here consider G′ = G − {u1u2, v1, v2}, as
well as ℓ′, a strong (2, 2)-colouring of G′ (note that G′, indeed, is nice). We assume w.l.o.g. that
σb
ℓ′(u1) ≥ σb

ℓ′(u2) and that u1u
′
1 was assigned a blue label by ℓ′. We assign to u1u2 whichever blue

label makes σb
ℓ(u

′
2) and σb

ℓ(u2) differ. We then assign to v1u1 whichever blue label makes σb
ℓ(u

′
1)

and σb
ℓ(u1) differ, to v1w1 (if it exists) whichever blue label makes σb

ℓ(u1) and σb
ℓ(v1) differ, and

to u2v2 whichever red label makes σr
ℓ (u′2) and σr

ℓ (u2) differ. We also assign to v1v2 whichever red
label makes σr

ℓ (v2) and σr
ℓ (u2) differ. If v2w2 exists, then we also assign to v2w2 the red label

with the value we did not assign to v1v2. This way, in the case where w2 exists and w2 and v1 are
adjacent, they have distinct red sums. It is also easy to check that any pair of adjacent vertices are
distinguished in both colours by the provided colouring. Hence, we obtain a strong (2, 2)-colouring
of G.

(C9) Assume there exists an edge node u1u2 adjacent to two subgraph nodes both associated to a C3.
Further assume that one of those subgraph nodes is a leaf of T (G) (see Figure 10). We here

12

u1 u2

u′1 u′2

v1 v2

w1 w2

Figure 9: A particular case of Configuration C8, where w1 and w2 exist but are distinct.

u1 u2

w

v

v′

Figure 10: Configuration C9.

denote by w the last vertex of the leaf node, and by v the last vertex of the other C3. We can
also assume that d(v) = 3, that v′ denotes its last neighbour, and that G′ = G − {u1, u2, w} is
nice, and consider ℓ′, a strong (2, 2)-colouring of G′. W.l.o.g. assume vv′ is assigned a blue label
by ℓ′. We assign to vu1 whichever blue label makes σb

ℓ(v) and σb
ℓ(v

′) differ, and to u1w whichever
blue label makes σb

ℓ(v) and σb
ℓ(u1) differ. We then assign to vu2 whichever red label makes σr

ℓ (v)
and σr

ℓ (v′) differ, the same red label to u2w, and to u1u2 the red label with the value we did not
assign to u2w, so that the red sums of u2 and w are indeed distinct. It can then be checked that
this results in a strong (2, 2)-colouring of G.

(C10) Assume there exist two subgraph nodes C,C ′ both associated to a C3, such that C contains a
vertex u1 and C ′ contains a vertex u2, where u1 and u2 are adjacent (see Figure 11). We denote
by v1 and w1 (resp. v2 and w2) the other two vertices of C (resp. C ′) and further assume that
d(w1) = d(w2) = 2. Since G does not contain Configuration 2, it must be that d(v1) = d(v2) = 3,
and we denote by v′1 (resp. v′2) the other neighbour of v1 (resp. v2). Also, since G does not contain
Configuration 3, G′ = G−{u1, u2, w1, w2} is nice and we can consider ℓ′, a strong (2, 2)-colouring
of G′. We, again, consider two main cases.

– First assume v1v
′
1 and v2v

′
2 are assigned labels with the same colour by ℓ′, say blue. We

assign to w2v2 whichever blue label makes σb
ℓ(v2) and σb

ℓ(v
′
2) differ, and to v1u1 whichever

blue label makes σb
ℓ(v1) and σb

ℓ(v
′
1) differ. We assign to v1w1 whichever red label makes

σr
ℓ (v1) and σr

ℓ (v′1) differ, and to u1u2 the red label with the other value. We also assign to
u1w1 whichever red label makes σr

ℓ (u1) and σr
ℓ (v1) differ, and to u2v2 whichever red label

makes σr
ℓ (v2) and σr

ℓ (v′2) differ. We last assign to u2w2 whichever red label makes σr
ℓ (v2) and

σr
ℓ (w2) differ, which is the value we did not assign to u2v2. This way, no matter what labels

we assigned to u1w1, vertices u1 and u2 are distinguished, so we get a strong (2, 2)-colouring.

– We now assume v1v
′
1 is assigned a blue label, while v2v

′
2 is assigned a red one. Further assume

that either ℓ′(v1v
′
1) = 2 or σb

ℓ′(v
′
2) ̸= 3. We assign to v1w1 whichever blue label makes σb

ℓ(v1)
and σb

ℓ(v
′
1) differ. The condition above implies that either we assigned the label with value

13

u1

w1

v1 u2

w2

v2

v′1 v′2

Figure 11: Configuration C10.

u1

u′1

w

u2

v

u′2
u′′2

Figure 12: Configuration C11.

2, or σb
ℓ(v1) ̸= 2. We then assign to u1v1 whichever red label makes σr

ℓ (v2) and σr
ℓ (v′2) differ,

and to u1w1 the red label with the other value. We then assign to u1u2 whichever blue label
does not create any conflict between u1 and neither w1 nor v1, which is always possible since
either ℓ(v1w1) = 2 (and we can assign blue label 1 to u1u2) or σb

ℓ(v1) = 3 (and we can assign
blue label 2 to u1u2). We also assign to v2w2 blue label 1, to u2v2 whichever blue label makes
σb
ℓ(v2) and σb

ℓ(v
′
2) differ, as well as the blue label of the other value to u2w2. It can be checked

that we obtain a strong (2, 2)-colouring of G.

We can now assume that σb
ℓ′(v

′
2) = 3 and ℓ′(v1v

′
1) = 1. We assign blue label 2 to all of

u1v1, v1w1, u1w1, u1u2. We then assign blue label 1 to v2w2. We assign to u2v2 whichever
blue label makes σb

ℓ(v2) and σb
ℓ(v

′
2) differ, as well as the blue label of the other value to u2w2.

