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Abstract 

The execution of object-directed motor actions is known to be influenced by the 

intention to interact with others. In this study, we tested whether the effects of social intention 

on the kinematics of object-directed actions depended on whether the task was performed in 

the presence of a human or a virtual confederate. In two experiments, participants had to grasp 

a glass and place it to a new position, with either a personal intention (to fill the glass 

themselves using a bottle) or a social one (to have the glass filled by the human confederate or 

the virtual agent using the bottle). Experiment 1 showed that the kinematics of the object-

directed actions was modulated by the social intention but only when interacting with a 

human confederate. Experiment 2 showed that the effects of social intention on object-

directed actions performance can be improved using feedback-based learning. Specifically, 

participants proved able to progressively adapt their motor performances as if they were 

expressing social intention to a virtual confederate as well. These findings emphasize the 

importance of the modulatory role of social intention on non-verbal motor behaviour, and 

enrich the understanding of the interaction with virtual agents. 
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Highlights 

1. We studied the effect of social intention on object-directed actions while interacting 

with a human or a virtual agent 

2. Results showed an effect of social intention on object-directed actions when 

interacting with a human confederate 

3. No effect of social intention on object-directed actions was found instead when 

interacting with a virtual agent 

4. Following a training, participants adapted their motor performances and expressed the 

social intention to the virtual agent 

5. These findings underline the importance of considering social intention when 

implementing interactions with virtual agents 
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1. Introduction 

On account of recent technological and internet advances, computer-mediated 

interactions are increasingly replacing face-to-face human interactions. Computer-mediated 

interactions usually involve virtual agents endowed with verbal and non-verbal behaviour. 

Virtual agents are computer-generated human or non-human characters which can be 

controlled by humans or by computer algorithms (Fox et al., 2015)⁠. Since they enable users to 

create ecological situations and control various parameters of the interaction better than 

natural experimental settings (Bombari et al., 2015; Parsons, 2015; Parsons et al., 2009)⁠, 

virtual agents have been used to simulate human social interactions (Cassell et al., 1994; 

Nieuwenhuis et al., 2012; Pelachaud, 2009a, 2009b)⁠ of different levels of complexity (e.g., 

(Anderson et al., 2013; Cartaud et al., 2018; Iachini et al., 2016)⁠ in a variety of disciplines 

including psychology (Cartaud et al., 2018; Iachini et al., 2016) ⁠, neuroscience (Parsons, 2015; 

Parsons et al., 2017) ⁠, medicine (Parsons et al., 2009) ⁠, and education (Johnson et al., 2000; 

Johnson & Lester, 2016; Van Der Meijden & Veenman, 2005) ⁠. For instance, systems 

implementing a virtual audience have been used to prepare speakers to public speech (Poeschl 

& Doering, 2012) ⁠ and to treat public speaking anxiety (Pertaub et al., 2002)⁠. Virtual agents 

have also proved to be effective in assisting healthcare staff during diagnosis (Auriacombe et 

al., 2018; Lucas et al., 2017; Philip et al., 2020)⁠. They also found promising applications in 

the fields of post-stroke neurorehabilitation (Perez-Marcos et al., 2017, 2018)⁠ and social skills 

training in populations diagnosed with schizophrenia (Park et al., 2011)⁠ or autism (Ke & Im, 

2013) ⁠. 

When implementing a social interaction in a virtual environment, a key challenge is to 

create a system which allows users to interact with the virtual agents as much intuitively and 

spontaneously as possible, and to give them the feeling of “social presence” (i.e., the feeling 

to be in the presence of a human-like agent whose emotions and thoughts can be accessed; 

Biocca et al., 2003; Nowak & Biocca, 2003) ⁠. Indeed, although human-like agents are usually 

positively evaluated in terms of their physical appearance, interacting with them often leads to 

an uncanny feeling. This feeling increases the more a virtual agent looks human and 

sometimes results in a rejection of the agent (i.e., Uncanny valley effect; Mori et al., 2012)⁠. 

One explanation for this effect might be that while the human physical appearance is present, 

the dynamics of non-verbal communication supporting social interactions is lacking. 

Accordingly, many studies aimed at finding the optimal level of anthropomorphism (de 

Visser et al., 2016; Lee & Nass, 2002; Mori et al., 2012)⁠ and implementing emotional facial 
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expressions, gaze exchanges, verbal replies and communicative gestures (e.g., waving 

“goodbye” gesture) in order to increase users’ trust and acceptance of the virtual agent (see 

(Cassell et al., 1994; Pelachaud, 2009a). 

However, a wealth of studies has highlighted that not only gaze, facial expressions and 

communicative gestures are important for social interactions (the body language; Burgoon & 

Bacue, 2020)⁠, but also the dynamics of actions implying objects. Although the primary 

purpose of object-directed actions is to manipulate objects, numerous researches conducted 

over the past two decades have highlighted that they also play a role in social interactions 

(Becchio et al., 2008b, 2012; Egmose & Køppe, 2017; Krishnan-barman et al., 2017; Quesque 

& Coello, 2015)⁠. Indeed, it has been found that the way object-directed actions are executed 

varies not only as a function of the object’s physical characteristics (shape, weight, orientation 

and position in space; see for instance Cuijpers et al., 2004; Eastough & Edwards, 2007; Fikes 

et al., 2015; Gentilucci, 2002; Gentilucci et al., 1991; Paulignan et al., 1991)⁠ and the final 

goal of the action (e.g., grasping a pen to put it into a small or large container, grasping a 

glass to use or displace it; Ansuini et al., 2006, 2008; Fitts, 1954; Rosenbaum et al., 1992)⁠, but 

also according to the individual’s intention to include another person in their actions (i.e., 

moving a glass to get water from someone else) or not (i.e., moving a glass for a personal 

purpose; Jacob & Jeannerod, 2005) ⁠. More specifically, it was observed that object-directed 

actions performed with a social intention are characterised by a longer duration, slower speed 

and a higher trajectory height when compared to actions performed with a personal intention 

(Becchio et al., 2008b; Georgiou et al., 2007; Gigliotti et al., 2020; Quesque et al., 2013, 

2016) ⁠. Such spatial and temporal amplifications have been supposed to render the action more 

communicative and to attract the attention of the person with whom the individual intends to 

interact (Ferri et al., 2011; Quesque & Coello, 2014) ⁠. In agreement with this, these kinematic 

variations were found to be implicitly perceived by an observer and used as cues to anticipate 

others’ action goals (Ansuini et al., 2014; Cavallo et al., 2016; Lewkowicz et al., 2013)⁠ and 

produce appropriate behaviour in response to them (Becchio et al., 2008a; Meulenbroek et al., 

2007; Quesque et al., 2016)⁠. 

In the field of human-virtual agents interactions, the issue of kinematic variations 

associated with the expression of a social intention has rarely been addressed. A few studies 

were conducted on the matter, but they involved humanoid robots (e.g., Duarte et al., 2018; 

Sciutti et al., 2015) and their main objective was to study how people understand others’ 

intentions (in this case those of the humanoid robot) while interacting with them. 

Accordingly, it is not clear yet how people initiate an interaction with a virtual agent, and 



5 

whether they convey their own intentions through action as they would do in front of a human 

confederate. In other words, it is not established yet if the fine kinematic variations associated 

with the expression of social intention observed during human-human interactions (see 

Becchio et al., 2008b; Gigliotti et al., 2020; Quesque et al., 2013, 2016) ⁠spontaneously 

transfer to human-virtual agent interactions.  

In order to address this issue, we conducted a first experiment (Experiment 1) in 

which participants were asked to grasp a dummy glass and place it in front of either a human 

confederate or a human-like virtual agent. Participants performed this grasp-to-place task with 

either a personal intention (to fill the glass themselves using a bottle) or a social intention (to 

have the glass filled by the human confederate or the virtual agent using the bottle). Results 

showed that the social intention modulated the kinematics of the grasp-to-place action when 

the latter was performed in the presence of a human confederate, but not when performed in 

the presence of a virtual agent. In view of this result, we conducted a second experiment 

(Experiment 2) to test whether following a feedback-based learning (acting as a reinforcement 

learning, Sutton & Barto 2018), participants would adapt their motor performance, and learn 

to express the social intention in object-directed actions in the presence of the virtual agent as 

well. 

