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Abstract

Sound recognition is effortless for humans but poses a significant chal-
lenge for artificial hearing systems. Deep neural networks (DNNs),
especially convolutional neural networks (CNNs), have recently sur-
passed traditional machine learning in sound classification. However,
current DNNs map sounds to labels using binary categorical variables,
neglecting the semantic relations between labels. Cognitive neuroscience
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2 Semantically informed Deep Neural Networks

research suggests that human listeners exploit such semantic informa-
tion besides acoustic cues. Hence, our hypothesis is that incorporating
semantic information improves DNN’s sound recognition performance,
emulating human behavior. In our approach, sound recognition is
framed as a regression problem, with CNNs trained to map spec-
trograms to continuous semantic representations from NLP models
(Word2Vec, BERT, and CLAP text encoder). Two DNN types were
trained: semDNN with continuous embeddings and catDNN with cat-
egorical labels, both with a dataset extracted from a collection of
388,211 sounds enriched with semantic descriptions. Evaluations across
four external datasets, confirmed the superiority of semantic labeling
from semDNN compared to catDNN, preserving higher-level relations.
Importantly, an analysis of human similarity ratings for natural sounds,
showed that semDNN approximated human listener behavior better
than catDNN, other DNNs, and NLP models. Our work contributes
to understanding the role of semantics in sound recognition, bridging
the gap between artificial systems and human auditory perception.

Keywords: sound recognition, deep neural networks, semantic embeddings,
natural language processing, cognitive neuroscience, auditory perception,
acoustic-to-semantic transformation

1 Introduction

Recognizing sounds involves the conversion of acoustic waveforms into mean-
ingful descriptions of the sound-producing sources and events. Automatic and
effortless in humans, sound recognition poses a considerable challenge for
artificial hearing. Various machine learning (ML) algorithms have been pro-
posed that treat sound recognition as a classification problem. Typically, these
algorithms entail the initial extraction of diverse features from the acous-
tic waveform, which are further analyzed and assigned to predefined classes.
[1]. In recent developments, deep neural networks (DNNs) have emerged as
superior to traditional ML algorithms in sound recognition tasks. Following
parallel advancements observed in visual object recognition research, [2], con-
volutional neural networks (CNNs) have been used for sound classification
tasks [3–5] (here, referred to as sound-to-event CNNs). Trained on a large-
scale dataset of human-labeled sounds (Audioset, [6]), Google’s VGGish and
Yamnet yield remarkable performance. These networks receive spectrogram
representations as input and can classify sounds into a large number of classes
(527 and 521 classes, for VGGish and Yamnet, respectively). Since their pub-
lication, VGGish and Yamnet (and related networks [5]) have been fine-tuned
for applications in several specialized acoustic domains, from neonatal heart-
beat and lung sound quality assessment [7] to aircraft detection system [8] and
speech-emotion recognition [9].
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In addition to the basic set of labels, Audioset [6] introduced a taxonomy
specifying an additional set of super-ordinate labels and their (hierarchical)
relations to the basic set. While DNN models frequently employ the Audioset
basic labels (or subsets of them) for training purposes [10], the taxonomic
information is generally not utilized (see [11] for an exception). This is because
labels are commonly encoded as binary categorical variables using one-hot or
multi-hot (in case of simultaneous multiple labels) encoding as depicted in Fig.
1. DNNs trained with this approach in fact map sounds to a set of orthogonal
labels.

Research in cognitive psychology [12] and cognitive neuroscience [13] sug-
gests that human listeners, when engaged in listening to and in comparing
real-world sounds, exploit higher-level semantic information about sources in
addition to acoustic cues. In a recent study by Giordano et al. [13], behavioral
data involving perceived sound (dis)similarities, assessed through a hierarchi-
cal sorting task [14], were analyzed to investigate the explanatory power of
sound-to-event DNNs, such as VGGish and Yamnet, and other models related
to acoustic, auditory perception, and lexical-semantic (natural language pro-
cessing, NLP). The results demonstrated that sound-to-event DNNs surpassed
all other models in predicting human judgments of sound dissimilarity, indi-
cating that sound-to-event DNNs provide, at present, the best approximation
of human behavior for sound (dis)similarity judgments. In addition, the results
highlighted the ability of NLP models, specifically Word2Vec [15] to capture
variance in behavioral data that couldn’t be accounted for by sound-to-event
DNNs trained with categorical labels.

Motivated by these findings, the present study sought to develop DNNs
that - mimicking human behavior - incorporate lexical semantic information
in the recognition of sounds. To this aim, we formulated sound recognition
as a regression problem, training a convolutional DNN to learn the mapping
of spectrograms to continuous and distributed semantic representations. In
particular, we obtained these representations as the embeddings from NLP
models. We considered word-level, pre-trained embeddings:Word2Vec[15], and
context-dependent embeddings: Bidirectional Encoder Representations from
Transformers (BERT ) [16]. Additionally, we considered the semantic embed-
dings obtained from the Contrastive Language-Audio Pretraining (CLAP)
text encoder, a contrastive-learning model that brings audio and NLP BERT
embeddings into a joint multimodal space [17].

To evaluate the impact of semantics on sound recognition, we trained two
types of DNNs: semDNN, utilizing one of the described continuous semantic
embeddings, and catDNN, employing categorical, one-hot encoded labels. To
ensure a fair comparison, we trained the DNNs from scratch using a curated
dataset of 388,211 sounds from the Super Hard Drive Combo [18]. In this
dataset, a rich semantic description of each sound can be derived from the
associated metadata. We expected that, compared with a homologous network
trained with categorical labels, semDNN would produce semantically more
accurate labeling in sound recognition tasks and that semDNN embeddings
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Fig. 1 Categorical vs Semantic label encoding Comparison of t-Stochastic Near-
est Embedding (t-SNE)[21] visualizations between one-hot encoding (a) and Word2Vec (b)
spaces: Embeddings were made by a one-hot encoding transformation of the words (a), or
through the use of the GoogleNews-300D Word2Vec model[15] (b). In (a), words are equidis-
tant from one another, and the proximity of words with semantic relationships follows the
order in which the words are listed. However, in (b), words that are semantically related are
closer to each other, demonstrating a more meaningful representation.

would preserve higher-level lexical semantic relations between sound sources.
Furthermore, we expected that semDNNs would better approximate human
behavior in auditory cognitive tasks compared to catDNNs due to the preser-
vation of semantic relations in NLP embeddings. Our approach differs from
previous studies that combined sound-to-event DNNs with language embed-
dings [17, 19], as we specifically focus on evaluating the effects of semantic
representation types and predicting human perceptions. In summary, our work
aims to bridge the gap between artificial sound recognition systems and human
auditory perception by incorporating semantic information into DNNs [20].