It can be checked that doing this makes the blue sums of v2 and w2 differ; in particular,
again, we obtain a strong (2, 2)-colouring of G.

Either way, we are thus done.

(C11) Assume there exists a subgraph node C associated to a C3 adjacent to either two vertex nodes
u1, u2 or to an edge node u1u2 (see Figure 12). We denote by w the last vertex of C, by u′1 the
other neighbour of u1, and by u′2 the other neighbour of u2. Further assume that if d(u′2) = 3,
then one of its neighbours is a degree-1 vertex, denoted v. Either way, we denote by u′′2 the other
neighbour of u′2. More intuitively, this configuration corresponds to a triangle adjacent either to a
degree-2 vertex or to a degree-3 vertex with an incident pendant edge. Since G does not contain
Configuration 1 or 3, graph G′ = G−{w, u2, v} is nice; let us denote by ℓ′ a strong (2, 2)-colouring
of G′. We can assume w.l.o.g. that u1u

′
1 is assigned a blue label by ℓ′ . We assign to u1w whichever

blue label makes σb
ℓ(u1) and σb

ℓ(u
′
1) differ, to u1u2 whichever red label makes σr

ℓ (u1) and σr
ℓ (u′1)

differ, and to u2w the red label of the other value. We also assign to u′2v, if v exists, whichever
red label results in σr

ℓ′(u
′
2) + ℓ(u′2v) ̸= 3. We last assign to u2u

′
2 whichever red label makes σr

ℓ (u′2)
and σr

ℓ (u′′2) differ. One can check that if v does not exist, then σr
ℓ (u′2) < σr

ℓ (u2). Otherwise, u2
and u′2 are distinguished due to the red label we assigned to u′2v. Either way, we thus end up with
a strong (2, 2)-colouring of G.

We are now ready to prove that there are no minimal counterexamples to Theorem 2. Consider G
such a counterexample, and consider T (G), the tree representation of G, rooted arbitrarily. First, assume

14

there exists T , a deepest leaf of T (G) associated to a tree. Since G does not contain Configuration 1,
then T is associated to a K2. We denote by u its father in T (G). Since G is subcubic, u has exactly
one neighbour other than T , which we denote by N . Because G does not contain Configuration 7, N
cannot be a C3. If N is a C4, then either u is adjacent to a vertex of degree 2 and G contains one of
Configurations 4 and 8, or both neighbours of u are of degree 3. In particular, since G is outerplanar,
one of them, denote it u′, is also part of a leaf of T (G) other than T , denote it L. Since G does not
contain Configuration 8, L must be a cycle. Now, since G contains neither Configuration 4 nor 8, L
cannot be a cycle of length more than 3, and hence G contains Configuration 11.

So, T (G) cannot contain any deepest leaf associated to a tree. Assume now there exists C, a deepest
leaf associated to a cycle. Since G contains neither Configuration 4 nor 8, C must be associated to
a C3. Since G does not contain Configuration 9, there must exist a vertex u′ adjacent to a vertex of
C shared by another deepest leaf of T (G). Using arguments similar to those we used by end of the
proof of Theorem 1, we deduce that a vertex of C is either adjacent to a vertex of degree 2 (resulting
in Configuration 11), to another C3 (resulting in Configuration 10), to a C4 (resulting in Configuration
8), or to a larger cycle (resulting in Configuration 4). So, G cannot exist, and the claim holds.

4. Graphs of maximum average degree less than 9
4

Recall that the average degree ad(G) of a graph G is defined as 2|E(G)|
|V (G)| , while the maximum average

degree mad(G) of G is the maximum value of the average degree ad(H) over all subgraphs H of G.
Below, we prove the Strong (2, 2)-Conjecture for nice graphs with maximum average degree less than
9
4 . Note that such graphs are 2-degenerate, and thus 3-colourable.

Theorem 3. If G is a graph with mad(G) < 9
4 , then either G is strongly (2, 2)-colourable, or G has a

connected component isomorphic to K2 or K3.

Proof. We use the discharging method, where we first prove that a minimal (w.r.t. the number of
edges) counterexample to Theorem 3 cannot contain some sparse configurations in the same fashion
as the proofs of Theorems 1 and 2. We then reach a contradiction on the sparseness of the minimum
counterexample through the use of charge functions. Although this method is well established, we
refer the reader to the first two paragraphs of the proof of Theorem 4.1 in [9] for a more detailed
explanation. We enhance the discharging method with the so-called ghost vertices method (introduced
formally in [11]), which, in the context of graphs with bounded maximum average degree, provides a
way, through some discharging process, to establish that a graph has large maximum average degree.

Theorem 4 (see e.g. [10]). Let G be a graph, m be some value, and (V1, V2) be any partition of V (G).
Let also ω be a charge function where ω(v) = d(v) − m for every v ∈ V (G). If there is a discharging
process resulting in a charge function ω∗ where

• ω∗(v) ≥ 0 for every v ∈ V1, and

• ω∗(v) ≥ ω(v) + dV1(v) for every v ∈ V2,

then mad(G) ≥ m.

We now consider G, a minimal counterexample to Theorem 3. We call a vertex u ∈ V (G) a k-vertex
(resp. k+, k−) if d(u) = k (resp. d(u) ≥ k, d(u) ≤ k). We call a 3-vertex weak if it is adjacent to a
1-vertex.

15

Claim 4.1. G does not contain any of the following configurations:

(C1) a 3−-vertex adjacent to two 1-vertices;

(C2) a d-vertex adjacent to more than ⌊d+1
2 ⌋ 1-vertices, for any d ≥ 4;

(C3) two adjacent weak 3-vertices;

(C4) a d-vertex adjacent to d− 2 1-vertices and one weak 3-vertex, for any d ≥ 4;

(C5) a 2-vertex adjacent to two 2-vertices;

(C6) a 2-vertex adjacent to a 1-vertex;

(C7) a weak 3-vertex adjacent to a 2-vertex.

