1	The PDF file includes:
2	Supplementary Text
3	Supplementary Figures 1 to 22
4	Supplementary Tables 1 to 5
5	References
6	
7	Corresponding author: <u>etienne.legrain@ulb.be</u>
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 Supplementary Text

33 Orbital- to millennial-scale variability of the new CO₂ record

Our multi-centennial-scale CO₂ record represents a substantial improvement in temporal resolution compared to the existing millennial-scale CO₂ record measured on the Vostok ice core over the 260-190 ka time interval ¹ (Supplementary Figure 1).

37 At orbital-scale, our new dataset confirms that the Termination III (TIII) (~248-242 ka) is much more pronounced than the so-called TIIIa² (~223-217 ka), with a global CO₂ rise of 79 and 48 ppm, 38 respectively. This pattern is similar to the one observed in the Antarctic surface temperature 39 reconstruction from the EDC ice core³. Between 241 and 227 ka, the progressively-decreasing plateau 40 41 of CO₂ concentrations appears decoupled from East Antarctic surface temperature (Fig. 2). Such decoupling was already described during MIS 5^{4,5} and more globally during the low obliquity period of 42 the past 800 ka ⁶. This pattern, possibly linked to the dynamics of the Southern Ocean under low-43 44 obliquity phase ⁷, is confirmed by our new CO₂ record and it occurs during a period characterised by the lowest obliquity values of the past 800 ka (Fig. 2). 45

At millennial-scale, we identify a high-variability period between 251.4 and 248.9 ka at the onset of TIII. This millennial-scale variability was not observed in the previous Vostok CO_2 record, probably due to the lack of resolution over this period ¹. However, this event was already described in the Antarctic site temperature ² and Asian speleothem δ^{18} O records ⁸. Such two-phase deglaciation visible in the CO_2 record was also observed during TI.

51 Definition of CDJs and associated thresholds

CDJs have been defined by ref.⁹ as an increase of atmospheric CO₂ concentrations higher than 5 ppm 52 53 and at a growth rate higher than 1.5 ppm/century. Both of these thresholds are applied to a processed 54 CO₂ record where only sub-millennial-scale variability has been preserved. This definition has two main 55 consequences when discussing the occurrence of CDJ: (i) CDJs correspond to the largest and most abrupt events in centennial scale variability and do not include all the increases of CO₂ concentrations 56 57 at centennial-scale. The two thresholds act as low-band filters that only select the most prominent CO₂ 58 increase events. Accordingly, the influence of the obliquity is only investigated for the largest 59 centennial-scale CO₂ concentration changes, and not all the CO₂ centennial-scale variations. This also eases comparison with model results as these events are clearly above the centennial background 60 61 variability. (ii) CDJs are objectively and systematically determined by a statistical method, and the consequent classification of a variation as CDJ is binary: if it matches the two criteria, the event is 62 63 considered as a CDJ. If one of the two criteria is not reached, the event is not classified as a CDJ.

To ensure consistency with the original study ⁹ that defined the CDJ events, we also used the threshold 64 65 values of 1.5 ppm/century for the growth rate and 5 ppm for the amplitude of the CO2 increase. The 66 sensitivity of the obliquity-dependence to these threshold values has been investigated for growth rate 67 threshold values ranging from 1 to 2.2 ppm/century, and 3 to 11 ppm for the threshold related to the CO₂ increase amplitude (Supplementary Figure 8, Supplementary Table 4). The dependence of CDJ 68 69 occurrences to the obliquity context remains strong regardless of the threshold values used 70 (Supplementary Figure 8). Nevertheless, the proportion of high-obliquity CDJs increased with the 71 absolute value of the thresholds. The proportion reaches 100% for a 2.2 ppm/century threshold or a 72 11 ppm one (5/5 and 7/7 CDJs, respectively). The result of this test underlines than the most 73 pronounced centennial-scale CO₂ variations are dependent to the obliquity context, regardless of the 74 threshold values considered to define the CDJs.

75 Context of occurrences of the identified CDJs

We compiled ten CDJ+ that occurred synchronously to a large atmospheric CH₄ increase, including two new ones identified in this study, which are a potential consequence of a DO-like event (Supplementary Figures 3 and 4, Supplementary Table 1). Oceanic circulation changes associated with some DO events induced a centennial-scale response of the carbon-cycle characterized by a 5 to 10 ppm CO₂ increase as measured in Antarctic ice cores ^{9–11}. This response is due to major climatic perturbations in the Northern Hemisphere and the tropics, including a northward shift of the Intertropical Convergence Zone (ITCZ) that induced the formation of new tropical wetlands ¹².

83 Reversely, ten of them are considered as CDJ- as they are associated with a potential HE without major CH₄ increase and can be associated to an IRD peak in the oceanic record (Supplementary Figure 3 and 84 85 4). During the HS, an ITCZ shift is evidenced in CH_4 at the time of the rapid CO_2 increase and following ref. ¹², we interpret this as being related to further reduction/shutdown of the AMOC while its intensity 86 during a stadial is already reduced. The shutdown with the HS is thought to cause a moderate increase 87 of CH₄ of less than 50 ppb ¹¹. However, the fact that CDJs- are not systematically associated with a CH₄ 88 increase was already observed in older parts of the EDC ice core ⁹. It could be explained by the gas 89 90 diffusion in the deepest part of the ice core or by the insufficient resolution of the CH₄ record (Fig. 1, 91 Supplementary Figure 1), which is also limited by the width of the gas age distribution in the ice core 92 samples ⁹.

Finally, two CDJs are not directly related to an IRD peak or a large atmospheric CH₄ increase.
Consequently, we consider these two CDJs as unclassified and refer to them as CDJ 7b and CDJ 7c.

95 Impact of the choice of ice core chronologies on absolute CDJ dating

In this study, we display our ice-core record onto the AICC2023 chronology ¹³ which is the new 96 chronology of reference for the EDC ice core. This chronology is based on a Bayesian dating tool that 97 98 combines different chronological constraints (e.g. $\delta^{18}O_{atm}$, $\delta O_2/N_2$ and total air content records). The average uncertainty over the last 500 ka is 0.9 ± 0.4 ka for the AICC2023 gas chronology. The period of 99 100 highest uncertainty, excluding the last meters of the ice core, occurs over the 450-350 ka period reaching up to ~2 ka. Two other EDC ice core age-scales have been used over the past years: the 101 102 AICC2012 ^{14,15} and the $\delta^{18}O_{calcite}$ chronologies ¹⁶. The AICC2012 chronology was the ice core chronology 103 of reference of the past decade and was built using a probabilistic model combining different 104 chronological constraint. The $\delta^{18}O_{calcite}$ chronology relies on the assumption of a strong covariation of 105 the δ^{18} O record from East-Asian speleothems with the δ^{18} O_{atm} measured in the gas phase of the EDC 106 ice core. The $\delta^{18}O_{calcite}$ chronology is a compromise between AICC2012 age markers and speleothem-107 based alignment. The largest age difference between the three chronologies is found during the 440-350 ka period, reaching ~4 ka ¹⁶. This 4-ka difference in the assignment of absolute ages could lead to 108 109 a change of up to 0.5° in their respective obliquity values This large dating uncertainty over this interval 110 is illustrated in Supplementary Figure 7. Despite this multi-millennial-scale discrepancy between the 111 three chronologies, the chi-square test led to the rejection of the null hypothesis for all of the chronologies: (i) for AICC2012, the null hypothesis of an independence of CDJ occurrence from the 112 113 obliquity state could be rejected at 95% of confidence. (ii) for the $\delta^{18}O_{calcite}$ and the AICC2023 chronologies, the chi-square test rejects this null hypothesis at 90% of confidence (Supplementary 114 115 Table 2). We also test the influence of the choice of the orbital parameter data sets by comparing the one from ref.¹⁷ and from ref.¹⁸ (Supplementary Figure 7). The results confirms the absence of a dating-116 dependence of our results, as 18 of the 22 CDJs occurred above the mean obliquity value of the 12 117 obliquity cycles of the last 500 ka when the astronomical solution from ref.¹⁸ and the AICC2023 118 119 chronology is considered.