2 Methods

In this section, we outline the methods used in our study (framework depicted
in Fig 2). We describe our strategy for label encoding using semantic mod-
els and how it differs from one-hot encoding. We address the limitations of
context-dependent models for single-word embeddings, and the motivation for
dimensionality reduction for comparing different models. We then detail the
network architecture, the training dataset, and the strategy adopted to limit
the influence of class unbalancing on model training. We subsequently evalu-
ate our models using four different external datasets in addition to the internal
one, describe the word retrieval strategy to get labels from the embeddings,
and discuss the evaluation metrics adopted to assess the models’ performances.
Finally, we provide a summary of a cross-validated Representation Similarity
Analysis (RSA) carried out to predict human judgments of sound dissimilarity
and provide a description of the compared models.
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Fig. 2 Proposed framework: from preprocessing to evaluation.
a) Label encoding strategy: transition from lexical units to either orthogonal (one-hot
encoder) representations or continuous representations (word encoder). b) Audio Prepro-
cessing: conversion of waveforms to 1 s patched spectrograms. c) Model Architecture: Note
the variation in the final dense layer. d) Evaluation Phase: transition from embeddings to
word-level predictions, with the computation of quantitative metrics to gauge model per-
formance. e) Model Comparison: Representational Similarity Analysis (RSA) is adopted to
compare the ability of models to predict human behavioral data.

2.1 Semantic Models

We employed three language models for label transformation: GoogleNews
Word2Vec-300D [15], BERT-768D [16], and CLAP-1024D text encoder [17].

Word2Vec is a word-based encoder trained on large corpora to learn dis-
tributed representations that capture semantic similarities and relationships
between words.

BERT, Bidirectional Encoder Representations from Transformers, is a pre-
trained language model that learns to capture deep relationships and context
between words in sentences.
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Contrastive Language-Audio Pretraining (CLAP) is a transformer-based
architecture that is fine-tuned for the audio-to-text task using a large dataset
of paired audio and text descriptions encoded with BERT. The text encoder
is trained jointly with the audio encoder using a contrastive loss function,
which encourages the audio and text representations to be similar in the joint
multimodal space. Specifically, the contrastive loss function aims to maximize
the similarity between the representations of a given audio-text pair while
minimizing the similarity between the representations of different pairs.

2.1.1 Label Encoding Strategies

To extract semantic embeddings from the sound descriptions we performed the
label transformation depicted in Figure 2, panel a). For CatDNN, we used one-
hot encoding. Each label was represented as a binary vector of 9960 dimensions,
as the number of entities contained in the dictionary (see 2.3), with a value of
1 indicating the presence of the label in the description.

To obtain a single embedding describing the sound semantics in SemDNN,
we directly used the single-word labels as input to word-based encoders. Specif-
ically, we computed the Word2Vec, BERT or CLAP embeddings for each word
present in the label and then averaged these word embeddings. This resulted in
a single embedding that captured the overall semantic information of the sound
(sound-level embedding). This process was straightforward for Word2Vec, as
it produces a single, context-independent embedding for each word. However,
for BERT and CLAP, we needed to make some preliminary adjustments before
applying the same method.

BERT and CLAP embeddings

BERT is a context-dependent language model, which means that the embed-
ding of a single word changes depending on its position in the sentence,
the surrounding words, and the sentence length. To obtain word-level BERT
embeddings, we first considered all the sentences contained in the SoundIdeas
dataset (see section 2.3). From these sentences, we generated an initial dic-
tionary consisting of the words present in the sentences. This dictionary was
specifically designed for BERT representation and associated each word with
two elements: its single-word embedding within a particular sentence and the
corresponding sentence itself. This approach was taken in order to capture the
variations in single-word BERT embeddings across different sentences where
the word appears. The computation of these sentence-dependent word-level
BERT embeddings required careful handling of tokenization. For this, we uti-
lized the bert-base-uncased model and its built-in tokenizer. It is worth noting
that, when calculating the BERT embeddings for single words, we focused on
the word-specific token representation. This strategy differs from using the
[CLS] token, which represents the entire sentence’s embedding. The reason
behind this decision was to ensure a more granular representation of indi-
vidual words. In contrast, the [CLS] token, although it represents the overall
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semantic content of the sentence [16] , does not provide a focused repre-
sentation of each unique word within the sentence. We then averaged the
embeddings associated with each word across different sentences to obtain a
final word-level BERT embedding. This averaging was motivated from the
fact that sentence-dependent word-level BERT embeddings are more similar
among them compared to embeddings of different words. This is illustrated in
Figure 3a for 10 sampled words from the dictionary. For these words, we calcu-
lated the cosine similarity between pairs of vectors reflecting context-sensitive
word embeddings. This resulted in a similarity matrix, which is visualized as a
heatmap, where brighter squares indicate higher similarity and darker squares
indicate lower similarity. It can be observed that sentence-dependent BERT
embeddings exhibit contextual variations, but are still more similar among
them than to the other words. Thus, averaging across sentences allowed us to
obtain contextually robust word-level embedding for each word and reduce the
BERT dictionary to the same dictionary we used for Word2Vec.

Unlike BERT, CLAP is fine-tuned to reduce dissimilarity between audio
and text pairs in a multimodal setting. As part of this process, CLAP aligns
audio and text representations to occupy a joint multimodal space [17]. This
alignment ensures that similar audio and text pairs are closer together, while
dissimilar pairs are farther apart. During the fine-tuning process, the model
weights, including those used to generate embeddings, are updated to minimize
the loss on the specific task, which is a symmetric cross-entropy loss func-
tion. Furthermore, CLAP generates a single embedding per sentence or word
because it is a fine-tuned version of BERT, with an additional Dense layer at
the end of its architecture. As a result, CLAP embeddings exhibit less varia-
tion compared to BERT embeddings. This can be observed in Figure 3b. Given
these reasons, there is no need to compute multiple-word embeddings per word
across different sentences. Therefore, we constructed a dictionary where each
word contained in the Super Hard Drive Combo’s labels is associated with its
word embedding generated by the CLAP-text encoder.