Proof of the claim. For each configuration H, let us assume G contains H as an induced subgraph.
We will consider G′, obtained from G by deleting edges, and whenever it is possible, obtain ℓ′ a strong
(2, 2)-colouring of G′ by the minimality of G. If we are able to extend ℓ′ over the deleted edges so that
the resulting colouring ℓ is a strong (2, 2)-colouring of G, then we reach a contradiction. Note that the
extension of ℓ′ into ℓ may only alter the sums of vertices incident to the deleted edges; hence, we only
have to locally check that ℓ is a strong (2, 2)-colouring.

In what follows, the order in which we deal with Configurations C1 to C7 is with respect to the
complexity of our proof arguments.

(C1) Assume there exists u ∈ V (G), a 3−-vertex adjacent to two 1-vertices v0, v1. If u is a 2-vertex,
then G is P3 and the result obviously holds. Hence, we denote by v2 the last neighbour of u, and
consider G′ = G − {uv0, uv1}. Note that since the degree of u in G′ must be 1, then either G′ is
isomorphic to K2 (in which case G is strongly (2, 2)-colourable since it is isomorphic to the star
on three leaves) or G′ is strongly (2, 2)-colourable and we denote by ℓ′ such a colouring of the
edges of G′. We further assume w.l.o.g. that uv2 is assigned a red label. We assign blue label 1
to uv0 and assign to uv1 whichever blue label makes σb

ℓ(u) distinct from σb
ℓ′(v2) (which is equal to

σb
ℓ(v2)). It is easy to check that this results in a strong (2, 2)-colouring of G.

(C6) Assume there exists u ∈ V (G), a 2-vertex adjacent to a 1-vertex v0. We denote by v1 the other
neighbour of u, and consider G′ = G−{uv0}. Note that since the degree of u in G′ must be 1, then
either G′ is isomorphic to K2 (in which case G is strongly (2, 2)-colourable since it is isomorphic
to P3) or G′ is strongly (2, 2)-colourable and we denote by ℓ′ such a colouring of the edges of
G′. We further assume w.l.o.g. that uv1 is assigned a red label. We assign to uv0 whichever
red label makes σr

ℓ (u) distinct from σr
ℓ′(v1) (which is equal to σr

ℓ (v1)). Again, we obtain a strong
(2, 2)-colouring of G.

(C5) Assume there exists u ∈ V (G), a 2-vertex adjacent to two 2-vertices v0, v1. Notice that v0 and v1
cannot be adjacent, as otherwise G would be isomorphic to K3; so we can denote by v′0, v

′
1 their

respective other neighbour. We consider G′ = G−{uv0, uv1}. Note that G′ can have a connected
component isomorphic to neither K2 (as otherwise G would contain Configuration 6) nor K3

(because both connected components have a 1-vertex). There is thus a strong (2, 2)-colouring ℓ′

of G′.

– Assume v0v
′
0 and v1v

′
1 have the same colour by ℓ′ (w.l.o.g. blue). We assign to uv0 (resp.

uv1) whichever red label makes σr
ℓ (v0) and σr

ℓ (v′0) (resp. σr
ℓ (v1) and σr

ℓ (v′1)) differ.

16

– Assume v0v
′
0 and v1v

′
1 have different colours by ℓ′, say v0v

′
0 has colour blue by ℓ′ w.l.o.g. We

assign to uv0 (resp. uv1) whichever blue (resp. red) label makes the blue (resp. red) sums of
v0 and v′0 (resp. v1 and v′1) differ.

It is easy to check that, either way, we end up with a strong (2, 2)-colouring of G.

(C3) Assume there exist u0, u1 ∈ V (G), two adjacent 3-vertices, and v0, v1, two 1-vertices with u0
adjacent to v0 and u1 adjacent to v1. We also denote by w0 (resp. w1) the other neighbour of
u0 (resp. u1), and consider G′ = G− {u0v0, u0u1, u1v1}. As in the previous case, G′ cannot have
a connected component isomorphic to K2, as otherwise G would contain Configuration 1. Each
connected component of G′ has at least one 1-vertex; hence, no connected component of G′ can
be isomorphic to K3, and we can consider ℓ′, a strong (2, 2)-colouring of G′.

– Assume u0w0 and u1w1 have the same colour by ℓ′ (w.l.o.g. blue). We can also further
assume that σb

ℓ′(u0) ≥ σb
ℓ′(u1). We then assign to u0v0 whichever blue label makes σb

ℓ(u0)
and σb

ℓ(w0) differ. We then assign to u0u1 whichever red label makes σr
ℓ (u0) and σr

ℓ (w0) differ.
We complete the construction of ℓ by assigning to u1v1 whichever red label makes σr

ℓ (u1) and
σr
ℓ (w1) differ. Since σb

ℓ′(u1) = σb
ℓ(u1), we only need to check that u0 and u1 have different

blue and red sums. Remember we assumed that σb
ℓ′(u0) ≥ σb

ℓ′(u1). Since σb
ℓ(u0) > σb

ℓ′(u0),
and because the only red edge incident to u0 is u0u1, clearly ℓ is a strong (2, 2)-colouring of
G.

– Assume u0w0 and u1w1 have different colours by ℓ′, say u0w0 is blue w.l.o.g. Again, through
similar arguments, we assign to u0v0 whichever blue label makes σb

ℓ(u0) and σb
ℓ(w0) differ, to

u0u1 whichever red label makes σr
ℓ (u0) and σr

ℓ (w0) differ, and finally to u1v1 whichever red
label makes σr

ℓ (u1) and σr
ℓ (w1) differ. It is then easy to check that we end up with a strong

(2, 2)-colouring of G.

