N

N

A 2019-2020 Review of R Neural Network Packages
with NNbenchmark
Salsabila Mahdi, Akshaj Verma, Christophe Dutang, Patrice Kiener, John C
Nash

» To cite this version:

Salsabila Mahdi, Akshaj Verma, Christophe Dutang, Patrice Kiener, John C Nash. A 2019-2020
Review of R Neural Network Packages with NNbenchmark. 2024. hal-04732774

HAL Id: hal-04732774
https://hal.science/hal-04732774v1

Preprint submitted on 11 Oct 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04732774v1
https://hal.archives-ouvertes.fr

A 2019-2020 REVIEW OF R NEURAL NETWORK PACKAGES
WITH NNBENCHMARK

A PREPRINT

Salsabila Mahdi Akshaj Verma
Universitas Syiah Kuala Manipal Institute of Technology
https://orcid.org/0000-0002-2559-4154 https://orcid.org/0000-0002-3936-0033

Christophe Dutang
Université Paris-Dauphine, University PSL, CNRS, CEREMADE

https://orcid.org/0000-0001-6732-1501

Patrice Kiener John C. Nash
InModelia Telfer School of Management, University of Ottawa
https://orcid.org/0000-0002-0505-9920 https://orcid.org/0000-0002-2762-8039

December 6, 2022

Abstract

In the last three decades, neural networks have evolved from an academic topic to a common
scientific computing tool. CRAN currently hosts around 80 packages (May 2020) that involve
neural network modeling; some offering more than one algorithm. However, to our knowledge,
there is no comprehensive study which tests the accuracy, the reliability, and the ease-of-use
of those NN packages. In this paper, we test a large number of packages against a common
set of datasets with varying levels of complexity to benchmark and rank them with statistical
metrics. We restrict our evaluation to single hidden-layer perceptrons that perform regression.
We ignore packages for classification and other specialized purposes. This leaves us with
approximately 60 package:algorithm pairs to test. The criteria used in our benchmark were:
(i) accuracy, i.e. the ability to find the global minima on 13 datasets, measured by the
Root Mean Square Error (RMSE) in a fixed number of iterations; (ii) speed of the training
algorithm; (iii) availability of helpful utilities; (iv) quality of the documentation. We have
given a score for each evaluation criterion to compare all package:algorithm pairs in a global
table. Overall, 15 pairs are considered accurate and reliable and are recommended for daily
usage. Other packages are either less accurate, slow, difficult to use, or have poor or zero
documentation.

Keywords R packages - Neural networks - benchmark

1 Introduction

The R Project for Statistical Computing, as any open-source platform, relies on its contributors to keep
it up to date. Neural networks, inspired by the brain itself, are a class of models in the growing field of
machine learning for which R has a number of packages. Before 2010, neural networks were often considered
theoretically instead of pragmatically, partly because the algorithms used were computationally expensive.

https://orcid.org/0000-0002-2559-4154
https://orcid.org/0000-0002-3936-0033
https://orcid.org/0000-0001-6732-1501
https://orcid.org/0000-0002-0505-9920
https://orcid.org/0000-0002-2762-8039

A PREPRINT - DECEMBER 6, 2022

The term “neural network” is colloquially used for different model structures and applications. In both Bishop
(2005)), Ripley| (2007)) books, the term “multilayer perceptron” is used interchangeably for regression and
classification. Later, the term “deep neural networks” has appeared but refers to a very different structure
with many layers and other training algorithms. The term “recurrent neural network” is mainly used in
the context of autoregressive time-series while the term “convolutional neural network” is appropriate for
dimension reduction and pattern recognition (images/audio/text). Most of the above types of neural networks
(NN) can be found in R packages hosted on CRAN but without any study about the accuracy or the speed of
computation. This is a concern as many slow or poor algorithms to fit NN are available in the literature and
hence weak packages are implemented on CRAN.

In this paper, we stick to the multilayer perceptron because it is still the most used NN structure and we
focus on regression.

In the NN literature, a number of benchmarks of neural networks have been conducted. (Adolf et al.|[2016)
propose a reference workload for modern deep learning methods with a large variety of benchmark tasks
and NN types. They analyze the breakdown of execution time by operation type for each workload in order
to identify where time is spent. (Tao et al[[2018) propose a benchmark suite for intelligence processors,
which consist of two levels of benchmarks: microbenchmarks of single-layer networks and macrobenchmarks
of state-of-the-art industrial networks. However (Tao et al.[[2018]) focus only various hardware platforms,
including CPUs and GPUs; scenarios are limited to classification or recognition. (Xie et al|2020]) propose
another benchmark methodology to evaluate software/hardware co-designs and illustrate it on a selected set
of applications from the TensorFlow Model Zoo.

Furthermore, there are also benchmarks with a specific type of application, e.g., (Bianco et al.[[2018]) for
image recognition, (Wang et al.[|2020)) for crime forecasting, (Witczak et al.[2006]) for fault diagnosis.

None of these benchmarks deals with NN implemented in R packages, which is the aim of this paper. We
follow the general principles of (Prechelt et al.|[1994) to conduct our benchmark: validity, reproducibility and
comparability. Furthermore, we also use from (Prechelt et al.|[1994]) other rules such as input scaling, error
measure, NN naming convention, and NN random initialization.

A neural network algorithm requires complicated calculations to improve the model control parameters. As
with other optimization problems, the gradient of the chosen cost function indicates the model’s lack of
suitability. Optimization methods improve the current iterate by changing the parameters in the opposite of
the gradient direction generally with an adaptive step. This yields so-called first-order methods where both
the function to be optimized and its gradient. Parameters for the model are generally obtained by using part
of the available data (a training set) and tested on the remaining data. Modern software allows much of this
work, including approximation of the gradient, to be carried out without a large effort by the user.

The training process can generally be made more efficient if we can also approximate second-order derivatives
of the cost function, allowing us to use its curvature via the Hessian matrix. This yields so-called second-order
methods using the function, its gradient and its Hessian matrix. There are a large number of approaches, of
which quasi-Newton algorithms are perhaps the most common and useful. Within this group, methods based
on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm for updating the (inverse) Hessian approximation
provide several well-known examples. In conducting this study, we hypothesize that these second-order
algorithms should perform better than first-order methods for datasets that fit in memory.

To test our hypothesis, we conduct a thorough examination of these training algorithms in R. There are many
packages, but there is a dearth of information that would allow users to make an informed decision. Our
work aims to provide a framework for benchmarking neural network packages. We focus our examination to
neural networks of the perceptron type which consist of one input layer, one normalized layer, one hidden
layer with a non-linear activation function and one output layer.

A second aim of this paper is to provide ease-of-use scores to help users find the appropriate package according
to their needs. Examples of usage for each package are also provided on-line at https://theairbend3r,
github.io/NNbenchmarkWeb/index.html via html templates.

Specifically, we focus only on regression-based algorithms. The criteria used in our benchmark were: (i)
accuracy, i.e. the ability to find the global minima on 13 datasets, measured by the Root Mean Square
Error (RMSE) in a fixed number of iterations; (ii) speed of the training algorithm; (iii) availability of helpful
utilities; (iv) quality of the documentation.

https://theairbend3r.github.io/NNbenchmarkWeb/index.html
https://theairbend3r.github.io/NNbenchmarkWeb/index.html

A PREPRINT - DECEMBER 6, 2022

offset=1
offset=1

offset=1 tanh1

(¢) NN 5-5N-3-1N-1 with normalized in-
(a) NN 1-3-1 (b) NN 5-3-1 puts/outputs

Figure 1: Three neural networks using the NN a-b-c¢ notation

2 Multilayer perceptron with a single hidden layer

In this section, we briefly describe the single hidden-layer perceptron. While some of the jargon arising comes
from graph representations of models, others derive from the traditional literature on non-linear models.

We refer to [Friedman et al. (2001)[Chapter 11], (2008))[Chapter 10] and (2007)) for a general

introduction of neural networks.

Using the graph description, e.g. Fig. a single-hidden layer neural network is made up of 3 parts: (i)
layer of the input(s), (ii) hidden layer which consists of independent neurons, each of them performing two
operations: a linear combination of the inputs plus an offset followed by a non-linear function, (iii) output
layer which is a linear combination of the output of the previous layer. We introduce a generic notation NN
a-b-c for a neural network with a inputs, b hidden neurons and ¢ outputs. If inputs or outputs are normalized,
we interleave either aN or ¢N in the notation.

The non-linear function used in the hidden layer must have the following four properties: continuous,
differentiable, monotonic, and bounded. The logistic (invlogit), hyperbolic tangent (tanh) and arctangent
(atan) functions are the usual candidates.

The resulting model has the following generic expression

d 14
Yy =ai + Z(J%l X f(ajg + Zaj,Q-‘rl X l’l),

j=1 =1

with p inputs, d hidden neurons and f as the activation function. The total number of parameters to be
estimated is 1 + d(2 + p) The neural network depicted Fig. corresponds to p =1, d = 3 and f = tanh
for a total of 10 parameters, whereas the neural network depicted Fig. corresponds to p =5, d = 3 and
f = atan for a total of 22 parameters.

In practice, modelers also use piecewise differentiable functions with bounded left /right derivatives, such as
the Rectified Linear Unit function (called ReLU in software). The ReLU activation function is in particular
useful for classification problems which are not investigated here.

While the final gradient should be small, we believe it is helpful to have gradients with large values at the
first steps of the training algorithm, so the following is recommended: (i) normalized inputs and outputs
(Fig. |Ld contains Nx nodes after inputs and before outputs}), (ii) odd functions like the hyperbolic tangent
function or the arctangent function, (iii) small random values to initialize the parameters. A common
example of this is to use values extracted from a centered Gaussian A(0,0.1) distribution. When normalizing
input /outputs, inputs z; are replaced by Fy(x;) and output by Fy'(y) where Fiy and Fy' stand respectively
for the distribution function and the quantile function of a Gaussian distribution. These practices help us
find good local-minima and possibly a global-minimum.