120 Climatic impact of a low obliquity state

121 A change of the obliquity value induces a change in the repartition of the solar energy at the surface 122 of the Earth. Especially, a lowering of the obliquity value will induce a reduced insolation at the high 123 latitudes. Consequently, a low obliquity state in experiment LowOblCTR leads to colder conditions at both northern and southern high latitudes compared to the control 49 ka experiment, which was done 124 125 with the "realistic" obliquity at 24.3° (Fig. 4a). The mean air temperature anomaly is -4.2°C north of 126 60°N (Supplementary Figure 18). The cooling extends to the mid-latitudes, particularly over the 127 continental areas. The high-latitude cooling is associated with a 7 % and 9 % increase in annual mean 128 sea-ice cover in the Northern Hemisphere and the Southern Ocean, respectively. The resulting 129 enhanced temperature gradient between the poles and the tropics impacts the hydrological cycle, shifting the ITCZ southward as well as inducing drier conditions at mid to high latitudes (Fig. 4b). These climatic changes impact the vegetation and soil carbon, with widespread decrease of the terrestrial carbon content, but more particularly in the northern high latitudes, the Sahel Zone and the Middle East. As a result, the terrestrial carbon reservoir is 105 GtC (7%) lower in *LowOblCTR* than in *HighOblCTR*.

135 Climatic response to a North Atlantic meltwater input

136 The meltwater addition of 0.3 Sv into the North Atlantic leads to an AMOC shutdown in ~300 years in 137 all experiments. The AMOC stays completely off during the duration of the meltwater pulse (i.e. until 138 year 1000), after which it slightly increases to 5 Sv, before abruptly recovering between years 1800 139 and 2000 as salt is added to the North Atlantic. The AMOC shutdown leads to a reduced meridional 140 oceanic heat transport to the North Atlantic, and therefore to a 7°C reduction in Sea Surface Temperatures (SST), as well as sea-ice advance, in the North Atlantic ¹⁹. This leads to an atmospheric 141 142 cooling over most regions north of the equator apart from the north-eastern Pacific (Fig. 4a). The 143 warming over the north-eastern Pacific is due to enhanced North Pacific Intermediate Water formation 20,21 144

The reduced meridional oceanic heat transport to the North Atlantic leads to an SST increase in the South Atlantic, that is spreads into the Southern Ocean through the Antarctic circumpolar current, (+1.6°C, zonal average over 45-60°S obtained 400 years after the beginning of the meltwater addition). These temperature changes impact the hydrological cycle (Fig. 4b, Supplementary Figure 18), with notably drier conditions over Europe, North Africa and the western part of Asia. In addition, a southward shift of the Intertropical convergence zone is simulated, thus leading to drier conditions in the northern tropics and wetter conditions in the southern tropics ¹⁹.

152 Choice of the 400 yr timing to compare low and high obliquity simulations

Fig. 3b shows the evolutions of the ΔCO_2 from the different simulations performed in this study over 153 154 the 800 years following the AMOC shutdown. Here we propose a quantitative approach to estimate 155 the centennial-scale response time of the carbon cycle to the AMOC perturbation. To do so, we apply 156 the linear fit model based on a least square approach ²² to determine objectively slope breaks in the atmospheric ΔCO_2 record from the reference *HighObl* simulation (Supplementary Figure 9). We choose 157 158 the CO₂ output from the *HighObl* simulations because it is not affected by any artificial testing (e.g. low 159 obliquity value, muted terrestrial vegetation, enhanced SHW). The change in slope, corresponding to the expected timing of the centennial to multi-centennial scale response of CDJ, is identified at 354 160 ±10 after the AMOC shutdown. Hence, it appears reasonable to consider that the total centennial-161 162 scale response to the AMOC shutdown is completed at ~400 yr.

163 Vegetation and carbon cycle response to an AMOC shutdown

These climatic changes impact the vegetation cover and the soil carbon, with a reduction of carbon stored in most of the northern hemisphere, particularly at high northern latitudes (-53 GtC, for *HighObl*) and in the northern tropics (-53 GtC, for *HighObl*), while there is an increase in the southern tropics (+35 GtC, for *HighObl*). Overall, there is a 70 GtC loss from the terrestrial biosphere in *HighObl*, mostly occurring during the first 400 years of the simulation (Supplementary Figure 8).

Since the climate is colder and the precipitation pattern altered in the control experiment under a low
obliquity state, the terrestrial carbon reservoir is 105 GtC lower (Fig. 4). As a result, the terrestrial
biosphere only loses 34 GtC in *LowObl*.

A previous study has shown that the AMOC shutdown and associated changes in oceanic circulation
 lead to a large reorganisation of dissolved inorganic carbon (DIC) concentration in the ocean ²³. Due to
 the reduction of the North Atlantic Deep Water transport, the carbon content in the Atlantic basin

175 (north of 35°S) increases by 250 GtC in *HighObl*, and 245 GtC in *LowObl* (Supplementary Figure 19).

Due to slightly higher stratification and increased DIC within the Atlantic water masses, the Southern Ocean carbon reservoir increases by 60 GtC in *HighObl* and 42 GtC in *LowObl* (Supplementary Figure 19). However, as the North Pacific Intermediate Water flow increases to up to 30 Sv, there is large carbon decrease in the Pacific basin (-270 GtC in *HighObl* and -282 GtC in *LowObl*) (Supplementary Figure 19).

181 If the terrestrial carbon fluxes are muted, the Southern Ocean carbon increase is reduced (+40 GtC in
 182 *HighObl_NoVeg* and +37 GtC in *LowObl_NoVeg*), while the decrease in the Pacific basin is enhanced
 183 (-294 GtC in *HighObl_NoVeg* and -284 GtC in *LowObl_NoVeg*).

184 In the experiments where a strengthening of the SH westerlies is imposed, enhanced upwelling of DIC-185 rich deep waters leads to a CO₂ outgassing in the Southern Ocean. The stronger ventilation in the 186 Southern Ocean reduces the DIC concentration in the Southern Ocean and within Antarctic intermediate waters ²⁴ (Supplementary Figure 19). Consequently, the carbon reservoir increase is 187 188 reduced in the Southern Ocean (20 GtC in *HighObl SHW* and 4 GtC in *LowObl SHW*), and in the Atlantic 189 (i.e. 238 GtC in *HighObl_SHW* and 235 GtC for *LowObl_SHW*). The loss of carbon from the South Pacific 190 is also accentuated, while it is attenuated in the North Pacific due to increased southern sourced 191 waters. As a result, there is an accentuated loss of carbon from the Pacific in *HighObl_SHW* (-282 GtC), 192 while the loss of carbon is attenuated in LowObl_SHW (-252 GtC) (Supplementary Figure 19).

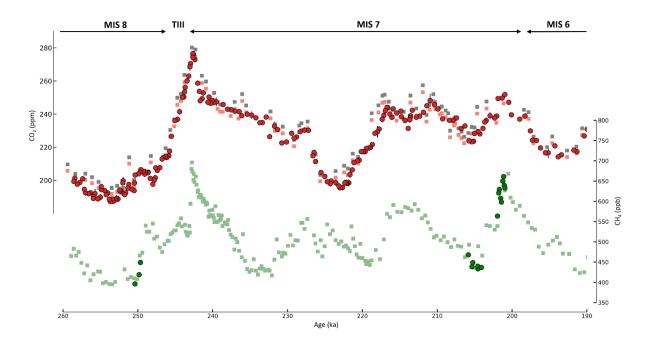
195

196 **CDJ+ simulations at 12 ka**

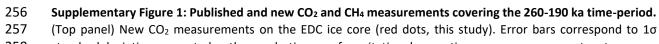
As a result of the meltwater input in YDNA and YDlowObINA, the AMOC weakens from 20 Sv to 13 Sv in both experiments. After 1000 years, the meltwater input is stopped, so that the AMOC recovers in 150 years in YDNA and 100 years in YDlowObINA. The simulated atmospheric CO₂ evolution is similar in both experiments with a 7 ppm slow decrease during the AMOC shutdown, a rapid 4ppm CO₂ decrease during the first 90 years of the AMOC recovery, and a 8 ppm CO₂ increase during the following 400 years (Supplementary Figure 21).

203 In both experiments, the atmospheric CO_2 increase during the AMOC recovery phase is due to an 204 oceanic carbon release of 60 GtC, while the terrestrial carbon content increases by 55 GtC 205 (Supplementary Figure 21). The faster rate of terrestrial carbon increase than the rate of oceanic 206 carbon release during the first 85 years of the AMOC recovery leads to the transient atmospheric CO₂ 207 decrease. The larger rate of oceanic carbon release than terrestrial carbon uptake after that leads to 208 the atmospheric CO_2 increase. The oceanic carbon release is due to a deep ocean DIC decrease. The 209 DIC decrease is maximum in the deep North Atlantic and results from the NADW re-invigoration 210 (Supplementary Figure 22). The DIC decrease in the deep Indo-Pacific results from enhanced Antarctic 211 Bottom Water transport. The deep ocean DIC decrease is however partially compensated by a DIC 212 increase in the top 1500m (Supplementary Figure 22). In addition, the CDJ+ experiments under low 213 and high obliquity here provide a similar result, even though as in the CDJ- experiments the terrestrial 214 carbon changes are smaller under low than high obliquity.