BERT and CLAP embeddings have a dimensionality of 768 and 1024,
respectively, whereas Word2vec embeddings have 300 dimensions. Thus, as a
final step for calculating, we reduced the dimensionality of BERT and CLAP
embeddings using an autoencoder (see supplementary material, ??). This
reduction brought the embeddings to the same dimensionality as the Word2Vec
model (300), while resulting in a negligible infromation loss (autoencoder
reconstruction loss was 0.89% for BERT and 0.005% for CLAP,see suppl. mate-
rial). We then substitute the original length embeddings of the preliminary
BERT and CLAP dictionaries with theses reduced ones.

Thus, by calculating word-level embeddings and aligning the dimensions
of all the models, we ensured a fair and meaningful comparison across the
different semantic models. All the dictionaries have the same 9960 entities,
extracted from the SoundIdeas sound labels, and an associated word represen-
tative 300-dimensional embedding. Sound-level embeddings are then obtained
as the average of all word-level embeddings in the sound description.
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Fig. 3 BERT and CLAP normalized Similarity matrices. Comparing BERT and
CLAP embeddings across 100 different sentences reveals interesting patterns. While BERT
embeddings exhibit noticeable variation for each word, implying some degree of divergence,
CLAP embeddings display remarkable consistency and reduced variation.

2.2 Network Architecture

We developed two different neural network configurations for sound recognition
task: semDNN and catDNN (Fig. 2c). Both networks resemble the VGGish [3]
architecture and share similar components, such as four main convolutional
blocks with 64, 128, 256, and 512 filters. Compared to VGGish [3], we added a
dropout layer (rate = 0.2; [22]) and a batch normalization layer [23] after each
down-sampling operation, and after the fully connected layers to improve the
model’s generalization ability, prevent overfitting, and facilitate more stable
and efficient training in comparison to VGGish. We also applied global aver-
age pooling after the last convolutional block to summarize the feature maps
into a fixed-length vector. However, they differ in the output layer. Whereas
VGGish has a 128-unit dense layer, SemDNN has a 300-unit layer with linear
activation, and catDNN has a 9,960-unit dense layer with a sigmoid activa-
tion function. We used a different loss function for each of these architectures.
For semDNN, we used an angular distance loss function, due to the nature
of the regression task that aims to minimize the angle between the true word
embedding and the word embedding predicted during training. This loss func-
tion is suitable for semantic embeddings, as it encourages the network to learn
the continuous representation of words within the fitting domain.[15, 24–26].
On the other hand, catDNN uses a binary cross-entropy loss function, which
is suitable for the multi-label classification task [27]. This loss function mea-
sures the difference between the predicted probabilities and the true labels and
encourages the network to learn a discrete representation of words that can be
used for classification.
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SemDNN and its variant

We employed different strategies to train SemDNN. Specifically, we trained
SemDNN using the Word2Vec, BERT, and CLAP representations as labels.
Furthermore, as a purely acoustic approach, we trained a Convolutional Auto
Encoder (CAE) with the architecture depicted in Figure 2c for the encoder, and
a reversed architecture for the decoder. The CAE was trained using only acous-
tic inputs, without involving a categorical/semantic label. The Mean Square
Error was employed as the loss function for the CAE. To provide an addi-
tional control network, we also considered SemDNN with random Normal-HE
initialization [28], without training it. A summary of the variants is depicted
in Table 1. Additionally, to assess the efficacy of semantically balanced train-
ing, we trained SemDNN using a randomly chosen dataset of the same length
as the training set that was generated from hierarchical clustering (see section
2.3).

Table 1 Summary of SemDNN Variant Networks

Network Key Aspects

SemDNN Utilized Word2Vec [15] representation as labels
SemDNNBERT Utilized BERT [16] representation as labels
SemDNNCLAP Utilized CLAP [17] representation as labels
SemDNNunbal Trained with randomly chosen training dataset

SemDNNnoTrain No training, random Normal-HE[28] initialization
CAE Mirrored encoder architecture of SemDNN, see Fig 2 (c)

Preprocessing and Input Features

The input audio clips were preprocessed as follows: first, we resampled signals
to a standard 16 kHz sampling rate format and converted them to mono. Then,
we split the clips into non-overlapping segments of 960 ms. For each segment,
we computed a short-time Fourier transform on 25 ms Hanning-windowed
frames with a step size of 10 milliseconds. This allowed us to break down the
signal into its constituent frequencies at each moment in time and perform a
detailed analysis of the audio data. Next, we aggregated the resulting power
spectrogram into 64 mel bands covering the range of 125-7500 Hz.

Finally, we generated a stabilized spectrogram consisting of 96-time win-
dows per 64 log mel bins. To obtain the log mel spectrogram, we took the
logarithm of the mel spectrogram values. Additionally, we applied a sta-
bilization technique to prevent numerical instability during this step. The
stabilization involved adding a small offset of 0.01 to the mel-spectrum before
taking the logarithm. This offset ensures that the logarithm operation does
not encounter zero values, which could lead to undefined or erroneous results.
The resulting stabilized spectrogram was then utilized as the input for train-
ing and evaluation of the deep neural networks (DNNs) and it is the same
procedure applied in [3]. Each 1 s sound frame inherited the same label.
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Fig. 4 Labels distributions, a: The most frequent word in the dataset is ”car”, fol-
lowed by ”door” and ”metal”. To avoid over-representation of the most frequent classes, we
developed and applied a method for creating a semantically-balanced dataset.

2.3 Training Dataset

The networks have been trained using sounds and labels from SuperHard Drive
Combo (SHDC) by Sound Ideas [18], a collection of 388,199 variable-length
sounds (2,584 hrs) covering a wide range of sound sources and events. SHDC
contains 7 different natural sound databases that can be considered as inde-
pendent datasets: DigiEffects [29], General Hard Drive Combo [30], Hollywood
Edge [31], Mike McDonough Speciality [32], Serafine[33], SoundStorm [34], and
Ultimate [35].