A PREPRINT - DECEMBER 6, 2022

The dataset used for training is assumed to have the number of rows much larger than the number of
parameters. While “much larger” is subjective, values of 3 to 5 are generally accepted (in experimental design,
some iterative strategies start with a dataset having a number of distinct experiments equal to 1.8 times the
number of parameters and then increase the number of experiments to fine-tune the model).

It is clear from the mathematical formula above that neural networks of perceptron type are non-linear
models which require training algorithms that can handle (highly) non-linear models for their parameter
estimation. Indeed, the intrinsic and parametric curvatures of such models are usually very high and with so
many parameters, the Jacobian matrix might exhibit some co-linearities between its columns and become
nearly singular. As a result, appropriate algorithms for such dataset:model pairs are rather limited and
well-known. They pertain to the class of second-order algorithms such as the BFGS algorithm which is
Quasi-Newton in how it updates the approximate inverse Hessian or the Levenberg-Marquardt algorithm
which stabilizes the Gauss-Newton search direction at every iteration, e.g. (Bonnans et al.|2006, Nocedal &
Wright|[2006)).

Unfortunately, due to certain didactic tools on backpropagation and recent popularity of “deep neural
networks” that manipulate ultra-large models (sometimes more parameters than examples in the datasets),
many papers emphasize the use of first-order gradient algorithms, with the consequence that some R packages
have implemented such algorithms. In the case of the perceptron, we contend this is an oversight, and
provide evidence to that effect in this paper. We refer interested readers to (Tan & Lim|[2019) for a review of
second-order algorithms for neural networks and their potential benefits over first-order methods.

3 Methodology

3.1 Convergence and termination

Most of package:algorithm pairs try to minimize the Root Mean Squared Error (RMSE) during the training
step. Two exceptions are the brnn package which minimizes the RMSE plus the sum of the parameters
(hence the name Bayesian Regularized neural network), and the qrnn package which performs quantile
regression. For all packages, the datasets were learnt as a whole and without any weighting scheme to favor a
single part of a dataset. We do not use a validation/test set because the purpose of our study is to verify the
ability to reach good minima. This requirement is satisfied by using only a training set.

When training neural networks, we attempt to tune a set of hyperparameters to minimize the RMSE. When
our method for such adjustment can no longer reduce the RMSE, we say that the given algorithm terminated.
We consider the method to have converged when termination is not due to some exceptional situation and
the final RMSE value is relatively smalﬂ In practice, some algorithms require that we stop the optimization
process in exceptional situations (e.g., a divide by zero), or a pre-set limit on the number of steps or a
maximum elapsed time is reached.

Specifically, second-order algorithms are all set to a maximum of 200 iterations. On the other hand,
first-order algorithms used several iteration limits depending on how well and how fast they converged:
maxitlstorderA=1000 iterations, maxitlstorderB=10000 iterations, and maxitlstorderC=100000 itera-
tions. The full list of the maximum iteration number by package:algorithm is given in Table[5|in Appendix
D. It can be seen that we were unable to completely harmonize the hyperparameters as the appropriate
learning rate differed between packages, despite the algorithms being similarly named. Using a manual grid
search, we did our best to find the best learning rate and maxit for each package:algorithm, especially for
first-order algorithms where different maxit values were used.

3.2 Performance

We measure performance primarily by relative computing time between methods on a particular computing
platform. We could count the precise number of iterations, function evaluations or similar quantities that
indicate the computing effort, but this would have required a large effort in R coding in order to get values
that are comparable between NN packages. We note that differences in machine architecture and in the
attached libraries (e.g., BLAS choices for R) will modify our performance measure. We are putting our tools
on a Github repository so that further evaluation can be made by ourselves and others as hardware and
software evolves.

We do not choose the mean absolute error (MAE) for overall ranking nor for convergence testing as there is a lack
of consensus in the literature, see e.g. |Willmott & Matsuura (2005), |Chai & Draxler| (2014]).

A PREPRINT - DECEMBER 6, 2022

The majority of the resulting files in our repository were generated on a Windows system build 10.0.18362.752.
The machine specifications are (i) i7-8750H CPU, (ii) Intel(R) UHD Graphics 630, (iii) NVIDIA GeForce
GTX 1060 chip, (iv) 16 GB of RAM.

Tests were also performed on other platforms and the computation times were found to be reasonably similar.

3.3 Phase 1 - Preparation of benchmark datasets and selection of packages

Datasets

A non-iterative calculation such as Ordinary Least Squares cannot generally be used to model all the datasets
in our evaluation set. Varying levels of difficulty in modeling the different data sets are intended to allow us
to further classify different algorithms and the packages that implement them. As we focus on regression
analysis, we select only datasets where the response variable is real-valued.

Sonja Surjanovic and Derek Bingham of Simon Fraser University created a useful website from which three
of the multivariate datasets were drawn. We note the link, name and difficulty level of the three datasets:

e http://www.sfu.ca/~ssurjano/fried.html: mFriedman, Friedman’s dataset, published in
(Friedman|[1991)) (average difficulty),

e http://www.sfu.ca/~ssurjano/detpeplOcurv.html: mDette, Dette’s dataset, published in (Dette
& Pepelyshev|2010) (medium difficulty),

e http://www.sfu.ca/~ssurjano/ishigami.html: mIshigami, Ishigami’s dataset, published in
(Ishigami & Homma|[1990) (high difficulty).

The last multivariate dataset, mRef153, was used to teach neural networks at ESPCI (The City of Paris
Industrial Physics and Chemistry Higher Educational Institution, https://www.neurones.espci.fr/) from
2003 to 2013 and is available in the proprietary software Neuro One at http://www.inmodelia.com/software,
html. This dataset presents some interesting non-linear features.

uDreyfusl is a pure neural network which has no error. This can make it difficult for algorithms that assume
an error exists. uDreyfus?2 is uDreyfusl with errors. Both are considered to be of low difficulty and used to
teach neural networks at ESPCI from 1991 to 2013. uDmod1 and uDmod2 are univariate datasets with few
observations but exhibit high non-linear patterns and prove to be very challenging datasets. The parameters
are highly correlated and singular Jacobian matrices often appear.

Three of the univariate datasets were taken from the US National Institute for Standards and Technol-
ogy (NIST) website: https://www.itl.nist.gov/div898/strd/nls/nls_main.shtmll These are uGaussi,
uGauss2 and uGauss3 published in (Rust|[1996dblc, resp.) and were created by NIST to assess non-linear
least squares regressions of low, low and medium difficulty respectively.

The last univariate dataset, uNeuroOne, was also used to teach the same course and is now available in the
proprietary software NeuroOne at http://www.inmodelia.com/software.htmll In Table[I] we list some
information on each dataset used in the first round of our analysis: the number of neurons and the induced
number of parameters are available in the last two columns.

Finally, we consider a Simon Wood test dataset, named bWoodN1, used in (Wood||2011) for benchmarking
generalized additive models. As in (Wood|[2011)), we consider the generation of Gaussian random variates Y;,
i=1,...,n, with a mean p,; depending non-linearly on real covariates x; ; and a standard deviation o = 1/4.
Precisely, the mean is computed as

i =1+ fo(xio) + fi(win) + fo(wio) + fa(ziz) + fa(zia) + fo(zis),

where f; are Simon Wood’s smooth non-linear functions defined in Appendix B (with the first and last terms
using fo), x; ; are uniform variates and n = 20,000. bWoodN1 will only be used in the second round of our
analysis when the TOP-5 packages will be further analyzed with 5 neurons resulting in 41 parameters.

To build the final result table, we selected all four multivariate datasets and 4 out of the 8 univariate datasets
so that the overall score does not overly weight the univariate datasets. Note that the 2020 GSoC results are
available in Section 1 of the supplementary materials, (Mahdi et al|2021). Furthermore the 2019 GSoC code
uses all 12 datasets. For convenience, all datasets are made available in NNbenchmark, so that anyone can
replicate our analysis.

http://www.sfu.ca/~ssurjano/fried.html
http://www.sfu.ca/~ssurjano/detpep10curv.html
http://www.sfu.ca/~ssurjano/ishigami.html
https://www.neurones.espci.fr/
http://www.inmodelia.com/software.html
http://www.inmodelia.com/software.html
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
http://www.inmodelia.com/software.html

A PREPRINT - DECEMBER 6, 2022

Table 1: Datasets’ summary

Dataset Row nb. Input nb. Neuron nb. Param. nb.

Multivariate
mDette 500 3 5 26
mFriedman 500 5 5 36
mlshigami 500 3 10 51
mRefl53 153 5 22

Univariate
uDmod1 51 1 6 19
uDmod2 51 1 5 16
uDreyfusl 51 1 3 10
uDreyfus2 51 1 3 10
uGaussl 250 1 5 16
uGauss2 250 1 4 13
uGauss3 250 1 4 13
uNeuroOne 51 1 2 7

Packages

Using RWsearch (Kiener|[2020]), we sought to automate the process of searching for neural network packages.
All packages that have “neural network” as a keyword in the package title or in the package description were
included.

As of May 2020, around 80 packages fall into this category. Packages nlsr, minpack.lm, caret were added
because the former two are important implementations of second-order algorithms while the last is the first
cited meta package in the CRAN task view for machine learning, MachineLearning. It is also a dependency
for some of the other packages tested. A restriction to regression analysis left us with 49 package:algorithm
pairs in 2019 and 60 package:algorithm pairs in 2020.

3.4 Phase 2 - Review of packages and development of a benchmarking template

All packages were tested 3 times. Each assessment is described in detail below.
1. The decision to exclude or include

From documentation and example code, we learned that not all packages selected by the automated search fit
the scope of our research. Some have no function to generate neural networks while others were not regression
neural networks of the perceptron type or were only intended for very specific purposes such as in biology or
in astronomy. Our decision could sometimes be made from the DESCRIPTION file; for others we needed trial
and error. We refer to Table [6] in Appendix D for the full list of discarded packages.