215

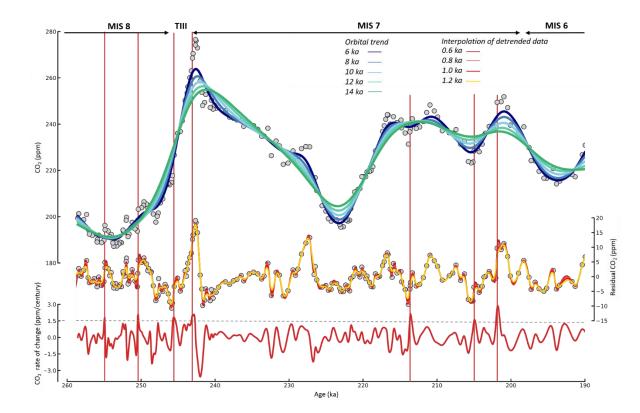

216 Comparison with anthropogenic-induced CO₂ emissions

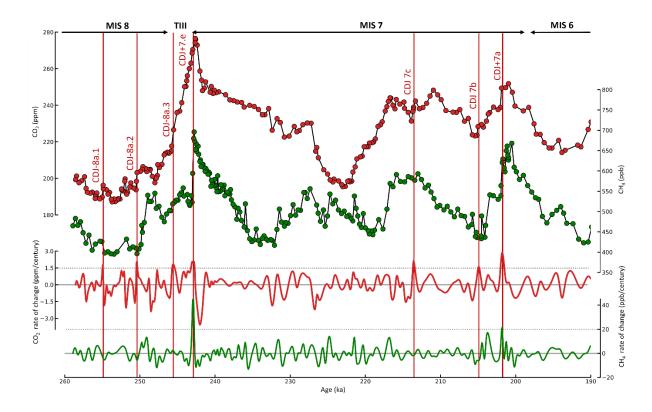
217 The typical amplitude and increase rate for past CDJ events is ~10 ppm at a growth rate of ~7 ppm/century ref.⁹. The largest CDJ is registered at the end of Termination IV at 335 ka, it corresponds 218 to a CO_2 concentration rise of 15.8 ppm in ~60 years. Since 1850, the anthropogenic activities have 219 220 caused an atmospheric CO₂ increase of ~140 ppm which is nine times larger. The atmospheric CO₂ 221 increase rate during this CDJ at the end of TIV is equivalent to an increase rate of atmospheric CO₂ 222 concentrations of 26.2 ppm/century. If we consider the 1960-2022 period, the average increase rate 223 of atmospheric CO₂ concentrations is 160 ppm/century. Hence, this is six time larger than the growth 224 rate of the most intense CDJ. Thus, the centennial-scale variability of carbon cycle described in this


study is not of the same order of magnitude than the current anthropogenic emissions however, weillustrate below that this is not negligible.

Over the 2010-2019 period, the average emission rate of anthropogenic CO_2 is 40 ± 4.3 GtCO₂.yr⁻¹ (IPCC 2022 AR6, WG1). Of this total, only 46 % remains in the atmosphere (IPCC 2022 AR6, WG1). Consequently, the atmospheric CO_2 concentrations increase by 2.4 ± 0.3 ppm.yr⁻¹ due to anthropogenic activity. We thus divided the average value of CDJ amplitude (10 ppm) by this value to obtain its equivalent in term of 2010-2019 anthropogenic CO_2 emission. The resulting value is 4.3 years of anthropogenic CO_2 emission based on the 2010-2019 average.

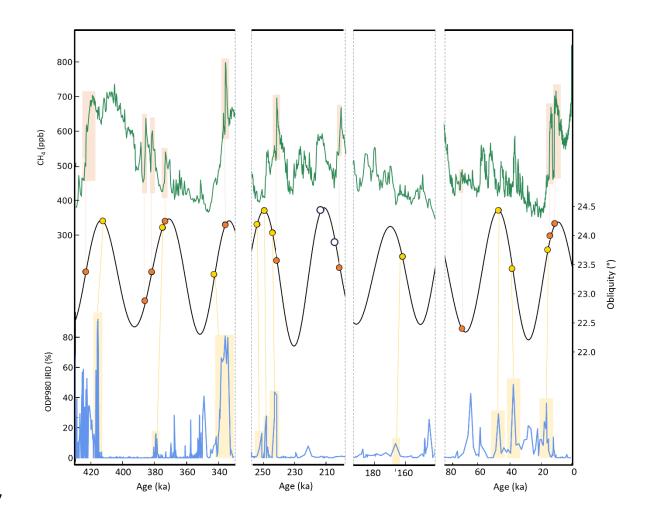
253 Supplementary Figures



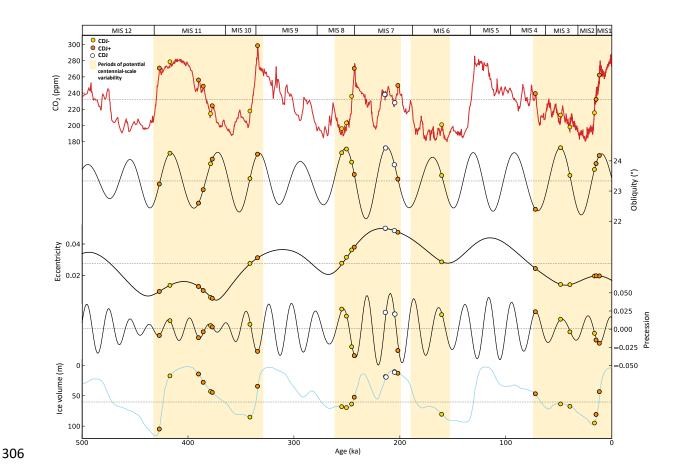


standard deviation computed as the quadratic sum of gravitational correction error, measurement system error
 and the standard deviation of the five injections (see methods). Published CO₂ data from the Vostok ice core ¹
 (grey squares) and Vostok CO₂ data corrected including gravitational and blank corrections (light red square, this
 study). All records are plotted on the AICC2023 gas timescale ¹³. (Bottom panel) New (green dots, this study) and
 published ^{25,26} (light green squares) CH₄ records from the EDC ice core.

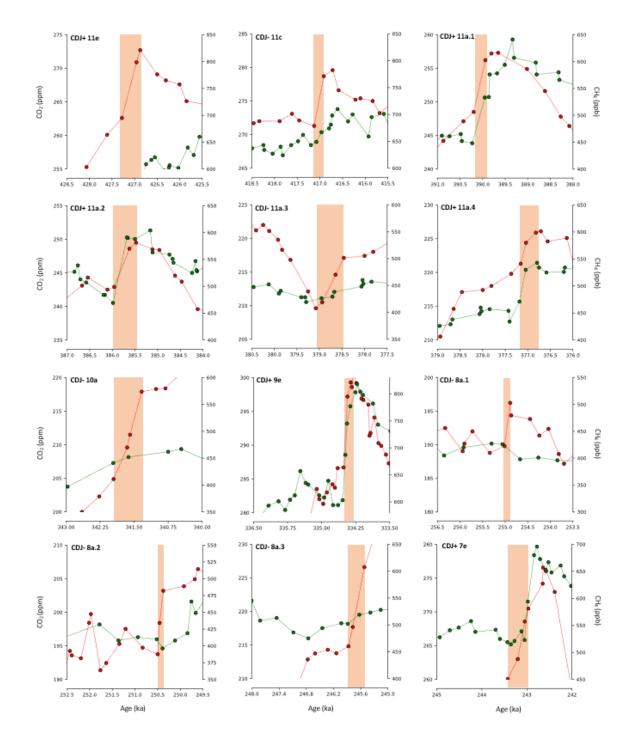
- 202 published (light green squares) chi4 records in



Supplementary Figure 2: Calculation of the CO₂ rate of change across the 260-190 ka interval based on the new EDC CO₂ record. Top: Orbital- to multi-millennial-scale trends from the EDC CO₂ record (grey dots, this study) using five different smoothing splines ²⁷ with cut-off periods (i.e., degrees of smoothing) ranging from 6 to 14 kyr. Middle: Detrended EDC CO₂ record after subtraction of the 10 kyr spline. A second set of five smoothing splines with cut-off periods ranging from 0.6 to 1.2 kyr is applied to the 10 kyr-detrended data set. Bottom panel: Resulting rates of change of the detrended CO₂ record for the 1.0 kyr smoothing spline ⁹. Vertical red lines indicate the timing of the identified CDJs. A centennial-scale CO₂ release is identified when the rate is higher than 1.5ppm/century (dashed horizontal line) 9.