2. Experiment 1. Interacting with a human confederate vs. a virtual agent 

The objective of Experiment 1 was to evaluate whether the effect of social intention 

on the kinematic features of a grasp-to-place action performed in the presence of a human 

confederate transfers to the interaction with a virtual agent. In line with the existing literature, 

we expected slower (longer movement time, lower peak velocity and longer deceleration 

time) and higher (greater trajectory height) movements when the grasp-to-place actions were 

performed with a social intention compared to a personal intention. Furthermore, we predicted 

that this difference in movement kinematics would be present when participants interacted 

with the human confederate but reduced when they interacted with the virtual agent, as a 

consequence of the diminished non-verbal social cues typical of virtual interactions (Maloney 

et al., 2020; Ruben et al., 2021)⁠.  
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2.1 Method 

2.1.1 Participants 
Sixteen healthy participants (10 women) aged between 18 and 35 years (M = 21.94, 

SD = 2.05) voluntarily took part in the study. They were recruited from the University of 

Lille. They were right-handed, as assessed by the Edinburgh Handedness Inventory (Oldfield, 

1971; mean laterality quotient = .83, SD = 0.14), they declared having no perceptual or motor 

deficit and having a normal or corrected-to-normal visual acuity. They had no prior 

information about the hypotheses tested in the study and gave their informed consent before 

taking part in the experiment.  

The sample size of 16 was determined a priori by means of G*Power software 

(version 3.1.9.4). Considering an alpha level of 0.05 and a statistical power of 80%, we 

calculated that 15 participants would be sufficient to obtain a Cohen’s F effect size of 0.325 

(i.e., large to medium effect), that we chose in order to account for the large effect size 

obtained by Quesque and colleagues (Quesque et al., 2013, 2016)⁠ and the novelty of the 

paradigm (virtual agent) expected to generate weaker effects. This result was estimated when 

considering running a repeated measures ANOVA- within factors module, which is the 

nearest option offered by G*Power to the Linear Mixed Model procedure used in the present 

paradigm. Finally, after considering the potential risk of losing some participants’ data due to 

the advanced technologies used to record participants’ performances, we decided that 16 

participants would be appropriate for the purpose of the present study. 

The protocol was approved by the ethical committee of the University of Lille (Ref. 

Number: 2019-337-S70) and was conducted in conformity with the ethical principles of the 

Declaration of Helsinki (World Medical Association, 2013)⁠. 

2.1.2 Materials and stimuli 
The task consisted in manipulating a dummy bottle and a dummy glass made of wood. 

The bottle and the glass were placed on a 70 x 150 cm table serving as workspace, at specific 

locations within participants’ reach (see Figure 1.A). These locations were indicated by 

landmarks on a black opaque sheet, which was used to cover the table in order to avoid that 

light reflections interfered with the infra-red motion capture system used to record the 

participants’ arm movements. For the same reason, all object surfaces were painted with a 

black non-reflective paint. 
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The task had to be performed in collaboration with either a human confederate 

(Human-Human interaction) or a virtual one (Human-Virtual agent interaction). During the 

Human-Human interaction, participants seated at the table serving as workspace, facing the 

human confederate. The human confederate was an accomplice of the experimenter, playing 

the role of a naive participant. During the Human-Virtual agent interaction, the virtual agent 

was displayed on a screen (SONY KD-65X9005A, 168.2 * 87.5 cm) placed at the place of the 

human confederate’s chair. The virtual agent was situated in a virtual scenario representing 

the interior of a bar, giving the participant the impression to be seated at the counter. The 

virtual agent had the appearance of a barman who stood up while working (i.e., wiping a cup 

with a cloth). A virtual bottle was displayed on the top of the counter, so that it could be 

manipulated by the virtual agent during the task (see Figure 1.C). A video illustration of the 

task and the different conditions can be found at the following link: http://fr-

scv.fr/?page_id=996. 

 
Figure 1. Illustration of the experimental setup. (A) Illustration of the table serving as 

workspace, on which were indicated: The participants’ hand starting position, the glass initial 

position and the bottle positions in social and personal intention trials. (B) Illustration of a 

Human-Human interaction trial. (C) Illustration of a Human-Virtual agent interaction trial. 

http://fr-scv.fr/?page_id=996
http://fr-scv.fr/?page_id=996
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In order to humanise it, the virtual agent was given the name “Alphonse” and was 

addressed as a real person during the description of the task. Furthermore, the virtual agent 

was provided with human-like features and behaviours, such as looking at the participants 

when acting, performing fluid arm movements, and having human-like appearance. The 

scenario was built on Unity software (version 5.x) installed on a computer Dell Alienware 15 

R4. The quality of the interface was evaluated by 20 participants in a pilot study. The results 

(see Table 1) showed that the interface succeeded in generating a feeling of social presence 

(i.e., the sense of being with another; Biocca et al., 2003; Nowak & Biocca, 2003) ⁠, with 66% 

of the participants reporting a fair to complete feeling of social presence (all items 

considered), and a feeling of telepresence (i.e., the sense of being in a mediated virtual space; 

(Nowak & Biocca, 2003)⁠, with 80% of the participants reporting a fair to complete feeling of 

telepresence (all items considered). 
 

Table 1. Results at the social presence questionnaire and the telepresence scale used for the 

evaluation of the virtual interface in the pilot study. 

Items 1 2 3 4 5 6 7 

 
Social Presence Questionnaire 

       

To what extent could you evaluate Alphonse's reactions to 
your actions? (e.g. "I was able to notice that Alphonse 
perceived that I was moving"). 

0% 0% 10% 25% 45% 15% 5% 

To what extent did the situation resemble a real (face-to-
face) interaction? 

5% 0% 0% 20% 35% 40% 0% 

To what extent did you feel like you were in the same room as 
Alphonse? 

5% 10% 0% 15% 40% 30% 0% 

To what extent did Alphonse seem real? 0% 5% 10% 15% 45% 15% 10% 

To what extent did you feel like you were "with" Alphonse? 0% 5% 5% 25% 45% 20% 0% 

To what extent did you feel like you were interacting with a 
real person? 

0% 10% 15% 25% 25% 25% 0% 

        

Telepresence Scale        

How immersive was the experience? 0% 5 % 5% 0% 40% 45% 5% 

How intense was the experience? 5% 0% 10% 10% 65% 10% 0% 

To what extent did you feel you were in the environment? 0% 5% 5% 10% 50% 25% 5% 

To what extent did you feel immersed in the environment you 
were seeing? 5% 0% 0% 5% 55% 25% 10% 

To what extent did you feel surrounded by the environment 
you saw? 5% 5% 0% 25% 50% 15% 0% 

Note: Participants gave their responses on a 7-points Lickert scale ranging from 1- "Not at all [e.g., real]" to 7- 
"Completely [e.g., real]". Percentages in bold indicate the modal value, namely the most frequently chosen 
response. The modal value for the majority of items corresponds to 5- “Fairly [e.g., real]”. Participants 
responded to a French version of the items. 
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2.1.3 Procedure 
During the experimental task, participants were required to grasp the dummy glass 

from the initial position and place it to the final position (see Figure 1.A) with either a 

personal or a social intention. A pre-recorded voice pronouncing two different auditory 

signals (“You” or “Him”) informed the participants about the type of intention to be pursued. 

After hearing the signal “You”, participants had to grasp and move the glass with a personal 

intention, to use the bottle placed on the side to fill the glass themselves. After hearing the 

signal “Him”, participants had to grasp and move the glass with a social intention, in order to 

be served by the human or the virtual agent. 

A trial started with participants placing their right hand to the starting position (see 

Figure 1.A), with their thumb and index finger pinched together. When the “You”/ “Him” 

signal was played, participants had 4 seconds to grasp and displace the glass and come back 

to the hand’s initial position. Then, participants had 4 seconds to grasp the bottle and serve 

themselves to drink or wait for the human/virtual agent to do it following the type of intention 

pursued. At the end of this delay, a beep was played and signalled the participants to grasp the 

glass and place it back to its initial location, in order to get ready for the next trial. The next 

trial would start after a delay varying randomly between 2 and 3 seconds after the beep. 

Participants were required to come back to the hand’s initial position at the end of each action 

(grasp and place the glass, grasp and use the bottle). 

In both the social and personal trials, both the real and virtual confederate had to look 

up at the participants for a few seconds and then look down, in order to create a quick social 

contact and give the participant the impression they paid attention to the motor action 

performed. In the case of the social trials, the gaze exchange was followed by the pouring 

action performed by the confederate. This methodological detail was taken care of precisely 

to avoid a potential confounding effect of gaze modulation. 

Participants performed 4 blocks of 50 trials, each block corresponding to an 

experimental condition: Personal intention/Human confederate, Social intention/Human 

confederate, Personal intention/Virtual agent, Social intention/Virtual agent. The order of 

blocks was counterbalanced across participants. A short pause of 2 minutes occurred between 

blocks. The whole experimental session lasted approximately 60 minutes.  