(C2) Assume there exist u, a d-vertex for d ≥ 4, and v1, . . . , vk, some 1-vertices adjacent to u, where
k = ⌊d+1

2 ⌋ (note that there can be more than k vertices of degree 1 adjacent to u, but we only
take into consideration k of them). We consider G′ = G−{uv1, . . . , uvk}. Note that the degree of
u in G′ is still at least 2; hence, if G′ is K3, then d = 4 and G is completely revealed, and it can
be checked that G admits strong (2, 2)-colourings. We can thus assume there exists, ℓ′ a strong
(2, 2)-colouring of G′. We assume w.l.o.g. that the majority of the edges incident to u in G′ are
assigned a red label by ℓ′. We assign blue labels to all the edges in {uv1, . . . , uvk}, so that σr

ℓ (u)
remains equal to σr

ℓ′(u). Through assigning blue labels to the edges in {uv1, . . . , uvk}, we can alter
the blue sum of u to any value between σb

ℓ′(u) + k and σb
ℓ′(u) + 2k, hence to k + 1 distinct possible

values. Since u has at most k neighbours in G′, there exists at least one open choice of σb
ℓ(u),

resulting in a strong (2, 2)-colouring of G.

(C4) Note that this is covered by Configuration 2.

(C7) Assume there exists u0, a weak 3-vertex adjacent to u1, a 2-vertex, and to v0, a 1-vertex. We denote
by u′0 and u′1 the other neighbour of u0 and u1, respectively. We consider G′ = G− {u0u1, u0v0},
and note that, by arguments similar as earlier, no connected component of G′ can be isomorphic
to K3 nor K2, as otherwise G would contain Configuration 1 or 6. We can thus consider ℓ′, a
strong (2, 2)-colouring of G′. W.l.o.g, we assume u0u

′
0 is assigned a blue label. We consider three

cases:

17

– Assume σb
ℓ′(u0) = σb

ℓ′(u1). We assign to u0u1 whichever blue label makes σb
ℓ(u1) differ from

σb
ℓ(u

′
1), and then assign to u0v0 whichever blue label makes σb

ℓ(u0) differ from σb
ℓ(u

′
0). Since

σb
ℓ′(u0) = σb

ℓ′(u1), and because we assigned a blue label to u0v0, we have σb
ℓ(u0) > σb

ℓ(u1).

– Otherwise, assume u1u
′
1 is assigned a blue label by ℓ′. We assign to u0u1 whichever red label

makes σr
ℓ (u1) differ from σr

ℓ′(u
′
1). We then assign to u0v0 whichever red label makes σr

ℓ (u0)
differ from σr

ℓ′(u
′
0).

– Finally, assume u1u
′
1 is assigned a red label by ℓ′. We assign to u0u1 whichever blue label

makes σb
ℓ(u1) differ from σb

ℓ′(u
′
1). We then assign to u0v0 whichever blue label makes σb

ℓ(u0)
differ from σb

ℓ′(u
′
0).

In each case, it can be check that the resulting (2, 2)-colouring of G is strong.

This concludes the proof of the claim. ⋄

We now define a charge function ω on G, where, for every u ∈ V (G), we set ω(u) = d(u) − 9
4 . We

also consider a partition of the vertices of V (G) into V2, the set of 1-vertices of G, and V1, the set of all
the 2+-vertices. Note that since G is not isomorphic to K2, no 1-vertex is adjacent to another 1-vertex,
and hence for every v ∈ V2 we have dV1(v) = d(v) = 1. We then consider the following discharging rules:

(R1) Every 3+-vertex sends 1
4 to each adjacent 2-vertex.

(R2) Every 3+-vertex sends 1
4 to each adjacent weak 3-vertex.

(R3) Every 3+-vertex sends 1 to each adjacent 1-vertex.

We denote by ω∗ the resulting charge function. Our goal is to get a contradiction through Theorem
4, which requires, for any vertex u ∈ V (G), that if d(u) ≥ 2 then ω∗(u) ≥ 0; and otherwise that
ω∗(u) ≥ ω(u) + 1. We prove this is true for every vertex u ∈ V (G):

• Assume d(u) = 1. Since G is not K2, and because G does not contain Configuration 6, vertex u is
adjacent to a 3+-vertex, and received 1 from it by Rule 3. Meanwhile, u did not send any charge
through Rules 1, 2, and 3. The final charge is thus ω∗(u) = ω(u) + 1.

• Assume d(u) = 2. Again, u did not send any charge through Rules 1, 2, and 3. Now, since
G contains neither Configuration 5 nor Configuration 6, then u is adjacent to a 3+-vertex, and
received 1

4 from it by Rule 2. The final charge is thus ω∗(u) ≥ 0.

• Assume d(u) = 3.

– Assume first u is weak. Since G does not contain Configuration 7, vertex u is not adjacent to
any 2-vertex. Since G does not contain Configuration 1, vertex u is also adjacent to at most
one 1-vertex, and, since G does not contain Configuration 3, vertex u is not adjacent to any
weak 3-vertex. In particular, u is adjacent to a 3+-vertex, from which it received 1

4 by Rule
2, and sent 1 by Rule 1. The final charge is thus ω∗(u) ≥ 3

4 − 1 + 1
4 = 0.

– Assume now u is not weak. For every neighbour v of u, either v is a weak 3-vertex and u
sent 1

4 to v by Rule 2, or v is a 2-vertex and u sent 1
4 to v by Rule 1, or u did not send any

charge to v (in particular, since u is not weak, v cannot be a 1-vertex). Either way, the final
charge is ω∗(u) ≥ 3

4 − 3 × 1
4 = 0.

18

• Assume d(u) ≥ 4. We denote by k1 the number of 1-vertices adjacent to u, and by k2 the number
of 2-vertices or weak 3-vertices adjacent to u. By Rules 1, 2 and 3, u sent 1 to k1 vertices and 1

4
to k2 vertices. The final charge is thus ω∗(u) = ω(u) − k1 − k2

1
4 . Since k1 + k2 ≤ d(u), the value

ω∗(u) is minimal when k1 is maximal. Because G does not contain configuration C4, we can thus
assume

ω∗(u) ≥ d(u) − 9

4
−
⌊
d(u) + 1

2

⌋
+ 1 −

(
d(u) −

⌊
d(u) + 1

2

⌋
+ 1

)
1

4
.