2. Templates for testing accuracy and speed

While inspecting the packages, we slowly developed a template for benchmarking that evolved over time.
The final structure of this template (for each package) is as follows:

1. Set up the test environment - loading of packages, setting working directory and options;
2. Summary of tested datasets;
3. Loop over datasets:

setting parameters for a specific dataset,

selecting benchmark options,

training a neural network with a tuned function for each package,
calculation of convergence metrics (RMSE, MAE, WAE

plot each training over one initial graph, then plot the best result,
add results to the appropriate existing record (*.csv file) and
clear the environment for next loop.

© w0 TP

4. Clear up the environment for the next package.

To simplify this process, we developed the NNbenchmark package, of which the first version was created as
part of GSoC’19, containing testing functions and datasets. In GSoC’20, 3 new functions encapsulating the

%We measure the quality of our model by RMSE, but the mean absolute error (MAE) and the worst absolute error
(WAE) may help distinguish packages with close RMSE values. See Appendix A for definition of convergence metrics.

A PREPRINT - DECEMBER 6, 2022

template were added that have been made generic with the extensive use of the do.call function from the
base package:

1. In trainPredict_1imthidata a neural network is trained on one dataset and then used for predictions,
with several utilities. Then the performance of the neural network is exported, plotted and/or
summarized.

2. trainPredict_ldata serves as a wrapper function for trainPredict_imthldata for multiple meth-
ods.

3. trainPredict_1pkg serves as a wrapper function for trainPredict_1imthidata for multiple datasets.

For this paper, the training process (3.b to 3.g) is carried out with NNbenchmark’s trainPredict_1pkg
using the NNsummary function to report convergence metrics and speed.} The package repository is at
https://github.com/pkR-pkR/NNbenchmark, with template repository at https://github.com/pkR-pkR/
NNbenchmarkTemplates) and outputs per package at https://theairbend3r.github.io/NNbenchmarkWeb/
index.html. A usage example trainPredict_1pkg is given in Appendix C, where nnet is tested on the fifth
dataset uDmod1: hyperParams.nnet () sets up hyperparameters, NNtrain.nnet () is a wrapper of the fitting
procedure nnet: :nnet, NNpredict.nnet () is a wrapper of the predicting function, while NNclose.nnet ()
terminates the call. Finally, trainPredict_1pkg is called using these 5 dedicated functions and a list of
input parameters.

3. Scoring the ease of use

We define ease-of-use measures to rate NN packages on their user-friendliness. Based on our understanding of
what a user may be required to know or do when using a neural network package, we consider: (i) a measure
for the availability of appropriate utility functions (i) a measure for (non-trivial) examples (iii) a sufficient
documentation (well-written manual, vignette(s)) (iv) a measure to rate the clarity of the R call to fit a given
neural network.

Our ratings are as follows.

1. Utilities in R to deal with NN

a. a predict function exists = 1 star
b. scaling capabilities exist in the package = 1 star

2. Sufficient and reliable documentation

a. the existence of useful and relevant example(s)/vignette(s)

e clear, with regression = 2 stars
e unclear, examples use iris or are for classification only = 1 star
e no examples = 0 stars

b. input/output is clearly documented, e.g., what values are expected and returned by a function

e clear input and output = 2 stars
e only one is clear = 1 star
e both are not documented = 0 stars

3. User-friendly call to fit a NN

a. a single function with arguments passed as character, numeric, boolean or formula; and data as
a data.frame or a matrix = 2 stars

b. a single function with model specification passed as a list or via a dedicated function; or data
converted in a dedicated S3/S4 object = 1 star

c. multiple functions for initializing-converting-fitting = 0 star

Hence, the utility rating gives an indication to users if the package includes a predict function and/or a
standardizing argument. It is worth mentioning many R packages provide standardizing functions. Indeed,
bdpar, binst, dataprep, discretization, helda, PreProcessing, preputils, and recipes offer general
data pre-processing functions, and there are many more packages providing topic specific pre-processing. We
do not consider in this paper any of these packages and only rate pre-processing functions within a package.
Furthermore, to inform users about the usability of packages, the documentation measure ranges from 0 to 4
stars, while the utility and the R call range from 0 to 2 stars.

https://github.com/pkR-pkR/NNbenchmark
https://github.com/pkR-pkR/NNbenchmarkTemplates
https://github.com/pkR-pkR/NNbenchmarkTemplates
https://theairbend3r.github.io/NNbenchmarkWeb/index.html
https://theairbend3r.github.io/NNbenchmarkWeb/index.html

A PREPRINT - DECEMBER 6, 2022

3.5 Phase 3 - Collection of and analysis of results
3.5.1 Results collection

Looping over the datasets using each package template, we collected results in the relevant package directories
that rests in the templates repository. A large number of runs were carried out in order to obtain the best
result for every package.

3.5.2 Analysis

To rank the speed and quality of convergence, we have devised the following method:

1. The results datasets are loaded into the R environment as one large list. The dataset names,
package:algorithm names and all 10 run numbers, durations, and RMSE are extracted from that
list.

2. For the duration score (DUR), the duration is averaged by dataset. 3 criteria for the RMSE score by
dataset are calculated:

a. The minimum value of RMSE for each package:algorithm as a measure of their best perfor-
mance;

b. The median value of RMSE for each package:algorithm as a measure of their average perfor-
mance, without the influence of outliers;

c¢. The spread of the RMSE values for each package which is measured by the difference between
the median and the minimum RMSE (subsequently referred to as RMSE D51).

3. Then, the ranks are calculated for every dataset and the results are merged into one wide dataframe.

a. The duration rank only depends on the duration;

b. For minimum RMSE values, ties are decided by duration mean, then the RMSE median;

c. For median RMSE values, ties are decided by the RMSE minimum, then the duration mean;
d. The RMSE D51 rank only depends on itself.

4. A global score over all datasets is computed by summing the ranks (of duration, minimum RMSE,
median RMSE, RMSE D51) of each package:algorithm for each dataset.

5. The final table is the result of ranking by the global minimum RMSE scores for each
package:algorithm.

4 Results, discussion and recommendations

Table 2] gives the RMSE and time score per package and per algorithm, whereas Table [3] gives Utility,
Documentation and Call scores per package. The full list of scores is given in Table [5| in Appendix D.
Figure [2] shows the minimum RMSE value per package:algorithm for two particular datasets mIshigami
and uDreyfusi, whereas Figure [3| displays the average computation time. The number on the x-level refers
to the RMSE overall score of the package:algorithm given in Table [2| (last column), e.g., 8 refers to
validann:optim(CG) which is a very slow algorithm as depicted in Fig.

Both figures show that a good overall score does not necessarily imply a good performance on the two datasets
under consideration. Furthermore, there is a break between the TOP-10 package:algorithm and others
in terms of RMSE value. In Section 1.13 of the supplementary materials, (Mahdi et al./2021)), the score
probabilities per package:algorithm also provides some insight into the robustness of the overall score.

Regarding computation time, we observe that some package:algorithm pairs are very slow and have poor
RMSE, e.g. 41 corresponding to AMORE:BATCHgd. In the following, we divide our analysis in two groups:
packages implementing second-order algorithms and packages implementing first-order algorithms. Finally,
we list the reasons for discarded packages.

4.1 Second-order algorithms

Of all approaches, the following second-order algorithms generally performed better in terms of convergence
despite being limited to 1/5" or fewer iterations than the first-order algorithms.

We note that 11 out of 15 of these package:algorithms use optim from stats. Two of them, CaDENCE's
BFGS (Cannon![2017@) and validann’s BFGS and L-BFGS-B (Humphrey||2017), make the call directly.
However, it is not clearly stated in CaDENCE’s documentation that optim’s BEFGS method has been chosen

A PREPRINT - DECEMBER 6, 2022

RMSE minimum (per dataset) against RMSE score (global)

mishigami uDreyfus1
4 -
29 47 55
0.4 50 60
57 53
60 45
3 58y 3g 484 %6589
54 42 47 49 52
25 44 48 582 55 0.3 32
- 30 413 46 56 16 35 54
40 3 a3
RMSE 24 40 57
2 0.2 29
27 39 34 .
48
26 531
® 2 * 0.1 14 2% 39
36 21 28 41
14 911 20 - 10 233G 1 5
18315, 23 34 31 27
G7 a5 38 45 53
12 458 810 14 21224 383 1 15 23 46
3 1 20
7 00 J 123456'890'%3 1Ty
I I RMSE score I I I I RMSE score I
0 20 60 0 60

Figure 2: RMSE minimum value per package for mIshigami and uDreyfus1 datasets. The left-bottom corner

identifies better results.