2.1.4 Data recording and processing 
Participants’ motor performances were recorded using five Oqus infrared Qualisys 

cameras (200 HZ sampling rate, spatial resolution less than 0.2 mm). The cameras were 
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placed on the sides of the table to capture the entire scene and the space of interaction 

between the participant and the human/virtual agent (see Figures 1.B and 1.C). The cameras 

were connected to the computer Dell 7010, equipped with the softwares MATLAB (version 

2014a) and Qualisys Track Manager (version 2.14). Camera calibration (wand method) was 

realised prior to the beginning of each experimental session and retained if the system reached 

a standard deviation between 0.5 and 0.99 mm. The five Oqus infrared cameras tracked the 

3D coordinates in space (x, y, z) of 4 passive markers fixed on a glove that participants wore 

during the task. The four markers were localised at the level of the index tip, the index base, 

the thumb tip and the scaphoid bone of the wrist. During the Human-Human interaction, no 

markers were placed on the hand of the human confederate. 

Participants’ motor performances were recorded and analysed in real-time by means of 

the software interface QMT Connect for MATLAB, allowing to connect Qualisys Track 

Manager system (performing motion recording) to MATLAB program (performing motion 

analysis). Motor performances were then processed on MATLAB software, using an in-house 

script adapted from the RTMocap toolbox (Lewkowicz & Delevoye-Turrell, 2015) ⁠. In line 

with previous literature (Gigliotti et al., 2020; Quesque et al., 2013, 2016; Quesque & Coello, 

2014)⁠, we analysed the trajectory of the marker placed on the wrist, as it expresses arm 

movements without the influence of the grasping hand movement. When moving the glass, 

the action performed by the participant comprised two movement phases: a grasping phase 

(i.e., the period from the starting position to the grasp of the glass) and a placing phase (i.e., 

the period from the grasp of the glass to the end of its transportation to the new position). The 

onset of a movement phase was considered as the first moment in time for which the marker 

reached 20 mm.s-1. The end of the movement phase corresponded to the moment in time for 

which the marker reached 20 mm.s-1 after the peak velocity. In case this threshold was not 

reached between the grasping and placing movement phases, the local minima following peak 

velocity was considered as the movement phase end. For both the grasping and the placing 

phase, we extracted the following temporal and kinematic parameters: Peak wrist Elevation 

(mm), Peak wrist Velocity (mm.ms-1), Movement Time (ms) and Percentage of Deceleration 

Time (%). Table 2 provides a detailed description of the way each parameter was computed. 
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Table 2. Detailed description of the kinematic parameters analysed in Experiments 1 and 2 

Kinematic Parameter Name 
  

Measure 
unit 

Description 

Peak wrist Elevation PE
  

mm Maximum z (vertical) coordinate value of the wrist marker 
reached during a movement phase. All values were 
corrected by subtracting the first initial value. 

Peak wrist Velocity PV mm.ms-1 Maximum velocity reached by the wrist marker during a 
movement phase. 

Percentage of 
Deceleration time 

   

PD
  

% 
 
  

Difference between the MT and the time elapsed between 
movement phase onset and PV, divided by the MT and 
multiplied by 100.    

Movement Time MT ms Time elapsed between movement phase onset and 
movement phase end. 

2.1.5 Statistical analysis 
Statistical analyses were performed using R version 3.5.1 (R Core Team 2018) and R 

Studio version 1.1.456. Movements were excluded from statistical analysis if they were not 

correctly executed (i.e., impossibility to detect at least 2 local minima and/or 2 local maxima 

during the trajectory analysis). Prior to statistical analysis, we excluded outliers identified by 

means of median absolute deviation method (MAD method; Leys et al., 2013)⁠. In order to 

keep data loss below 5%, the threshold for outliers’ rejection was defined as the difference 

from the median plus or minus 3.5 times the MAD. 

In both the grasping and placing phase, each kinematic parameter was analysed 

separately by applying a Linear Mixed-Effects Model (Baayen et al., 2008; Brauer & Curtin, 

2018; Judd et al., 2012)⁠. As concerns the fixed-effect parameters, the model used implied the 

main effects and the interaction effect between the factors Intention (Social, Personal) and 

Confederate (Human, Virtual). As concerns the random-effects parameters, we considered 

that there might exist inter- and intra-individual differences in the way participants express 

the social/personal intention and in their sensitivity to the real/virtual confederate. Therefore, 

in order to control for such individual differences, we added to the model a by-subject random 

intercept and by-subject random slopes for the effect of the Intention and the Confederate. 

Such random-effects structure was chosen on the basis of the research hypotheses (Brauer & 

Curtin, 2018) ⁠, as well as on a compromise between the most complete random-effect structure 

(Barr et al., 2013) and the data structure, in order to avoid model over-parametrization (Bates, 

Kliegl, et al., 2015; Matuschek et al., 2017) ⁠. The final model appeared as follows: 

Kinematic Parameter of interest ~ Intention + Confederate + Intention: Confederate +  
 (1 + Intention + Confederate | Participant) 
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Linear Mixed-Effects Models were applied using the lmer function of the “lme4 1.1–

23” (Bates, Mächler, et al., 2015) ⁠ and “lmerTest 3.1-3” packages (Kuznetsova et al., 2017) ⁠. 

The model parameters were estimated using REstricted Maximum Likelihood approach 

(REML) and were statistically tested through F test with Satterthwaite approximation for 

degrees of freedom (Luke, 2017) ⁠ by using the function anova of the “lmerTest 3.1-3” 

package. Sum-to-zero contrasts were specified before model fitting. Finally, when the 

interaction was significant, we analysed the simple effects of the variable Intention within 

each level of the variable Confederate. For this purpose, we used the function emmeans from 

the “emmeans 1.7.1-1” package (Lenth et al., 2019) ⁠. 

 

2.2 Results 
 

In Experiment 1, among the initial 3200 movements, 82 were removed from the 

dataset, resulting in a loss of 2.56 % of the data. Table 3 shows mean, median and standard 

deviation values for each parameter, separately for the grasping and the placing phase. 

 

Table 3. Experiment 1. Mean (and standard deviation) values for each kinematic parameter as 

a function of the Confederate (Human, Virtual), the Intention (Social, Personal) and the 

movement Phase (Grasping, Placing). 

Confederate Intention N Kinematic Parameter 

   PE (mm) PV (mm.ms-1) PD (%) MT (ms) 

Grasping phase    

Virtual agent Social 790 49.77 (18.49) 575.70 (99.32) 55.18 (7.65) 731.22 (109.70) 

 Personal 762 50.09 (18.19) 582.14 (107.87) 54.44 (8.96) 730.27 (128.74) 

Human Social 778 51.38 (17.45) 555.27 (117.48) 55.18 (8.75) 779.97 (136.88) 

 Personal 788 47.74 (17.06) 542.04 (97.96) 54.79 (8.55) 775.51 (145.54) 

       

Placing phase    

Virtual agent Social 790 58.95 (20.65) 527.24 (69.19) 62.88 (5.32) 842.61 (112.09) 

 Personal 762 58.41 (18.94) 535.13 (85.65) 62.77 (5.72) 832.07 (153.14) 

Human Social 778 62.59 (24.13) 540.59 (81.42) 63.90 (5.49) 885.36 (138.45) 

 Personal 788 53.68 (21.42) 550.08 (75.20) 62.33 (5.28) 836.81 (147.72) 
Note. N: number of grasp-to-place actions in a given condition. PE: Peak wrist Elevation. PV: 

Peak wrist Velocity. PD: Percentage of Deceleration time, MT: Movement Time 
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2.2.1. Grasping phase 
Concerning Peak wrist elevation (mm), statistical analysis revealed a non-significant 

effect of both the Intention (F(1,14.95) = 3.06, p = .101) and the Confederate (F(1,15.00) = 0.64, p 

= .434). It showed instead a significant Confederate * Intention interaction effect (F(1,3070.05) = 

82.00, p < .001), the difference in peak wrist elevation between social and personal actions 

being greater when interacting with a human compared to a virtual agent. More specifically, 

simple effects analysis showed that peak wrist elevation was statistically higher for social 

than personal actions in the presence of the human confederate (Social - Personal estimate = 

5.63 mm, SE = 1.47; t.ratio(16.7) = 3.84, p < .001), but not in the presence of the virtual one 

(Social - Personal estimate = -0.64 mm, SE = 1.47; t.ratio(16.8) = -0.44, p = .666, see Figure 

2.A). 