Note that the right-hand side of this inequality can be seen as a function of d(u), and is trivially
increasing. We can then check that it is positive when d(u) = 4, concluding the case.

Thus, by Theorem 4, we have mad(G) ≥ 9
4 , which is a contradiction. The result thus holds.

5. Halin graphs

A Halin graph G is a planar graph obtained from a tree T on at least four vertices and having no
vertex of degree 2, by connecting, through a cycle C, the leaves of T in the cyclic ordering defined by a
plane embedding of T . We call the edges of T the tree edges of G, and the edges of C its cycle edges.

It can be noticed that Halin graphs are 3-degenerate; they are thus all 4-colourable, which is tight
since wheels with even order are 4-chromatic Halin graphs (while all others are 3-chromatic, see e.g. [19]).
In what follows, we prove that the Strong (2, 2)-Conjecture holds for Halin graphs.

Theorem 5. If G is a Halin graph, then G is strongly (2, 2)-colourable.

Proof. We denote by T and C the tree and cycle, respectively, partitioning the edges of G. We also choose
r, any vertex of G such that r is adjacent to at least two leaves in T , and root T at r. We also (virtually)
orient C in any of the two natural ways, thereby defining an ordering over the consecutive vertices of C;
in particular, if any vertex of T is adjacent to leaves, then these leaves appear consecutively along C.
We also let ϕ be any proper {1, 2}-vertex-colouring of the non-leaf vertices of T . Free to permute colours
by ϕ, we can assume ϕ(r) = 2. Last, for every vertex v of T being adjacent to leaves, as mentioned
we have that the d ≥ 1 leaves u1, . . . , ud adjacent to v (in T) appear consecutively along C, say they
appear following the sequence (u1, . . . , ud). We define vu1 as the special edge incident to v.

We now construct a strong (2, 2)-colouring ℓ of G. We start by labelling the edges of T in the
following way:

• We consider the non-leaf vertices of T one by one in order, as they are encountered during any
BFS algorithm performed from r.

• For every non-leaf vertex v of T considered this way, let w1, . . . , wd denote the d ≥ 2 children of v
in T . Due to an earlier step of the process, at this point only uv, where u is the unique parent of
v (unless u = r), can be assigned a label by ℓ, and, in that case, it is assigned a red label. Now:

– If, say, wd is not a leaf of T , then we proceed as follows. In case v is adjacent to a leaf, then,
assuming vw1 is the special edge incident to v w.l.o.g., we assign blue label ϕ(v) to vw1. In
any case, we then assign red labels with alternating values 1, 2, 1, 2, . . . to all remaining vwi’s
but vwd, in such a way that any two consecutive wi’s along C do not get the same red sum.
Eventually, we label vwd with any red label so that σr

ℓ (v) ≡ ϕ(v) mod 2.

19

– If, now, all wi’s are leaves of T , then we essentially proceed the same way. That is, assuming
vw1 is the special edge incident to v, we assign blue label ϕ(v) to vw1. Then, assuming
the other wi’s appear following the sequence (w2, . . . , wd) along C, we assign red labels
1, 2, 1, 2, . . . or 2, 1, 2, 1, . . . to vw2, . . . , vwd, whichever way, taking ℓ(uv) into account, results
in σr

ℓ (v) ≡ ϕ(v) mod 2. One of this two ways of doing achieves this, since these two sums of
d− 1 labels do not have the same parity.

Once this process achieves, every non-leaf vertex of T gets all its incident (tree) edges labelled by ℓ.
In particular, if v is a non-leaf vertex of T , then σr

ℓ (v) ≡ ϕ(v) mod 2; regarding blue sums, either v is not
adjacent to leaves and σb

ℓ(v) = 0, or σb
ℓ(v) = ϕ(v). In particular, already at this point, by the definition

of ϕ, if u and v are two adjacent non-leaf vertices of T , then σr
ℓ (u) ̸= σr

ℓ (v), and 0 ∈ {σb
ℓ(u), σb

ℓ(v)} or
σb
ℓ(u) ̸= σb

ℓ(v). Thus, to be done, it remains to label the cycle edges (of C) so that leaves of T are not
involved in conflicts (in G).

All cycle edges will actually be assigned blue labels, which means that the red sums of the leaves of
T will not be modified further. Before continuing, let us thus notice right away that any two leaves u
and v of T that are adjacent in G cannot have the same red sum, due to earlier choices. First off, we
can assume that neither u nor v is incident to a special edge, as otherwise we would have σr

ℓ (u) = 0 or
σr
ℓ (v) = 0, thus no conflict. So, σr

ℓ (u), σr
ℓ (v) ∈ {1, 2}. Now, for u and v to be adjacent in G, they must

be consecutive along C; then either u and v have the same parent w, or not. In the former case, recall
that we assigned red labels 1 and 2 to the leaf edges incident to w alternately following C; thus, we
must have {σr

ℓ (u), σr
ℓ (v)} = {1, 2}, and no conflict between u and v here. The latter case cannot occur,

as it would require that u or v was considered as the first child of its parent, and is thus incident to a
special edge; in other words, we must have 0 ∈ {σr

ℓ (u), σr
ℓ (v)} here.

Set now C = u0 . . . uk−1u0. For every i ∈ {0, . . . , k − 1}, note that there might be a unique edge
u′iui being assigned a blue label by ℓ, and, in case u′i exists, we have σb

ℓ(u
′
i) ∈ {1, 2}. Upon labelling

the edges of C with blue labels, note that we cannot alter the blue sums of the u′i’s; in particular, this
means that, eventually, any u′i cannot be in conflict (w.r.t. blue sums) with ui. By our choice of r, we
can assume u0 and u1 are adjacent to r, and u0r is the special edge incident to r; this means u′1 does
not exist. Also, by our choice of ϕ, we have ℓ(u0u

′
0) = 2; so, eventually, we will necessarily have (upon

assigning blue labels to the edges of C) σb
ℓ(u0) > 3 + ℓ(u0u1) > 2 + ℓ(u0u1) ≥ σb

ℓ(u1). In other words,
we do not have to worry about a possible conflict between u0 and u1 w.r.t. blue sums.

