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ABSTRACT

Terahertz (THz) quantum cascade lasers (QCLs) are technologically important laser sources for the THz range but are complex to model.
An efficient extended rate equation model is developed here by incorporating the resonant tunneling mechanism from the density matrix
formalism, which permits to simulate THz QCLs with thick carrier injection barriers within the semi-classical formalism. A self-consistent
solution is obtained by iteratively solving the Schrödinger–Poisson equation with this transport model. Carrier–light coupling is also
included to simulate the current behavior arising from stimulated emission. As a quasi-ab initio model, intermediate parameters, such as
pure dephasing time and optical linewidth, are dynamically calculated in the convergence process, and the only fitting parameters are the
interface roughness correlation length and height. Good agreement has been achieved by comparing the simulation results of various
designs with experiments, and other models such as density matrix Monte Carlo and non-equilibrium Green’s function method that, unlike
here, require important computational resources. The accuracy, compatibility, and computational efficiency of our model enable many appli-
cation scenarios, such as design optimization and quantitative insights into THz QCLs. Finally, the source code of the model is also pro-
vided in the supplementary material of this article for readers to repeat the results presented here, investigate, and optimize new designs.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0198059

I. INTRODUCTION

Terahertz (THz) quantum cascade lasers (QCLs), demon-
strated two decades ago,1 are currently the most advanced semicon-
ductor lasers in the spectral range between 1 and 5 THz. With
proven potential in many applications, including security screening,
remote sensing, nondestructive imaging, high-speed communica-
tions, astronomy, biology, and medicine, THz QCLs are believed to
be the underpinning devices for the upcoming THz technology
revolution.2–4 So far, the highest record for pulsed THz QCL opera-
tion is 261 K (−12 °C).5 However, their operation at room tempera-
ture is still an unresolved challenge. The temperature performance
of QCLs is related to many complex interconnected physical

mechanisms, resulting in the difficulty in QCL design and optimi-
zation, which has led to a very slow improvement of operation tem-
perature in the past decades.6 To accelerate the development of
THz QCLs, an efficient and accurate design/optimization tool is
needed to push the limit of THz QCLs.

Despite the success in the accuracy of the density matrix
(DM) method7–17 and the non-equilibrium Green’s function
(NEGF) approach,18–24 computational speed is always crucial for
design and optimization tasks of complex structures like QCLs.
Progress has been made in the past decade on DM, for example,
simplified DM incorporated with the Monte Carlo algorithm15 and
improved infinite-period DM approach without the need for the
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a priori defined dominant transport states.11 Also, a completely
positive Markovian evolution of DM is demonstrated;12–14 the time
dependency and full in-plane dynamics captured in such a method
provide a deep insight into the physics process in QCLs. Advanced
DM, derived from first principle,12–14,16,17 enables researchers to
study more general cases. Differing from DM in, e.g., Refs. 7, 9,
and 15, well-defined eigenstates are used instead of manually
chosen tight-binding states separated by one or more coupling bar-
riers. Nevertheless, such a model usually has higher numerical and
mathematical complexity to be implemented. The quantum
mechanical NEGF approach has been proven to be a powerful tool
to investigate, design, and optimize QCL devices,18,25–27 including
those based on commercialized software, e.g., nextnano.5,24,28–30

However, as NEGF can easily involve a lot of computational
resources, it is difficult to run on computers other than the modern
high-performance computing (HPC) clusters within a reasonable
time. Compared with the above-mentioned two approaches,
scattering-based hopping transport models like Monte Carlo and
self-consistent rate equation methods are less computationally
demanding. For Monte Carlo, a large ensemble of carriers is con-
sidered (typically 104–105) in a stochastic way. With each carrier
trajectory tracked and updated in many short time intervals, the
system evolves in the time domain and finally reaches its steady
state. The 3D Monte Carlo method explicitly considers the intra-
subband scattering processes and makes the in-plane electron dis-
tribution form automatically without making any thermalization
assumption. Though the Monte Carlo simulation provides a deeper
insight into the physical nature of QCL, the complexity is much
higher than that of the rate equation model. By applying similar
conditions, simulation results show that the in-plane carrier distri-
bution by Monte Carlo is indeed very close to the Fermi–Dirac
function,31,32 which can be directly adopted to describe the
in-plane carrier distribution and simplify the 3D problem to be 1D.
The solution of the rate equations still needs a self-consistent algo-
rithm because of the a priori unknown carrier distribution and
scattering rates.33 The convergence speed and numerical stability
are significantly improved by dynamically changing the weighting
factor.34 Despite efforts devoted to simplifying the DM and NEGF,
for example, by neglecting the in-plane wavevector dependency to
reduce the order of the density matrix7,9 and allowing the scattering
self-energies to be k-independent,35,36 the self-consistent rate equa-
tion method is still the most computationally efficient compared to
the other methods. Here, we will show that the resonant tunneling
transport mechanism incorporated self-consistent rate equation
model developed in this work has comparable accuracy with other
QCL modeling techniques. Beyond the above-mentioned self-
consistent model, the reduced rate equation (RRE) model37–40 con-
sidering only a subset [e.g., the upper and lower lasing level (LLL)
lifetime] of laser parameters is a further simplification of the full
self-consistent RE model. Taking advantage of its simplicity, RRE
models are usually used to study the dynamic behavior of QCLs.
The previous RRE model treats the laser parameters as constant,
making such a model only valid around designed bias or certain
temperatures.37,38 Recently, the RRE model has been extended by
incorporating the bias and temperature-dependent parameters
extracted from the full self-consistent RE model.39,40 As the semi-
classical RE model is still used to obtain the input parameters of

the RRE model in Ref. 39, our model, where the drawback of the
semi-classical method has been overcome, could help to further
improve the accuracy of the current REE models.

Semiclassical models have been frequently used in QCL design
and modeling at the early stage. Both Monte Carlo and rate equa-
tion calculations have been compared with experiments, showing
adequate validity.33,34,41–45 However, the semiclassical method only
considers the incoherent scattering mechanism, with which the
whole structure of the simulation window (typically three QCL
periods) is considered by a single and well-defined Hamiltonian.
The fundamental limitation of such a method, discussed by many
references,15,46,47 can be easily found, especially in THz QCL mod-
eling, where a thicker injection barrier (∼5 nm) is usually used to
suppress the wrong injection channel for a small photon transition
energy (∼10 meV). Consequently, the anti-cross energy gap corre-
sponding to the coupling energy is very small, and, thus, the elec-
tron transport is dominated by resonant tunneling in this case. In
the semiclassical method, however, the quantum coherent tunnel-
ing and dephasing are neglected, and the transition rates depend
only on the scattering-induced process. At alignment bias, the
wavefunctions of the two states extend across the barrier, and the
instantaneous event opens a “short-cut” for the electrons transport
across the barrier, and an unphysical spike of the current density
will appear in the calculation. Recently, coherent evolution, which
is naturally included in DM, has been incorporated into the existing
semiclassical framework to describe the carrier transport across a
thick barrier in THz QCLs. Callebaut and Hu46 first included
coherent transport in the Monte Carlo model. Instead of using full
DM, the intra-module was treated by the semiclassical MC
approach, and the transport through the barrier was handled by
solving the Liouville equation. The pure dephasing time is,
however, from a phenomenological constant value for all subbands.
Later, Jirauschek15 further improved and simplified the framework
of DM-MC. In his model, instead of treating the Boltzmann trans-
port equation (MC) and Liouville equation (DM) simultaneously,
the intra-module transition rate was described by the tunneling rate
equation. Hence, this model is closer to the “hopping transport”
model and more compatible with the MC framework. Another
improvement from Jirauschek is that the dephasing time is not
from the phenomenological value but calculated according to the
intra-subband scattering rate by Ando’s model,48,49 providing a
more ab initio way of simulation. Apart from the MC, the rate
equation method has also been extended by including the tunnel-
ing rate from the DM formalism. Two typical models are from
Terrzi47 and Razavipour.50 Researches based on these enhanced
rate equation methods have shown great potential in modeling
THz QCLs.51,52 However, further improvement is needed for these
models. For example, empirical values of the pure dephasing time
and optical linewidth are still used.50,51 However, in Ref. 52, the
pure dephasing rate is calculated based on Ando’s model, the
carrier–light coupling is neglected, resulting in inaccurate current
density estimation after lasing. Terazzi’s model is a rather ab initio
model without additional fitting parameters, but to our knowledge
has only been applied to mid-infrared (MIR) QCLs,47 where the
operational physics are significantly different. In our model, some
modifications have been applied and accuracy has been improved.
For example, the coupling strength calculated by the method in
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Terrazi’s model has been found underestimated by around 20%.
We use an alternative way for the coupling strength and the result
is improved when compared with the exact value of the anti-
crossing gap from a well-defined Hamiltonian. Moreover, electron–
electron (EE) scattering, which could be essential to modeling THz
QCL, is also neglected in Terazzi’s model.