Concerning Peak wrist velocity (mm.s-1), statistical analysis showed a non-significant 

effect of both the Intention (F(1,14.89) = 0.42, p = .526) and the Confederate (F(1,15.01) = 3.40, p 

= .085). It showed instead a significant Confederate * Intention interaction effect (F(1,3070.30) = 

11.04, p < .001), with a higher difference in peak wrist velocity between social and personal 

actions when interacting with a human confederate compared to a virtual agent. More 

specifically, simple effects analysis showed that peak wrist velocity was statistically higher 

for social than personal actions in the presence of the human confederate (Social - Personal 

estimate = 12.5 mm.s-1, SE = 6.90; t.ratio(19.7) = 1.82, p = .042), but not in the presence of the 

virtual one (Social - Personal estimate = -4.20 mm.s-1, SE = 6.91; t.ratio(19.9) = -0.61, p = .725, 

see Figure 2.B). 

Concerning Percentage of deceleration time (%), statistical analysis revealed non-

significant effects of the Intention (F(1,14.73) = 0.64, p = .436), the Confederate (F(1,14.90) = 0.26, 

p = .620), as well as the Confederate * Intention interaction (F(1,3070.82) = 0.62, p = .433). 

Concerning Movement time (ms), statistical analysis showed a non-significant effect of 

the Intention (F(1,14.88) = 0.06, p = .813), but a significant effect of the Confederate (F(1,15.01) = 

5.52, p = .033), with longer movement time recorded in the presence of the human 

confederate (estimate = 777.74 ms, SE = 25.50) than the ones recorded in the presence of the 

virtual one (estimate = 730.74 ms, SE = 19.40). This effect was not modulated by the 

Intention, as suggested by the non-significant Confederate * Intention interaction effect 

(F(1,3069.80) = 0.53, p = .467). 
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2.2.2. Placing phase 
Concerning Peak wrist elevation (mm), statistical analysis showed a non-significant 

effect of both the Intention (F(1,14.91) = 3.25, p = .092) and the Confederate (F(1,14.98) = 0.04, p 

= .850) . It showed instead a significant Confederate * Intention interaction effect (F(1,3069.67) 

= 148.81, p < . 001), the difference in peak wrist elevation between social and personal 

actions being higher when interacting with the human than with the virtual agent. Again, 

simple effects analysis showed that peak wrist elevation was statistically higher for social 

actions compared to personal actions in the presence of the human confederate (Social - 

Personal estimate = 9.85 mm, SE = 2.73; t.ratio(15.6) = 3.61, p = .001), but not in the presence 

of the virtual one (Social - Personal estimate = -0.125 mm, SE = 2.73; t.ratio(15.6) = -0.05, p = 

.518, see Figure 2.A). 

Concerning Peak wrist velocity (mm.s-1), statistical analysis showed non-significant 

effects of the Intention (F(1,14.93) = 1.65, p = .219), the Confederate (F(1,15.01) = 1.36, p = .262) 

and the Confederate * Intention interaction (F(1,3069.45) = 1.21, p = .272). 

Concerning Percentage of deceleration time (%), statistical analysis showed a non-

significant effect of both the Intention (F(1,14.81) = 1.66, p = .218) and the Confederate (F(1,14.80) 

= 0.21, p = .653). It showed instead a significant Confederate * Intention interaction effect 

(F(1,3069.78) = 21.79, p < .001), with a greater difference in deceleration time between social 

and personal actions when interacting with the human confederate compared to when 

interacting with the virtual one. More specifically, simple effects analysis showed that the 

percentage of deceleration time was statistically higher for social actions compared to 

personal actions in the presence of the human confederate (Social - Personal estimate = 1.66 

%, SE = 0.70; t.ratio(16.7) = 2.39, p = .015), but not in the presence of the virtual one (Social - 

Personal estimate = 0.08 %, SE = 0.70; t.ratio(16.8) = 0.11, p = 0.458, see  Figure 2.C). 

Concerning Movement time (ms), statistical analysis showed a non-significant effect 

of both the Intention (F(1,14.94) = 1.30, p = .273) and the Confederate (F(1,15.00) = 1.98, p = 

.180). It showed instead a significant Confederate * Intention interaction effect (F(1,3069.36) = 

44.50, p < .001), with the difference in movement time between social and personal actions 

being greater when interacting with the human confederate compared to the virtual one. 

Moreover, simple effects analysis showed that movement time was statistically longer for 

social than personal actions in the presence of the human confederate (Social - Personal 

estimate = 52.05 ms, SE = 26.30; t.ratio(15.4) = 1.98, p = .033), but not in the presence of the 

virtual one (Social - Personal estimate = 7.25 ms, SE = 26.30; t.ratio(15.4) = 0.28, p = .393, see 

Figure 2.D). 
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Figure 2. Experiment 1. Effect of the Intention (Social, Personal) on the kinematic parameters 

of the grasp-to-place actions as a function of the Confederate (Virtual agent, Human). Dots 

represent individual trials (one dot corresponds to one trial for one participant), thicker dots 

the mean values and error bars (horizontal lines) indicate standard error. Peak wrist elevation 

(A), Peak wrist velocity (B), Percentage of deceleration time (C) and Movement time (D) in 

the grasping and placing phases. *p <.050, **p < .010, ***p < .001. 
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2.3 Interim discussion 

In line with the formulated hypothesis, the results of Experiment 1 showed that when 

interacting with a human confederate, the kinematic features of object-directed actions were 

influenced by the social intention. This effect was present in both the grasping and the placing 

phase of the grasp-to-place action performed. In the grasping phase, actions driven by a social 

intention were characterised by a higher trajectory and higher velocity compared to actions 

driven by a personal intention. During the placing phase, social actions were characterised by 

higher trajectory, longer movement duration and longer deceleration period compared to 

personal actions. None of these effects were observed when interacting with a virtual agent, as 

social actions were performed similarly to personal actions.  

 The effects of social intention on object-directed actions in the presence of the human 

confederate replicated previous findings reported in the literature (Gigliotti et al., 2020; 

Quesque et al., 2013, 2016; Quesque & Coello, 2014)⁠. The longer and higher movements 

observed when performing an action with the social intention have been interpreted as an 

amplification of the spatio-temporal parameters of the motor action. Such amplification has 

been supposed to make the gesture more communicative (Hostetter, 2011) and attract others’ 

gaze (Quesque & Coello, 2014)⁠, allowing the confederate to respond with the most 

appropriate behaviour and therefore, to facilitate the interaction (Ansuini et al., 2014; Cavallo 

et al., 2016; Lewkowicz et al., 2013; Meulenbroek et al., 2007; Quesque et al., 2016)⁠. 

Moreover, the present study extended the previous findings obtained using laboratory 

designed experiments, to a more ecological interactive task.  

The lack of effect of social intention on motor performance in the presence of the 

virtual agent constitutes a novelty with respect to the existing literature. When looking at the 

body of research on individuals’ behaviours towards conversational agents, previous studies 

suggested that artificial systems endowed with basic verbal and non-verbal social cues proved 

to be able to influence human behaviour in a similar manner to a human interlocutor (Krämer, 

2008)⁠. Indeed, when interacting with virtual agents, individuals were found to adapt their gaze 

behaviour and facial expressions to the virtual agent’s gaze and body direction (Marschner et 

al., 2015)⁠, and to produce verbal utterances and discussion topics resembling the ones 

produced in the presence of a real human interlocutor (Bergmann et al., 2012; Lugrin et al., 

2018). Nevertheless, differently from previous studies, the present one did not imply a 

conversational context, but rather an interaction situation involving the manipulation of 

objects. Within this context, the present study enriches the existing literature and shows for 
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the first time that the social modulation of actions involving objects does not naturally transfer 

to the interaction with a virtual agent.  

In light of this consideration, several explanations can be suggested to account for the 

lack of effect of social intention on the kinematics of object-directed actions in the presence of 

the virtual agent. One aspect is the novelty of the situation. Screen-mediated social 

interactions are now part of people’s daily life, and one might suppose that individuals have 

adapted their conversational style to the virtual context. Moreover, people are used to 

engaging in discussions with virtual agents (e.g., automatic chats on websites, applications, or 

pre-registered vocal responses when calling on the phone). On the contrary, virtual contexts 

do not allow yet to interact with objects, which is therefore a new situation. We might then 

speculate that individuals are not used yet to generalise their motor behaviour, and the social 

aspects characterising it, to interactions with virtual agents. 