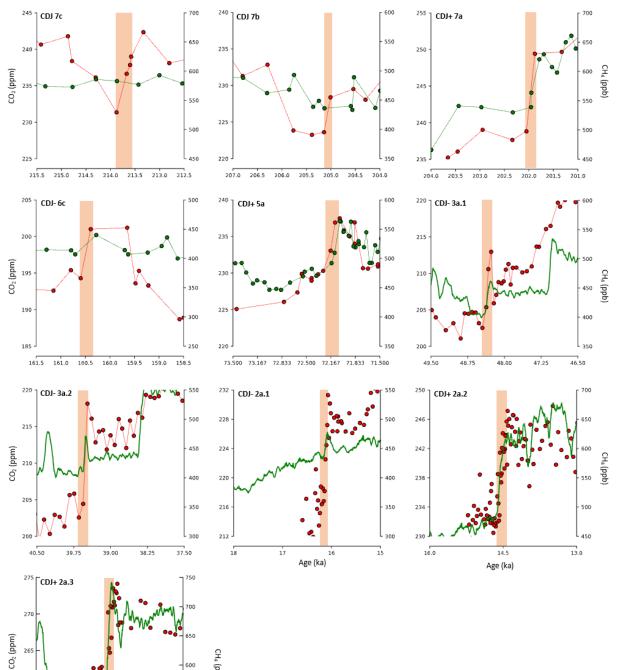


284 Supplementary Figure 3: Identification of centennial-scale CDJs between 260 and 190 ka. Top: EDC CO2 record on (red dots, this study). Middle: EDC CH4 record (green dots, this study and ref. ^{25,26}). Bottom: Resulting rates of 285 286 change of the detrended CO₂ and CH₄ records for the 1.0 ka smoothing spline. Vertical red lines indicate the 287 timing of the identified CDJs. A centennial-scale CO2 release is identified when the rate is higher than 1.5 288 ppm/century (dashed horizontal line)⁹ and a minimum amplitude of 5 ppm is registered. It is considered to be 289 associated with a significant CH₄ increase (CDJ+) when the CH₄ rate of change is higher than 20 ppb/century. All records are on the AICC2023 timescale ¹³. The nomenclature of CDJ follows the one from ref. ⁹ and is based on 290 291 five components: 1. CDJ : carbon dioxide jump; 2. + or - : referring to the occurrence of synchronous massive CH4 292 release (+) or not (-); 3. A number, referring to the corresponding Marine Isotopic Stage; 4. A letter, when the 293 corresponding Marine Isotopic Stage have been subdivided into substages; 5. A number, in case the CDJ is not 294 the only one occurring in the substage.



298

Supplementary Figure 4: Identification of DO-like and Heinrich-like events associated with CDJs over the last 500 ka. Top: atmospheric CH₄ record from the EDC ice core ²⁵ (top, green). Middle: Obliquity (middle, black). Dots represent CDJs associated with Heinrich-like (yellow, CDJ-), DO-like events (orange, CDJ+), and two CDJs that cannot be classified unambigously (white) this study and refs. ^{9–11,28–30}. Bottom: IRD record from the marine sediment core ODP 980 on its original timescale ³¹ (bottom, blue). Yellow/orange shaded areas correspond to Heinrich-like / DO-like events potentially associated with a CDJ.


Supplementary Figure 5: Orbital-scale climatic background of occurrences of the CDJs. From top to bottom: EDC CO₂ record (red, this study and refs. ^{9,11,29,30,32-34}). Obliquity (black). Eccentricity (black). Climatic Precession (black) ¹⁷. Global ice volume reconstruction ³⁵ (blue). Yellow, orange and white dots indicate the timing of the CDJ-, CDJ+ and CDJ occurrences in the context of the superimposed curve. Yellow bars represent the time intervals where the temporal resolution of the ice-core CO₂ records allows for the potential identification of abrupt changes.

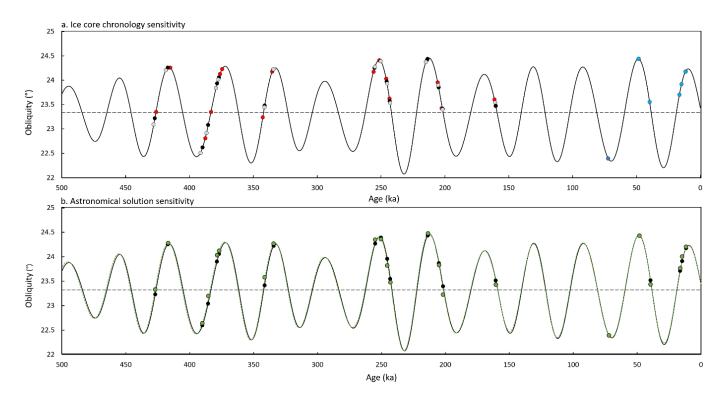
Supplementary Figure 6: Detailed view of the 22 CDJs from the current and previously published studies. EDC CO₂ (red line and dots) and CH₄ (green line and dots) records on the AICC2023 gas timescale ¹³ (older than 67 ka) and WD2014 ^{36,37} (younger than 67 ka) timescale (red dots). Vertical red bars correspond to periods associated

- with a CDJ.

CH₄ (ppb)

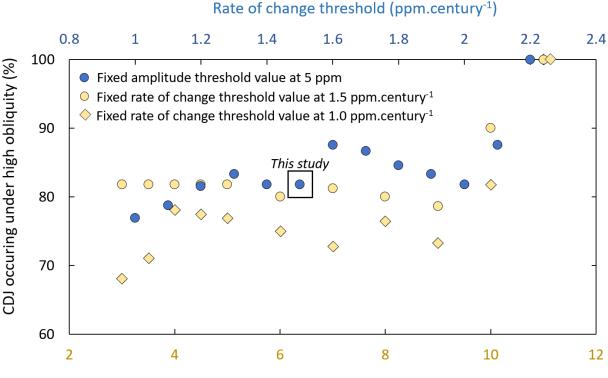
10.0

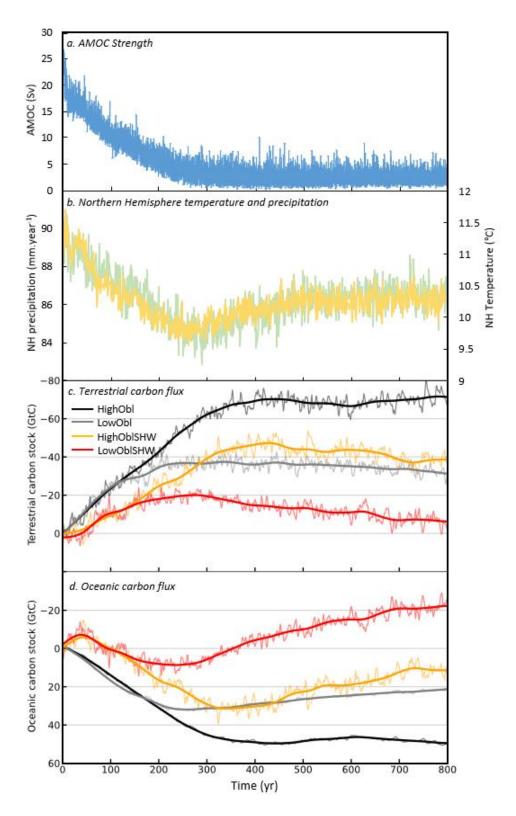
329


255 L

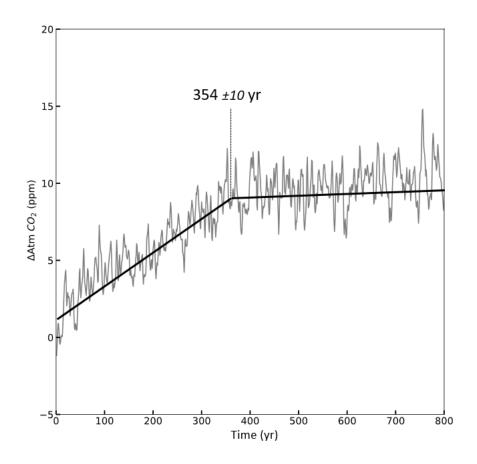
13.0

11.3 Age (ka)

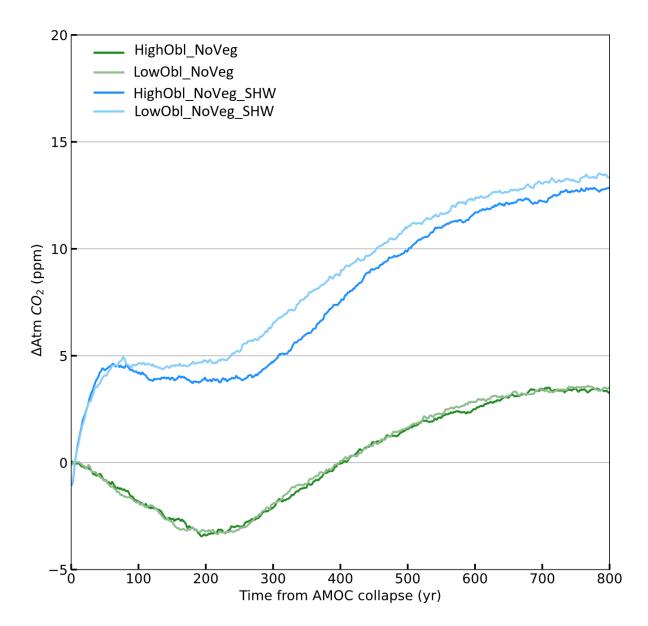

Supplementary Figure 6 (continued).