We employed a natural language processing (NLP) pipeline to extract
a dictionary of sound-descriptive words from the SHDC metadata. The ini-
tial step involved eliminating all non-informative tokens from the filename
metadata. This included numbers, serial IDs, stop-words, and all non-English
words that were not included in the GoogleNews300D-Word2Vec[36] model
dictionary. In the majority of cases, these filenames contained information
about the sound sources and events occurring in the sounds. For instance,
“ManSneezesWhugeLoCRT026004.wav”was reduced to “man sneezes”, and
“Rhythmic − Percussion − V ariation − Short − V ersion − 21PET10 −
088.wav”was transformed into “rhytmic percussion variation”. Our next step
was to replace nouns that were either too specific (subordinate cate-
gories) or too general (super-ordinate categories) with basic-level descriptors.
For example, in first case, specific car models like “Subaru Impreza” or
“Audi TT” were replaced with the more general term ”car “, and spe-
cific dog breeds like “labrador ” or “pincher” were replaced with “dog ”.
In the rare case of super-ordinate categories, expressions that were exces-
sively vague such as ”animals” were replaced with basic-level descriptors
that provided more specific information. For instance, for the file that was
called “AnimalV arious DIGIMEGADISC − 60.wav”, we replaced “ani-
mal various”, after listening to the sound with “lion growls bats swarm”, thus
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preserving the semantic integrity of the sound while avoiding excessive gen-
erality. This process was initially automated using the NLP pipeline. To
ensure accuracy, the results were manually reviewed and corrected as nec-
essary, as demonstrated in the example mentioned above. The decision to
standardize descriptors to a basic level was driven by the need to balance
specificity and generality, maintaining meaningful semantic information with-
out overloading the model with excessive detail. This approach allows for a
more manageable and semantically consistent representation of heterogeneous
natural sounds, enhancing the model’s ability to learn and generalize from
the sound-descriptive words in the SHDC metadata [37]. The resulting out-
put of the aforementioned NLP pipeline was sound labels extracted from the
filenames of the sounds and an entities-dictionary of 9960 units. The first
two columns of table 2 show some examples, note in the last row how the
transformation in the base-level category occurs, from Harrier to jet.

An initial analysis of the word-frequency distribution in the database (Fig.
4) revealed that sound labels were highly skewed towards words such as ”car”,
”door”, ”metal”, and ”engine” from a prominent portion of the database
dedicated to vehicle sounds. To rectify this imbalance, we implemented a
semantics balancing procedure relying on a hierarchical clustering analysis of
the Word2Vec embeddings of the sound-descriptors dictionary. We initially
computed the Word2Vec embedding of each word and generated a normalized
pairwise cosine similarity matrix. This matrix was subsequently input to a
hierarchical clustering algorithm (ward-linkage [38]). Different cluster counts
(100, 200, 300, 400, 500) were tested to assess the impact of clustering granu-
larity on the performance, which was measured using the evaluation procedure
described in the section 2.5. Our results indicated that the optimal perfor-
mance was obtained with 300 clusters (see Figure ?? in the Supplementary
Material). Finally, we randomly selected up to 20 words from each cluster,
matching the average number of words per cluster. We also chose 300 sounds
for each of the selected words, leading to a more balanced dataset. The result-
ing balanced dataset included 273,940 sounds (training set = 90% = 246,546
sounds; 1,366,848 frames; validation set 5%; internal evaluation set = 5%).

In the next phase, we conducted a quality check to evaluate the spatial
arrangement of the words within clusters in the embedding space. Specifi-
cally, we ranked the clusters based on their inter-cluster cosine similarity, from
highest to lowest. Utilizing t-Stochastic Nearest Embedding (tSNE) [21], we
visualized the top 25 clusters, ensuring the words within each cluster were
semantically related (see Fig. 5). The figure results in a visual representation
of the semantic space. Each point in the plot corresponds to a semantically
related word contained in a specific color-coded cluster. The top 25 clusters are
highlighted, showcasing the arrangement of words in the reduced-dimensional
space.
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Fig. 5 t-SNE visualization of the top 25 semantically related word clusters. Spa-
tial arrangement of words in the embedding space, where each point represents a semantically
related word. Color-coded clusters highlight the organization of words in the reduced-
dimensional space, providing insight into the ideal relationships between spectrograms and
their associated semantic representations.

2.4 Evaluation Datasets

We evaluated the performance of our proposed approach with four publicly-
available natural sound datasets: FSD50k [10], consisting of 10,231 44.1 kHz
mono audio files and 200 labels; Environmental Sound Classification-50 (ESC-
50) [39], made up of 2,000 5-second, 44.1 kHz mono, sounds and 50 label-
classes; Urban Sound 8K [40], comprising 8,732 sounds with lengths of up to
4 seconds, 44.1 kHz mono, and 10 class labels; and Making Sense Of Sounds
[41], which includes 500 5-second, 44.1 kHz mono, sounds divided into two level
categories, 5 macro-classes, and 91 subclasses. In addition, we used a 5% subset
of the SoundIdeas dataset consisting of 13,697 sounds (not used for training
our models) to evaluate the performance of our models (internal evaluation).
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2.5 Semantic-learning accuracy

We compared semDNN and catDNN using two prediction-accuracy metrics:
Ranking score and Average Max Cosine Similarity (AMCSS). For the differ-
ent variants of semDNN, which produce semantic embeddings as predictions,
we employed non-negative least squares (NNLS) regression [42] to convert the
embeddings back into word predictions. The models’ training involved gen-
erating embeddings using Word2Vec, BERT, and CLAP for individual labels
in the sound descriptions. However, in the evaluation phase (see 2.5) these
embeddings were averaged to create one single representative semantic embed-
ding for each sound. To retrieve the constituent single-word embeddings from
the predicted mixture, we used a Non-Negative Least Squares (NNLS) [42]
approach. The NNLS regression projected the predicted semantic embeddings
onto the single-word embedding space, considering the entire dictionary as the
design matrix of dimension 9960x300. By applying a non-negativity constraint
in the NNLS, the coefficients of the linear combination remained non-negative,
preserving the original averaging process.

Ranking Score

To evaluate the prediction accuracy of the NNLS regression coefficients, known
as β-values (for semDNN, in all its variants) and the sigmoid output probabil-
ities (for catDNN), we employed a ranking-based metric called the ”ranking
score.” This metric allows us to compare the models’ predictive abilities while
considering the relative positions of the true labels within the sorted predic-
tions. First, we obtained the NNLS β-values, which represent the coefficients
assigned to the different words of the dictionary (9960 β-values). The obtained
β-values were sorted in descending order based on their magnitudes.

Similarly, we obtained sigmoid output probabilities from CatDNN and we
sorted with the same criteria. These probabilities represent the model’s con-
fidence scores for each possible class or label. To calculate the ranking score,
we utilized the sorted predictions. The ranking score is defined as follows:

m = 1− rank− 1

N − 1
(1)

Here,m represents the ranking score, N represents the length of the dictionary,
and rank is the position in the dictionary of the predicted label corresponding
to the true label. We computed the ranking score individually for each word
in multi-word labels and then averaged the scores.