Another potential explanation could be the fact that interacting with objects involves 

specific factors relative to action performance. In particular, interacting with confederates 

implies a shared physical workspace, which might be lacking or misperceived in the case of 

mixed reality context, as the one used in the present study. Within such context, the 

mechanisms subtending the representation and exploitation of near body space (i.e., Brozzoli 

et al., 2012; Cléry et al., 2015; di Pellegrino & Làdavas, 2015) cannot be used, and therefore, 

action cannot be properly calibrated with respect to the objects and the confederate’s space 

(Coello et al., 2018; Gigliotti et al., 2021, 2023)⁠. Finally, interacting with others requires also 

to synchronise each-other’s behaviour, which is a crucial factor when it comes to acting in a 

coordinated way on a same object. In the context of the interaction with a virtual agent, these 

spatial and coordination aspects are reduced, and therefore, individuals cannot calibrate and 

adjust their actions as they would do in real human-human interactions.  

As a whole, we can conclude that despite the existence of a social presence feeling, the 

novelty of the interaction situation might have, for the reasons previously discussed, 

prevented the transfer of social cues to motor performances when interacting with a virtual 

agent. Within this context, it would appear logical to ask whether the effect of social intention 

could be improved by providing individuals with feedback about their motor performance, so 

that they could learn and adapt to the new interactive situation. This was the rationale of 

Experiment 2.  
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3. Experiment 2. Inducing the effects of social intention in Human-Virtual Agent 

interactions through a feedback-based learning 

 Results from Experiment 1 showed that social intention modulated object-directed 

action kinematics when interacting with a human confederate, but not when interacting with a 

virtual agent. In light of this outcome, the objective of Experiment 2 was to investigate 

whether such lack of effect could be compensated through a trial-and-error training. For this 

purpose, in Experiment 2 we asked participants to produce the grasp-to-place actions with 

either a personal or a social intention as in Experiment 1, but this time only in the presence of 

a virtual agent. The main change in the paradigm was that the virtual agent reacted only when 

participants’ actions presented the kinematic features associated with the social intention. To 

achieve this, we used the computational method developed by Daoudi et al. (2018) (see 

section 3.1.5 for a description of the algorithm), which allowed us to analyse online 

participants’ grasp-to-place actions and, on the basis of their kinematic profile, to categorise 

them as being driven by either a social or a personal intention. The reaction of the virtual 

agent would therefore serve as feedback allowing participants to progressively adapt their 

motor performances and succeed the task. Throughout the feedback-based learning, social 

actions were expected to progressively differentiate from personal actions, by becoming 

characterised by a higher hand trajectory and a longer movement duration in order to fulfil the 

requirements of the task.  

 

3.1 Method 

3.1.1 Participants 
30 new right-handed participants were recruited for Experiment 2, following the same 

inclusion criteria used in Experiment 1. This sample size was determined a priori by means of 

G*Power software (version 3.1.9.4). Considering an alpha level of 0.05 and a statistical power 

of 80%, we calculated that 20 participants would be sufficient to obtain a Cohen’s F effect 

size of 0.175 (i.e., a small to medium effect, as expected η2p was unknown). This result was 

estimated when considering running a repeated measures ANOVA-within factors module, 

which is the nearest option offered by G*Power to the Linear Mixed Model procedure used in 

the present study. Finally, after considering the potential risk of some participants not 

succeeding the feedback-based learning, we decided that 30 participants would be appropriate 

for the purpose of the present study. One participant was excluded from the initial dataset as 

more than 60% of his motor actions were not correctly executed and not analysable. Hence, 
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the final sample included 29 participants (22 women), right-handed (mean laterality quotient 

= 0.84, SD = 0.14) and aged between 18 and 35 years (M = 21.41, SD = 3.12). 

 

3.1.2 Materials and stimuli 

The task, the experimental setup and the stimuli were the same as used in Experiment 

1, except for the reaction of the virtual agent, that was not set a priori but depended on the 

kinematic features of the participants’ motor actions. For this purpose, a classification 

algorithm (Daoudi et al., 2018; Devanne et al., 2015; see section 3.1.5 for a description of the 

algorithm)⁠ was used to analyse participants’ trajectories online and classify them as driven by 

a social or a personal intention on the basis of their specific kinematic profile. Once the 

intention was classified by the algorithm, the virtual agent could either fill the glass of the 

participants (if the movement was classified as driven by a social intention) or not (if the 

movement was classified as driven by a personal intention). In the latter situation, he 

continued to wipe the cup with a cloth, but looked at the participants to indicate that he had 

noticed the motor action.  

 Finally, the virtual agent reaction served also as feedback for the participants, 

informing them on whether their motor performance was successful or not. 

3.1.3 Procedure 
Participants performed the task in the presence of the virtual agent only. They 

performed 8 blocks of 20 trials each (10 "You" and 10 "Him", presented in a randomised 

order), for a total of 160 trials. A short pause of 1 minute was provided at the end of each 

block of trials. The experimental session lasted approximately 60 minutes. 

 

3.1.4 Data recording and processing 

Movements recording and processing were similar as in Experiment 1. In addition to 

the analysis of temporal and kinematic parameters, in Experiment 2 we also analysed the 

classifier performance, namely the percentage of intentions underlying participants’ actions 

correctly classified by the algorithm and triggering, or not, the virtual agent action. The 

results of the classifier were coded using a binary system [0,1], with 1 being attributed to an 

action correctly classified (i.e., an action whose kinematic profile was in accordance with the 

expected kinematic profile for the social or the personal intention) and 0 to an action 

incorrectly classified (i.e., action whose kinematic profile was not in accordance with the 

expected profile related to the intention). 
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3.1.5 Description of the classification algorithm 

 The present section describes briefly the algorithm used to analyse participants’ 

actions and classify them as driven by either a personal or a social intention (for more details, 

see Daoudi et al., 2018; Devanne et al., 2015)⁠. The 3D trajectories of each action were first 

represented as curves in ℝ3 by means of the Square-Root Velocity Function (SRVF; 

Srivastava et al., 2010)⁠. Then, by normalising the length of curves to 1, the trajectories were 

represented by points and in a Riemannian manifold, having a spherical structure. In this 

space, the social and personal actions were represented by their SRVF curves as q1 and q2 

respectively. The distance between q1 and q2 on the sphere was used to quantify the similarity 

between the two curves in ℝ3. Indeed, this distance quantifies the amount of deformation in 

terms of length and height between the two curves. This distance (called elastic distance) is 

invariant to rotation and scaling, and takes into account the stretching and bending of the 

curves.  

 However, machine learning algorithms such as Principal Component Analysis (PCA) 

and Maximum Likelihood clustering algorithms cannot be applied to manifolds in their native 

form due to the lack of vector space structure and Euclidean structure (norm, dot product) of 

manifolds. Therefore, to deal with such non-linear space, we approximated the evaluated data 

on the manifold by their projection onto a tangent space at a particular point in the space on 

the tangent space of the manifold. Such a tangent space is a linear vector space which is more 

convenient for computing statistics (e.g., mean, covariance) and allowed us to perform PCA 

to learn the distribution of tangent vectors in the tangent space. Following PCA, we obtained 

the principal subspace Beta, where tangent vectors were projected, and computed the 

covariance matrix on this principal subspace. The covariance matrix was then used to learn 

the multivariate normal distribution of trajectories belonging to the same class (social, 

personal). Finally, we used the maximum likelihood clustering to build the classifier and 

identify the actions driven by the social and personal intentions. 

The algorithm was trained on data from Experiment 1, in order to learn the kinematic 

profile associated with social and personal actions and create the statistical model at the basis 

of the classifier. 

3.1.6 Statistical analysis  
Outliers analysis was carried out prior to statistical analysis. The threshold for 

outlier’s rejection was set at 3.75 times the MAD (Median Absolute Deviation) from the 

median in order to keep data loss below 5%.  
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As in Experiment 1, statistical analyses were carried out using the Mixed-Effects 

Models approach. In Experiment 2, the model included the Intention (Social, Personal) and 

the Block (1 to 8) as repeated measures fixed-effects parameters. The random-effects structure 

included a by-subject random intercept and a by-subject random slope for the effect of the 

Intention. The by-subject random slope for the effect of the Block was not included as its 

presence led to a lack of model convergence and singularity issues (Bates, Kliegl, et al., 2015; 

Matuschek et al., 2017) ⁠. The final model (see formula below) accounted for both the main 

effects and the interaction effect of the factors Intention and Block, and was used for the 

analysis of the kinematic parameters and the classifier performance. 

Kinematic Parameter of interest ~ Intention + Block + Intention: Block +  

 (1 + Intention | Participant) 

 

As regards the analysis of the kinematic parameters, if the dataset followed a normal 

distribution, we fitted a Linear Mixed-Effects Model using the lmer function. This was the 

case for peak wrist elevation (grasping phase only), peak wrist velocity (grasping and placing 

phases), percentage of deceleration time (grasping and placing phases) and movement time 

(grasping phase only) datasets. This was not the case for peak wrist velocity (placing phase) 

and movement time (placing phase) datasets, that were rather characterised by a positively 

skewed distribution. For their analysis, we fitted a Generalised Linear Mixed-Effects Model 

using the function glmer of the “lme4 1.1–23” package (Bates, Mächler, et al., 2015)⁠. We 

used the Gamma family for characterising the distribution of the dependent variable and the 

log link function to define the relationship between the fixed factors and the dependent 

variable.  