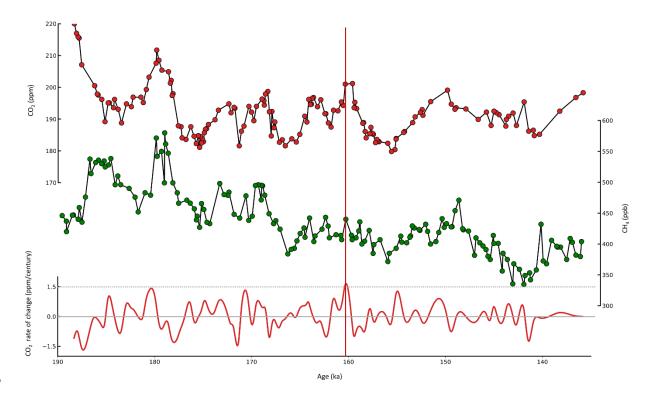
Supplementary Figure 7: Testing the sensitivity of the relationship between the CDJs and the obliquity values to the choice of the ice-core gas chronology and of the astronomical solution. **a**. : Dots correspond to CDJ occurrences put respectively on the WD2014 ³⁶ (light blue), Taylor Glacier-adapted AICC2012 ³⁰ (dark blue), AICC2023 ¹³ (black), $\delta^{18}O_{calcite}$ ¹⁶ (grey) and AICC2012 ¹⁴(red) ice core chronologies. **b**. Dots correspond to CDJ occurrences computed with the astronomical solution of ref. ¹⁷ (black) and ref. ¹⁸ (green), respectively. The ice core timescale used is AICC2023 ¹³ and Taylor Glacier-adapted AICC2012 ³⁰ between 500 and 67 ka, and WD2014 ^{36,37} for the CDJs between 67 and 0 ka.



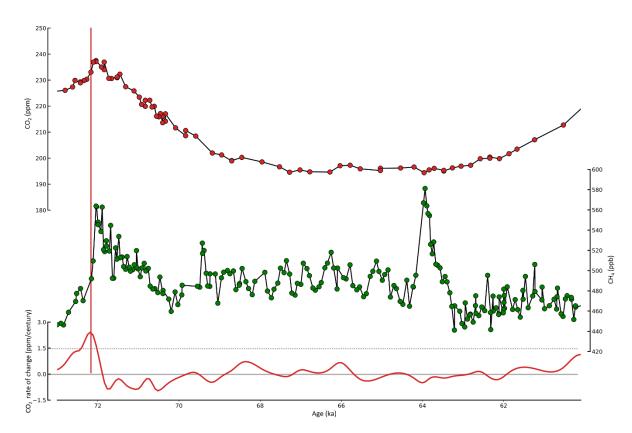
Amplitude threshold (ppm)


Supplementary Figure 8: Testing the sensitivity of the link between the CDJs and the obliquity values to the choice of the CDJ detection threshold values. Blue circles are the percentage of CDJs event occurring under high obliquity for a fixed amplitude threshold value of 5 ppm and various rate of change thresholds. Yellow circles/square are the percentage of CDJs event occurring under high obliquity for a fixed rate of change threshold value of 1.5/1.0 ppm.century⁻¹ and various amplitude thresholds. Note that above a certain threshold value, all CDJ events occurs under high obliquity. Detailed information on the identified CDJs are available in Supplementary Table 4. The threshold values of 5 ppm and 1.5 ppm.century⁻¹ applied in this study (black square) are the one defined in Ref.⁹.

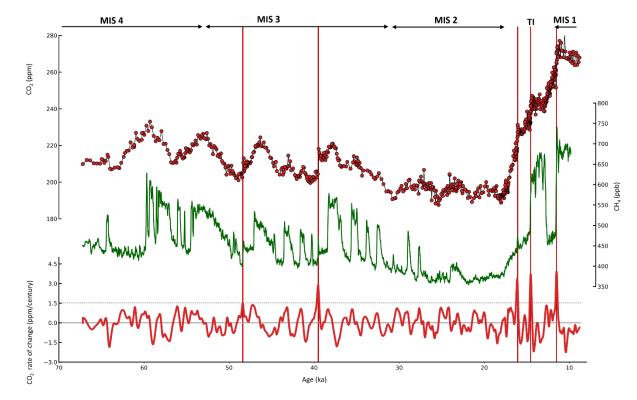
377 Supplementary Figure 9: AMOC, climate, and terrestrial and oceanic carbon changes in carbon reservoirs 378 during HS 5 under high and low obliquity phase. a. Atlantic Meridional Overturning Circulation (AMOC) during 379 the simulation. b. Average northern hemisphere temperature (yellow) and precipitation (green) during the 380 simulation. c. Terrestrial carbon stock (in GtC) from the start of the simulation until 0.8 ka. HighObl and LowObl 381 are performed under the obliquity at 49 ka (24.3°) and artificially low obliquity forcing (22.1°), respectively. 382 HighObl SHW and LowObl SHW are similar to the previous two simulations with enhanced strength of Southern 383 Hemisphere Winds (+20%). Bold lines are smoothing splines filters. d. Similar to c. but for oceanic carbon stock. 384 The Y axis is reversed to show that a decrease in the terrestrial carbon leads to an atmospheric CO_2 increase.



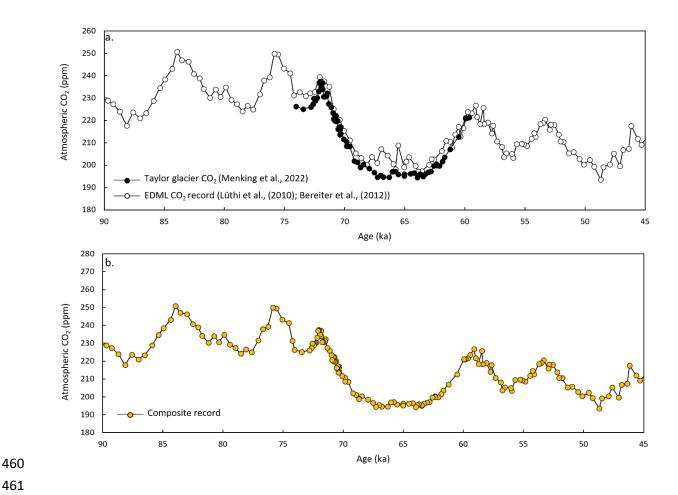
Supplementary Figure 10: Identification of slope break (black lines) of the simulated *HighObl* Δ CO₂ (grey line) 387 using the LinearFit model ²².


397 Supplementary Figure 11: Simulating centennial-scale CO₂ changes during HS5 under high and low obliquity

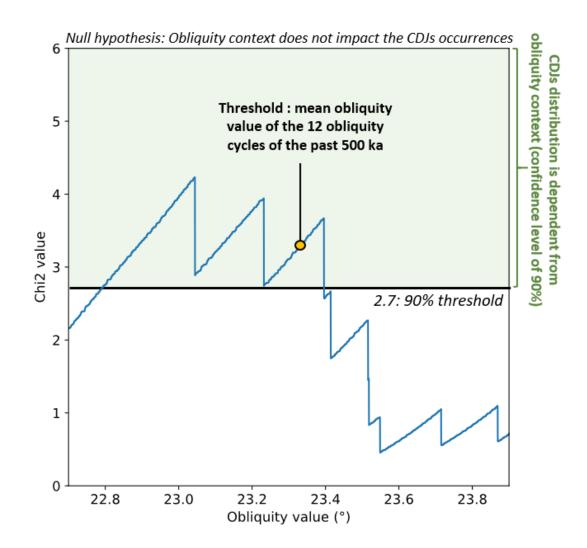
without terrestrial carbon fluxes. Simulated CO₂ anomalies (ppm) for the first 800 years of the simulation.
 HighObl_NoVeg and *LowObl_NoVeg* are performed under the obliquity at 49 ka (24.3°) and artificially low
 obliquity forcing (22.1°), respectively. *HighObl_NoVeg_SHW* and *LowObl_NoVeg_SHW* are similar to the previous
 two simulations with stronger Southern Hemisphere windstress (+40%).