To show we can label the edges of C as desired, we model the situation via a polynomial, and then
apply an algebraic tool to get our conclusion. For every i ∈ {0, . . . , k − 1}, we denote by ei the edge
uiui+1 (where, here and further, operations over the subscripts are modulo k), and we define ni as the
current blue sum of ui (inherited from the blue label assigned to uiu

′
i in case u′i exists). For every

i ∈ {0, . . . , k−1}, we also let Xi ∈ {1, 2} be a variable modelling whether ei is assigned blue label 1 or 2
in an extension of ℓ to the edges of C. We now represent the constraints we have to take into account,
modelled by the polynomial

P (X0, . . . , Xk−1) =

k−1∏
i=0

(Xi−1 + ni −Xi+1 − ni+1) .

Now, if there are values x0, . . . , xk−1 in {1, 2} for X0, . . . , Xk−1, respectively, such that P (x0, . . . , xk−1) ̸=
0, then we can derive a correct extension of ℓ to the edges of C. Essentially, Alon’s Combinatorial
Nullstellensatz provides conditions, in terms of coefficients of monomials of maximum degree in the

20

polynomial’s expansion, for such values to exist (see [2]). According to Lemma 2.3 in [7], we can now
label the edges of C as desired, by the following arguments:

• If k ̸= 4, then first assign blue label 2 to u0u1 and update n0 and n1 accordingly. By earlier
arguments, recall that, since u0u

′
0 is assigned blue label 2 while u′1 does not exist, we cannot get

a conflict w.r.t. blue sums between u0 and u1, regardless how the other edges of C are labelled
(with blue labels). The rest of the edges of C then form a path of length different from 3; by
Lemma 2.3 in [7], we can apply the polynomial method to finish.

• If k = 4, then C is a cycle with length multiple of 4, the second case covered by Lemma 2.3 in [7].
Again, that lemma tells a desired extension of ℓ to the edges of C can be achieved.

Thus in all cases we can extend ℓ to the edges of C with blue labels, and in such a way that adjacent
vertices along C have distinct blue sums. By previous arguments, the resulting labelling ℓ of G is thus
a strong (2, 2)-colouring. This concludes the proof.

6. Planar graphs with girth at least 16

Recall that a planar graph is a graph admitting an embedding on the plane where no two edges
cross, and that the girth of a graph is the length of its shortest cycles. It is well known that if G is a
planar graph with girth at least g, then mad(G) < 2g

g−2 . Now, if g ≥ 18, then mad(G) < 9
4 and previous

Theorem 3 applies. So, to go beyond Theorem 3, it makes sense to wonder about planar graphs with
smaller girth, which have higher mad. Through the next result, we prove the Strong (2, 2)-Conjecture
for nice planar graphs with girth at least 16.

Theorem 6. If G is a nice planar graph with girth at least 16, then G is strongly (2, 2)-colourable.

Proof. The proof is by induction on |V (G)| + |E(G)|. Since the claim can easily be verified for the
base cases, we focus on proving the general case. An important result we will employ is the following.
Recall that, in any graph, for some k ≥ 1, a k-thread is a path u1, . . . , uk+2 where the k inner vertices
u2, . . . , uk+1 have degree 2 (in the whole graph).

Lemma 1 (see e.g. [12]). For any integer k ≥ 1, every planar graph with minimum degree at least 2
and girth at least 5k + 1 contains a k-thread.

Now consider G. By induction, we may assume G is connected. First off, if G is a tree, then the
claim holds according e.g. to Theorem 1. Assume now G has cycles, all of length at least 16. We
consider G−, the graph obtained from G by repeatedly contracting degree-1 vertices (that is, we just
repeatedly delete degree-1 vertices from the graph, as long as there are some). Since G has cycles, note
that, once the process ends, it cannot be that G− is empty. Also, in case δ(G) ≥ 2, note that G− = G.

Now, since G− is a planar graph of minimum degree at least 2 and of girth at least 16, by Lemma 1
there must be a 3-thread P = xuvwy in G−. Let us consider P back in G. By construction of G−, each
of u, v, and w is the root of a pendant tree Su, Sv, and Sw, respectively, in G. In particular, each of
these three pendant trees might be reduced to only one vertex (thus of degree 2 in G), in case it has
no edge. Actually, if any of Su, Sv, or Sw is a tree with at least two edges, then we can remove some of
its edges, apply induction (note that, due to cycles of length at least 16 in G, removing pendant trees
from G indeed results in a nice graph), and extend a strong (2, 2)-colouring obtained by induction to
the whole of G, using either arguments we used to deal with Configuration 1 in the proof of Theorem 1

21

(case of a pendant tree with depth at least 2), or arguments we used to deal with Configuration 2 in
the proof of Theorem 3 (case of a star on at least two edges). Thus, Su, Sv, and Sw have at most one
edge each, and the same arguments as for Configuration 4 in the proof of Theorem 1 apply.

7. Powers of cycles

For any k ≥ 1, the k-th power Gk of a graph G is obtained from G by adding an edge between any
two vertices that are (originally) at distance at most k.

Obviously, k-th powers of graphs tend to have larger cliques as k grows, and thus increasing chromatic
number. Still, exploiting several previous ideas and results, in particular from [13], we can derive that
the Strong (2, 2)-Conjecture holds for k-th powers of nice cycles.

Theorem 7. If G is a nice cycle, then Gk is strongly (2, 2)-colourable for all k ≥ 1.