Mean time (per dataset) against RMSE score (global)

mishigami uDreyfus1
60 —
8 25 — 8
50 |
20
41
40 |
50
15
Time 3g 37 40
29 3 39 a7 10 40
20 -
9 41 55 .
| 5 23 39 sgﬁ 59
10 17 27 52 56750 12 50
5 ' 234 SLIYS 44
31 36 4384 g 27 423
489 17 g2 57
0 T234 67 101 14361798% 2862830 3335 35 488"%"51584 5860 | 0 - 1234567 101'14961720220096288032335 38 4?@;43 5%54 *Zaso
! ! RMSE score ' ' ' ! RMSE score '
0 60 0 60

Figure 3: Average time value per package for mIshigami

identifies better results.

and uDreyfus1 datasets. The left-bottom corner

A PREPRINT - DECEMBER 6, 2022

Table 2: Results of Tested Packages (sorted by best RMSE score per package)

Global score Global score
Package Algorithm Time RMSE Package Algorithm Time RMSE
nlsr 41. NashLM 18 1 8. trainwgrad__adam 50 18
. R automl 9. trainwgrad__RMSprop 47 26
rminer 45. nnet_optim(BFGS) 12 2 10. trainwpso 57 43
nnet 42. optim (BFGS) 3 3 deepnet 20. BP 23 18
56. opt?m(BFGS) 35 4 38. rprop+ 19 21
57. optim(CG) 60 8 37 rprop- 21 29
validann 58. optim(L-BFGS-B) 36 15 - rprob
. neuralnet 40. slr 31 31
59. optim(Nelder-Mead) 55 45 39. sag a1 38
60. optim(SANN) 20 55 36. backprop 37 50
MachineShop 32. nnet_optim(BFGS) 6 5 28, adamax 48 23
traineR 55. nnet_optim(BFGS) 4 6 27. adam 42 34
29. nadam 44 36
radiant.model 44. nnet_optim(BFGS) 10 7 keras 26. adagrad 58 37
monml 34. optimx(BFGS) 26 9 25. adadelta 59 40
p 35. optimx(Nelder-Mead) 32 47 31. sgd 48 44
30. rmsprop 37 52
12. optim(BFGS) 46 10
CaDENCE 14. Rprop 56 51 2. ADAPTgdwm 16 24
13. pso__psoptim 54 54 1. ADAPTgd 9 35
AMORE 4. BATCHgdwm 40 39
h2o 24. first-order 51 11 3. BATCHgd 39 41
EnsembleBase 23. nnet_optim(BFGS) 5 12 minpack.lm 33. Levenberg-Marquardt 15 24
caret 15. avNNet_nnet_optim(BFGS) 17 13 6. rmsprop 14 28
brnn 11. Gauss-Newton 8 14 ANN2 5. adam 13 33
7. sgd 11 42
qrnn 43. nlm() 28 16
16. adam 32 46
51. Rprop 24 17 d di 19. rmsProp 34 53
52. SCG 30 18 eepatve 18. momentum 53 56
53. Std__Backpropagation 22 27 17. gradientDescent 52 58
47. BackpropChunk 26 29 -
RSNNS 48. BackpropMomentum 25 30 snnR 54. SemiSmoothNewton 7 48
49. BackpropWeightDecay 29 31 elmNNRcpp 21. ELM 1 59
46. BackpropBatch 43 49
50. Quickprop 45 57 ELMR 22. ELM 2 60
Note: Statistics over 10 runs. Note: Statistics over 10 runs.

rather than one of the other four methods. Furthermore, the mention of Nelder-Mead in the documentation
suggests that optim’s Nelder-Mead method is used. Speed and variation between results for CaDENCE
are also not as good as other packages that use optim. This could be because CaDENCE is intended for
probabilistic non-linear models with a full title of “Conditional Density Estimation Network Construction
and Evaluation”.

By contrast, validann is clearly a package that allows a user to use all optim’s algorithms. wvali-
dann : L-BFGS-B ranks mostly lower than validann : BFGS, despite the former method being more sophisticated.
We believe this is due to our efforts to harmonize parameters, thereby under-utilizing the possibilities of the
L-BFGS-B algorithm. Both CaDENCE and validann’s BFGS are outperformed by nnet, especially in
terms of speed.

nnet (Ripley|[2020) differs from the two packages above because it uses the C code for BFGS (vmmin.c) from
optim (converted earlier from Pascal) directly instead of calling optim from R. This may be what allows it to
be faster, but limits the optimization to the single method. nnet is only beaten by the Extreme Learning
Machine (ELM) algorithms in terms of speed. However, there is a larger variation between results (see the
RMSE D51 in Appendix D) in comparison to validann:BFGS. We believe the different default starting values
are the cause of this. For instance, nnet uses a range of initial random weights of 0.7 while validann uses
a value of 0.5. In spite of these results, the real reason most authors or users are likely to choose nnet is
because it is included in the distributed base R and is even mentioned as the very first package in CRAN’s
task view for machine learning (MachineLearning).

10

A PREPRINT - DECEMBER 6, 2022

Table 3: Ease of Use Scores of Tested Packages

Individual score Input allowed

Package Util Doc Call Formula XY Comments

AMORE * Hokx * no yes train() needs a call to newff() for model specification.

ANNZ2 Hk Hkx *ok no yes neuralnetwork() needs only character, numeric, boolean but train()
needs neuralnetwork().

automl & B3 & no yes automl_train__manual() needs a list for model specification.

brnn *x HAAK ** yes yes brnn() needs only character, numeric, boolean or a formula.

CaDENCE Hx Hkok * no yes cadence.fit() needs a list, numeric, boolean.

caret Hx Hoxk Hx yes yes avNNet() needs only character, numeric, boolean or a formula.

deepdive ** o *k no yes deepnet() needs only character, numeric, boolean.

deepnet * Hokx *ok no yes nn.train() needs only character, numeric, boolean.

elmNNRcpp R B E no yes elm_ train() needs only character, numeric, boolean.

ELMR *k Hokx *ok yes yes OSelm__ train.formula() needs a formula, data.frame, but
Oselm__training() needs matrix, numeric.

EnsembleBase e & e yes no Regression.Batch.Fit() needs a function for model specification and a
formula.

h2o Hx Hx * no yes h2o.deeplearning() needs character, boolean, numeric and a dedicated
function to convert data in S3.

keras R < no yes fit() needs multiple functions : keras model() for model specification
and compile() to initiate model.

MachineShop * Hkx * yes yes fit() needs NnetModel() for model specification but also allows
formula / matrix / recipe / MLModel.

minpack.lm & B £ yes no nlsLM() needs a formula, data.frame and list for control parameters.

monmlp ** FHk ** no yes monmlp.fit() needs only character, numeric, boolean.

neuralnet * EEE Hk yes no neuralnet() needs formula, data.frame, boolean, character.

nlsr * HoAAK * yes no nlxb() needs a formula, data.frame and list for control parameters.

nnet * Fkk ** yes yes nnet() needs only character, numeric, boolean or a formula.

qrnn Hx Foxk Hx no yes grnn.fit() needs only character, numeric, boolean.

radiant.model ks ks g no yes nn() needs only character, numeric, matrix.

rminer *x Fkok *k no yes fit() needs a formula, data.frame, character and numeric.

RSNNS xS BE o no yes mlp() needs only character, numeric, boolean.

snnR *x *x ** no yes snnR() needs only character, numeric. Package archived.

traineR o X S yes no train.nnet() needs a formula, data.frame, numeric, boolean.

validann * Hkokok Hx no yes ann() needs only character, numeric.

Our analysis found that 6 out of 11 packages tested that use optim do so through nnet. Moreover, 8 packages
for neural networks, though not tested, use nnet.

The total number of nnet dependencies found through a search through the offline database of CRAN with
RWsearch is 136 packages, although some might be using nnet for the multinomial log-linear models, not
neural networks.

The packages that use nnet for neural networks are often meta packages with a host of other machine learning
algorithms. caret (Kuhn/2020), also mentioned in the task-view, boasts 238 methods with 13 different neural
network packages, under a deceivingly simple name of “Classification and Regression Training”. It has many
pre-processing utilities available, as well as other tools.

EnsembleBase (Mahani & Sharabiani||2016) may be useful for those who wish to make model ensembles
and test a grid of parameters, although the documentation is rather confusing. MachineShop (Smith|2020)
has 51 algorithms, with some additional information about the response variable types in the second vignette,
functions for preprocessing and tuning, performance assessment, and presentation of results. radiant.model
(Nijs/2020) has an unalterable maxit of 10000 in the original package. We changed this to harmonize the
maxit parameter. rminer (Cortez [2020) is the only package dependent on nnet that ranks above nnet at
number 2 for minimum RMSE, and even number 1 in some runs. It also ranks number 1 on the other accuracy
measures (median RMSE, minimum MAE, minimum WAE). Furthermore it is only behind deepdive and
minpack.lm in terms of accuracy that is consistent and does not vary (measured by RMSE D51).

The difference of rminer’s rank in metrics is probably from the change of maximum allowable weights in
rminer to 10000 from 1000 in nnet, which is also probably the reason its fits are slower. traineR (Rodriguez
R.|[2019)) claims to unify the different methods of creating models between several learning algorithms.

It is worth noting is that nnet and validann do not have external normalization, which is especially
recommended for validann. However, some of the packages dependent on nnet do have this capability and
it is included in the scoring for ease of use. With NINbenchmark, this is done through setting scale =

11

A PREPRINT - DECEMBER 6, 2022

TRUE in the function prepare.ZZ. Note that use of scaling may complicate the application of constraints, so
not be worth the effort for some users. Nevertheless, users might want scaling, or at least to have a clear
explanation of the method chosen to center the variables. Scaling of both function and parameters is one of
the features that optimx (Nash & Varadhan||2020) incorporates, as some optimization algorithms can work
significantly better on scaled problems (Nash!2014]).

Of all the packages, only monmlp (Cannon|2017b) calls optimx. Since the calls are for BFGS and Nelder-
Mead, they could do better to call optim directly, though the door is open to other optimization methods
in optimx. However, the author, Alex J. Cannon who is also the author of CaDENCE, has created a
package meant to fill a certain niche, namely for multi-layer perceptrons with optional partial monotonicity
constraints. GAM-style effect plots are also an interesting feature. Another package by Alex Cannon is qrnn
(Cannon|2019) which uses yet another algorithm: nlm, a “Newton-type” algorithm, from stats. Although
its performance is at the bottom of second-order algorithms, sometimes even being beaten by first-order
algorithms, this could also be because of the intended use of the package compared to the tests here. qrnn is
designed for quantile regression neural networks, with several options. Alex Cannon has included automatic
scaling for all 3 of his packages, as is clearly documented.