Supplementary Figure 12: Identification of centennial-scale CDJs between 190 and 135 ka. Top: EDC CO₂ record (red dots ²⁹). Middle: EDC CH₄ record (green dots ²⁹). Bottom: Resulting rates of change of the detrended CO₂ record for the 1.0 ka smoothing spline. Vertical red line indicates the timing of the identified CDJ. A centennial-scale CO₂ release is identified when the rate is higher than 1.5 ppm/century (dashed horizontal line) and a minimum amplitude of 5 ppm is registered.

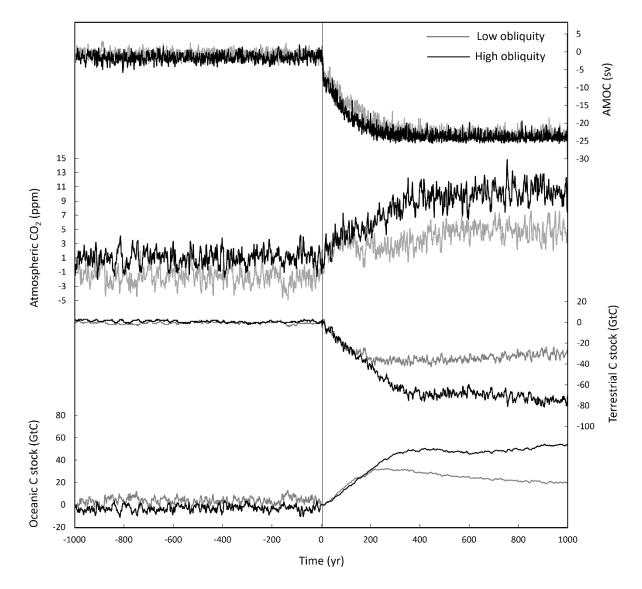


Supplementary Figure 13: Identification of centennial-scale CDJs between 75 and 60 ka. Top: Taylor Glacier CO₂
 record (red dots ³⁰). Middle: EDC CH4 record (green dots ²⁵). Bottom: Resulting rates of change of the detrended
 CO₂ record for the 1.0 ka smoothing spline. Vertical red line indicates the timing of the identified CDJ. A
 centennial-scale CO₂ release is identified when the rate is higher than 1.5 ppm/century (dashed horizontal line)
 and a minimum amplitude of 5 ppm is registered.

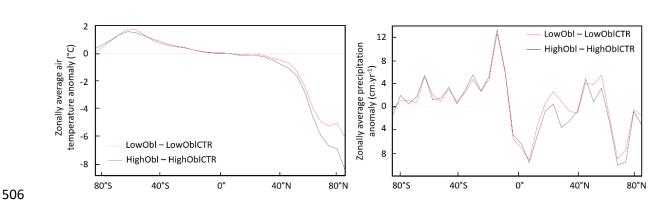


Supplementary Figure 14: Identification of centennial-scale CDJs between 60 and 8 ka. Top: WD CO₂ record (red dots ^{10,11}). Middle: WD CH₄ record (green dots ¹²). Bottom: Resulting rates of change of the detrended CO₂ record for the 1.0 ka smoothing spline. Vertical red lines indicate the timing of the identified CDJs. A centennial-scale CO₂ release is identified when the rate is higher than 1.5 ppm/century (dashed horizontal line) and a minimum amplitude of 5 ppm is registered.

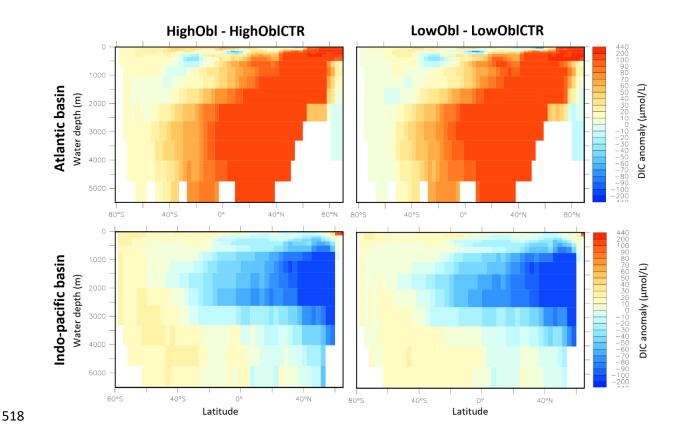
-



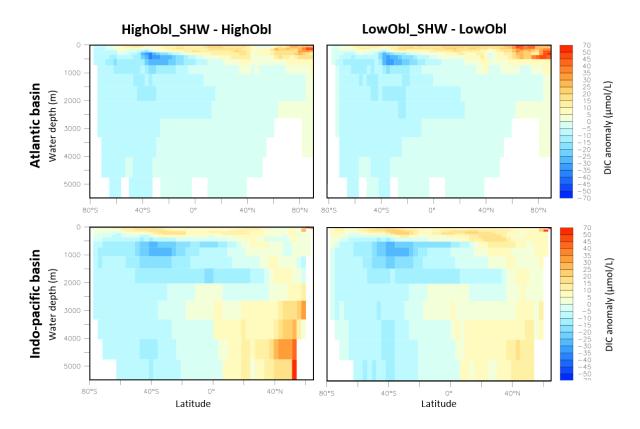
Supplementary Figure 15: a. High resolution CO₂ record from the Taylor Glacier ³⁰ (75-60 ka) and millennial-scale CO₂ record from EDML ^{38,39} (90-45 ka) on the AICC2012 ¹⁴ and the Taylor Glacier -adapted AICC2012 derived ³⁰ chronologies. b. Composite CO2 record corresponding to the EDML (90-73 ka and 60-45 ka) and Taylor glacier (73-60 ka). Note that we only consider the CDJs identified across the Taylor Glacier segment of the CO₂ composite as the EDML segment is not resolved enough to allow a robust identification of CDJs.

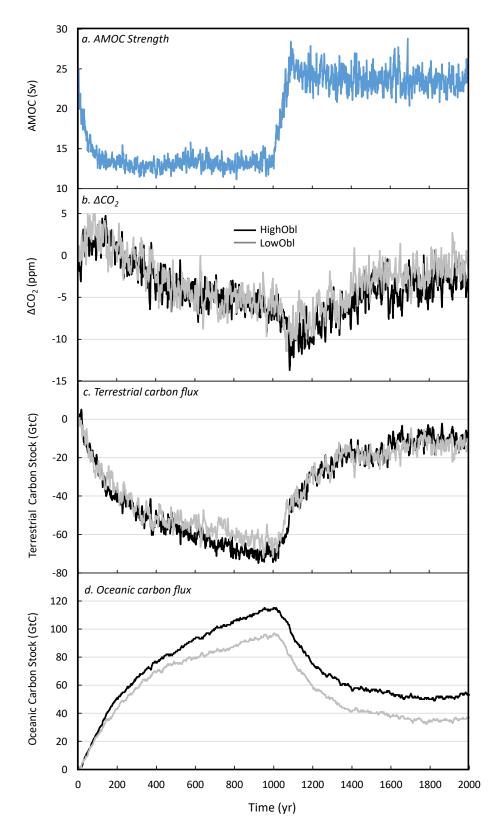


477 Supplementary Figure 16: Sensitivity of the Chi-square test to the threshold obliquity value. The null hypothesis
478 is rejected at 90% of confidence when the Chi-square value (blue curve) is higher than 2.7. The expected value
479 varies with the threshold of obliquity chosen (x-axis).



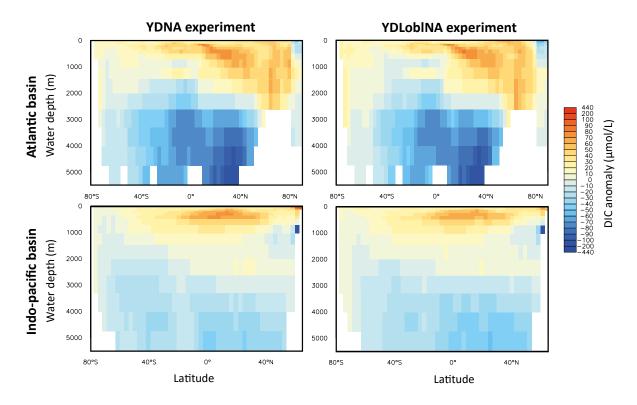
Supplementary Figure 17: Timeseries of (from top to bottom): AMOC transport (Sv), atmospheric CO₂ concentrations (ppm), oceanic carbon stock (GtC) and terrestrial carbon stock (GtC) for the high (black) and low (grey) obliquity control states. A negative time value corresponds to the model spin-ups, while a positive time value corresponds to the model spin-ups, while a positive time value corresponds to the post-perturbation simulations. The y-axis is an anomaly respectively to the value for Time = 0.