Proof. We will mostly use a result from [13], stating that any kth power of a cycle of length n admits
standard (2, 1)-colourings1 for all k ≥ 2 and n ≥ 2k + 2, and an observation from [3], asserting that, in
any regular graph, weak, standard, and strong (2, 1)-colourings are equivalent notions.

Let G be any nice cycle (thus of length n at least 4), and consider some k ≥ 1. If k = 1, then Gk

is nothing but a cycle; in particular, Gk is a nice cactus, and the result follows e.g. from Theorem 1.
Likewise, we can assume Gk is not complete (which occurs when k ≥ ⌊n/2⌋), since the Strong (2, 2)-
Conjecture was proved to hold for nice complete graphs [3]. Thus, we can assume k ≥ 2 and k < ⌊n/2⌋;
by the aforementioned result from [13], there are thus standard (2, 1)-colourings of Gk. Now, since Gk

is regular, any such (2, 1)-colouring is also strong, by the observation from [3].

8. Complete k-partite graphs

Recall that a complete k-partite graph on n vertices is a graph with all the possible edges between k
independent sets of size n1, . . . , nk ≥ 1 such that n1 + · · · + nk = n (that is, there are all possible edges
joining pairs of vertices in distinct parts). We denote the corresponding graph by K(n1, . . . , nk).

In this section, we prove the Strong (2, 2)-Conjecture for all nice complete k-partite graphs, through
a proof scheme inspired from [13].

Theorem 8. For any n ≥ 1 and n1, . . . , nk ≥ 1 such that n1 + · · · + nk = n, either n ≤ 3 and k = n,
or K(n1, . . . , nk) is strongly (2, 2)-colourable.

Proof. Note that if n ≤ 3 and k = n, then K(n1, . . . , nk) is not nice and we are done. W.l.o.g., we can
assume n1 ≥ · · · ≥ nk. If k ≤ 2, then K(n1, . . . , nk) is a bipartite graph and the result is already known
(recall earlier results from [3]). So, we can assume k ≥ 3.

We first treat the case k = 3 by providing an explicit assignment of red and blue labels (with value
1 or 2), such that all vertices have a non-zero blue sum and no two adjacent vertices have red sum equal
to 0. We denote by I1 (resp. I2, I3) the independent set of size n1 (resp. n2, n3).

• Assume first n1 > n2 ≥ n3. We assign red label 2 to all edges joining a vertex of I1 and one of I2,
blue label 2 to all edges joining a vertex of I1 and one of I3, and finally blue label 1 to all edges
joining a vertex of I2 and one of I3. It should be clear that, by the resulting (2, 2)-colouring, no

1Standard (2, 1)-colourings correspond exactly to locally irregular 2-edge-colourings; that is, 2-edge-colourings ϕ such
that, for any edge uv, we have di(u) ̸= di(v) assuming ϕ(uv) = i.

22

two adjacent vertices share the same red sum. Also, for any u1 ∈ I1, we have σb(u1) = 2n3; for
any u2 ∈ I2, we have σb(u2) = n3; and for any u3 ∈ I3, we have σb(u3) = 2n1 + n2. Now, since
n3 < n2 < n1, all those three values are indeed pairwise distinct.

• Assume now n1 = n2 and n2 > n3. We assign red label 2 to all edges joining a vertex of I1
and one of I3, blue label 2 to all edges joining a vertex of I1 and one I2, and finally blue label 1
to all edges joining a vertex of I2 and one of I3. Since n1 > n3, no two adjacent vertices share
the same red sum. Also, for any u1 ∈ I1, we have σb(u1) = 2n2; for any u2 ∈ I2, we have
σb(u2) = 2n1 + n3 = 2n2 + n3; and for any u3 ∈ I3, we have σb(u3) = n2. Since n3 < n2 = n1, all
those three values are again pairwise distinct.

• Finally assume n1 = n2 = n3. Since n1 = n3, we can consider E, a perfect matching between I1
and I3. We assign red label 2 to all edges joining a vertex of I2 and one of I3, red label 2 to the
edges of E, and blue label 2 to all other edges. This way, for any u1 ∈ I1, we have σb(u1) = 4n1−2;
for any u2 ∈ I2, we have σb(u2) = 2n1; and for any u3 ∈ I3, we have σb(u3) = 2n1 − 2. Similarly,
for any u1 ∈ I1, we have σr(u1) = 2; for any u2 ∈ I2, we have σr(u2) = 2n1; and for any u3 ∈ I3,
we have σr(u3) = 2n1 + 2. Unless n1 = 1 (in which case the graph is C3, and is thus not nice), we
thus obtain a strong (2, 2)-colouring.

We can now assume that k ≥ 4. We proceed by induction on k. Set G = K(n1, . . . , nk), and let
us denote by I1, . . . , Ik the parts of size n1, . . . , nk, respectively, partitioning V (G). In what follows,
we prove a stronger statement, namely that if k is odd (resp. even), then there exists a strong (2, 2)-
colouring of G such that:

• all vertices have non-zero blue (resp. red) sum;

• no two adjacent vertices have red (resp. blue) sum 0.

We proved already that this is true for k = 3. So assume now k ≥ 4 is even (resp. odd), and consider
a strong (2, 2)-colouring of K(n1, . . . , nk−1) satisfying the induction hypothesis. We extend it to G by
just assigning red (resp. blue) label 2 to all edges incident to Ik. The resulting (2, 2)-colouring still has
the property that if k is odd (resp. even), then all vertices have non-zero blue (resp. red) sums, as
well as the property that no two adjacent vertices have sum 0 in any of the two colours. Since no two
adjacent vertices had red sum or blue sum 0, and all the sums increased by the same amount, conflicts
can only arise between a vertex of I1 ∪ · · · ∪ Ik−1 and a vertex of Ik.