Non-linear least square estimation can be performed via nls from stats, which defaults to an implementation
of the second-order algorithm referred to as Gauss-Newton. However, in its documentation, nls before version
4.1 warned against “zero-residual” or even small residual problems (Nash 2014, sec. 6.4.1)). This was one of the
motivations for nslr (Nash & Murdoch|2019)). nlsr uses a variant (Nash|[1977) of the Levenberg-Marquardt
algorithm versus the plain Gauss-Newton of nls, modifies the relative offset convergence criterion to avoid a
zero divide when residuals are small and can handle a degenerate Jacobian at the first iteration.

minpack.lm (Elzhov et al|2016)) offers another Marquardt approach. While} nlsr is entirely in R, and also
allows for symbolic or automatic derivatives (which are not relevant to the present study), minpack.lm uses
compiled Fortran and C code for some important computations. Its structure is also better adapted to use
features already available in nls that may be important for some uses.

Despite the 2 packages ultimately performing well on all runs (capable of being in the top 3 for RMSE as
good as packages using BFGS and not being slow), there are some reasons why users might hesitate to choose
them. First, both minpack.lm and nlsr require the full formula of the neural network including variables
and parameters. Second, they require good starting values to achieve the best convergence. Notice that in
Table 2] minpack.1lm does not have a high rank. This is because we removed the random Gaussian start
values we had originally used; this suggests that the default start values of minpack.1lm were not appropriate
for our datasets.

We suspect nlsr’s performance on convergence would have similarly dropped if it was possible to use nlsr
with no user-set starting values and the author’s chosen default values were inadequate. nls deals with this
by suggesting a companion function in stats, selfStart. Furthermore}, both packages were able to find
better minima when the dataset was scaled. With no starting values and no scaling, minpack.1lm:nlsLM fails
on uNeuroOne but performance is better on Friedman & Ishigami datasets. On the other hand, with no start
values and no scaling, it fails on everything but mFriedman, mIshigami, uDmod2, and the Dreyfus datasets.
Similarly, there is also a notable drop in performance for nlsr without scaling on the Gauss datasets and
mRef153. To conclude, both packages provide algorithms that are capable of doing well on our datasets, but
may not be suitable for less experienced users. The vignettes for nlsr and earlier book (Nash|2014) may be
useful.

brnn (Rodriguez & Gianolal|2020)) is an implementation of the Gauss-Newton algorithm in R that does not
rely on nls or nlm from stats. Although it is well-documented and has good speed, brnn’s implementation
of the Gauss-Newton algorithm still ranks below some of the previously mentioned BFGS and Levenberg-
Marquardt tools in terms of its global minimum RMSE. We found 2 reasons that we believe to be the cause
of this. First, its model uses one parameter fewer than the other algorithms. Only datasets uDreyfusl and
uDreyfus2 which are purely 3 hidden neurons ignore the first term. Second, brnn does not minimize the
sum of squares of the errors but the sum of squares of the errors plus a penalty on the parameters. In certain
circumstances — especially with an almost singular Jacobian matrix as with mDette, mIshigami, mRef153,
uGauss3, and uNeuroOne — this will avoid issues with highly correlated parameters.

The only second-order algorithm which we are unable to recommended from the results of our research
is snnR (Wang et al.[2017). It ranked among the 10 worst algorithms for minimum RMSE out of all 60
algorithms, but this package, focusing on Sparse neural networks} for Genomic Selection in Animal Breeding,
might prove useful in that perspective.

12

A PREPRINT - DECEMBER 6, 2022

4.2 Lower-order algorithms

Packages with first-order algorithms can be broadly categorized into 2 types: (a) those that allow for one
hidden layer (b) those that allow for more than one hidden layer.

A. One hidden layer

The first category is comprised of either packages that also include second-order algorithms previously
discussed or packages that use the Extreme Learning Machine algorithm. Only 2 packages include both
second-order algorithms and a lower-order algorithm, that is, monmlp and validann.

monmlp has one algorithm besides BFGS, that is, optimx’s Nelder-Mead. validann provides the same
algorithm but from optim. validann’s implementation is slower, as before, but ranks slightly better for
minimum RMSE. Both implementations of Nelder-Mead do not rank well in minimum RMSE, around 40 out
of 60, with similar ranks for the other criteria. We would also caution users to avoid methods that do not call
optim in validann. From Table [2] it may appear that validann’s implementation of the Conjugate Gradient
(CG) algorithm finds reasonable minima and is thus} a good option. It consistently ranked in the top 15
with minimum RMSE. However, it is the slowest algorithm of all 60 algorithms tested. Note, this includes
algorithms from packages that call external libraries outside R in Python or Java and packages that use as
many as 100,000 iterations.

On the other hand, validann’s SANN algorithm is relatively worse than other packages as it ranks at number
55 for minimum RMSE although it is in the top one third for speed (rank 20). Nash| (2014) [page 186] notes
the lack of a proper convergence criteria for SANN.

Packages that implement the ELMR algorithm are similar to SANN from validann in the sense that they are
faster but do not converge as well as other package’s algorithms. The 2 packages that do so, elmNNRcpp
(Mouselimis & Gosso|[2020) and ELMR. (Petrozziello|2015)) are, respectively, number 1 and number 2 in the
ranks for time but 59 and 60 (bottom 2) for minimum RMSE. ELMR converges slightly worse on all datasets
than elmNNRcpp but has noticeably worse performance on the Gauss datasets, especially uGauss1. Even
increasing the number of neurons did not lead to better convergence for those particular datasets.

B. More than one hidden layer

Following the trend of “deep learning”, the last 9 packages provide the option for more than one layer with a
first-order learning algorithm. Our results show that they are often either/both slower or worse at converging
than the second-order algorithms with the same number of neurons or layers than their counterparts. We
recommend choosing better algorithms over more layers for datasets similar to the ones we used.

Choosing more layers often comes at the expense of speed. An example of this is the implementation of the
first-order algorithm in h20 (LeDell et al.|2020). With the harmonized number of neurons, as used when
benchmarking all the other algorithms, its algorithm is already relatively slow - coming in at 51 out of the 60
algorithms.

With h20’s default of 2 hidden layers, each with 200 neurons, it takes around 10 minutes on mFriedman
with a minimum RMSE of 0.0022. On the other hand, nnet can find a minima of the error function with a
minimum RMSE of 0.0088 in less than a second with only one layer of 5 neurons. Thus, despite having a
ranking of 11 in minimum RMSE in the final run, beating some of the second-order algorithms, users of h20
should be wary of the trade off between performance and speed. Moreover, users might hesitate as it is not
actually clear what algorithm is used. The large number of options to choose from seem capable of changing
the basic algorithm itself into what is considered a different algorithm by other packages. Some users may
also wish to avoid having to set up Java, which is needed for this package.

We had hoped to include tensorflow (Allaire & Tang[2020)) and its derivatives in our study. However, we
discovered incompatibilities between our benchmarking code and the external libraries needed to run this
package that led to R Session crashes that we have yet to resolve, even in version 2.2.0 of the package that
became available only late in our work.

tfestimators (Allaire et al.[2018) had also} similar issues and is even less supported. kerasR (Arnold
2017)), which provides a consistent interface to Keras, a Python API which provides an easier use interface to
TensorFlow, had the same issue. In the end, we tested the algorithms in keras (Allaire & Chollet|[2020) with
the hope that it would be able to represent the performance of the other packages.

keras has the second-most number of algorithms, a total of 7, with most of them being “adaptive” algorithms.
The highest ranking algorithm for minimum RMSE is adamax at 23 and the highest ranking algorithm for

13

A PREPRINT - DECEMBER 6, 2022

speed was rmsprop at 37 (quite slow). However, these results were achieved with a reasonable GPU so users
might want to decide on whether to use keras based on their own hardware specifications. Other algorithms
did not perform well in terms of minimum RMSE and the spread of RMSE represented by RMSE D51. As
keras has also many options available, including a convolutional layer for CNNs, more experienced users
may prefer it. On the other hand, just deciding the learning rate (the default was not appropriate for our
datasets) can be a real challenge.

The default learning rates in RSNNS (Bergmeir|2019)) were more appropriate to use directly. RSNNS is an
example of a package that directly wraps around an external library, the Stuttgart neural network Simulator
(SNNS), to provide an easy-to-use interface. This library is rather large with many implementations of neural
networks. It contains the largest number of algorithms tested at a total of 8. Algorithms Rprop and SCG, the
best for minimum RMSE, rank at 16 and 17 respectively which is good for a first-order algorithm. Speed for
Rprop is better but SCG’s results vary less.

Other packages

AMORE (Limas et al.[2020): Unfortunately, the focus of the paper behind this package, its unique point, is
not explained or documented well. An addition of some examples using the TAO option as the error criterion
would be helpful for using the TAO-robust learning algorithm, since this type of error measure is most useful
for data with outliers. The function for creating a dot file to use with http://www.graphviz.org|is also
interesting. ADAPT algorithms appear to perform better than the BATCH algorithms with the parameters
used in this research.

ANN2 (Lammers 2020): This package’s implementation of adam or rmsprop consistently ranked in the
top half for minimum RMSE which is good for a first-order algorithm. It is not as accurate as second-order
algorithms but all its algorithms are quite fast. C+4 code was used to enhance the speed. Functions for
autoencoding are included with anomaly detection in mind.

automl (Boulangé|2020)): There is no direct argument to choose an algorithm from this package. Instead
users must input 2 values into 2 separate arguments (betal and beta2) that will then determine which
algorithm is used. However, there are useful notes on what parameters have a higher tuning priority. The
package is rather slow (highest ranking algorithm for speed is RMSprop at 47) with good enough convergence
(highest ranking is adam at 18).

deepdive (Balakrishnan/2020): All algorithms are very good in terms of little variance between results (see
its RMSE D51 score). However, the results on convergence by minimum RMSE score are not as good with
the worst being gradientDescent which ranks 3rd from the bottom. There are few exported functions. The
novelty of this package is apparently in the deeptree and deepforest functions it provides.

deepnet (Rong||2014): This is one of the better performing implementations of the first-order algorithm
back-propagation, in comparison to RSNNS’s Std_ Backpropagation or neuralnet’s backprop, ranking at 18
for minimum RMSE. It is} relatively fast, ranking at 23 for speed.

neuralnet (Fritsch et al.|2019): Considering that this is the only package that uses 100000 iterations as
its maxit parameter (excluding BNN which is not included in the official ranks), it can be considered as
not recommended. Nonetheless, the default algorithm, rprop+ and the similar rprop-, managed to rank
20 and 21 respectively, out of 60 algorithms for minimum RMSE. These two also do not do badly in terms
of speed. Following, in order, are slr, sag, and traditional backprop as the worst at rank 48 out of 60 for
minimum RMSE. We found this package difficult to configure. Furthermore, it is a dependency for some
other packages, so those should be avoided if a user wishes to be confident in results.