Based on the framework of Terazzi’s model47 and taking
advantage of MC and rate equation methods,15,50–54 we aim to
demonstrate a comprehensive self-consistent rate equation model
of THz QCLs. One or more missing effects (as mentioned in the
last paragraph) in the existing rate equation model with similar
configuration have been complemented.47,50–52 The missing effects
in these literatures also bring about some problems to catch the
experimental result. For example, in Ref. 51, as dephasing time
varies with bias, different fitting values have to be applied to match
the experiment I–V curve. Although in Ref. 52, improvements have
been made by including the leakage to continuum and calculating
the dephasing rate with Ando’s model, dispensing with the empiri-
cal input. However, without carrier–light coupling, the discrepancy
cannot be compensated by their leakage model after lasing thresh-
old. EE scattering can be important and have a significant impact
on certain structures.34,55 Hence, it is important to include all these
effects in a single model. Some major parts of the simulation or
techniques are carefully selected and also different from the litera-
ture above. Detailed investigation and comparison for these
changes, for example, tunneling coupling strength and second-
order current have been given. Our model follows the spirit of
ab initio modeling. The only structural fitting parameters in the trans-
port model are the effective interface roughness height and correlation
length. All other intermediate parameters, such as the pure dephasing
time and optical linewidth, are dynamically calculated.

This paper is organized as follows: Sec. II discusses the theo-
retical basics and technical details of the model. Section III will
demonstrate the calculation results using our model and compare
them with experimental results. Last, a summary of the
study and some potential improvements of the model will be
discussed in Sec. IV.

II. THEORY AND MODEL

Some key features and modifications have been applied based
on Terazzi’s work to tailor our model to satisfy the requirements of
THz QCL design.9,47 (1) An improved equation [Eq. (13)] is used
to calculate the coupling strength rather than the “first-order
approximation” proposed in Terazzi’s model.47 The latter uses the
localized wavefunction and effective mass profile to compute the
coupling strength. However, we found that the method used in this
work (using localized potential instead of effective mass) has a
better match with the anticrossing gap obtained by the well-defined
potential profile of symmetric two-well structures. Some additional
comparison of these two methods is presented in Sec. II C. (2) EE
scattering is included. It is argued that the EE process involves four
states, and the N4 complexity (N is the number of states) makes it
computationally expensive.32 However, in most THz QCLs, only a
few states are involved in the transport process. Thus, it is reason-
able to consider EE scattering for these states, and due to the com-
mutability, the most time-consuming calculation process of the

form factor can be simplified by skipping those combinations with
identical results. (3) Instead of calculating the dephasing rate at
thermal energy (kth ¼ �h�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mkkBTe
p

, where kB is the Boltzmann
constant and Te is the electron temperature), we compute the
dephasing rate in the whole k-space and averaged them according
to the Fermi–Dirac distribution before entering the 1D transport
model. (4) Both of the first- and second-order approximations of
the current density are considered. However, it seems the second-
order current developed in Ref. 47 underestimated the current
before alignment at low temperatures. Hence, we retain the first-
order current approximation since it has proven to work well for
QCLs.15 (5) Instead of using the method in Ref. 47, where the
photon population is numerically converged, the carrier–light cou-
pling is carried out based on the time-evolution of classical light
intensities from the MC model. The latter is more straightforward
and compatible with our rate equation model without significantly
increasing the computational load. A similar time-evolution behav-
ior of the light intensity as in Ref. 54 is made. Other features such
as nonparabolicity, self-self-consistent Schrödinger–Poisson equa-
tion, and kinetic energy balancing (electron temperature calcula-
tion) are also included in our model.

A. Bandstructure

The tunneling rate of carriers in QCL is derived from the DM
formalism, where the band structure needs to be calculated with
the tight-binding Hamiltonian.32,53 In this model, the periodic
active region structure is separated by the injection barriers, as the
latter usually acts as the “bottlenecks” of current circulation in THz
QCLs. Each period is a single module containing the localized basis
states. The tight-binding potential Vtb is then defined for each iden-
tical module. Note that because we use the matrix solution of the
Schrödinger equation32 to ensure the wavefunction decays properly
to zero at the quasi-infinite edge of the simulation window, the
most left and right barriers must be numerically extended thick
enough according to the injection barrier potential and the applied
electric field since we need two periods to close the system for the
establishment of rate equations. The solutions of the adjacent
module are then duplicated and shifted by the period length and
bias per period. Next, nonparabolicity is included by considering
the energy dependent quantization effective mass in the
Schrödinger equation

� �h2

2
d
dz

1
m*(E, z)

d
dz

ψ(z)þ V(z)ψ(z) ¼ Eψ(z), (1)

where V(z) is the potential profile, which is equal to the tight-
binding potential Vtb here, E is the eigenenergy, and ψ(z) is the
envelope wavefunction of electrons. The energy dependent quanti-
zation effective mass m*(E, z) ¼ m*(z)[1þ α0(z)(E � V(z))], and
the nonparabolicity parameter α0 ¼ (Eg þ Δso/3), where Eg is the
bandgap and Δso is the split-off energy. The non-linear eigenvalue
problem of Eq. (1) is then solved by a matrix finite difference
method (FDM).56,57 For the in-plane effective mass of each
subband, nonparabolicity can be easily considered by averaging z
and E dependent effective mass according to the wavefunction.
However, for clarity and simplicity, we assume the in-plane
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isotropy and take the in-plane effective mass as a constant of GaAs
(0:067m0). Though the in-plane nonparabolicity can cause effects
like additional optical broadening, it is found to be negligible in
GaAs-based THz QCLs because of a large bandgap of GaAs mate-
rial system, and the main states involved in the carrier transport
process lie on the bottom of the quantum wells.58 Last, to deal with
the nonparabolicity, the k.p method considering the coupling
between the conduction band and the valence band is also used in
this field.14,59

The Hartree approximation of electron–electron interactions is
implemented by solving Eq. (1) together with the Poisson equation

d
dz

ð
ϵðzÞ d

dz
~V(z) ¼ q2e nD(z)�

X
i

nsi j�ψ i(z)j2
" #

, (2)

where ϵ(z) ¼ ϵ0ϵr is the permittivity, ~V(z) is the electrostatic (self)
potential, qe is the elementary charge, nD(z) is the volume doping
density, and nsi is the sheet carrier density of state i. The
Schrödinger–Poisson system can be solved based on the thermal
distribution (Fermi–Dirac) with the minimum computational
efforts.60,61 A more accurate way is to determine the carrier distribu-
tion by the carrier transport model,53 but it is time-consuming since
the transport model needs to be invoked several times until the
Schrödinger–Poisson system converges. Benefiting from the fast cal-
culation speed of the rate equation method, the computational time
in this model is in a reasonable range (typically within 1min with
∼5 S–P iterations). It is essential to note the periodicity of the
charge density, where Eq. (2) is strictly resolved within a single
period length [z0, z0 þ Lp), and z0 is the starting coordinate of the
period. The localized wavefunction itself, however, does not fulfill
the periodic condition as the up- and downstream module wave-
function could extend to the central one. Thus, the periodicity of
the probability density is established by adding the tails of the
wavefunction in the adjacent modules into the central one, then
j�ψ ij2 ¼ jψ ij2 þ jψ (�1)

i j2 þ jψ (þ1)
i j2 and jψ (n)

i (z)j2 ¼ jψ i(z þ nLp)j2.
The boundary condition is set by ~V(z0) ¼ ~V(z0 þ Lp) ¼ 0, and it is
again solved by the finite difference method. Finally, the total poten-
tial V ¼ V0 þ ~V , where V0 is the potential without considering the
space charge effects, is again entering Eq. (1), and the whole process
run iteratively until convergence is achieved. The electrostatic poten-
tial of the other region in the simulation window, say the right
period and the extended barriers, can be obtained by shifting and
duplicating from the central period. Figure 1 shows the
self-self-consistent result of the S–P system. As for the THz QCL,62

the carrier sheet density is 3� 1010 cm�2, the magnitude of the self-
potential is less than 1meV, as can be seen in Fig. 1(a). And the
influence on the potential is barely visible. Another case for mid-
infrared (MIR) QCL63 is given in Fig. 1(b) to illustrate the intuitive
relation between the effect of the S–P equation and the doping
density. Here, the doping density is much higher, causing the sheet
carrier density per period to be about one order of magnitude
larger. The magnitude of the self-potential is also roughly ten times
larger than that in Fig. 1(a), resulting in significant bending of the
potential profile. For this reason, the S–P equation is usually
included in the modeling of MIR QCLs,9,25,64 but sometimes

ignored in THz QCLs.50–52 Thus, with low doping density, the S–P
equation may be disregarded to maintain high computational effi-
ciency in design and optimization processes. Furthermore, other
phenomenological effects such as interdiffusion32,65 could bring
much larger change to the potential profile than the S–P effect. To
maintain the clarity, this effect is not included in our model.