Assume k is even (the odd case being similar). Let us consider uk ∈ Ik and v ∈ Ij for some
j ∈ {1, . . . , k − 1}. Since all edges incident to uk were assigned blue label 2, we have σb(uk) = 2(n1 +
· · · + nk−1). However, since all vertices of I1 ∪ · · · ∪ Ik−1 have non-zero red sum, we have σb(v) <
2nk + 2(n1 + · · · + nk−1 − ni). Hence, the resulting (2, 2)-colouring of G is strong.

9. Conclusion

In this work, we provided further support to the Strong (2, 2)-Conjecture, by essentially proving
it for more classes of graphs. Guided by a common research direction of the field, we focused mainly
on graphs with low chromatic number. Since, prior to this work, the Strong (2, 2)-Conjecture was
mostly proved to hold for bipartite graphs, we considered several classes of 2-degenerate graphs, thus
3-colourable graphs. As a result, we proved the Strong (2, 2)-Conjecture for cacti, subcubic outerplar

23

graphs, graphs with low maximum average degree, and Halin graphs (which are 3-colourable for the
most part).

As a first general direction for further work on the topic, we would be interested in more or less
strong generalisations of some of these results. An ultimate goal would of course be to prove the Strong
(2, 2)-Conjecture for all 3-colourable graphs, or at least for all 2-degenerate graphs only. Perhaps an
intermediate step would be to generalise some of our results. We wonder, for instance, about proofs for
all subcubic graphs, all outerplanar graphs, and for graphs with larger maximum average degree. One
could also consider other classes of 2-degenerate graphs, such as series-parallel graphs.

In this work, we also considered the opposite approach, being to prove the Strong (2, 2)-Conjecture
for graphs with larger, unbounded chromatic number. One reason for doing so, is that, prior to this
work, the conjecture was known to hold for complete graphs. We proved, mostly adapting and using
earlier results, that the Strong (2, 2)-Conjecture holds for powers of cycles and complete k-partite graphs.
In that line, we wonder about other classes of graphs with unbounded chromatic number, such as split
graphs and cographs, among others.

From a more global perspective, the Strong (2, 2)-Conjecture remains mostly open to date, and it
would thus be of prime interest to provide more general results supporting it might hold true. Maybe an
interesting step could be to establish that, for some k ≥ 2, all nice graphs admit strong (k, 2)-colourings.
Let us remind that, on the other hand, a recent proof of the 1-2-3 Conjecture implies that all nice graphs
admit strong (1, 3)-colourings.

References

[1] L. Addario-Berry, R. Aldred, K. Dalal, and B. Reed. Vertex colouring edge partitions. Journal of
Combinatorial Theory, Series B, 94(2):237–244, 2005.

[2] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1–2):7–29,
1999.

[3] O. Baudon, J. Bensmail, T. Davot, H. Hocquard, J. Przyby lo, M. Senhaji, E. Sopena, and
M. Woźniak. A general decomposition theory for the 1-2-3 conjecture and locally irregular de-
compositions. Discrete Mathematics & Theoretical Computer Science, 21, 2019.

[4] O. Baudon, J. Bensmail, J. Przyby lo, and M. Woźniak. On decomposing regular graphs into locally
irregular subgraphs. European Journal of Combinatorics, 49:90–104, 2015.

[5] J. Bensmail. On a graph labelling conjecture involving coloured labels. Discussiones Mathematicae
Graph Theory, 44:231–244, 2024.

[6] J. Bensmail, F. Fioravantes, and F. Mc Inerney. On the role of 3s for the 1-2-3 conjecture. Theo-
retical Computer Science, 892:238–257, 2021.

[7] J. Bensmail, H. Hocquard, and C. Marcille. The Weak (2, 2)-Labelling Problem for graphs with
forbidden induced structures. Research report, Université côte-d’Azur ; Université de Bordeaux,
LaBRI, UMR 5800, France, 2022.

[8] J. Bensmail, H. Hocquard, and C. Marcille. The weak (2, 2)-labelling problem for graphs with
forbidden induced structures. In A. Bagchi and R. Muthu, editors, Algorithms and Discrete Applied
Mathematics, pages 204–215, Cham, 2023. Springer International Publishing.

24

[9] J. Bensmail, H. Hocquard, and C. Marcille. On inducing degenerate sums through 2-labellings.
Graphs and Combinatorics, 40(2):23, 2024.

[10] M. Bonamy. Global discharging methods for coloring problems in graphs. PhD thesis, Université de
Montpellier, 2015.

[11] M. Bonamy, N. Bousquet, and H. Hocquard. Adjacent vertex-distinguishing edge coloring of graphs.
In J. Nešetřil and M. Pellegrini, editors, The Seventh European Conference on Combinatorics,
Graph Theory and Applications, pages 313–318, Pisa, 2013. Scuola Normale Superiore.

[12] G. Chang and G.-H. Duh. On the precise value of the strong chromatic index of a planar graph
with a large girth. Discrete Applied Mathematics, 247:389–397, 2018.

[13] I. Grzelec, T. Madaras, A. Onderko, and R. Soták. On a new problem about the local irregularity
of graphs, 2024.

[14] M. Karoński, T. Luczak, and A. Thomason. Edge weights and vertex colours. Journal of Combi-
natorial Theory, Series B, 91(1):151–157, 2004.

[15] R. Keusch. A solution to the 1-2-3 conjecture. Journal of Combinatorial Theory, Series B, 166:183–
202, 2024.

[16] H. Lu, Q. Yu, and C.-Q. Zhang. Vertex-coloring 2-edge-weighting of graphs. European Journal of
Combinatorics, 32(1):21–27, 2011.

[17] J. Przyby lo. A note on the weak (2,2)-conjecture. Discrete Mathematics, 342(2):498–504, 2019.

[18] J. Przyby lo. On the standard (2,2)-conjecture. European Journal of Combinatorics, 94:103305,
2021.

[19] W.-F. Wang and K.-W. Lih. List coloring halin graphs. Ars Combinatoria, 77:53 – 63, 2005.

25