Supplementary Figure 18: Zonally averaged (left) air temperature anomaly (°C) and (right) precipitation anomaly
 (cm/yr) for (black) *HighObl* compared to *HighOblCTR* and (red) *LowObl* compared *LowOblCTR*. For *HighObl* and
 LowObl, the data has been averaged over simulation years 380 to 400.

Supplementary Figure 19: DIC anomaly (μmol/L) averaged over (top) the Atlantic and (bottom) the Indo-Pacific
 basin for (left) *HighObl* compared to *HighOblCTR* and (right) *LowObl* compared to *LowObl*.

Supplementary Figure 20: DIC anomaly (μmol/L) averaged over (top) the Atlantic and (bottom) the Indo-Pacific
 basin for (left) *HighObl_SHW* compared to *HighObl* and (right) *LowObl_SHW* compared to *LowObl*.



Supplementary Figure 21: AMOC, CO₂ concentrations, and terrestrial and oceanic carbon changes in carbon reservoirs during at 12 ka under high and low obliquity phase. a. Atlantic Meridional Overturning Circulation (AMOC) during the simulation. b. Atmospheric CO₂ concentrations during the simulation. *HighObl* (black) and *LowObl* (grey) are performed under the obliquity at 12 ka (24.16°) and artificially low obliquity forcing (22.1°), respectively. c. Terrestrial carbon stock (in GtC) from the start of the simulation until 2 ka. d. Similar to c. but for oceanic carbon stock.

- _ _ _

Supplementary Figure 22: DIC anomalies (μmol/L) as a result of the AMOC recovery (yr 1400-1600 when the AMOC has recovered compared to yr 800-1000 when the AMOC is off) averaged over (top)
 the Atlantic basin and (bottom) the Indo-Pacific for (left) experiment YDNA and (right) experiment
 YDLobINA.

579 Supplementary Tables

583	Supplementary Table 1: CDJs of the past 500 ka. Ages of CDJ are from the AICC2023 ¹³ chronology except for the
	since any control of the transformed the NND2014 3637 and Technical and the desternal ALCC2042 30 shares been oblighted by the

six youngest CDJs that are on the WD2014 ^{36,37} and Taylor-adapted AICC2012 ³⁰ chronology. Obliquity value is
 from ref. ¹⁷. WDC: Wais Divide ice Core. EDC: EPICA Dome C ice core.

	CDJ name	CDJ age (ka)	Age uncertainty (ka, 1σ)	Obliquity (°)	Ice core	Reference
	CDJ+ 2a.3	11.8	0.1	24.18	WDC	Marcott et al. (2014)
	CDJ+ 2a.2	14.7	0.2	23.92	WDC	Marcott et al. (2014)
	CDJ- 2a.1	16.3	0.2	23.72	WDC	Marcott et al. (2014)
	CDJ-3a.2	39.4	0.4	23.48	WDC	Ahn et al. (2012)
	CDJ-3a.1	48.4	0.4	24.44	WDC	Bauska et al. (2021)
	CDJ+5a	72.1	2.5	22.40	Taylor Glacier	Menking et al. (2022)
	CDJ-6c	160.6	1.0	23.52	EDC	Shin et al. (2020)
	CDJ+7a	201.9	1.1	23.40	EDC	This study
	CDJ 7b	205.0	1.1	23.87	EDC	This study
	CDJ 7c	213.6	1.3	24.43	EDC	This study
	CDJ+7e	243.0	0.7	23.55	EDC	This study
	CDJ-8.3	245.5	0.8	23.96	EDC	This study
	CDJ-8a.2	250.4	0.9	24.39	EDC	This study
	CDJ-8a.1	254.9	0.9	24.28	EDC	This study
	CDJ+9e	334.3	0.8	24.22	EDC	Nehrbass-Ahles et al. (2020)
	CDJ-10a	341.5	1.1	23.41	EDC	Nehrbass-Ahles et al. (2020)
	CDJ+11a.4	377.1	1.1	24.06	EDC	Nehrbass-Ahles et al. (2020)
	CDJ-11a.3	378.7	1.1	23.90	EDC	Nehrbass-Ahles et al. (2020)
	CDJ+11a.2	385.6	1.2	23.04	EDC	Nehrbass-Ahles et al. (2020)
	CDJ+11a.1	390.1	1.6	22.60	EDC	Nehrbass-Ahles et al. (2020)
	CDJ-11c	417.0	1.9	24.25	EDC	Nehrbass-Ahles et al. (2020)
	CDJ+11e	427.0	1.1	23.23	EDC	Nehrbass-Ahles et al. (2020)
5	86					

599 Supplementary Table 2: Chi-square test at one degree of freedom and 10% of significance of the following 600 hypothesis: *CDJ occurrences are independent from the average value of the last 500 ka of the tested parameter.*

601 This hypothesis could be rejected at 90% of confidence only for obliquity.

	Tested parameter X ² test results	
	Obliquity	3.4 > 2.7
	Precession	0.5 < 2.7
	Eccentricity	1.1 < 2.7
	Sea level	0.1 < 2.7
	CO ₂	0.1 < 2.7
603		
604		
605		
606		
607		
608		
609		
610		
611		
612		
613		
614		
615		

- 616 Supplementary Table 3: Chi-square test at one degree of freedom of the null hypothesis that *CDJ occurrences are*
- 617 *independent from the average value of the 12 obliquity cycles of the last 500 ka* when the CDJ events are displayed
- on three different gas age scales. The null hypothesis is rejected at the 90% confidence level (2.7) when the CDJ
- 619 events are displayed onAICC2023 ¹³ and $\delta^{18}O_{calcite}$ chronology ¹⁶ and at the 95% confidence level (3.8) when 620 displayed on AICC2012 ¹⁴.
- 621

021		
	Considered chronology	X ² test results
	AICC2023	3.4 > 2.7
	AICC2012	4.6 > 3.8
	$\delta^{18}O_{calcite}$	3.4 > 2.7
622		
623		
624		
024		
625		
626		
627		
620		
628		
629		
025		
630		
631		
632		
C 22		
633		
634		
001		
635		
636		
637		
620		
638		
639		
640		
641		

642 Supplementary Table 4: Supplementary Table 4: Centennial-scale events with an amplitude larger than 3 ppm

and a rate of change faster than 1.0 ppm/century over the past 500 ka. Bold lines are the CDJs discussed in this
 study, as defined in Ref.⁹ with an amplitude larger than 5 ppm and a rate of change faster than 1.5 ppm.century⁻

study, as defined in Ref. ⁹ with an amplitude larger than 5 ppm and a rate of change faster than 1.5 ppm.century⁻
 ¹. Corresponding obliquity values associated with each of the centennial-scale events are indicated. 18 of those

rapid events are associated with an obliquity value higher than 23.33° (i.e. the average obliquity value of the 12

obliquity cycles over the last 500 ka). Ages of CDJ are from the AICC2023¹³ chronology except for the 17 youngest

648 CDJs that are on the WD2014 ^{36,37} and Taylor-adapted AICC2012 ³⁰ chronology.

Age (ka)	Obliquity (°)	Rate of change (ppm.century-1)	Amplitude (ppm)
11.8	24.2	3.2	18.6
12.8	24.1	1.4	7.3
14.7	23.9	2.9	15.2
16.3	23.7	2.6	14.5
24.4	22.5	1.1	10.0
25.8	22.3	1.1	3.5
27.6	22.2	1.1	6.6
30.9	22.3	1.0	3.7
38.4	23.3	1.0	3.1
39.4	23.5	2.2	15.5
43.5	24.1	1.2	6.0
47.7	24.4	1.3	6.1
48.4	24.4	1.6	9.8
55.3	23.9	1.1	5.0
56.2	23.8	1.2	4.8
61.0	23.1	1.1	7.7
72.1	22.4	2.1	10.1
155.3	22.8	1.2	3.5
160.6	23.5	1.8	6.7
161.6	23.7	1.1	6.7
164.2	23.9	1.2	7.1
170.8	24.1	1.1	6.2
179.9	23.3	1.5	4.1
184.8	22.8	1.2	5.9
201.9	23.4	2.7	10.6
205.0	23.9	1.6	5.1
213.6	24.4	2.0	5.7
221.8	23.4	1.0	5.0
228.8	22.3	1.0	3.2
241.4	23.3	1.0	3.5
243.0	23.5	2.0	7.5
244.1	23.7	1.0	8.8
245.5	24.0	1.8	8.9
247.7	24.2	1.4	6.0
250.4	24.4	2.1	9.4
252.4	24.4	1.2	5.4
254.9	24.3	1.7	6.4
334.4	24.2	2.9	15.8
341.5	23.4	1.7	12.3
367.4	24.1	1.2	5.8
377.1	24.1	1.5	6.8
378.7	23.9	1.6	10.0
385.6	23.0	1.6	6.7
390.1	22.6	2.2	9.3
417.0	24.3	2.1	12.9
427.1	23.2	1.5	9.9
429.1	22.9	1.2	7.5

Supplementary Table 5: Description of the different LOVECLIM simulations and corresponding modelled ΔCO_2 in

652 ppm at year 400.