B. Scattering mechanisms

In this study, five scattering mechanisms are considered for
the intra-module transport. They are longitudinal optical phonon
(LO) scattering, EE scattering, impurity (IMP) scattering, interface
roughness (IFR) scattering, and alloy disorder (AD) scattering.
Because the localized states within a module are strongly coupled,
and dephasing is less important, resonant tunneling is disregarded
inside the module, and only inter-subband scattering needs to be
considered. From Fermi’s golden rule, the scattering rate of a spe-
cific mechanism (m), from state ji, kii to all possible state in the
final subband j reads

W(m)
ij,ki

¼ 2π
�h

X
kj

j kjj ~H(m)jiki
D E��� ���2δ(E j,kj � Ei,ki ), (3)

with ~H is the perturbing Hamiltonian causing scattering, k is the
wavevector, and Ei, ki is the energy of the state ji, kii. Note the above
equation is for the elastic process. For the inelastic process (e.g.,
phonon scattering), the delta function becomes δ(E j,kj � Ei,ki + �hω0),
where the upper sign (+) stands for emission, the lower sign (−)
stands for absorption, and �hω0 is the phonon energy. We do not show
the explicit equations for every scattering mechanism for clarity of the
paper. Detailed information about the scattering equations, the
symbols, and the references are given in Table I in Appendix A. The
mean scattering rate is computed according to the Fermi–Dirac distri-
bution before entering the rate equations32

W(m)
ij ¼

Ð
W(m)

ij,ki fi(ki)[1� fj(kj)] kidki

πnsi
: (4)

In the above equation, k ¼ jkj, and the carrier distribution
fi(ki) is the Fermi–Dirac function in this model. Note that fi(ki) is
also a function of the quasi-Fermi level in each subband μi, It is
related to the 2D carrier density nsi of each state by the equation

nsi ¼
mk

i

π�h2
kBTe ln 1þ e

μi�Ei,0
kBTe

� �
, (5)

where μi is then solved by bisection method dynamically according
to the nsi in the current iteration. The final state blocking arising
from Pauli’s exclusion principle is incorporated by including
[1� fj(kj)] in the integral. The numerical upper limit of the wave-

vector for all subbands is defined as kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mk(Vmax � E1,0)/�h

2
p

,
Vmax is the maximum potential within a module and E1,0 is the first
subband energy at k = 0. In particular, EE scattering is a two-body
problem that involves four states. The scattering rate between two
states is calculated by considering all possible combinations of the
subbands involved, i.e., W(EE)

ij ¼ P
i0,j0

W(EE)
ii0 jj0 þW(EE)

iijj �W(EE)
ijji .32 Final
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state blocking is dismissed when averaging the EE scattering rate for
simplification. The total scattering rate is calculated by summing up
all scattering mechanisms Wij ¼

P
m
W(m)

ij .

It is important to mention that the cut-off Ecut(k) energy
exists in the scattering rate.32 For LO phonon scattering, this is
because the energy difference between the initial and final sub-
bands is too large or too small for states with a small k-vector to
absorb or emit an LO phonon, where the scattering cannot occur.
For the elastic process, the scattering from a lower subband to a
higher subband cannot happen if the kinetic energy of the lower
subband does not exceed the bottom of the higher subband as the
energy conservation has to be satisfied. Then, the scattering rate

below this cut-off wavevector kcut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkEcut/�h2

p
is all zero, and

the integration in Eq. (4) should start from the cut-off wavevector.
We uniformly apply the Debye and Thomas–Fermi approxima-

tion in the screening of the LO phonon scattering, EE scattering, and
IMP scattering,66 where the inversion screen length is calculated by

q2s ¼
3e2n3Davg
2ϵEF

, (kBT , 2EF/3),

n3Davgq
2
e

ϵkBTL
, (kBT . 2EF/3),

8>>><
>>>:

(6)

with the mean 3D electron density n3Davg and Fermi energy for elec-

tron gas at 0 K EF ¼ (3π2ne�h
3)

2/3
/2m*. In the above equation,

Debye’s model is used for high temperatures, as the latter fails at
low temperatures, the Thomas–Fermi model is then used to com-
pensate such a scenario. This approach has been proven to be accu-
rate and computationally efficient compared to the full random
phase approximation (RPA)67 as the 3D electron density and lattice
temperature in Eq. (5) do not change on the run of self-consistent
iteration and the kinetic energy balance iteration. Thus, the pre-
calculated k-dependent scattering rate can be reused without recal-
culating them in every self-consistent iteration. Though advanced
methods like full RPA68 and simplified 2-D RPA66 provide better
results, they will relate the screening effect to the subband carrier
distribution, leading to the recalculation of the scattering rate at
each self-consistent iteration and, therefore, considerably slowing
down the convergence speed.

The pure dephasing contribution to the broadening of the
tunneling rate and optical transitions are accounted for by the
intra-subband scattering from Ando’s model.48,49 As EE scattering
is explicitly excluded in Ando’s model when identical effective
mass is used for each subband,48 and the contribution of LO
phonon scattering is negligible,15,49,69 only the elastic processes
(IMP, IFR, AD) are considered for pure dephasing rates. The pure
dephasing rate is given by

γ*(m)
ij,k ¼ π

�h

X
k0

ik0j ~H(m)jik
D E

� jk0j ~H(m)jjk
D E��� ���2� �

δ(εk � εk0 ),

(7)

FIG. 1. Solution of the Schrödinger–Poisson equation. The self-consistent potentials are displayed in the top row. The original potential of the material band edge (dashed
red) and the bent potential (solid black), together with the converged wavefunctions, are shown in the bottom row. The shaded areas are the doping region. (a) A THz QCL
with electron sheet density per period of 3� 1010 cm�2.62 (b) A MIR QCL with electron sheet density per period of 3:9� 1011 cm�2.63
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where εk ¼ �h2k2/(2mk). Again, the in-plane nonparabolicity is
ignored in this model, and the above equation only holds for iden-
tical effective mass in two subbands. More information can be
found in Ref. 47 when nonparabolicity and nonuniform in-plane
effective mass are used. The phenomenological value of the pure
dephasing time for all subbands, with the relation τ*ij ¼ (γ*ij)

�1, are
sometimes used to fit the experiment data, typically around
0.3–1 ps.7,50,51 In this work, however, the pure dephasing rate is not
a fitting parameter but is calculated using Eq. (6). The source of the
explicit equations for different scattering mechanisms again can be
found in Table I, with the difference in the definition of the
symbols explained in the annotation.

C. Resonant tunneling and rate equations

As discussed in Sec. II A, under the framework of tight-
binding theory, the whole structure separated by the injection
barrier is reckoned as a module containing the localized basis
states. The electron transport across the injection barriers is
modeled by resonant tunneling. The tunneling rate derived from
the DM formalism is then used to describe the inter-module (inter-
period) transport. As k-conservation holds for the first-order
current, the tunneling rate from ji, ki to j j0, ki is15,50,71

Ri j0 ,k ¼
2Ω2

i j0γ i j0 ,k

Δ2
i j0 þ γ2i j0 ,k

, (8)

where j0 denotes the subbands in the right-side module as illus-
trated in Fig. 2, γ i j0 ,k is the dephasing rate, and �hΔi j0 ¼ Ei,0 � E j0 ,0 is

the detuning energy from subband i to j0. The dephasing rate con-
sists of two parts, the lifetime broadening part from the inter-
subband scattering inside a module and the pure dephasing part
between two subbands in different modules, reads48

γ i j0 ,k ¼
1
2
(γ i,k þ γ j,k)þ γ*i j0 ,k: (9)

The lifetime broadening is computed by summing over the
inter-subband scattering rate to all subbands within a module
γ i,k ¼

P
‘=i

Wi‘,k , and the pure dephasing is calculated by accounting

the rate of IMP, IFR, and AD obtained through Eq. (7). The
k-dependency needs to be removed for a 1D rate equation model.
To do this, the first and second term in Eq. (9) is averaged before
we compute the dephasing rate. The lifetime broadening can be
calculated through the averaged scattering rate obtained by Eq. (4).
The mean pure dephasing rate is resolved over the population dif-
ference between two subbands,72

γ*i j0¼
Ð
γ*i j0 ,kj fi(k)� f j0 (k)jkdkÐ j fi(k)� f j0 (k)jkdk

: (10)

The dephasing rate can then be obtained as

γ i j0 ¼ (γ i þ γ j)/2þ γ*i j0 : (11)

The dephasing rate is then a k-independent value entering
Eq. (8), and the k-independent first-order tunneling rate between
doublets spanning the injection barrier is established with

Ri j0 ¼
2Ω2

i j0γ i j0

Δ2
i j0 þ γ2i j0

: (12)