4.3 Untested packages

A number of packages have been discarded from this study for at least one of the following reasons:

For regression but unsuitable for the scope of our research, coded RE in Table [6]
For time series, coded TS in Table [0}

For classification, coded CL in Table [6]

For specific application purpose, coded AP in Table [f]

For tools to complement NN’s by other packages, coded UT in Table

Not actually neural networks and other reasons, coded XX in Table d@

S oUW

The full list of untested packages is given in Table [6]in Appendix D.

14

http://www.graphviz.org

A PREPRINT - DECEMBER 6, 2022

Table 4: Performance on bWoodN1 dataset

Package Algorithm RMSE min RMSE median RMSE D51 MAE median ~ WAE median Time median
MachineShop 32. nnet_ optim 3.547 4.756 1.2100 3.901 16.02 3.40
nlsr 41. NashLM 3.548 4.706 1.1570 3.801 16.56 76.73
nnet 42. optim 3.550 4.706 1.1560 3.801 16.57 3.38
rminer 45. nnet__optim 3.366 3.688 0.3218 2.956 15.43 11.07
validann 56. optim 3.360 4.497 1.1370 3.711 15.89 140.80

Note: statistics taken over 20 runs; time in seconds.

4.4 Further analysis of TOP-5 packages

We performed a second round of analysis with a larger dataset and a focus on the TOP-5 packages given
in Table That is, we consider packages nlsr, rminer, nnet, validann with algorithm BFGS and
MachineShop. We applied the NN packages to Simon Wood’s Gaussian dataset, see bWoodN1 in the dataset
description, which contains 20,000 rows with 6 inputs valued in [0,1] for a (single) numeric output. Due to the
non-linear functions considered, see Appendix B, the link between the output and each explanatory variable
is highly non-linear which greatly affects the fitting time. Table [f] gives the performance metric over 20 runs
of these TOP-5 five packages on bWoodN1.

We observe that the minimum RMSE (over 20 runs) is very similar for all packages, with rminer and
validann a little ahead of the others. The metrics median RMSE and RMSE D51 reveal how consistent
rminer’s results are in comparison to other packages. This is further proved by the other metric norms:
WAE and MAE. However, regarding computation time rminer is the 3rd slowest with nlsr being the
2nd slowest and validann being the slowest of all. The best two in terms of speed in this class are nnet
and MachineShop. Nevertheless, these TOP-5 packages perform generally better than other packages,
see Section 2.1 of the supplementary materials, (Mahdi et al.[[2021]). In Section 2.1 of the supplementary
materials, we observe that only 2 packages (in the TOP10) have a RMSE minimum close to the RMSE of
TOP5 packages: CaDENCE and traineR. Hence, other non-TOP10 packages will be far worse on the bWoodN1
dataset.

Figures in Section 2.2 of the supplementary materials, (Mahdi et al.|2021)), provide some insight into where
a package performs reasonably well with respect to one explanatory variable and where the fit misses the
correct behavior of an explanatory variable.

5 Conclusion and perspective

This paper focuses on benchmarking neural network packages available on CRAN to recommend for or against
their use. Based on RWsearch’s outputs in 2019-2020, we selected 26 appropriate packages to analyze
in-depth and discarded the other 63 packages. Using NNbenchmark, we ranked 60 package:algorithm
pairs and are happy to note that most of them converge well enough within a reasonable time. Packages
reviewed appear to offer essentially the same methods, and second-order algorithms perform generally better
than first-order algorithms.

nnet, the most recommended package of our study, ranked third in terms of minimum RMSE, and is probably
the most efficient package. nnet is notably used by many other packages, such as MachineShop and
rminer respectively ranked fifth and second. MachineShop and rminer are also very good challengers in
our benchmark, in particular when considering a larger dataset. Other packages in the TOP-5, nlsr (the best
in terms of RMSE minimum) and validann are efficient packages but a little bit slower in our analysis.

However, we are disappointed that many of the packages we reviewed had poor documentation, notably
EnsembleBase and keras. We often found it difficult to discover what default starting values were used for
model parameters and/or to understand how to change the hyper-parameters.

As the field of neural networks evolves, there will be more algorithms to validate. For current algorithms
in R, our research should be extended to encompass more types of neural networks and their data formats
(classifier neural networks, recurrent neural networks, and so on). Different rating schemes and different
parameters for package functions can also be tried out.

Our work is available online through https://theairbend3r.github.io/NNbenchmarkWeb/index.html and
is entirely reproducible thanks to NNbenchmark. We hope users and package maintainers find our work

15

https://theairbend3r.github.io/NNbenchmarkWeb/index.html

A PREPRINT - DECEMBER 6, 2022

useful and will provide any necessary feedback. In the future, we plan to use a larger list of benchmark
datasets, such as the OpenML-CC18 database from https://www.openml.org/| available in R thanks to
the OpenML package. Ideally, we hope to generate such a benchmark on a regular basis as packages get
updated.}

6 Acknowledgements

This work was possible due to the support of the Google Summer of Code initiative for R during years 2019
and 2020. Students Salsabila Mahdi (2019 and 2020) and Akshaj Verma (2019) are grateful to Google for the
financial support. We also thank the three anonymous referees for their relevant advice and comments.

7 Appendix

7.1 Appendix A

Consider a set of observations y; and its corresponding predictions ¢; for ¢ = 1,...,n. The three metrics used
were:

1 — 1
MAE = = i — Gil, RMSE = =
= lvi = 3l -

i=1

. 1 .
> (i — i) WAE =~ max |y; — Jil-

im1 n=1,....n

These values represent the absolute, the squared and the maximum norm of residual vectors.

7.2 Appendix B
We define five smooth functions for Simon Wood’s test dataset
fo =5sin(2wz), f1 =exp(3z) — 7,
f2 =05 x 2'1(10(1 — 2))® — 10(102)*(1 — 2)*°, f3 = 15exp(—5|z — 1/2|) — 6,
fa=2—1er1/3)(62)° — Lunra/s)(6 — 62)% — 1(2/35051/3)(8 + 2sin(9(z — 1/3)m)).

7.3 Appendix C
An example of our template for the package nnet:

library (NNbenchmark)
nrep <- 3
odir <- tempdir()

library(nnet)
nnet.method <- "BFGS"
hyperParams.nnet <- function(...) {

return (list(200, FALSE))
}
NNtrain.nnet <- function(x, y, dataxy, formula, neur, method, hyperParams, ...) {
hyper_params <- do.call(hyperParams, list(...))
NNreg <- nnet::nnet(x, vy, neur, TRUE,
hyper_params$iter, hyper_params$trace)
return(NNreg)
}
NNpredict.nnet <- function(object, x, ...) { predict(object, x) }
NNclose.nnet <- function() { if("package:nnet" %in% search())
detach("package:nnet", TRUE) }
nnet.prepareZZ <- list(DEl® DD Del® TRUE)

16

https://www.openml.org/

A PREPRINT - DECEMBER 6, 2022

uDmodl_nnet::nnet BFGS uDmodl_nnet::nnet BFGS

1.0

0.5

S 00
-0.5
-1.0

5 % 1.0

-1.0

&

0]
A) 0.5
)(y \ 2 0.0
‘ J @ >
X o -0.5
[[

i i -1.0
00 05 1.0

xory xory

Figure 4: Example of nnet on uDmod1

res <- trainPredict_1pkg(5, "nnet", "nnet", nnet.method,
nnet.prepareZZ, nrep, TRUE,
FALSE, FALSE, odir, FALSE)
7.4 Appendix D

Table 6: Review of Discarded Packages

Package

Category Reason to Discard (File(s) and/or function(s))

appnn
autoencoder

BNN

Buddle

cld2

cld3
condmixt

DamiaNN

deep

deepNN

DNMF
evclass

gamlss.add

AP Provide a feed forward neural network to predict the amyloidogenicity propensity
of polypeptide sequences (DESCRIPTION file).

AP Provide a sparse autoencoder, an unsupervised algorithm that learns useful
features from the data its given (::autoencode).

RE* Use a feed forward neural network to perform regression. It is unclear whether it
fits the form of perceptron in the scope. It states that it is intended for variable
selection, although how exactly the package would be used to do so is missing.
Also the source code is written in C that users of R might not understand.
Performance is slow : need 100.000 iterations. (::BNNsel-examples & abstract of
paper).

CL Did not include regression in 2019. Unfortunately, the version we tested in 2020
could not be used properly for regression either. See the examples (::TrainBuddle).

XX Provide bindings to Google’s C++ library CLD2, which detects languages using a
Naive Bayesian classifier. CLD3, which does use neural networks, is mentioned in
the description (DESCRIPTION file & link to github).

AP Bindings to Google’s C++ library CLD3, which detects languages using a neural
network with an experimental algorithm (DESCRIPTION file).

AP Use neural networks to predict parameters of mixture models (DESCRIPTION
file).

RE Was designed specificly for training datasets from Numerai, <https://numer.ai/>.
‘We were unable to adapt it to our datasets even after exporting functions from the
interactive interface (DESCRIPTION file, help pages).