The ranking score penalizes predictions that deviate significantly from the
true labels, resulting in a lower score for predictions ranked further away
from the true label. Conversely, a higher score indicates a closer alignment
between the predicted label and the ground truth. The ranking score is
threshold-independent, allowing a comprehensive comparison of all words in
the dictionary (9960 words) with their respective true labels.
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Average Maximum Cosine Similarity Score (AMCSS)

To compare the performance of the different networks we used a novel met-
ric, the Average Maximum Cosine Similarity Score (AMCSS). The AMCSS
(Average Maximum Cosine Similarity Score) is computed by considering the
predicted labels and true labels. The true labels are extracted from a fixed
dictionary, which is described in Section 2.1.1. The AMCSS is defined as:

AMCSS =
1

| S |
∑
s∈S

max
p∈PN

X(s) · Y (p)

∥X(s)∥∥Y (p)∥
(2)

where | S | represents the number of true sound labels, S represents the
set of true sound labels, P represents the set of predicted labels, PN represents
the top N = 10 words obtained from the predicted labels, X(s) represents
the word embeddings of the true sound label s, Y (p) represents the word
embeddings of the predicted label p and the operation in fraction calculates
the cosine similarity between the word embeddings X(s) and Y (p).

To calculate the AMCSS, we compare the word embeddings of the true
labels and the top 10 words obtained from the NNLS (for Word2Vec, BERT,
and CLAP) or sigmoid output (for catDNN) generated from the model predic-
tions. We calculate the cosine similarity between each word embedding in the
true labels and the top 10 words. The maximum cosine similarity value among
all the comparisons is taken as the AMCSS. The AMCSS is computed as the
average of the maximum cosine similarity scores for each word, ensuring more
robustness as compared to using only the top word from NNLS (or sigmoid).
The AMCSS reflects the network’s ability to identify relevant words and con-
cepts associated with the true label, even if the exact label is not among the
top predictions.

However, such a metric is influenced by the geometry of the manifold where
the embeddings lie, and it is therefore misleading to directly compare the
AMCSS obtained with Word2Vec with the one obtained, for instance, with
BERT. We illustrate this problem more in detail in Fig. 6, where we consid-
ered 500 randomly chosen sounds from the internal test set and computed
the cosine similarity matrix between the predicted and true embeddings of all
the sounds. The upper row represents the values on the main diagonal of the
similarity matrix, i.e. the cosine similarity between the sound embedding and
its prediction, for each sound. The lower row displays instead the values out-
side the main diagonal, thus the cosine similarities between the prediction of a
sound embedding, and the true embeddings of different sounds. A model that
discriminates well a correct predictions would result in high values for the diag-
onal elements (top row), and lower values for the off-diagonal elements (lower
row). Notably, BERT and CLAP exhibit high cosine similarity values both on
the diagonal and off-diagonal, resulting in a right-skewed and lower variance
distribution. In addition, the difference between the mean values of the diag-
onal and off-diagonal is considerably smaller for BERT and CLAP. On the
other hand, Word2Vec, despite having lower overall similarity values, demon-
strates higher selectivity, showing greater differences between the mean values
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Fig. 6 Distribution of Cosine Similarities between True and Predicted Embed-
dings for Different SemDNN Variants. Cosine Similarity (CS) distributions between
true embeddings and predictions of 500 random sounds from the SoundIdeas [43] test set. The
upper row represents the cosine similarity between the sound embedding and its prediction,
measuring the network’s accuracy in predicting embeddings for the same sound (diagonal
values of the similarity matrix). The lower row shows the cosine similarities between the
prediction of a sound embedding, and the true embeddings of different sounds (off-diagonal
values of the similarity matrix), reflecting the network’s performance in comparing a refer-
ence sound to different sounds.

of diagonal and off-diagonal elements. Based on these findings, we computed
AMCSS using the same dictionary for all language models and decided to use
Word2Vec as a reference, ensuring a more discriminative metric to compare
models.

2.6 Behavior prediction accuracy

We evaluated to what extent layer-by-layer embeddings of semDNN and its
variants and catDNN, and of several control networks, including the CAE,
predicted perceived dissimilarity judgments obtained with humans.

2.6.1 Behavioral Data

In Giordano et al.’s study (Experiment 2, [14]), data were collected from two
groups, each with 20 participants. Random assignment placed participants in
either the sound dissimilarity or word dissimilarity condition. In the sound
dissimilarity condition, participants estimated the dissimilarity between 80
natural sounds. In the word dissimilarity condition, participants assessed the
dissimilarity of sentences describing the source of each sound (e.g., ”meow-
ing cat”). For the behavioral datasets, name plus verb sound descriptors were
derived from the results of a preliminary verbal identification experiment ( [14],
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Experiment 1), during which 20 individuals, who did not take part in Experi-
ment 2, were asked to identify the sound-generating events using one verb and
one or two nouns. In particular, for each of the sound stimuli, the name plus
verb sound descriptors considered for the analyses in this study, and evaluated
by participants in the word condition, were the modal verbs and nouns (that
is, the most frequent verbs and nouns) across the 20 participants in the verbal
identification experiment. Each condition involved evaluating two sets of 40
stimuli categorized as living or non-living objects. The stimuli had a median
duration of 5.1 seconds. Sessions were conducted separately for each stimu-
lus set, with the presentation order balanced across participants. Participants
performed a hierarchical sorting task. Initially, they grouped similar sounds or
verbal descriptors into 15 groups using onscreen icons. Clicking on the icons
activated the corresponding stimuli. Participants then iteratively merged the
two most similar groups until all stimuli were consolidated into one group.
The dissimilarity between stimuli was determined based on the merging step
at which they were grouped, with dissimilar sounds or words being merged
at a later stage of the procedure than similar sounds or words. The resulting
output is a dissimilarity matrix.