One could also obtain the mean tunneling rate by directly substi-
tuting Eq. (8) into (4), which we found nearly identical results in
the L–I–V curve with the former way. However, all the results
shown in this paper are obtained by Eq. (12) to avoid theoretical
ambiguity. The last undefined parameter in Eq. (12) is the coupling
strength (the Rabi frequency). Here, the coupling strength is calcu-
lated as15,46

(�hΩi j0 )
2 ¼ ψ ijVext � Vtbjψ j0

D E
ψ ijVext � V 0

tbjψ j0

D E
, (13)

where Vext is the extended potential profile for the complete two
periods. Vtb and V 0

tb are the padded tight-binding potential for the
left and right period respectively as shown in Fig. 2. Alternative
ways can be used to calculate the coupling strength, for example, in
Refs. 47 and 50. These two methods reported similar results to
those from Eq. (13). A comparison of the coupling strength vs the
electric field of the structure in Fig. 2 with all three methods is pre-
sented in Fig. 3. From Fig. 3 and also discussed in Ref. 47, Terazzi’s
method underestimated the coupling strength by about 20%,
and because Razavipour’s method sometimes reports complex
solutions,50 these two methods are not used in our model.
Equation (13) will also underestimate the coupling strength by

FIG. 2. Carrier transport model description. Two adjacent modules of a QCL
are separated by the injection barrier (blue shaded area), with the tight-binding
potential of the left period (solid red line) and extended potential (dashed grey)
reported. Intra-module carrier transport is driven by inter-subband scattering.
The coupling of two adjacent modules is described using coupling strength. The
inter-module tunneling rate can be calculated with the detuning energy and the
dephasing rate. The structure is from Ref. 70.
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numerically comparing the calculated coupling strength of two
ground localized bases with the detuning energy (anticrossing in
actual QCL structure) �hΔ of two identical quantum wells computed
by the well-defined potential (extended) profile all at once. In
Fig. 4, with the exact value of the coupling strength given by
�hΩect ¼ �hΔ/2, we compute the ratio between the value from
Eq. (13) and the exact value by varying the barrier width, well
width, and the barrier height (i.e., the aluminum content in
AlGaAs barrier). The ratio is generally stable when the barrier
width is larger than 2 nm and slightly decreases with the well
width. A lower ratio is also found for higher Al content. Generally,
though some instability is found for thin well and barrier region,
the approximation from Eq. (13) is accurate within the range
shown in Fig. 4, with the worst scenario predicting 79% of the
expected coupling strength at 15 nm well width and 0.5 nm barrier
width with 0.3 Al content, indicating the overall validity of such
method to compute the coupling strength for most of QCL struc-
tures. The method is also compared with the recent work, where
the coupling strength is obtained by the EZ states (energy E and
position z within the subspace of the multiplet) extracted from
NEGF simualtion.73 The coupling strength of the injector state and
the upper lasing lever of the devices, ETH2019,74 MITG552,
MITG652,75 and lU2022,73 are investigated. The values in the same
sequence with the above-mentioned device are calculated to be
Ω = 1.37, 1.22, 1.32, and 1.67 meV. Reasonable agreement, with
only 10% overestimation except ETH2019, has been reached by
comparing with those from EZ states in Ref. 73, which are
Ω = 1.58, 1.08, 1.17, and 1.49 meV. It is interesting to mention that
when nonparabolicity is neglected, a better overall match is found
(except ETH2019), and the results from our model is Ω = 1.22,
1.05, 1.12, and 1.44 meV. The reason for larger coupling strength is

that when nonparabolicity is considered, the smaller effective mass
in the barrier results in a larger overlap between the wavefunctions.

To this point, all necessary parameters used to establish the
rate equations are given. Despite coherent and incoherent processes
existing universally in the whole QCL structure, the states within a
module are strongly coupled, and the doublets across the thick
injection barrier are weakly coupled and strongly damped by
dephasing. Hence, it is reasonable to treat the intra-module and
inter-module transport by inter-subband scattering (incoherent)
and resonant tunneling (coherent) respectively, as shown in Fig. 2.
The rate equation of the two-period system can then be established.
In principle, three periods are required in order to set up the rate
equations, but due to the periodicity, only two periods are needed
to close the quantum system. The population density of the state i
in the primary period (left period in Fig. 2) is

dnsi
dt

¼
X
j,j=i

(Wji þ R j0i þ Rji0 )n
s
j � nsi

X
j,j=i

(Wij þ Ri j0 þ Ri0j): (14)

In the above equation, the subscript i0j denotes the rate from
the right period to the left period and vice versa. The j ¼ 1, . . . , N ,
where N is the number of subbands in one period. Note that the
summation of j operate also on j0 (e.g., in

P
j,j=2

Rj02,

j0 ¼ 10, 30, . . . , N 0). In Fig. 2, only four subbands are presented.
Actually, there are two higher subbands not shown here as they
have a negligible impact on carrier transport at low temperatures
(less than 1% of the total carrier density in these two subbands at a
lattice temperature of 77 K). In this scenario, the major subbands
that participate in the carrier transport process are 1–4, and it is

FIG. 3. Comparison of the coupling strength calculated by Eq. (13) (solid),
Terazzi’s method47 (dashed-dotted), and Razavipour’s method50 (dashed)
between states in the structure in Fig. 2 vs the electric field.

FIG. 4. The ratio between the calculated coupling strength and the exact value.
The calculated value is obtained between the localized ground basis of two
coupled QWs under tight-binding Hamiltonian from Eq. (13). The exact result is
half of the detuning energy between the coupled states obtained by extended
well-defined Hamiltonian as illustrated in the inset. The grey surface is for the
Al0.15GaAs barrier, and the colored surface is for the Al0.3GaAs barrier.
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more computationally efficient to only include these subbands. It is
worth noting that, for high-temperature operation, electrons can
get enough kinetic energy to occupy higher subbands, resulting in
additional current leakage. Thus, for high temperatures, all sub-
bands should be included to study the electron transport behavior.
Moreover, the theory describing the bound-to-continuum leakage
(e.g., in Ref. 52) may also be used to better estimate the device per-
formance at high temperatures. The steady-state solution of
Eq. (14) can be obtained by setting dnsi/dt ¼ 0. Because the scatter-
ing and tunneling rate are all related to the carrier density of each
subband, the solution should be obtained in a self-consistent
manner.33 By assuming equal carrier distribution in all subbands
initially, the new carrier densities of each subband in the next itera-
tion can be calculated by Eq. (14) and renormalized according to
the total sheet carrier density in one period, i.e.,

P
i
nsi ¼ nsp. The

stability and convergence speed are improved by introducing a
weighting factor dynamically during iterations.34

Experiment evidence has found that the electron temperature
can be much higher than the lattice temperature.76 The kinetic
balance method is vital in the rate equation model to estimate the
electron temperature that enters the Fermi–Dirac function. The
latter describes the in-plane carrier distribution and is used to cal-
culate the mean scattering rate in Eq. (4). The electron temperature
will have a notable effect, especially on the scattering rate with a
cut-off wavevector, as elevated electron temperature will enable the
hot electrons to have enough kinetic energy to scatter, which signif-
icantly increase the mean scattering rate between two subbands.
The electron temperature is obtained by the kinetic energy balance
method.32,47,77 The kinetic energy generation rate reads

δK ¼
X
i,j

X
m

nsiW
(m)
ij

�
�hΔij þ E(m)

o

�
, (15)

in which i, j sum over all subbands considered in one module, and
m sums over all scattering mechanisms. E(m)

o ¼ Eph for LO phonon
absorption and E(m)

o ¼ �Eph for LO phonon emission, and Eph is
the phonon energy. For the elastic process, E(m)

o ¼ 0. The tunneling
rate is not included in Eq. (15) because we use first-order current
here, where k-conservation holds, and the kinetic energy of the
carrier does not change. If the second-order current is used, energy
is conserved, and the resonant tunneling is an “elastic-like” process,
and the tunneling rate must be added to Eq. (15).47 Notably, exper-
imental results have shown that the electron temperatures of
certain structures can be different in each subband.78 An enhanced
kinetic energy balancing method, which determines individual Te

per subband, was developed where a good agreement have been
reached with experiment.79 However, such a method could some-
times cause instability to the model because of the difficulties in
solving sets of nonlinear equations. Some known problems have
been encountered and discussed in, e.g., Refs. 47 and 80, including
false solution at localized minimum, and overflow electron temper-
atures in certain subbands. Hence, to keep numerical robustness,
we retain the single electron temperature model. Comparison with
the Monte Carlo model in Ref. 15 shows the validity of our model,
in which the electron temperature range extracted from the Monte
Carlo simulation for the two-well structure at 10 and 125 K lattice

temperature are 116–127 and 154–165 K, respectively, and the
results from our rate equation model are 115.6 and 135.2 K, where
the differences are all in a reasonable range.