CL Seem to implement a perceptron to classify data (implicitly known from choice of
iris as example and in source code).

RE Another implementation of deep learning. Its input format of lists of vectors is not
standard require users to understand how to use lapply or other functions to
convert the format of their data. Univariate datasets can’t be used with the
functions and we could not manage to adapt it to 2020 code (::train).

XX Help extract features that enforce spatial locality with separability between classes
in a discriminant manner (DESCRIPTION file).

CL Provide an evidential neural network that outputs Dempster-Shafer mass functions
(DESCRIPTION file).

uT Allow users to use nnet with a variety of Generalized Additive Models for Location
Scale and Shape (::nn). It is not particularly appropriate for all our datasets.

17

A PREPRINT - DECEMBER 6, 2022

Table 6: Review of Discarded Packages (continued)

Package

Category

Reason to Discard (File(s) and/or function(s))

gcForest

GMDH

GMDH2

GMDHreg

gnn

grnn

hybridEnsemble

image.libfacedetection
isingLenzMC

kerasR
leabRa

learNN

LilRhino

neural

NeuralNetTools

NeuralSens
NlinTS

nnetpredint
nnfor

nnlib2Rcpp

nntrf

onnx

OptimClassifier

OSTSC

passt

XX

TS

CL

RE*

AP

RE

RE

AP
AP

RE
RE

CL

AP

CL

uT

uT
TS

uT

TS

CL

AP

uT

uT

uT

AP

Based on an article with "Towards an Alternative to Deep Neural Networks" in its
title (DESCRIPTION file).

Provide GMDH type neural network algorithms for short term forecasting on a
univariate time series (DESCRIPTION file).

Provide GMDH type neural network algorithms for performing binary
classification (DESCRIPTION file).

Regression using GMDH algorithms. We only managed to tested the COMBI
algorithm (the most basic and first in the vignette) on the multivariate datasets.
It is strangely slow on the "easy" datasets, mFriedman and mRef153. The
convergence is relatively not good considering the ammount of layers (Title in
DESCRIPTION file).

Out of scope: Generative moment matching networks (GMMNs) are introduced for
generating quasi-random samples from multivariate models (article abstract).
Provide an implementation of Specht’s General Regression Neural Network in 1991
(DESCRIPTION file). We could not manage to make the functions work on the
multivariate datasets. ::guess, the function for predicting, only allows for 1 data at
a time. Performance of General Regression Neural Networks can be seen from
package yager instead.

Hybrid ensemble of eight different sub-ensembles (DESCRIPTION file).

Face detection with CNNs (DESCRIPTION file).

Out of scope: This package provides utilities to simulate one dimensional Ising
Model with Metropolis and Glauber Monte Carlo (DESCRIPTION file).

See section on keras.

Provide the local error driven and associative biologically realistic algorithm
(Leabra) from O’Reilly 1996. It combines supervised and unsupervised learning, so
out of scope (DESCRIPTION file).

Implement some basic neural networks from \url{http://qua.st/} (DESCRIPTION
file). Examples seem to focus on binary classification (::learn_gd, ::learn_ bp).

Provide binary neural networks meant for reducing data (DESCRIPTION file), a
random forest style collection of neural networks for classification

(::Random_ Brains), and code for even more purposes. Documentation is
satisfyingly clear for a package for applications: a 3 layer network with an adam
optimizer, with an explanation of its activation functions (::Binary Network).
An implementation of "a simple MLP neural network that is suitable for
classification tasks" (::mlptrain).

Out of scope: Functions are available for plotting, quantifying variable importance,
conducting a sensitivity analysis, and obtaining a simple list of model weights
(DESCRIPTION file and Help Pages titles).

A greater focus on sensitivity, with additional functions (DESCRIPTION file).

A non-linear version of a causality test with feed forward neural networks and a
Vector Auto-Regressive Neural Network (VARNN) for non-linear time series
analysis models (DESCRIPTION file).

Out of scope: Computing prediction intervals of neural network models at certain
confidence level (DESCRIPTION file).

Automatic to fully manual time series modelling with neural networks
(DESCRIPTION file).

Provide a collection of neural networks, but examples seem to indicate
classification and testing our code with the functions provided led to error. Using
the ReppClass might be confusing for less experienced R users (::NN-class).
Provide useful pre-processing for Machine Learning tasks through data
transformation in a non-linear, supervised way with a perceptron (DESCRIPTION
file).

Aims to provide an open source format for neural networks, with definitions of an
extensible computation graph model, built-in operators, and standard data types
(DESCRIPTION file).

Search for the best amount of neurons for binary classifcation neural networks,
among other types of binary classifiers (based on how Optim.NN works &
DESCRIPTION file).

A tool to solve imbalanced data for univariate time series classification with
oversampling using integrated ESPO and ADASYN methods (DESCRIPTION file)
thus improving the performance of RNN classifiers (vignette).

This package provides implementation of the Probability Associator Time
(PASS-T) model, a memory model based on a simple competitive artificial neural
network which imitates human judgment of frequency and duration
(DESCRIPTION file).

18

A PREPRINT - DECEMBER 6, 2022

Table 6: Review of Discarded Packages (continued)

Package Category Reason to Discard (File(s) and/or function(s))

pnn CL This package provides implementation of the Specht algorithm, 1990, for
classification with four functions: learn, smooth, perf, and guess (DESCRIPTION
file).

polyreg XX Polyregression as alternative to NN (DESCRIPTION file).

predictoR RE A shiny interface for supervised learning with very minimal documentation. Users
may be additionally confused when opening the application only to find that it’s
default language is Espanol, although this can be changed in the Idioma section.
(DESCRIPTION file & :init_ predictor).

ProcData AP Provide tools for exploratory process data analysis via functions: reading, process
manipulation, action sequence generators, feature extraction and prediction (link +
DESCRIPTION file).

quarrint AP Out of scope: provide two indexes for interaction prediction between groundwater
and quarry extension, one of which is an artificial neural network ; specified
classifier for quarry data (help page - quarrint-package and DESCRIPTION file).

rasclass CL Provide neural networks as one of the five supervised classification algorithms for
raster images with a design meant to facilitate land-cover analysis
(DESCRIPTION file).

rcane RE Provide parameter estimation for linear regression, which was not appropriate for
the relationships in our data. (DESCRIPTION file).

regressoR RE A manual rich version of predictoR.

rnn AP Implementations of the vanilla Recurrent Neural Network, Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU) in native R (DESCRIPTION
file).

RTextTools AP Out of scope: A machine learning package for automatic text classification
(DESCRIPTION file).

ruta AP unsupervised neural networks (DESCRIPTION file).

simpleNeural CL Neural networks for multi-class or binary classification (DESCRIPTION file).

softmaxreg CL Out of scope: Implementation of ’softmax’ regression and classification models
with multiple layer neural network (DESCRIPTION file).

Sojourn.Data AP Stores some neural networks used for Sojourn Accelerometer methods
(DESCRIPTION file).

spnn CL Out of scope : Scale invariant version of the original PNN with the added
functionality of allowing for smoothing along multiple dimensions while accounting
for covariances within the data set (DESCRIPTION file).

studyStrap AP Implements multi-study learning algorithms such as merging, the study-specific
ensemble the study strap, the covariate-matched study strap, covariate-profile
similarity weighting, and stacking weights with single-study learners from caret
(DESCRIPTION file).

TeachNet CL Provide neural networks with up to 2 hidden layers, 2 different error functions,
and a weight decay for 2 class classification : it is slow. (DESCRIPTION file &
::TeachNet).

tensorflow RE See section on keras.

tfestimators RE See section on keras.

trackdem AP An artificial neural network can be trained for filtering false positives present in
video materials or image sequences (DESCRIPTION file).

TrafficBDE RE* Use caret for a grid of parameters for 3 layers combined with neuralnet. Is very
slow. Out of scope to test one layer perceptrons. We recommend the author to use
other packages and lessen the number of layers. Datasets in Traffic Status
Prediction and Urban Places are similar in nature to ours (TrainCR.R,
DESCRIPTION file).

tsfgrnn TS Out of scope: A general regression neural network (GRNN) is a variant of a Radial
Basis Function Network. Allow you to forecast time series using an autoregressive
GRNN model (DESCRIPTION file).

yager RE* This package provides a neural network that behaves differently from a perceptron.
Results indicate that predictions are quite close to the real values, however this
comes at the cost of a large number of weights. With less weights or insufficient
training data, the performance isn’t as great. (::grnn.fit).

yap CL Yet another PNN, with a N-level response, where N > 2 (DESCRIPTION file).

zFactor AP Computational algorithms to solve equations and find the ’compressibility’ factor

‘z* of hydrocarbon gases (DESCRIPTION file).

Note: AP=Application, CL=Classification, RE=Regression, RE¥=7?, TS=Time serie, UT=Utility, XX=Other.

Nash, John C. 2014. Nonlinear Parameter Optimization Using R Tools. John Wiley & Sons: Chichester.

19

A PREPRINT - DECEMBER 6, 2022

References

Adolf, R., Rama, S., Reagen, B., Wei, G.-Y. & Brooks, D. (2016), Fathom: Reference workloads for modern
deep learning methods, in ‘2016 IEEE International Symposium on Workload Characterization (IISWC)’,
IEEE, pp. 1-10.