2.6.2 Cross-validated Representation Similarity Analysis

We employed a cross-validated computational modeling framework, similar
to Giordano et al. [13], to predict behavioral dissimilarities using model dis-
tances derived from the network representations. To this purpose, we initially
computed cosine the distance between stimuli within each layer of a spe-
cific network (encoder-only for CAE). For each network separately, we then
used layer-specific distances to predict group-averaged behavioral dissimilar-
ities within a cross-validated linear regression framework. More specifically,
we adopted a repeated 10-fold cross-validation split-half approach to estimate
the behavior variance (R2

CV ) predicted by each network (100 random splits
of participants into training and test groups, with independent standardiza-
tion of group-averaged training and test dissimilarities). R2

CV was estimated
as 1 − SSEtest

SSTtest
, where SSEtest is the sum of squared prediction errors for the

test set, and SSTtest is the total sum of squares for the test set. We per-
formed 10,000 row per column permutations for each split, ensuring that the
same object permutations were maintained across the splits. We also estimated
the noise ceiling, representing the maximum predictable variance, to deter-
mine the need for model or data improvements [13]. This approach provided a
robust framework to validate the predictive performance of our computational
model against behavioral data. As additional comparison models, we consid-
ered four NLP embeddings (Word2Vec [15], BERT[16] and CLAP[17] with no
dimensionality reduction applied) to compare semantic learning in our audio-
based semDNN with text-based learning. For Word2Vec, we computed a single
semantic embedding for each sound by taking the average of the semantic
embeddings for the name and verb sound descriptors. However, for BERT and
CLAP, we directly obtained a single semantic embedding for each sound by
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Table 2 Top 5 Predictions Top-5 word predicted from NNLS (for SemDNN and its
variants) and sigmoid activations (for CatDNN). Note also the results of the NLP pipeline
to retrieve labels from the sounds’ filename.

Filename True Label SemDNN CatDNN SemDNN BERT SemDNN CLAP
Chain-Large-Over-Aluminium-

Ladder-ShortGEN-HD2-28782.wav
chain aluminum

ladder
metal door cart

roll drawer
foley foot glass

gun metal
metronome metal

paper hammer polish
door cart metal
ladder chain

Auctioneer-MaleAuction-One-
Hundred-DollarVKT16489.wav

human vocal
auctioneer male

vocal human female
male adult

auctioneer female
human male vocal

human vocal male
female adult

male vocal auctioneer
human female adult

Gun-Machine-Gun-45-Caliber-
Tommy-GunMILIT391.wav

gun machine
caliber

gun machine guns
rifle weapon

caliber footsteps
gun guns metal

guns gun caliber
walker cannon

machine gun gun
caliber rifle

Radio-Interference-Heavy-
Clicking-DistortionCOMM-1253.wav

radio interference
clicking distortion

car buick grand
drives machine

buzz electricity hum
machine power

electric airlock cycle
swallowed bopper

distortion clicking
radio interference

TriangleMedSpins1ME1001.wav
triangle
spins

triangle bell
orchestra tone ring

bell church music
mystical ring

bell telephone blast
beater gauge

spins triangle
bell tone orchestra

CoolerPlastic9003768.wav
cooler
plastic

wood door drop
construction drums

drop gun machine
metal switch

latch nitrogen rushing
exhibit shelf

plastic cooler
door wood drop

WoodDoor9011291.wav
wood
door

door doors wood
metal kitchen

door doors gun
metal wood

door doors footsteps
cabinet feet

door wood doors
metal kitchen

Sirens-Motorcycle-Yelper-
StB01-07173.wav

sirens motorcycle
yelp

sirens wail police
car yelp

police siren sirens
wail yelp

sirens wail yelp
motorcycle police

motorcycle sirens
yelp wail police

HarrierLandoffLongPE213501.wav
jet land

off
car jet airplane
aircraft bus

car machine pass
tone wind

car industry
discovery pink import

car truck train
wind machine

DogsWolvesCoyotes-Wolves-85B05-03165.wav
dogs wolves

coyotes
wolves dogs coyotes

doors vehicle
foot hall indoor
metal skateboard

dogs coyotes wolves
barking footsteps

dogs dog coyotes
wolves footsteps

Paper-MovementRustleTurni5B06B-02345.wav
paper movement

rustle
paper movement rustle

wrapping foley
feet foley footsteps

guns paper
paper wrapping movement

boots footsteps
paper movement sweeping

footsteps wrap

estimating the semantic embedding for the name plus verb sentence. We also
considered four pre-published categorical sound-to-event CNNs (Yamnet[3],
VGGish[3], Kell[44], and CNN-14 from PANNs models[45]) along with vari-
ants of the semDNN network ( SemDNNBERT,SemDNNCLAP,SemDNNUnbal,
SemDNNNoTrain).

3 Results

In this section, we present the results of our experiments evaluating the perfor-
mance of models in predicting semantic relations between sounds and matching
human behavior in an auditory cognitive task.

The semantic predictivity of the networks was evaluated considering both
the internal SuperHardDrive Combo dataset (used for training the networks),
and also considering the external datasets (FSD50k, US8k, ESC-50, and
MSOS) which were not used for the training or potential subsequent fine-
tuning. Figure 7 shows the pairwise comparisons of the averaged Ranking
Score across all evaluation sounds from the internal and external datasets for
the four tested models: CatDNN, SemDNN with Word2Vec, SemDNN with
CLAP, and the model trained with BERT. Additionally, Figure 8 showcases
the AMCSS comparison between the models. The graph depicts the average
AMCSS or Ranking score on the two axes, with the intersection representing
the corresponding metrics for each model. In the graph, points below the line of
equality indicate that the model on the x-axis performs better on that dataset,
and vice versa. SemDNN trained with Word2Vec emerges as having the best
performance across all the comparisons, outperforming competing models in
terms of both AMCSS and Ranking scores (see figure 9, for bar plots of average
performance metrics across all datasets).

Table 2 shows some examples of the top 5 predicted words retrieved from
the NNLS, for SemDNN and its variants, and from the sigmoid activations,
for catDNN. To show the results of our NLP pipeline (see section 2.3) in order
to get labels from the SoundIdeas [43] dataset, we present in the first column
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Fig. 7 Pairwise Comparison of Ranking Scores Among Models. Averaged Ranking
Scores of CatDNN, SemDNN with Word2Vec, SemDNN with CLAP, and SemDNN with
BERT embeddings. Points below the equality line indicate better performance of the model
on the x-axis for the corresponding dataset, and vice versa.

the name of the filenames. Note in the last row how we moved from Harrier,
which is a type of fighter jet, to its base-level category.

Fig. 8 Pairwise Comparison of AMCSS Among Models. Average AMCSS (Average
Maximum Cosine Similarity Score) for CatDNN, SemDNN with Word2Vec, SemDNN with
CLAP, and SemDNN with BERT embeddings. Points below the equality line indicate supe-
rior performance of the model on the x-axis for the corresponding dataset, and vice versa.
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Fig. 9 Bar plot summary comparison of Ranking Scores and AMCSS. The bar plot
on the left represents the average Ranking Scores for CatDNN, SemDNN with Word2Vec,
SemDNN with CLAP, and the BERT-trained model. The bar plot on the right represents
the average AMCSS for the same models. SemDNN trained with Word2Vec consistently
outperforms the other models.