The current density can be evaluated at the injection barrier
after obtaining the electron temperature with a converged steady
state. The equation for the current density reads

J ¼ qe
X
i,j

(Ri j0n
s
i � Rj0in

s
j), (16)

where i sums over the states in the life period and j sums over the
states in the right period.

D. Carrier–light coupling

Starting from the optical properties of the QCL, the spectral
gain coefficient can be calculated by45

g(�hω) ¼ q2eω
c
Ð
0nrLp

X
i,j,Ei.Ej

jZijj2
ð1
0

[ fi(k)� fj(k)]L(�hω� Eij,k, Γij,k)kdk,

(17)

with the photon transition energy �hω, the light speed c, the reflec-
tive index nr , and the length of a period Lp. The summation is over
all possible combinations of the states within one period. Diagonal
gain between different periods is not considered here as the
wavefunction is not well-defined in a tight-binding framework.
Zij ¼ ψ ijzjψ j is the dipole element. In addition,

L(x, Γh) ¼ 1
π

Γh

x2 þ Γ2
h

(18)

is the Lorentzian line shape function with half-width at half
maximum (HWHM) Γh. Eij,k ¼ Ei,k � E j,k is the energy difference
of subband i and j at wavevector k. Γij,k ¼ �hγij,k is the k-dependent
energy broadening. Equation (17) is a general equation for consid-
ering different in-plane nonparabolicity and k-dependent broaden-
ing. It can be simplified to the following equation when constant
in-plane effective mass is used, and the broadening is averaged by
Eqs. (4) and (10):

g(�hω) ¼ q2eπω
cϵ0nrLp

X
i,j,Ei.Ej

jZijj2(nsi � nsj )L(�hω� Eij, Γij): (19)

From Ando’s theory, the k-independent energy broadening
Γij ¼ �hγ ij,k can also be calculated using Eq. (11) by replacing j0 with
j,15 i.e., considering the pure dephasing between subbands within a
module. Different from the current broadening, when calculating
the optical broadening, the lifetime part also needs to include the
tunneling rate to adjacent periods γ i ¼

P
‘=i

Wi‘ þ
P
‘

(Ri‘0 þ Ri0‘).

Without optical coupling, the result obtained from Eq. (19) is the
unsaturated gain. The threshold current can be obtained when the
maximum modal gain Γopt

M gmax(�hωM) is larger than the modal loss

αM, where Γopt
M is the optical confinement factor of mode M, ωM

is the mode frequency, and αM is the total cavity loss. However, the

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 135, 115703 (2024); doi: 10.1063/5.0198059 135, 115703-8

© Author(s) 2024

 11 O
ctober 2024 13:38:50

https://pubs.aip.org/aip/jap


lasing field will also affect the carrier transport, altering subband
populations and current density. Hence, it is important to include
the carrier–light coupling after the threshold. We, therefore, intro-
duce the optical transition rate between subband i and j,54

Wopt
ij ¼ q2eπ

cϵ0nr�h
jZijj2

X
M

IML(�hωM � Eij, Γij): (20)

The intensity of mode M, IM evolves over time domain
with53

@IM
@t

¼ c
nr

[Γopt
M g(�hωM)� αM]IM, (21)

which can be further written in the intensity evolution over a short
time interval Δt by54

IM(t þ Δt) ¼ IM(t)e[Γ
opt
M g(�hωM)�αM] c

nr
Δt : (22)

To reduce the computational load, mode competition can be
disregarded by assuming single mode operation at maximum gain
with photon transition energy Eul ¼ Eu � El from the upper lasing
level (ULL) to the lower lasing level (LLL).54 Thus, the summation
in Eq. (20) is removed, and �hωM is replaced by Eul. Though Wopt

ij

here is a k-independent value, we can still substitute it into Eq. (4)
to include the final state blocking effect. Carrier–light coupling
can then be included in the rate equation model by adding the

optical transition term
P
j,j=i

(Wopt
ji nsj �Wopt

ij nsi) in the right-hand
side of Eq. (14).

The iteration procedure of the carrier–light coupling is carried
out as follows. First, the rate equation without the optical term is
self-consistently resolved. The unsaturated modal gain can then be
compared with the total cavity loss. Once Γopt

M g(�hωM) . αM, the
optical coupling iteration begins. Since Eq. (21) does not explicitly
include the spontaneous emission term, a seed initial intensity
[e.g., IM(t ¼ 0) ¼ 300W/cm254] is applied to give the origin of the
lasing oscillation. With a sufficiently short time interval (e.g.,
0.3 ns), the optical transition rates from Eq. (20) can be calculated
according to the present light intensity. Then, by assuming the
optical transition rates to be constant within the short time interval,
the rate equation containing the optical transition rate is self-
consistently solved, after which the subband population and gain
are updated. The latter is then used to calculate the light intensity
in the next time interval. The above procedure is repeated until a
steady state is reached for IM. Note here that the cavity loss consists
of waveguide loss and mirror loss, and the optical confinement
factor can be obtained by waveguide modeling techniques or exper-
imentally result. These values are treated as predefined input
parameters in this model.

Figure 5 shows the simulated temporal evolution of the four-
well structure in Ref. 70 (the same structure in Fig. 2). During the
carrier–light coupling evolution, the carrier density of state 3
decreased. While the carrier density of state 2 increased because of
the increased optical transition rate. Steady state is reached at
∼8 ns. The saturated gain at a steady state compared with an unsat-
urated gain is plotted in the inset of Fig. 5, and the peak of the sat-
urated gain coincides with the cavity loss (28 cm−1).

E. Model layout

The complete flow chart of the model in this study is shown
in Fig. 12 in the Appendix B. As can be seen, the self-consistent
procedure of the rate equation, together with the carrier–light cou-
pling, is nested in the kinetic balancing loop. The form factors of
IMP, LO phonon, and EE scattering are calculated before the
kinetic balance loop is conducted. Next, the k-dependent scattering
and dephasing rates are calculated, and form factors are visited
according to the specific exchange wavevector with the interpola-
tion method. As mentioned in Sec. II B, the Debye and Thomas–
Fermi screening method is used. The k-dependent scattering rates,
dephasing rates, and coupling strength do not change in the kinetic
balance loop. Thus, multiple invoking these time-consuming calcu-
lation subroutines are avoided, and scattering between subbands
only needs to be averaged using the existing data by the Fermi–
Dirac distribution. The outermost Schrödinger–Poisson loop is for
the “self-self-consistent” solution. As the electrostatic potential
alters the potential profile, wavefunction and eigenstates are
changed. Hence, it is inevitable to recalculate form factors and the
k-dependent scattering rate in each Schrödinger–Poisson iteration.
The total computational time is multiplied by the convergence iter-
ations needed for the Schrödinger–Poisson loop. A possible way to
avoid this heavy computational load is to solve the Schrödinger–
Poisson system before the transport model, i.e., from thermal

FIG. 5. In the four-well phonon–photon–phonon design shown in Fig. 2.
Temporal evolution of the carrier density (right axis) and the light intensity (left
axis) of the optical mode with the transition energy E32 ¼ 14:3meV (3.46 THz).
The inset is the unsaturated gain and the saturated gain spectrum. In this simula-
tion Te ¼ TL ¼ 77 K, cavity loss is set to be 28 cm−1, optical confinement factor
Γopt ¼ 1, and interface roughness parameter are ΔIFR ¼ 1:6 Å ΛIFR ¼ 100 Å.
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distribution. However, significant differences in the potential
profile and gain spectra have been found between these two
methods.47,81

The computational efficiency is greatly improved as we calcu-
late the look-up table of form factors before commencing the
multi-dimensional integration of scattering mechanisms like IMP
and EE. Because the k-dependent scattering rates in the mesh grid
of wavevector space are pre-calculated, they only need to be aver-
aged within the self-consistent procedure. In a modern PC with an
Intel i9 13900K processor, and considering a four-level structure,
with around 1000 and 50 discrete points in real and k space respec-
tively, the MATLAB (MathWorks Inc.) implementation of the full
calculation for a single bias typically takes about 2.5 min including
the carrier light coupling with Schrödinger–Poisson equation con-
verged in five iterations. Fast variation of the structural parameters
can be achieved by ignoring EE scattering (using about 60% of the
total time) and compensating by IFR scattering, as suggested in
Ref. 82. The Schrödinger–Poisson system can also be disregarded
for low doping densities. With these two simplifications, an L–I–V
curve with 60 points can be calculated within 10 min, moving the
code to a server with Intel Xeon Platinum 8468 only half the com-
putational time. Such small improvements could be attributed to
the poor multiplicity of the code, where many sequential proce-
dures still exist in the code. Potential acceleration of the efficiency
can be done by optimizing the algorithm, e.g., calculating the form
factor using discretized Fourier transform,51,83 and multiplicity or
moving the code to some low-level programming language such as
C++ and FORTRAN. This is, however, beyond the topic of this
paper, so we will not do further discussion here, but it is obvious
this configuration of the program has much greater potential to be
used as a fast optimization tool of QCLs.