	Simulation name	Details	ΔCO₂ (ppm)
	HighObl	49 ka Boundary conditions	9.5
	LowObl	Similar to above under low obliquity phase	3.3
	HighObl_NoVeg	No carbon flux between the terrestrial biosphere and atmosphere	-0.1
	LowObl_NoVeg	Similar to above under low obliquity phase	0.2
	HighObl_SHW	Enhanced Southern Hemisphere westerly windstress (+40%)	14.2
	LowObl_SHW	Similar to above under low obliquity phase	9.4
	HighObl_NoVeg_SHW	No carbon flux between the terrestrial biosphere and atmosphere	
		and enhanced Southern Hemisphere westerly windstress (+40%)	8.5
	LowObl_NoVeg_SHW	Similar to above under low obliquity phase	9.8
654			
655			
656			
~			
657			
658			
659			
660			
561			
62			
63			
64			
0.			
65			
66			
567			
,0,			
68			
69			
70			
,,,,			

671 **References**

- Petit, J. R. *et al.* Climate and atmospheric history of the past 420,000 years from the Vostok ice
 core, Antarctica. **399**, 10 (1999).
- 674 2. Bréant, C. et al. Unveiling the anatomy of Termination 3 using water and air isotopes in the
- Dome C ice core, East Antarctica. *Quaternary Science Reviews* **211**, 156–165 (2019).
- 3. Landais, A. *et al.* Interglacial Antarctic–Southern Ocean climate decoupling due to moisture
 source area shifts. *Nat. Geosci.* 14, 918–923 (2021).
- Landais, A. *et al.* Two-phase change in CO2, Antarctic temperature and global climate during
 Termination II. *Nature Geosci* 6, 1062–1065 (2013).
- Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B. Ice Core Records of Atmospheric CO
 Around the Last Three Glacial Terminations. *Science* 283, 1712–1714 (1999).
- 682 6. Uemura, R. *et al.* Asynchrony between Antarctic temperature and CO2 associated with obliquity
 683 over the past 720,000 years. *Nat Commun* 9, 961 (2018).
- Ai, X. E. *et al.* Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric
 CO ₂ change. *Science* **370**, 1348–1352 (2020).
- 686 8. Cheng, H. et al. Ice Age Terminations. Science 326, 248–252 (2009).
- 9. Nehrbass-Ahles, C. *et al.* Abrupt CO₂ release to the atmosphere under glacial and early
 interglacial climate conditions. *Science* 369, 1000–1005 (2020).
- 689 10. Marcott, S. A. *et al.* Centennial-scale changes in the global carbon cycle during the last
 690 deglaciation. *Nature* 514, 616–619 (2014).
- 11. Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the
 last glacial period. *Nat. Geosci.* 14, 91–96 (2021).
- Rhodes, R. H. *et al.* Enhanced tropical methane production in response to iceberg discharge in
 the North Atlantic. *Science* 348, 1016–1019 (2015).

- 13. Bouchet, M. et al. The Antarctic Ice Core Chronology 2023 (AICC2023) chronological framework
- and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice
 core. *Clim. Past* 19, 2257–2286 (2023).
- 698 14. Bazin, L. *et al.* An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology
 699 (AICC2012): 120–800 ka. *Clim. Past* **9**, 1715–1731 (2013).
- 15. Veres, D. *et al.* The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and
- 701 multi-site dating approach for the last 120 thousand years. *Clim. Past* **9**, 1733–1748 (2013).
- To 2
 16. Extier, T. *et al.* On the use of δ18Oatm for ice core dating. *Quaternary Science Reviews* 185, 244–
 257 (2018).
- 17. Laskar, J. *et al.* A long-term numerical solution for the insolation quantities of the Earth. *A&A*428, 261–285 (2004).
- 18. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years.

707 *Quaternary Science Reviews* **10**, 297–317 (1991).

- Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for
 Dansgaard–Oeschger cycles. *Nat Rev Earth Environ* 1, 677–693 (2020).
- 710 20. Okazaki, Y. *et al.* Deepwater Formation in the North Pacific During the Last Glacial Termination.
- 711 Science **329**, 200–204 (2010).
- 712 21. Menviel, L. *et al.* Removing the North Pacific halocline: Effects on global climate, ocean
- 713 circulation and the carbon cycle. *Deep Sea Research Part II: Topical Studies in Oceanography* 61–
- **64**, 106–113 (2012).
- 22. Parrenin, F. *et al.* Synchronous Change of Atmospheric CO ₂ and Antarctic Temperature During
- the Last Deglacial Warming. *Science* **339**, 1060–1063 (2013).
- 717 23. Menviel, L., England, M. H., Meissner, K. J., Mouchet, A. & Yu, J. Atlantic-Pacific seesaw and its
- 718 role in outgassing CO ₂ during Heinrich events: Heinrich CO ₂. Paleoceanography **29**, 58–70
- 719 (2014).

720 24. Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric

721 CO2 rise. *Nat Commun* **9**, 2503 (2018).

- 722 25. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past
- 723 800,000 years. *Nature* **453**, 383–386 (2008).
- 26. Spahni, R. *et al.* Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic
- 725 Ice Cores. *Science* **310**, 1317–1321 (2005).
- 27. Enting, I. G. On the use of smoothing splines to filter CO ₂ data. J. Geophys. Res. 92, 10977 (1987).
- 28. Ahn, J., Brook, E. J., Schmittner, A. & Kreutz, K. Abrupt change in atmospheric CO₂ during the last
- 728 ice age. *Geophys. Res. Lett.* **39**, (2012).
- 29. Shin, J. et al. Millennial-scale atmospheric CO<sub>2</sub> variations during the
- 730 Marine Isotope Stage 6 period (190–135 ka). *Clim. Past* **16**, 2203–2219 (2020).
- 73130. Menking, J. A. Multiple carbon cycle mechanisms associated with the glaciation of Marine
- 732 Isotope Stage 4. *Nature Communications* (2022).
- 31. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-Million-Year Record of Millennial-Scale Climate
 Variability in the North Atlantic. *Science* 283, 971–975 (1999).
- 32. Bereiter, B. *et al.* Revision of the EPICA Dome C CO ₂ record from 800 to 600 kyr before present:
- Analytical bias in the EDC CO2 record. *Geophys. Res. Lett.* **42**, 542–549 (2015).
- 33. Shin, J. *et al.* Millennial variations in atmospheric CO ₂ during the early Holocene (11.7–7.4 ka).
- 738 *Clim. Past* **18**, 2063–2075 (2022).
- 739 34. Bauska, T. K. et al. Links between atmospheric carbon dioxide, the land carbon reservoir and
- climate over the past millennium. *Nature Geosci* **8**, 383–387 (2015).
- 35. Berends, C. J., de Boer, B. & van de Wal, R. S. W. Reconstructing the evolution of ice sheets, sea
- 742 level, and atmospheric CO<sub>2</sub> during the past 3.6 million years. *Clim. Past*
- 743 **17**, 361–377 (2021).
- 36. Buizert, C. *et al.* The WAIS Divide deep ice core WD2014 chronology Part 1: Methane
- synchronization (68–31 ka BP) and the gas age–ice age difference. *Clim. Past* **11**, 153–173 (2015).

37. Sigl, M. *et al.* The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting

747 (0–31 ka BP). *Clim. Past* (2016).

- 38. Lüthi, D. *et al.* CO2 and O2/N2 variations in and just below the bubble–clathrate transformation
- zone of Antarctic ice cores. *Earth and Planetary Science Letters* **297**, 226–233 (2010).
- 39. Bereiter, B. *et al.* Mode change of millennial CO ₂ variability during the last glacial cycle
- associated with a bipolar marine carbon seesaw. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 9755–9760

752 (2012).

753