The statistical analyses of kinematic parameters were conducted as a function of three 

main objectives. First, we analysed the interaction effect between the Intention and Block in 

order to assess whether the feedback-based learning procedure was successful and led 

participants to execute social actions differently from personal actions in the presence of the 

virtual agent. Then, we analysed the simple effects of the variable Intention in the block 1 and 

block 8, in order to assess whether the feedback-based learning induced an effect of social 

intention on motor performances at the end compared to the beginning of the task. Finally, in 

order to establish from which block on the feedback-based learning effects occurred, we 

performed post-hoc analysis and compared the difference in kinematics profile between social 

and personal actions in each block to the difference observed in the baseline block 1. 
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As concerns the classifier performance, since the variable of interest was binary [0= 

Fail, 1= Success], we applied a Generalised Linear Mixed-Effects Model specifying a 

Binomial family distribution and a logit link function.  

For the Generalised Mixed-Effects models, the model parameters were estimated 

using Laplace Approximation and statistically tested using Wald’s χ2 from the Anova function 

of the “car 3.0-8” package (John et al., 2020) ⁠. Prior to model fitting, sum-to-zero contrasts 

were specified for the factor Intention (Social, Personal) and treatment contrasts for the factor 

Block (with Block 1 serving as baseline). Simple effects and post-hoc analysis were carried 

out using the function emmeans from the “emmeans 1.7.1-1” package (Lenth et al., 2019)⁠. 

Holm-Bonferroni correction method was used to adjust p-values following post-hoc multiple 

comparisons. 
 

3.2 Results 

Among the 29 participants who took part in the experiment, 20 showed a change in 

their motor performance at the end of the task compared to the beginning following the 

feedback-based learning. Such change was revealed by a difference in the percentage of 

correct classification by the algorithm between block 8 and block 1 (at least above 0%). 

Statistical analyses were carried out on the results from these 20 participants. Among the 

initial 3007 movements, 124 were removed from the dataset, resulting in a loss of 4.12 % of 

the data.  

3.2.1 Classifier performance 
When analysing the classifier performance, statistical analysis showed a significant 

main effect of the Block (χ2(7) = 44.31, p < .001), with the percentage of actions correctly 

classified by the classifier being higher at the end (72.12% in block 8, estimate = 80.20, SE = 

4.29) when compared to the beginning of the task (54.91% in block 1, estimate = 57.30, SE = 

6.62; see Table 4 for all comparisons). The analysis also showed a significant main effect of 

the Intention (χ2(1) = 28.31, p < .001), with a higher correct classification percentage for 

personal actions (83.40%, estimate = 91.40, SE = 3.23) when compared to social actions 

(41.01%, estimate = 32.70, SE = 11.22). However, the significant Intention * Block 

interaction effect (χ2(7) = 74.25, p < .001) indicated that this tendency evolved across blocks. 

More specifically, while the percentage of correct classification of personal actions remained 

high all along the task, the percentage of correct classification for social actions increased 

progressively from block 5 on, with respect to baseline block 1, until the end of the task (see 

Table 4 and Figure 3). 
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Figure 3. Experiment 2. Correct classification percentage of the Intention (Social, Personal) 

as a function of the Block (1 to 8). Filled purple triangles and the purple continuous line 

represent the correct classification percentage relative to the personal intention. Filled green 

circles and the green continuous line represent the correct classification percentage relative to 

the social intention. Filled black dots and the dashed black line represent the global correct 

classification percentage (personal and social intention considered together). 
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Table 4. Experiment 2. Correct classification percentage as a function of the Intention 

(Social, Personal) and the Block (1 to 8) and results from the post-hoc multiple comparisons 

between each block and the baseline block 1  

Intention Block Correct 
Classification 

Percentage (%) 

 Comparison Statistical outputs 

  Estimated from the 
model (SE) 

  Estimate SE z.ratio p 

Social and  1 57.30 (6.62)       

Personal 2 59.10 (6.38)  Block 2 vs. 1 0.07 0.22 0.33 1.000 

considered 3 68.80 (5.80)  Block 3 vs. 1 0.46 0.22 2.08 1.000 

together 4 66.30 (6.07)  Block 4 vs. 1 0.38 0.23 1.70 1.000 

 5 68.10 (5.76)  Block 5 vs. 1 0.46 0.22 2.10 1.000 

 6 72.10 (5.31)  Block 6 vs. 1 0.65 0.22 2.93  .304 

 7 79.60 (4.30)  Block 7 vs. 1 1.07 0.22 4.76 < .001 *** 

 8 80.20 (4.29)  Block 8 vs. 1 1.11 0.23 4.78 < .001 *** 

         

Social only 1 11.80 (5.73)       

 2 20.10 (8.74)  Block 2 vs. 1 0.63 0.29 2.19 .060 

 3 26.80 (10.64)  Block 3 vs. 1 1.00 0.29 3.48 .002 ** 

 4 20.10 (8.75)  Block 4 vs. 1 0.63 0.29 2.14 .060 

 5 31.10 (11.66)  Block 5 vs. 1 1.22 0.29 4.14 <.001 *** 

 6 43.90 (13.41)  Block 6 vs. 1 1.76 0.30 5.88 <.001 *** 

 7 61.90 (12.83)  Block 7 vs. 1 2.50 0.31 8.10 <.001 *** 

 8 63.40 (12.90)  Block 8 vs. 1 2.56 0.33 7.81 <.001 *** 

         

Personal only 1 93.10 (3.02)       

 2 89.20 (4.41)  Block 2 vs. 1 -0.49 0.32 -1.50 .935 

 3 92.50 (3.24)  Block 3 vs. 1 -0.09 0.33 -0.27 1.000 

 4 93.90 (2.71)  Block 4 vs. 1 0.14 0.34 0.40 1.000 

 5 91.00 (3.80)  Block 5 vs. 1 -0.29 0.33 -0.89 1.000 

 6 89.50 (4.31)  Block 6 vs. 1 -0.46 0.32 -1.41 .955 

 7 90.40 (4.01)  Block 7 vs. 1 -0.36 0.33 -1.10 1.000 

 8 90.50 (3.97)  Block 8 vs. 1 -0.35 0.33 -1.07 1.000 
Note. The table shows the percentages calculated from the data as well as the values estimated 

by the model (and the SE- Standard Errors), along with the estimate, SE, z.ratio and corrected 

p-values relative to each comparison. *p < .050, **p < .010, ***p < .001. 
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3.2.2 Kinematic analysis of motor performance 
Mean, median and standard deviation values for each parameter, computed separately 

for each phase, can be found in Table 5. In the following section we report the result for the 

interaction effect and the post-hoc analyses. The results for the main effects are reported in 

Table 6, as not crucial with respect to the core hypotheses of the present study. 

 

Table 5.  Experiment 2. Mean, median and standard deviation values for each kinematic 

parameter as a function of the Intention (Social, Personal), the Block (1 to 8) and the 

movement Phase (Grasping, Placing)  

Block Intention N Kinematic Parameter 

   PE (mm) PV (mm.s-1) PD (%) MT (ms) 

   M SD Mdn M SD Mdn M SD Mdn M SD Mdn 

Grasping phase 

1 Social 188 89.67 15.37 85.77 584.46 108.96 573.07 54.44 8.95 53.85 733.32 126.19 722.50 

 Personal 189 91.05 14.78 90.38 588.97 110.54 574.42 55.01 8.25 54.30 732.57 114.18 740 

2 Social 184 91.43 13.38 89.74 594.38 100.44 592.37 55.00 9.24 54.80 740.76 115.30 730 

 Personal 181 90.84 12.74 90.19 590.81 100.42 593.82 54.75 8.70 54.32 740.94 109.60 720 

3 Social 185 90.92 13.21 90.64 598.84 102.19 588.01 53.26 8.54 53.50 747.30 120.48 740 

 Personal 189 91.08 13.65 89.67 593.32 124.06 569.90 52.24 8.86 52.78 735.56 109.85 730 

4 Social 180 91.20 14.62 91.38 588.23 109.62 584.60 52.80 7.74 53.30 735.22 107.47 725 

 Personal 186 90.20 14.10 90.07 585.74 123.97 562.33 53.01 8.68 52.97 747.04 114.72 735 