III. RESULTS AND DISCUSSION

A. L–I–V characteristics

We use three devices ranging from two- to four-well design to
verify the model and compare the calculated L–I–V curves with
experiment results. The band diagram and their wave functions are
given in Fig. 6. The first device (EV1183)84 is a two-well design in
which the population inversion is established between j30i and j20i.
The electrons are injected from j1i to j30i by resonant tunneling
and carrier depopulation is achieved by LO phonon scattering from
j20i to j10i. The center 15 Å of the phonon well is doped to give a
1:5� 1010 cm�2 sheet carrier density per period. This is a typical
design of a three-level system. Note that other higher bound states
also exist and may involve in the carrier transport at high tempera-
tures, resulting in additional leakage channels that sabotage the
population inversion. It is worth mentioning that the record of
operation temperature so far was achieved by the two-well
design.5,75 A clean three-level system is achieved by using a higher
barrier and reducing the leakage parasitic channels. The latter is
found to be crucial for high-temperature operation of QCLs. The
second device (V775) is the one with operation temperature up to
200 K.62 It has three wells, and the center 50 Å of the widest
phonon well is doped to give 3� 1010 cm�2 sheet carrier density
per period. The carrier transport behavior is very similar to the
two-well design. The difference is that an additional subband j20i

exists near j30i, population inversion is created between j40i and
both j30i and j20i. Because of the broadening of the optical line-
width, both could contribute to the gain of the QCL. Additionally,
the 41 Å wide barrier to the left of the phonon well is almost com-
parable with the injection well (43 Å). A probably more accurate
way of modeling this structure could be reckoning this barrier as an
additional coupling barrier under tight-binding theory, and thus
the transport from j3i to j2i is described by resonant tunneling.
This, however, has not yet been included in the current model.
The third device (V843) with four wells has two LO phonon scat-
tering processes. The injection barrier is delta doped to give a
3:25� 1010 cm�2 sheet carrier density per period. Carriers injected
from j1i to j40i followed by an LO phonon scattering from j40i to j30i.
The electron depopulation is again achieved by LO phonon relaxa-
tion from j20i to j10i. Population inversion is, thus, established
between j30i and j20i.

The calculated L–I–V curves under different temperatures are
compared to the experimental measurements and other models in
Fig. 7. The material parameters of AlGaAs are calculated by
Vegard’s law with the data from Ref. 87. Because all three devices
used a double metal waveguide, the optical confinement factors are
set to be 1 in the simulation. The total cavity losses are set accord-
ing to the original study of these devices. They are 12 cm−1 for
device EV1183,84 37.5 cm−1 for V775,62 and 38.2 cm−1 for V843.70

In the characteristic conducted in this section, the interface rough-
ness correlation length ΛIFR is all set to be 100 Å for these struc-
tures. The mean height ΔIFR for EV1183 and EV775 is 2 Å. It is,
however, set to 1.2 Å for V843 to better fit the experimental result.
We also assume the lattice temperature is the same as the heatsink
temperature in pulsed mode reported in the original studies. The
light intensities are renormalized to present a clear comparison
with the experimental results.

For the two-well resonant phonon device (EV1183), the calcu-
lated I–V curve at 10 K generally matches the experiment data
except for an additional current peak at 9 kV/cm. This bump is
attributed to the alignment of state j1i and j20i, where the tunnel-
ing rate R120 at 9 kV/cm is calculated to be 1:35� 1011 s�1. The
experimental measurement result does not show any current peak
or a plateau. The discrepancy is partially due to the growth devia-
tion,15 which causes well width to vary in different stages.
Additional broadening of the current density exists as the align-
ments are reached at different biases across the whole structure,
which may flatten the current peak. Our calculation perfectly
repeats the I–V curve calculated using the density matrix ensemble
Monte Carlo method (DM-EMC),15 where the current peak is also
found at the same bias. We also show the L–I–V curve under dif-
ferent temperatures. The simulated L–I–V curve does not change
significantly with temperature from 10 to 120 K. The bent I–L
curve at 10 K near the threshold is due to the lasing starting at the
negative differential resistance (NDR) region. The current after this
threshold bias starts to increase because the optical current
appears, and resonance condition is gradually established between
state j1i and j30i. The current reaches a second peak (0.77 kA/cm2)
when j1i is aligned with j30i at 13.5 kV/cm. As mentioned before,
our model considers only the mode with the highest gain, while in
reality, multi-mode behavior and mode hopping effects may exist.82

This may explain why the calculated I–L curve has a generally
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linear dependency while the experimental one is bell-shaped in this
structure or noisy in other devices. The threshold currents Jth at 10
and 70 K are 0.3 and 0.36 kA/cm2, respectively, which match the
experimental results. However, the model fails to estimate the
threshold current at 120 K. The experiment finds a very steep
increase in threshold current after 70 K. At 120 K, the experimental
threshold is around 0.7 kA/cm2, but the model obtains
Jth ¼ 0:32 kA/cm2, which only about half of the experimental
result. Although the waveguide loss could increase with tempera-
ture,88 changing the waveguide loss at the same temperature in the
model cannot reproduce such a result because the simulated
maximum of the non-lasing I–V curve is only 0.38 kA/cm2 at

alignment bias with such temperature. The model, however, pre-
dicts 0.7 kA/cm2 non-lasing peak current at a much higher opera-
tion temperature of 280 K. From an experimental point of view, the
operation temperature can be higher than the heatsink, even
with pulsed operation.11 Still, it seems this effect cannot com-
pensate for such a significant difference. This may be due to the
thermally activated strong current leakage over the barriers to
the continuum at high temperature as the barrier of this device
is relatively low (15% Al content in the barrier). Hence, this
inconsistency with the experiment can be potentially improved
by adding a proper thermal model and considering the current
leakage to the continuum.

FIG. 6. Conduction band potential profile and probability densities offset by the eigenenergies of the investigated structures (two periods). Bias, sheet carrier density per
period, material composition, and wafer number are reported. (a) Two-well resonant phonon device (EV1183).84 (b) Three-well resonant phonon device (V775).62

(c) Four-well indirect pumped phonon–photon–phonon device (V843).70

FIG. 7. L–I–V curves of the three structures from the model in this work, experiments, and other models. (a) EV1183: experiment data are extracted from Ref. 84, and
DM-EMC result is from Ref. 15. (b) V775: experiment measurement is from Refs. 62 and 85. (c) V843: experiment data from Ref. 86, and NEGF calculated in Ref. 70.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 135, 115703 (2024); doi: 10.1063/5.0198059 135, 115703-11

© Author(s) 2024

 11 O
ctober 2024 13:38:50

https://pubs.aip.org/aip/jap


Our calculation shows an excellent agreement with the experi-
ment for the second resonant phonon device (V775). At 10 K, the
small bump at 2.5 kV/cm is due to the alignment of j2i and j30i.
Notably, the calculated I–V at 10 K peaks at 9 kV/cm, followed by
an NDR region before the threshold (9–10.25 kV/cm). The peak is
attributed to the alignment between j1i and j30i. The current starts
to drop beyond this alignment and again increases as the designed
injection channel between j1i and j40i is turned on, which corre-
sponds to the third current peak at 12.25 kV/cm. The calculated
NDR region coincides with the experimental current plateau at the
same bias range. The reason why the experiment shows a plateau
instead of a valley-shaped curve has been explained by the electric
field domain (EFD) in Ref. 85. In short, because the device tends to
maintain current flow continuity, another current carrying channel
with a higher electric field starts to establish from the top contact
side of the active region. The total applied voltage increased as
more and more periods switched to the higher EFD, but the
current almost remained the same. This hypothesis was later
proved in Ref. 86 by using scanning voltage microscopy (SVM)
with the device (V843) that we will discuss in the following para-
graph. Apart from the I–V, the I–L curve fits quite well with a
waveguide loss of 37.5 cm−1. The underestimated threshold at low
temperatures may also be attributed to the EFD effect. At higher
temperatures, from 80 to 150 K, the simulated threshold matches
well with the experimental one. However, with the increased
temperature, an additional simulated current plateau appeared
from 7 to 9 kV/cm because the resonant tunneling from j1i to
j20i with a lower bias is equally important as tunneling from j1i
to j30i with a higher bias. A generally more stable transport
property is found, and the threshold for higher temperature is
located at the positive differential resistance (PDR) region,
which makes it easier for the model to estimate the threshold
current. Last, we find the simulated lasing I–V curves are almost
identical for different temperatures with different non-lasing
curves pinned on them. This behavior also matches the measure-
ments at different temperatures in Ref. 85.