Our hypothesis was that SemDNN embeddings would outperform CatDNN
in predicting higher-order semantic relations between sounds. To test this,
we evaluated the MSOS dataset (see 2.4), where sounds are grouped into
five macro-classes: sound effects, human, music, nature, and urban. For both
SemDNN and CatDNN models, we computed pairwise normalized cosine dis-
tances between sound embeddings in the last intermediate layer (Fig. 2, arrow).
In figure 10, the upper left panel illustrates an idealization, which syntheti-
cally reflects the original macro-class organization constructed in the left panel.
In this synthetic construction, we assigned a within-category distance of 0
and a between-category distance of 1, allowing for a clear distinction between
categories.

To compare the performance of different SemDNN variants and CatDNN,
we calculated normalized cosine distances and Pearson correlation coefficients
between the synthetic matrix and the computed dissimilarities. The matrix in
the upper right panel represents the SemDNN trained with Word2Vec embed-
dings dissimilarities, while the matrix in the lower left panel represents the
CatDNN embeddings. The left two panels are the dissimilarities of SemDNN
trained with BERT and CLAP, respectively. The color scale in all the matri-
ces represents the normalized distances, ranging from minimum (blue) to
maximum (yellow).

Among the SemDNN variants, the SemDNN model trained with Word2Vec
embeddings demonstrated a stronger correlation with the true categorical
model, with a Pearson correlation coefficient of 0.340. Comparatively, the
SemDNN models trained with BERT and CLAP embeddings exhibited lower
correlation coefficients of 0.194 and 0.224, respectively. The CatDNN embed-
ding displayed the weakest correlation with the true categorical model, with a
Pearson correlation coefficient of 0.193.

Figure 11 shows the ability of the various models to predict behavioral,
sound, and word, dissimilarities using the cross-validated R-squared statistic.
Models are grouped in four classes: semantics (blue), acoustics(light blue),
CatDNNs(green), and SemDNNs (red). The noise ceiling represents the upper
bound or best possible performance given data limitations or experimental
constraints.
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Table 3 presents a summary of the two RSA results, highlighting, on the
left column, SemDNN’s superior predictivity of perceived sound dissimilar-
ity (highest R2

CV value) than CatDNN and other models (see also figure 11).
Importantly, SemDNN outperformed all the competing networks trained with
categorical labels (VGGish, PANNs CNN-14, Yamnet, and Kell). CLAP was
instead the most predictive of the semantic models. These results confirm our
hypothesis that a network that learns continuous semantic representations
from acoustics better approximates human behavior compared to models con-
sidering only acoustic information, relying solely on semantic information, or
learning categorical semantic representations from acoustics. SemDNN trained
with Word2Vec representations outperformed SemDNN trained with CLAP or
BERT representations. Additionally, training SemDNN on a semantically bal-
anced dataset yielded better results compared to training on a randomly chosen

Fig. 10 Comparison of Embedding Dissimilarity Matrices for SemDNNs and
CatDNN. Normalized Cosine distances between MSOS sound embeddings of the interme-
diate layer 512-D of CatDNN and SemDNN trained with Word2Vec, BERT, and CLAP
representations (arrow in Figure 2). The matrix on the upper left reflects the true macro-
classes, where the color scale represents the minimum (blue) and maximum (yellow)
normalized distances, specifically within-category distance = 0; between-category distance =
1. The SemDNN trained with Word2Vec embedding matrix demonstrates a stronger reflec-
tion of the macro-class organization compared to the CatDNN embedding matrix and the
other two SemDNN variants, as indicated by higher Pearson correlation coefficients with the
true categorical model: 0.340 for SemDNN with Word2Vec, 0.194 for SemDNN with BERT,
0.224 for SemDNN with CLAP and 0.193 for CatDNN.
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dataset (semDNNunbal), highlighting the importance of a balanced dataset [37].
We also evaluated the performance of an untrained network (semDNNnotrain)
initialized with random values, serving as a baseline. The right column of
Table 3 focuses on the prediction of word perceived dissimilarity of the con-
sidered models measured by their respective R2

CV values. Notably, Word2Vec
emerges as the most successful semantic model in this task. This outcome is
in line with our expectations, considering the nature of our labels, which are
keywords, and not actual sentences, representing the semantic content of the
sounds. Among the DNN models, SemDNN stands out as the top performer
in predicting word-perceived dissimilarity. This can be attributed to the fact
that SemDNN is trained using Word2Vec representations, which aligns well
with our keyword-based labels. The inherent strength of Word2Vec in captur-
ing semantic relationships and similarities enables SemDNN to leverage this
knowledge effectively, resulting in superior performance compared to other
DNN models.

4 Discussion

We conducted a systematic exploration of the impact of employing continuous
semantic embeddings (Word2Vec, BERT, and CLAP) in training DNNs for
sound recognition, contrasting them with categorical labels (one-hot encoding).

Through our experiments and analyses, we gained significant perspectives
into how the choice of semantic representations influences the performance of
artificial hearing algorithms.

We compared the different models and the categorical model by using
averaged Ranking Scores and AMCSSs (figures 7 and 8) on various datasets
(FSD50k, US8k, ESC-50, MSOS, and the internal SuperHardDrive Combo

Table 3 R2
CV obtained from the cross-validated RSA

Model Sound condition R2
CV Word condition R2

CV

BERT 0.1655 0.2627
Word2Vec 0.2112 0.3826
CLAP 0.2201 0.1890

CAE 0.0903 0.0849

Kell 0.1790 0.0844
CatDNN 0.2097 0.1403
VGGish 0.2262 0.1177
PANNsCNN-14 0.2627 0.1451
Yamnet 0.3015 0.1552

SemDNNnoTrain 0.0337 0.0570
SemDNNunbal 0.2651 0.1824
SemDNNCLAP 0.2786 0.1912
SemDNNBERT 0.2831 0.2014
SemDNN 0.3713 0.2393
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Fig. 11 Cross-validated RSA results for sound condition and word condition.
The color distributions correspond to the plug-in distribution of R2