5 Social 176 89.19 15.39 87.38 595.89 98.48 590.18 53.77 9.18 54.16 742.22 117.75 732.5 

 Personal 186 89.88 15.50 88.82 580.98 108.97 563.63 53.62 9.60 53.26 750.19 123.73 740 

6 Social 171 89.30 14.72 88.10 583.03 101.16 583.65 52.99 8.03 52.78 737.34 109.46 725 

 Personal 179 90.05 14.94 90.03 582.64 107.96 577.11 53.47 9.08 52.80 751.34 116.22 740 

7 Social 177 90.19 14.22 87.80 575.93 109.81 580.20 5410 10.11 53.01 756.41 131.36 750 

 Personal 182 90.56 16.17 88.65 575.51 113.53 560.32 54.77 9.22 54.95 754.29 117.80 745 

8 Social 146 92.36 14.95 88.78 580.52 103.18 594.27 54.68 8.58 53.91 774.14 127.43 760 

 Personal 184 90.48 16.33 87.53 560.22 118.91 552.06 53.23 9.15 52.91 761.98 121.85 752.5 

               
Placing phase              

1 Social 188 93.77 17.61 90.92 554.47 98.34 544.20 66.20 6.36 67.37 839.65 124.35 823.5 

 Personal 189 89.69 13.01 88.83 562.50 102.14 548.09 66.26 6.98 67.66 788.10 103.45 800 

2 Social 184 95.60 16.64 93.27 560.56 96.62 545.21 65.69 6.31 65.89 813.23 124.06 810 

 Personal 181 87.82 13.16 85.58 537.20 94.03 533.34 65.01 5.91 65.20 792.15 112.76 790 

3 Social 185 99.06 20.70 94.69 558.54 95.49 552.49 65.23 6.72 65.38 822.14 128.24 800 

 Personal 189 87.32 13.01 85.75 542.80 96.26 554.36 65.39 5.25 65.13 789.02 131.13 765 

4 Social 180 97.27 22.45 90.83 545.36 92.45 536.03 65.14 6.89 66.37 820.06 153.94 800 

 Personal 186 86.59 13.89 84.49 532.50 91.59 534.21 64.01 5.95 64.05 775.27 137.81 765 

5 Social 176 99.61 20.50 94.61 546.66 91.29 545.21 65.76 7.15 65.75 820.82 159.53 795 

 Personal 186 85.33 14.66 83.05 525.24 99.10 522.83 64.84 6.34 64.79 802.53 156.30 755 
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6 Social 171 101.08 22.03 94.94 534.88 92.94 522.98 66.42 7.00 66.48 849.59 164.21 810 

 Personal 179 86.44 16.38 83.45 524.55 94.08 530.01 63.97 6.02 64.19 802.46 143.61 785 

7 Social 177 106.51 22.43 106.04 533.80 93.91 524.83 65.24 7.50 66.41 857.23 157.22 825 

 Personal 182 85.95 17.34 84.31 521.70 99.11 515.88 63.76 6.25 63.83 791.81 134.88 775 

8 Social 146 108.74 24.85 107.22 524.13 96.02 510.65 65.53 7.57 65.26 881.78 168.24 842.5 

 Personal 184 86.54 17.26 85.13 513.52 94.57 507.68 62.86 6.89 62.41 802.20 154.95 790 

Note. N: number of grasp-to-place actions in a given condition. PE: Peak wrist Elevation. PV: 

Peak wrist Velocity. PD: Percentage of Deceleration time. MT: Movement Time. Median 

values are indicated as some of the parameters were analysed through non-normal Gamma 

Generalised Mixed-Effects Model. 

 

3.2.3. Grasping phase 
Concerning Peak wrist elevation (mm), statistical analysis showed a non-significant 

Intention * Block interaction effect (χ2(7) = 3.30, p = .856), the difference in peak wrist 

elevation between social and personal actions not changing across the blocks of trials. 

Accordingly, simple effects analysis confirmed that peak wrist elevation for social actions did 

not statistically differ from personal actions in the baseline block 1 (Social - Personal estimate 

= -0.01, SE = 0.01, z.ratio = -1.00, p =.842), and this did not change in block 8 (Social – 

Personal estimate = 0.01, SE = 0.01, z.ratio = 0.45, p = .327). 

Concerning Peak wrist velocity (mm.s-1), statistical analysis showed a non-significant 

Intention * Block interaction effect (F(7,2848) = 0.48, p = .848), with the difference in peak 

wrist velocity between social and personal actions not changing across the blocks of trials. 

Accordingly, simple effects analysis showed that peak wrist velocity for social actions did not 

statistically differ from personal actions in the baseline block 1 (Social - Personal estimate = -

2.63, SE = 8.19, t.ratio(362) = -0.32, p = .626), and this did not change in block 8 (Social – 

Personal estimate = 6.68, SE = 8.78, t.ratio(449) = 0.76, p = .224). 

Concerning Percentage of deceleration time (%), statistical analysis showed a non-

significant Intention * Block interaction effect (F(7,2833.08) = 0.59, p = .761), with the 

difference in percentage of deceleration time between social and personal actions not 

changing across the blocks of trials. Accordingly, simple effects analysis showed that peak 

wrist velocity for social actions did not statistically differ from personal actions in the 

baseline block 1 (Social - Personal estimate = -0.52, SE = 0.88, t.ratio(213) = -0.59, p = .723), 

and this did not change in block 8 (Social – Personal estimate = 1.05, SE = 0.94, t.ratio(267) = 

1.12, p = .132). 
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Concerning Movement time (ms), statistical analysis showed a non-significant 

Intention * Block interaction effect (F(7,2831.34) = 0.69, p = .681), with the difference in peak 

wrist elevation between social and personal actions not changing across the blocks of trials. 

Coherently, simple effects analysis showed that peak wrist elevation for social actions did not 

statistically differ from personal actions neither in the baseline block 1 (Social - Personal 

estimate = 1.19, SE = 11.2, t.ratio(167) = 0.11, p = .458), nor in block 8 (Social – Personal 

estimate = 12.65, SE = 12.0, t.ratio(208) = 1.06, p = .146). 

3.2.4. Placing phase 
Concerning Peak wrist elevation (mm), statistical analysis showed a significant 

Intention * Block interaction effect (χ2(7) = 163.66, p < .001), with the difference in peak wrist 

elevation between social and personal actions increasing progressively throughout the blocks 

of trials. Coherently, simple effects analysis showed that peak wrist elevation was not 

statistically different in social compared to personal actions in the baseline block 1 (Social - 

Personal estimate = 0.04, SE = 0.05, z.ratio = 0.81, p = .210), whereas it was in block 8 

(Social - Personal estimate = 0.22, SE = 0.05, z.ratio = 4.23, p < 0.001). Post-hoc analysis 

showed that the difference in peak wrist elevation between social and personal actions started 

to be significantly different from the baseline block 1 from block 2 on (see Figure 4.A). 

Concerning Peak wrist velocity (mm.s-1), statistical analysis showed a significant 

Intention * Block interaction effect (F(7,2830.21) = 2.16, p = .035), with the difference in peak 

wrist velocity between social and personal actions changing throughout blocks of trials. 

Nevertheless, simple effects analysis showed that peak wrist velocity was not statistically 

different in social compared to personal actions in the baseline block 1 (Social - Personal 

estimate = -8.43, SE = 8.20, t.ratio(59.1) = -1.03, p = .846), and that this did not change in 

block 8 (Social - Personal estimate = 5.03, SE = 8.54, t.ratio(69.3) = 0.59, p = .279). When 

performing post-hoc analysis, results showed that the difference in peak wrist velocity 

between social and personal actions was significantly different from the baseline block 1 only 

for the blocks 2, 3 and 5, but not beyond (see Figure 4.B). 

Concerning Percentage of deceleration time (%), statistical analysis showed a 

significant Intention * Block interaction effect (F(7,2829.70) = 3.25, p = .002), with the 

difference in percentage of deceleration time between social and personal actions increasing 

progressively throughout the blocks of trials. Coherently, simple effects confirmed that peak 

wrist velocity was not statistically different in social compared to personal actions in the 

baseline block 1 (Social - Personal estimate = -0.12, SE = 1.02, t.ratio(34.1) = -0.11, p = .545), 
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whereas it was in block 8 (Social - Personal estimate = 2.75, SE = 1.05, t.ratio(37.6) = 2.63, p = 

.006). Post-hoc analysis showed that the difference in percentage of deceleration time 

between social and personal actions was significantly different from the baseline block 1 in 

block 6 and 8, but not in block 7 (see Figure 4.C).  