In the simulation of the four-well phonon–photon–phonon
device (V843), a smaller interface roughness mean height is chosen
ΔIFR = 1.2 Å to fit the measurement result. An overall agreement is
achieved with the experiment. The result from the rate equation
method in this work is comparable with the NEGF result.70 A
lower peak current is found at the designed bias (21.5 kV/cm) in
the NEGF simulation because carrier light coupling was not con-
sidered in the NEGF method.70 NEGF and our model predict two
current peaks before the threshold at 4.5 and 9 kV/cm. The former
is because of the tunneling from j1i to j20i, the latter is because of
the alignment of j1i and j30i. The difference between the experi-
mental I–V plateau from 9 kV/cm to the turning point before the
current sharply increases and the valley-shaped simulation result is
again because of the EFD. SVM measurement has shown that in
the current plateau from 9 to 16 kV/cm, two EFDs coexist and are
pinned at these two ends of electric fields.86 Reproduction of this
phenomenon may need a deeper understanding of the dynamics of
the EFD formation,89 which could be interesting to be included in
the models in the future version. Note that in another current
valley from 4.5 and 9 kV/cm, where a current shoulder is found in
the experiment, a uniformed electric field is revealed by SVM

across the whole structure in this region.86 Hence, it is likely the
difference between the theoretical and experiment here is not due
to the EFD but because some unknown broadening mechanisms
fade the valley away from the I–V curve. Our model predicts the
correct threshold current at different temperatures but with a larger
dynamic range. The theoretical peak current is around 2 kA/cm2 at
21.25 kV/cm comparable to 1.6 kA/cm2 at 20.8 kV/cm in the mea-
surement. The model overestimates the dynamic range because,
experimentally, the dynamic range can be cut off because the
driving circuit pushes the laser into the following NDR region
before it reaches the designed alignment bias. This phenomenon
has also been found in the V775, as the same design with different
metal contact shows a significant difference in dynamic range.62

From the above-mentioned comparison, our model repro-
duces the experiment measurements with reasonable accuracy.
Difference between the calculation and experiments still exists
because many complicated phenomena and effects from reality are
not fully revealed in the model. Nevertheless, a perfect agreement
with the results from counterpart models, DM-EMC and NEGF,
shows the rationality of the difference with the experiment and
further validates our model. Fast computational speed enables us to
contain carrier light coupling and self-self-consistent Schrödinger–
Poisson system with reasonable calculation time. As THz QCL
designs are numerically and experimentally very sensitive, further
improvements in the accuracy may require more realistic effects to
be considered in the model, which may inevitably bring about a
heavier numerical load. By intensively testing different designs, the
current model seems adequate to fulfill the requirements to predict
the performance of a QCL quantitatively. Furthermore, the micro-
scopical information of the active region can help to identify some
optimization directions, such as the influence of the barrier height
and doping, trade-off between diagonal and vertical transition
design, suppressing the leakage channel, etc., showing the broad
application scenario of the model.

B. Influence of the interface roughness parameter

The interface roughness is vital to the QCL performance. As it
is hard to directly measure the local imperfections,90 it is treated as
two effective parameters, correlation height ΔIFR and length ΛIFR,
describing the average deviation in the heterostructure. These two
parameters are usually swept in the range of ΔIFR ¼ 0:1–3Å,
ΛIFR ¼ 20–100Å.82 This section analyzes the influence of varying
IFR parameters on our rate equation model. IFR is considered in
the inter-subband scattering rate, inter-module pure dephasing
rate, and intra-module pure dephasing rate in the model. These
three aspects further affect the subband population, dephasing
time, optical linewidth of the structure, and the general perfor-
mance of the device. The degree of the impact of IFR depends on
specific QCL designs. In the four-well design V843, with much
thinner barriers within a period, nonzero wavefunctions consider-
ably extended across the interfaces, and the influence of IFR param-
eters becomes more critical. Here, we use the V843 design to
demonstrate the effect of the varying IFR parameters in this model.
To reduce the complexity of this analysis, we fix the correlation
length ΛIFR to a typical value of 100Å,53 varying the height
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parameter ΔIFR, and focus on the impact to the gain and current
density. Note that carrier–light coupling is turned off in this test.

Figure 8 shows the gain evolution along with the IFR correla-
tion height. Test conditions are given in the figure caption. At the
designed alignment bias of V843, the gain peak is dramatically
dropped when ΔIFR increased from 0 to 0.3 nm. Although IFR is
related to many properties of the QCL, such as carrier lifetime, tun-
neling rate, and electron temperature, two key factors contribute to
such a change. First, a larger ΔIFR corresponds to a larger IFR scat-
tering rate and pure intra-module dephasing rate, leading to the
increased optical linewidth, which is shown in the inset of Fig. 8(a).
For the parameter used in Sec. III A ΔIFR ¼ 0:12 nm, the calculated
FWHM is about 5 meV (1.2 THz), which meets the typical optical
linewidth for THz QCL.7,50,51 Second, a larger ΔIFR results in a
higher inter-subband scattering rate, making the population inver-
sion more difficult to be achieved. In Fig. 8(b), the subband popu-
lation of the ULL j3i decreased from 2� 1010 to 0:75� 1010 cm�2

when ΔIFR increased from 0 to 0.3 nm. With a higher IFR scattering
rate, more and more carriers are scattered from j3i to j1i through
indirect (3→ 2→ 1) and direct (3→ 1) channels. Such a change
can also be reflected in the inversion lifetime of j3i, the increment
of 1/τ3 is apparent because of the contribution from IFR. It is
worth mentioning that although the population inversion is still
held when ΔIFR ¼ 0:3 nm, no gain has been observed because the
tail of the strong absorption peak at phonon energy (∼36 meV)
from j1i ! j2i and j3i ! j4i acts as material loss and overcomes
the gain from j3i ! j2i at working frequency.

Apart from the gain spectrum, the change of the I–V curve
with varying ΔIFR is given in Fig. 9. The broadening effect on the
I–V curve is pronounced. No local peak current is found when
ΔIFR = 0.3 nm at 4.5 or 9 kV/cm. Instead, a continuously increasing
I–V is observed. It is known that the broadening of the I–V curve
is very sensitive to the pure dephasing rate.47,51 From the inset of
Fig. 9, we can see that the pure dephasing rate is dominated by the

IFR contribution. AD scattering plays a minor role in the GaAs/
AlGaAs material system, as most wavefunctions are localized in the
well (GaAs) region. V843 is delta doped at the injection barrier,
which is less overlapped with the wavefunctions, making the IMP
scattering less dominant. Also, from the relation of the peak gain vs
the electric field, the gain is observed and reaches its peak at a
similar applied field, with the dropping magnitude for larger ΔIFR.
Then, for the same cavity loss of 38 cm−1, the threshold is found at
a higher electric field and current density for a larger correlation
height. Lasing cannot occur when ΔIFR is as large as 0.2 nm in this

FIG. 8. Influence of the IFR parameter to the unsaturated gain of V843 at designed bias 21.5 kV/cm, ΛIFR is fixed to 10 nm, TL ¼ 77 K, ΔIFR varies from 0 (no IFR) to
0.3 nm. (a) Gain spectrum with varying correlation height. Inset is the optical linewidth of transition 2→ 3 vs the ΔIFR parameter. (b) Subband population change with the
ΔIFR. Inset is the total inverse lifetime (blue) of the ULL j3i and contribution from IFR scattering (red).

FIG. 9. I–V and peak optical gain vs the electric field of V843 for varying ΔIFR
from 0 to 0.3 nm, ΛIFR ¼ 10 nm The three insets are the total and IFR pure
dephasing rate of 1–20 , 1–30 , and 1–40 at their alignment electric field of 4.5, 9,
and 21 kV/cm, respectively.
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test. This, to some extent, indicates that the growth quality is essen-
tial to the performance of QCLs.

From a modeling point of view, the reproduction of IFR in
the actual device has always been troublesome because it can vary
from hundreds of interfaces and different devices with even iden-
tical active region designs. It is also one of the major gaps that
prevent a truly ab initio model, as the IFR parameters still need to
be treated as a phenomenological fitting parameter. As suggested
in Ref. 11, a larger IFR parameter can be used to represent yet
unknown mechanisms and compensate for the EE scattering. A
similar result can be achieved with larger IFR parameters, and the
computational efficiency can be greatly improved without the EE
mechanism.

C. Second-order current

Although second-order current approximation is disregarded
in the above test results, it may be helpful to clarify and discuss the
influence and difference with the first-order current here. The
second-order current is implemented by incorporating the first-
order tunneling rate with the correction parameter σ.9,47,71 The
second-order tunneling rate reads: Ri j0 ¼ Ri j0σ i j0 , and σ i j0 is calcu-
lated by

σ i j0 ¼ Θ(�hΔi j0 )þ Θ(�hΔ j0i)
ln {1þ exp[(μi � Ei � �hΔ j0i)/(kBTe)]}

ln {1þ exp[(μi � Ei)/(kBTe)]}
,

(23)

where μi is the Fermi level of subband i. Θ(x) is the Heaviside step
function. The second-order current density is obtained by replacing
Ri j0 with Ri j0 in Eq. (16). Its application in the rate equation model
is equivalent to reckoning the tunneling rate as an elastic-like
process.9,47,71 As demonstrated in Fig. 10(a), the first-order current
is established by the population difference of two states with identi-
cal wavevector k. Hence, no matter whether the final subband

energy is higher or lower than the initial subband energy, all elec-
trons in the initial subband will contribute to the current. The
second-order current approximation shown in Fig. 10(b) follows
the energy conservation. When the subband edge of the initial
subband is lower than the final subband (E1 , E2), only the elec-
trons located in the shaded area, where E1,k . E2 will contribute to
the total current from j1i to j2i.