CV across CV folds, rep-
resented by the box plots. The center of the box plot represents the median, while the
lower and upper box limits indicate the 1st and 3rd quartiles, respectively. The bottom and
top whiskers depict the data within 1.5 interquartile ranges from the 1st and 3rd quartiles,
respectively. The dark gray color represents the cross-CV fold median of the permutation
results. The orange color indicates the noise ceiling, with the dashed line representing the
median noise ceiling across CV folds. The upper graph shows the performance of the eval-
uated models in predicting perceived sound dissimilarity (SemDNN outperforms all other
models). The lower graph shows the performance of the evaluated models in perceived word
dissimilarity, notably, Word2Vec outperforms all the other models.

dataset). The results consistently demonstrated that SemDNN trained with
Word2Vec outperformed CatDNN and SemDNNs trained with CLAP and
BERT. These findings imply that training DNNs to map sounds into a
dense space preserving semantic relationships between sound sources enhances
the network’s ability to recognize and comprehend individual sound events.
The superiority of semDNN trained with Word2Vec over those using BERT
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and CLAP suggests that the complexity of the optimal semantic space lies
between a categorical representation, lacking semantic relations, and a context-
dependent natural language space, which may involve excessively fine-grained
information. Our study employed keyword labels instead of full sentences,
potentially limiting models’ contextual learning. While Word2Vec performs
well with keywords, BERT and CLAP are both optimized for sentence-level
context and might have faced limitations in this keyword-based setup. It
may be interesting, in future work, to conduct similar analyses with sounds
described with fully-formed sentences, such as those used in automated-
captioning challenges [46]. Nonetheless, Word2Vec outperformed these models,
suggesting that natural sound semantics may not require complex contextual
information for comprehension. This finding challenges the traditional view of
natural sound perception’s semantic complexity, often examined through the
lens of language semantics [47]. It suggests that the inherent characteristics of
natural sounds, well-captured by Word2Vec’s relatively simple semantic map-
ping, may not necessitate the contextual information demanded by language
semantics.

Our hypothesis was that DNNs that are trained to recognize sounds
and simultaneously learn the semantic relation between the sources would
mimic human behavior better than other existing networks. We assessed this
hypothesis in two steps: First, we examined the ability of the DNNs to form
higher-order semantic classes; second, we assessed their ability to approximate
human behavior in auditory cognitive tasks.

In the first step, we focused on the MSOS dataset, which organizes sounds
into five macro-classes (effects, human, music, nature, and urban). We com-
puted the pairwise cosine distances between sound embeddings in the last
intermediate layer of SemDNN and CatDNN (figure 10). The results indicated
that the SemDNN embedding better reflected the macro-class organization
compared to the CatDNN embedding. The Pearson correlation coefficient
with the true categorical model of the five macro-classes was higher for
SemDNN (0.330) compared to CatDNN (0.193). Notably, semDNN (and the
other networks) were not explicitly trained to group individual sounds into
macro-classes. The superiority of semDNN over catDNN underscores that
semDNNs leverage the semantic relation between sound sources in addition to
the acoustic similarity of specific sounds.

To address the second question, we conducted a cross-validated RSA (Rep-
resentational Similarity Analysis) and assessed the performance of different
models in explaining perceived sound and word dissimilarity ratings (figure
11). The results, summarized in Table 3, demonstrated that for the sound
condition, SemDNN achieved the highest R2

CV value among all the models,
indicating its superior ability to emulate human behavioral data. It outper-
formed not only CatDNN and other DNNs trained with categorical labels
but also purely semantic models such as Word2Vec, BERT, and CLAP. Inter-
estingly, SemDNN trained with Word2Vec representations exhibited better
performance than SemDNN trained with CLAP or BERT representations.
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Moreover, we trained SemDNN with Word2Vec on a random choice dataset
(SemDNNunbal) to compare the performance with a semantically balanced
dataset. The results showed that SemDNN still outperformed SemDNNunbal,
highlighting the importance of a semantically balanced dataset in training
the model. Additionally, we included a baseline model (SemDNNnotrain) that
was untrained and solely initialized with random weights. For the word con-
dition, the results are summarised in Table 3 and depicted in the lower graph
of figure 11. Word2Vec outperforms other semantic models in predicting word
dissimilarity, as expected. Since our labels are keywords rather than com-
plete sentences, Word2Vec effectively captures the semantic content of the
sounds. None of the CatDNNs stand out among the others showing the lim-
itations of this network to perform a simple linguistic task. On the other
hand, Word2Vec’s ability to capture semantic relationships and similarities
enables SemDNN to leverage this knowledge effectively, leading to superior
performance compared to other DNN models.

Overall, these results provide strong evidence for the effectiveness of
SemDNN in capturing both acoustic and semantic information and approx-
imate human behavior in auditory cognitive tasks. Integrating acoustic and
semantic features proved more successful than considering acoustic informa-
tion alone (CatDNN) or relying solely on pure semantic models. It’s worth
noting that SemDNNs were trained with over 1 million examples, while 1 bil-
lion examples were considered to train VGGish and Yamnet [6], supporting
the idea that - when the goal is to approxiamte human behaviour - ecological,
balanced datasets may be more relevant than large amounts of unbalanced
training data [37].

5 Conclusions

In this study, we investigated the performance of various models in performing
sound recognition tasks and in their ability to approximate human behavior
in auditory cognitive tasks (sound dissimilarity ratings). Our findings provide
an important understanding of the role of semantic information in these two
aspects. The key conclusions drawn from our analysis are as follows:

1. SemDNN, combining both acoustic and semantic information, consistently
outperformed CatDNNs consistently outperformed CatDNNs in both sound
recognition performance and approximating human behavioral data. This
suggests that our approach of mapping sounds to a continuous space is a
valid and advantageous alternative to the conventional method of training
sound-to-event DNNs for discrete sound categories.

2. SemDNN models trained with Word2Vec representations exhibited supe-
rior performance compared to other semantic representations like BERT
or CLAP. This underscores the effectiveness of Word2Vec embeddings in
basic sound recognition tasks. Future work should explore the generalizabil-
ity of these findings, especially when using datasets with complex linguistic
descriptions of sounds.
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3. Training SemDNN models on a semantically balanced dataset improved the
prediction of human behavioral data compared to training on a randomly
chosen dataset. It outperformed many other models trained on a larger
number of sounds, emphasizing the importance of dataset curation and the
use of ecologically valid datasets, particularly when aiming to approximate
human behavior.

In summary, our study advances our understanding of the interplay
between acoustics and semantics in both sound-to-event DNNs and human lis-
teners. This paves the way for future research to optimize models and enhance
their alignment with human perceptual judgments.
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