 
Figure 4. Experiment 2. Effect of Intention (Social, Personal) on the kinematic parameters of 

the grasp-to-place actions across Blocks (1 to 8). Significant effects were found only in the 

placing phase. Dots represent individual trials (one dot corresponds to one trial for one 

participant), thicker dots mean values and error bars (horizontal lines) indicate standard error. 

(A) Peak wrist elevation in the placing phase. (B) Peak wrist velocity in the placing phase. (C) 

Movement time in the placing phase. (D) Percentage of deceleration time in the placing 

phase. *p < .050, **p < .010, ***p < .001. 
 

Concerning Movement time (ms), statistical analysis showed a significant Intention * 

Block interaction effect (χ2(7) = 23.34, p = .002), with the difference between social and 
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personal actions increasing progressively throughout the blocks of trials. Simple effects 

analysis showed that peak wrist elevation was already statistically different in social 

compared to personal actions in the baseline block 1 (Social - Personal estimate = 0.05, SE = 

0.03, z.ratio = 1.66, p = .049), and that it was also in block 8 (Social - Personal estimate = 

0.11, SE = 0.03, z.ratio = 3.31, p < .001). Post-hoc analysis showed that the difference in peak 

wrist elevation between social and personal actions became significantly different from the 

baseline block 1 in block 8 only (see Figure 4.D).  
 

Table 6. Experiment 2. Statistical results relative to the main effects of the intention (Social, 

Personal) and Block (1 to 8), as a function of the movement Phase (Grasping, Placing) 

Main effect Kinematic Parameter 

 PE (ms) PV (mm.ms-1) PD (%) MT (ms) 

Grasping phase 

Intention χ2(1) = 1.01,  
p = .316 

F(1,26.86) = 0.27,  
p = .610 

F(1,19.07) = 0.02, 
p = .887 

F(1,17.93) = 0.02,  
p = .905 

Block χ2(7) = 15.03,  
p = .036 

F(7,2848.06) = 6.39,  
p < .001 

F(7,2832.41) = 4.02, 
p < .001 

F(7,2830.69) = 5.01, 
p < .001 

Placing phase 

Intention χ2(1) = 0.65,  
p = .420 

F(1,18.64) = 1.96,  
p = .178 

F(1,19.08) = 1.65,  
p = .214 

χ2(1) = 2.75,  
p = .098 

Block χ2(7) = 59.03,  
p < .001 

F(7,2829.88) = 24.28,  
p < .001 

F(7,2829.59) = 5.28, 
p < .001 

χ2(7) = 49.77,  
p < .001 

 Note. PE: Peak wrist Elevation. PV: Peak wrist Velocity. PD: Percentage of Deceleration 

time. MT: Movement Time. Median values are indicated as some of the parameters were 

analysed through Gamma Generalised Mixed-Effects Model. 

 

3.3 Interim discussion 

The results of the analysis of kinematic profile and the classifier performance 

indicated that at the end of the feedback-based learning procedure, participants adapted their 

motor performances in the expected way. In the initial block, no kinematic difference was 

observed between personal and social actions, suggesting that participants performed similar 
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movements regardless of the intention to be pursued, and close to the usual kinematic profile 

of personal actions. Accordingly, 93.10% of actions were classified by the algorithm as driven 

by a personal intention (when the participants attempted to perform a personal action), while 

11.80% were classified as driven by a social intention (when the participants attempted to 

perform a social action). Throughout the learning procedure, motor performances evolved 

progressively: in the final block, social actions were characterised by a higher trajectory, a 

longer movement time and a longer deceleration period than personal actions. Accordingly, 

the correct classification percentage of social actions increased significantly from block 5 on 

(31.10%), that is after 100 trials, and kept improving until block 8 (63.40%). As a 

consequence, the global correct classification percentage (including both personal and social 

actions) increased by approximately 40%, evolving from 57.30% (close to chance level) in 

the initial block to 80.20% in the final block. These results confirmed our hypothesis and 

showed that participants were able to adapt their motor performance in order to elicit the 

appropriate response from the virtual agent, thus ending up by interacting with it as they 

would do in the presence of a human confederate. In a way, the participants became more 

social towards the virtual agent at the end compared to the beginning of the experimental 

session. It is however worth noting that the observed improvements were not really due to a 

social learning per se, but rather to a reinforcement-mediated learning (e.g., Sutton & Barto 

2018) of a social behaviour. 

When looking at the kinematic profile supporting the motor adaptation, results showed 

that the adjustment of motor performances was gradual and not temporally aligned for all 

kinematic parameters. With respect to the baseline block 1, the trajectory height was the 

fastest to change, with social and personal actions starting to differ since block 2 already. 

Modifications of peak velocity were observed in blocks 2, 3 and 5, but not beyond, while 

differences in percentage of deceleration time were observed in block 6 and 8, but not in 

block 7. Regarding movement time, social actions were found to last significantly longer than 

personal ones in block 1. This difference was not observed in the following blocks, but was 

observed again in block 8. Since there was no effect of social intention on trajectory height in 

block 1, it is difficult to believe that such longer movement time was induced by the social 

intention per se. We rather explain this effect by the novelty of the social interaction situation 

and the expectations towards the virtual agent behaviour. Considered as a whole, the observed 

modulations of kinematic parameters might reflect the progressive adaptation of participants’ 

motor performances to the new interaction context, until reaching the right combination at the 
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end of the experimental session, when all the kinematic parameters corresponded to the 

expected motor profile of an action performed with a social intention.  

Finally, it is important to note that the adjustment of motor performances was stronger 

(and statistically significant) in the placing phase than in the grasping phase. Several reasons 

might explain the absence of an effect of motor adaptation on the grasping phase of the 

action. First, the grasping component is less determinant to convey social intention, because it 

is the phase of the action during which one grasps the targeted object. As a consequence, the 

kinematic profile of this action component is highly influenced by the physical features of the 

object/target (e.g., Cuijpers et al., 2004; Santello & Soechting, 1998). Moreover, in a previous 

study we showed that the properties of the target of the action can also modulate the 

expression of social intention (Gigliotti et al., 2020). Secondly, it is also possible that the 

grasping phase, that is the first component of the motor action, is affected by variations in the 

second component of the motor action (placing phase). This is known as the co-articulation 

phenomenon, largely described in the past (e.g., Chary et al., 2004), whose role is to refine 

and optimise the entire motor sequence, and render the first component of the action 

dependent on the second component (through a process of motor anticipation, e.g., Orliaguet 

et al., 1997). Consequently, the effect of social intention on the first component of a motor 

sequence is not systematically observed (e.g., Lewkowicz et al., 2015; Quesque et al., 2013; 

Quesque & Coello, 2014), which is in line with the arguments just exposed. Finally, we can 

add the fact that during motor learning, co-articulation phenomena usually appear later in the 

adaptation process. Indeed, motor adaptation studies (e.g., motor adaptation to optical prism) 

revealed the existence of concurrent fast and slow adaptation processes (Fleury et al., 2019). 

Fast processes modulate the motor components to rapidly reduce the introduced error, while 

slow ones lead to the optimization and refinement of the fluidity of the whole action. 

Therefore, the absence of adaptation in the first component might be explained by the late 

development of the co-articulation process, for which the adaptation procedure used in the 

present study was perhaps not long enough. 

 

4. Conclusion 

In the present study, our purpose was to explore whether individuals transfer the non-

verbal behaviours typical of social interactions to the interaction with a virtual agent. The first 

main contribution of the present study was to examine the expression of social intention when 

manipulating objects, which is a crucial aspect of human interactions, but yet not deeply 

explored in situations involving virtual agents. The second main contribution was the 
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observation of a lack of effect of social intention on object-directed actions when interacting 

with a virtual agent, suggesting that this non-verbal social cue does not spontaneously transfer 

to such specific interaction context. Finally, a last contribution was to show that this 

behaviour could be improved through a feedback-based learning, with participants proving 

able to adapt their motor performances to a virtual agent when performing object-directed 

action with a social intention, on the basis of the reaction of the virtual agent. 

The present results open new avenues in both fundamental and applied research. In 

fundamental research, the present findings encourage the use of virtual agents to gain a better 

insight into the effect of social intention on human motor behaviour and social interactions. 

Furthermore, they suggest that the inclusion and implementation of object-directed actions 

could be highly beneficial to the study of virtual environments, the social presence feeling and 

virtual social interactions. In applied research, the present findings enrich the knowledge 

requested to design virtual agents, interfaces and programs for diverse purposes (educational, 

medical, rehabilitation…). This is notably relevant for interfaces conceived for the learning 

and training of social cognition skills, as well as for the implementation of inter-platform 

communications and teleoperation. 
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