FIG. 10. Schematic diagram of the (a) first-order current approximation and (b) second-order current approximation.

FIG. 11. I–V comparison between first-order and second-order current approxi-
mation of the device EV1183, with kinetic balance and by assuming a constant
electron temperature of 50 K. The lattice temperature is set to be 10 K in this
test. The inset is the electron temperature estimated by the two methods.
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As an elastic-like process, the tunneling rate must be included
in the kinetic energy equation if the second-order current approxi-
mation is applied in the model. Equation (15) becomes

δK ¼
X
i,j

X
m

nsiW
(m)
ij (�hΔij þ E(m)

o )þ
X
i, j0

�hΔi j0 (Ri j0n
s
i �R j0 in

s
j ):

(24)

The second term in the above equation accounts for the
kinetic energy rate from resonant tunneling. With these two modi-
fications, EV1183 is used to test the difference between the first
and second current approximation. Figure 11 shows the I–V test
result using both methods. The experiment result is also plotted in
the same figure for side-by-side comparison. With the kinetic
balance method, the current density is generally lower for the
second-order approximation with a current peak at the same bias.
Almost zero current density is observed until the electric field
reaches 8 kV/cm. The second-order approximation also predicts
lower electron temperature. Such difference is more prominent at
the low applied field, which is, however, not because of the second
term in Eq. (24) but due to a significantly smaller kinetic term
from incoherent scattering [first term in Eq. (24)]. Because the
second-order approximation largely suppresses the tunneling from
a lower subband to a higher subband (i.e., j1i to j20i) before
they aligned, the subband carrier densities at zero bias for j2i are
7:3� 108 cm�2 and 2:8� 107 cm�2 for first- and second-order
approximation, respectively. With much higher carrier scattered
from j2i to j1i in the first-order approximation, a higher electron
temperature is found to represent these scattered electrons to the
lower subband j1i. To eliminate the influence of the electron tem-
perature, a second test is conducted with a constant Te ¼ 50K and
other input parameters unchanged. With constant Te (lower than
the Te estimated by the kinetic balance method from the first-order
model and higher than the second-order model at the low
applied field from 0 to 9 kV/cm), the I–V for the first-order
model is almost unchanged and current from the second-order
model has slightly increased below 9 kV/cm. By comparing with
the experiment result, we found that the second-order approxi-
mation significantly underestimates the current density with the
kinetic balance method. Although an improved result was found
by artificially setting a higher constant electron temperature,
Te ¼ 50K, such a difference can still not be compensated. From
the definition of the second-order parameter σ, the difference
with the first-order current becomes smaller for higher tempera-
tures as the slope of σ vs �hΔ j0i becomes less steep. For low elec-
tron temperature, σ(�hΔ j0i) becomes more abrupt and it decays to
the step function [σ i j0 ¼ Θ(�hΔi j0 )] as Te approaches to zero. For
low temperatures, carriers are settled in bottom of j1i, and no
current flow will be found. Apart from the device shown here,
test results from other structures also show underestimated
current density at low temperatures. This leads us to suspect that
the second-order current approximation implemented in the rate
equation model may underestimate the tunneling rate, especially
at low temperatures (i.e., kBTe � �hΔ).47 Derived from the DM,
the coherence associated with the transition j2, ki to j1, ki con-
sists of the direct contribution (first order) and

scattering-assisted contribution (second order).47,91 The current
density is established between four states with two additional
exchange wavevectors q+ having same energy with the other
subband at wavevector k [e.g., in Fig. 10(b), they are j1, ki,
j1, qþi, j2, ki, j2, q�i, with E1,k ¼ E2,q� and E2,k ¼ E2,qþ ]. By
implementing the second-order current in the rate equation,
contribution from j1, ki with lower energy than the subband
edge of j2i (e.g., E1,k , E2,0) is completely ignored, which is prob-
ably the reason of such underestimation at low temperatures
before alignment is reached. Validation of the second-order
current theory is beyond the limit of this study, which may need
more theoretical and experimental effort. As many aspects can
result in the difference between reality and theory, accurately
modeling THz QCL remains an open topic. In this study,
although it seems that the first-order current can better fit the
experimental result at low temperatures, the model indeed overes-
timates I–V a bit at a low bias range, so it could still be important
to consider the correction from the second-order current in our
rate equation model, but in a more comprehensive way.

IV. CONCLUSION

In this study, a rate equation transport model, including res-
onant tunneling from DM formalism, is developed. Theoretical
and model description is given in detail, with some analysis of the
intermediate parameters during the simulation. The model
follows the spirit of ab initio modeling, and the only fitting
parameter in the transport model is the interface roughness corre-
lation height and length. The influence of the IFR parameters has
been presented in Sec. III B. In Sec. III A, three devices with dif-
ferent design strategies have been modeled with good agreement
with experiment measurement and other models, such as
DM-EMC15 and NEGF,70 showing good compatibility of the
model for various designs. Our model is highly computationally
efficient and flexible compared to counterpart models. The calcu-
lation time for a complete simulation at a single bias is about one
minute in a modern server with adequate numerical settings to
maintain accuracy. Moreover, the Schrödinger–Poisson system,
kinetic energy balancing, and carrier light coupling can be turned
on and off according to specific application scenarios. For
example, for fast variation, the self-self-consistent Schrödinger–
Poisson equation can be disregarded, and the result of a single
bias can be extracted in 10 s. Benefiting from the arbitrarily
defined number of subbands entering the transport, current
leakage to continuum in some cases may be compensated by
including a higher quasi-continuum state from the FDM, despite
the specific current leakage model not being included yet. A deep
insight into the transport process can be revealed by various inter-
mediate parameters, e.g., scattering rate, tunneling rate, dephasing
time, unsaturated and saturated gain, etc., providing an intuitive
understanding of complicated phenomena in QCLs. The flexibil-
ity and computational efficiency of the model enable us to opti-
mize the structural parameters with fast variation speed and
sufficient information extracted from the results. The second-
order current approximation does not fit well the experiment
result at low temperatures, whereas the first-order current model
is more suitable in such conditions. This may indicate the
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necessity to develop a more sophisticated theory to implement
such correction to the rate equation model. More realistic effects
and improvements, including continuum current leakage, hot
phonon, multi-mode carrier–light coupling, second-order gain,
and tight binding with arbitrary coupling barrier, could be incor-
porated into the current model to push the limit of accuracy
further—this will, of course, albeit at the expense of greater com-
putational load. Overall, despite lots of simplification has been
made, we conclude that the current configuration of the model
has a good balance between computational speed and accuracy.
Therefore, this model can be used as a fast design optimization
tool and give a first insight into the design performance of
THz QCL.

SUPPLEMENTARY MATERIAL

The source code and documentation for its usage can be
found in the supplementary material.
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APPENDIX A: SCATTERING EQUATIONS

The source of the scattering rate equations used in this model
and the corresponding equation numbers in the reference are given
in Table I.

TABLE I. The source of the scattering rate equations used in this model and corresponding equation numbers in the reference.

Scattering mechanism Symbol in this work Symbol in reference Reference Equation number in reference

LOa W(LO)
ij,ki

Wik,j 53 Eqs. (82)–(87)

EEa W(EE)
ii0 jj0,ki

W(EE)
ijfg (ki) 51 Eqs. (17)–(18)

IMP (inter-subband)a W(IMP)
ij,ki

Wik,j 53 Eqs. (101)–(103)

IFR (inter-subband)a W(IFR)
ij,ki

Wik,j 53 Eqs. (110)

AD (inter-subband)a W(AD)
ij,ki

Wif(ki) 32 Eq. (10.248)

IMP (pure dephasing)b γ* (IMP)
ij,k Γ(μ,ν)

intra 47 Eq. (5.54)

IFR (pure dephasing)b γ* (IFR)ij,k Γ(μ,ν)
intra 47 Eq. (5.27)

AD (pure dephasing)b γ* (AD)ij,k Γ(μ,ν)
intra 47 Eq. (5.45)

aThe physical definition of the symbol in this work is the same as the references.
bThe relation of the physical definition between this work and the reference is: γ

0
ij ¼ Γ(i,j)

intra/2�h.
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APPENDIX B: PROGRAM LAYOUT

The flow chart of the model in this work is given in Fig. 12.
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