Allaire, J. & Chollet, F. (2020), keras: R Interface to 'Keras’. R package version 2.3.0.0.
URL: https://CRAN.R-project.org/package=keras

Allaire, J. & Tang, Y. (2020), tensorflow: R Interface to 'TensorFlow’. R package version 2.2.0.
URL: https://CRAN.R-project.org/package=tensorflow

Allaire, J., Tang, Y., Ushey, K. & Kuo, K. (2018), tfestimators: Interface to "TensorFlow’ Estimators. R
package version 1.9.1.
URAL: https://CRAN.R-project.org/package=tfestimators

Arnold, T. (2017), kerasR: R Interface to the Keras Deep Learning Library. R package version 0.6.1.
URL: https://CRAN.R-project.org/package=kerasR

Balakrishnan, R. (2020), deepdive: Deep Learning for General Purpose. R package version 1.0.1.
URL: https://CRAN.R-project.org/package=deepdive

Bergmeir, C. (2019), RSNNS: Neural Networks using the Stuttgart Neural Network Simulator (SNNS). R
package version 0.4-12.
URL: https://CRAN.R-project.org/package=RSNNS

Bianco, S., Cadene, R., Celona, L. & Napoletano, P. (2018), ‘Benchmark analysis of representative deep
neural network architectures’, IEEE Access 6, 64270-64277.

Bishop, C. M. (2005), Neural Networks for Pattern Recognition, Clarendon Press.

Bonnans, J. F., Gilbert, J. C., Lemaréchal, C. & Sagastizdbal, C. A. (2006), Numerical Optimization:
Theoretical and Practical Aspects, Second edition, Springer-Verlag.

Boulangé, A. (2020), automl: Deep Learning with Metaheuristic. R package version 1.3.2.
URL: https://CRAN.R-project.org/package=automl

Cannon, A. J. (2017a), CaDENCE: Conditional Density Estimation Network Construction and Evaluation.
R package version 1.2.5.
URL: https://CRAN.R-project.org/package=CaDENCE

Cannon, A. J. (2017b), monmlp: Multi-Layer Perceptron Neural Network with Optional Monotonicity
Constraints. R package version 1.1.5.
URL: https://CRAN.R-project.org/package=monmlp

Cannon, A. J. (2019), grnn: Quantile Regression Neural Network. R package version 2.0.5.
URL: https://CRAN.R-project.org/package=qrnn

Chai, T. & Draxler, R. R. (2014), ‘Root mean square error (RMSE) or mean absolute error (MAE)? —
arguments against avoiding RMSE in the literature’, Geoscientific model development 7(3), 1247-1250.
URL: https://doi.org/10.5194/gmd-7-1247-2014

Cortez, P. (2020), rminer: Data Mining Classification and Regression Methods. R package version 1.4.5.
URL: https://CRAN.R-project.org/package=rminer

Dette, H. & Pepelyshev, A. (2010), ‘Generalized latin hypercube design for computer experiments’, Techno-
metrics 52(4).
URL: https://doi.org/10.1198/TECH.2010.09157

Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. (2016), minpack.lm: R Interface to the Levenberg-
Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package

version 1.2-1.
URL: https://CRAN.R-project.org/package=minpack.lm

Friedman, J. (1991), ‘Multivariate adaptive regression splines’, The Annals of Statistics 19(1), 1-67.
URL: https://doi.org/10.1214/a0s/1176347963

Friedman, J., Hastie, T., Tibshirani, R. et al. (2001), The elements of statistical learning, Vol. 1, Springer
series in statistics New York.

Fritsch, S., Guenther, F. & Wright, M. N. (2019), neuralnet: Training of Neural Networks. R package version
1.44.2.
URL: https://CRAN.R-project.org/package=neuralnet

20

A PREPRINT - DECEMBER 6, 2022

Humphrey, G. B. (2017), validann: Validation Tools for Artificial Neural Networks. R package version 1.2.1.
URL: https://CRAN.R-project.org/package=validann

Ishigami, T. & Homma, T. (1990), An importance quantification technique in uncertainty analysis for
computer models, in ‘In Uncertainty Modeling and Analysis, 1990. Proceedings., First International
Symposium’, Vol. 94, pp. 742-751.

URL: https://doi.org/10.1109/ISUMA.1990.151285

Izenman, A. J. (2008), Modern multivariate statistical techniques, Springer.

Kiener, P. (2020), RWsearch: Lazy Search in R Packages, Task Views, CRAN, the Web. All-in-One Download.
R package version 4.8.0.
URL: https://CRAN.R-project.org/package=RWsearch

Kuhn, M. (2020), caret: Classification and Regression Training. R package version 6.0-86.
URL: https://CRAN.R-project.org/package=caret

Lammers, B. (2020), ANN2: Artificial Neural Networks for Anomaly Detection. R package version 2.3.3.
URAL: https://CRAN.R-project.org/package=ANN2

LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T., Nykodym, T., Aboyoun, P.,
Kurka, M. & Malohlava, M. (2020), h20: R Interface for the ’"H20’ Scalable Machine Learning Platform.
R package version 3.30.0.1.

URL: https://CRAN.R-project.org/package=h20

Limas, M. C., Mere, J. B. O., Marcos, A. G., de Pison Ascacibar, F. J. M., Espinoza, A. V. P., Elias, F. A. &
Ramos, J. M. P. (2020), AMORE: Artificial Neural Network Training and Simulating. R package version
0.2-16.

URL: https://CRAN.R-project.org/package=AMORE

Mahani, A. S. & Sharabiani, M. T. (2016), EnsembleBase: Euxtensible Package for Parallel, Batch Training
of Base Learners for Ensemble Modeling. R package version 1.0.2.
URL: https://CRAN.R-project.org/package=EnsembleBase

Mahdi, S., Verma, A., Dutang, C., Kiener, P. & Nash, J. (2021), Supplementary materials for the paper ’a
review of R neural network packages (with NNbenchmark): Accuracy and ease of use’, Technical report,
Zenodo.

URL: https://doi.org/10.5281/zenodo.5515799

Mouselimis, L. & Gosso, A. (2020), elmNNRcpp: The Extreme Learning Machine Algorithm. R package
version 1.0.2.
URL: https://CRAN.R-project.org/package=elmNNRcpp

Nash, J. C. (1977), ‘Minimizing a nonlinear sum of squares function on a small computer’, Journal of the
Institute for Mathematics and its Applications 19, 231-237. JNfile: 77IMA J Appl Math-1977-NASH-231-
7.pdf.

URL: https://doi.org/10.1093/imamat/19.2.231

Nash, J. C. (2014), Nonlinear Parameter Optimization Using R Tools, John Wiley & Sons: Chichester.
Companion website (see http://www.wiley.com/legacy/wileychi/nash/).

Nash, J. C. & Murdoch, D. (2019), nisr: Functions for Nonlinear Least Squares Solutions. R package version
2019.9.7.
URL: https://CRAN.R-project.org/package=nlsr

Nash, J. C. & Varadhan, R. (2020), optimz: Expanded Replacement and Extension of the ’optim’ Function.
R package version 2020-4.2.
URL: https://CRAN.R-project.org/package=optimz

Nijs, V. (2020), radiant.model: Model Menu for Radiant: Business Analytics using R and Shiny. R package
version 1.3.10.
URL: https://CRAN.R-project.org/package=radiant.model

Nocedal, J. & Wright, S. J. (2006), Numerical Optimization, Springer Science+Business Media.

Petrozziello, A. (2015), ELMR: Extreme Machine Learning (ELM). R package version 1.0.
URL: https://CRAN.R-project.org/package=ELMR

Prechelt, L. P. et al. (1994), “—a set of neural network benchmark problems and benchmarking rules’.

21

http://www.wiley.com/legacy/wileychi/nash/

A PREPRINT - DECEMBER 6, 2022

Ripley, B. (2020), nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. R package
version 7.3-14.
URL: https://CRAN.R-project.org/package=nnet

Ripley, B. D. (2007), Pattern recognition and neural networks, Cambridge university press.

Rodriguez, P. P. & Gianola, D. (2020), brnn: Bayesian Regularization for Feed-Forward Neural Networks. R
package version 0.8.
URL: https://CRAN.R-project.org/package=brnn

Rodriguez R., O. (2019), traineR: Predictive Models Homologator. R package version 1.0.0.
URL: https://CRAN.R-project.org/package=traineR

Rong, X. (2014), deepnet: deep learning toolkit in R. R package version 0.2.
URL: https://CRAN.R-project.org/package=deepnet

Rust, B. (1996a), Nonlinear least square regression: Gaussl dataset, Technical report, NIST.
URL: https://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA /Gauss1.dat

Rust, B. (1996b), Nonlinear least square regression: Gauss2 dataset, Technical report, NIST.
URL: https://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA /Gauss2.dat

Rust, B. (1996¢), Nonlinear least square regression: Gauss3 dataset, Technical report, NIST.
URL: https://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA /Gauss3.dat

Smith, B. J. (2020), MachineShop: Machine Learning Models and Tools. R package version 2.5.0.
URL: https://CRAN.R-project.org/package=MachineShop

Tan, H. H. & Lim, K. H. (2019), Review of second-order optimization techniques in artificial neural networks
backpropagation, in ‘IOP Conference Series: Materials Science and Engineering’, Vol. 495, IOP Publishing,
p. 012003.

URL: https://doi.org/10.1088/1757-899X/495/1/012003

Tao, J., Du, Z., Guo, Q., Lan, H., Zhang, L., Zhou, S., Xu, L., Liu, C., Liu, H., Tang, S. et al. (2018),
‘Benchip: Benchmarking intelligence processors’, Journal of Computer Science and Technology 33.

Wang, Q., Jin, G., Zhao, X., Feng, Y. & Huang, J. (2020), ‘Csan: A neural network benchmark model for
crime forecasting in spatio-temporal scale’, Knowledge-Based Systems 189, 105120.

URL: https://www.sciencedirect.com/science/article/pii/S0950705119504873

Wang, Y., Lin, P., Chen, Z., Bao, Z. & Rosa, G. J. M. (2017), snnR: Sparse Neural Networks for Genomic
Selection in Animal Breeding. R package version 1.0.

URL: https://CRAN.R-project.org/package=snnR

Willmott, C. J. & Matsuura, K. (2005), ‘Advantages of the mean absolute error (mae) over the root mean
square error (rmse) in assessing average model performance’, Climate research 30(1), 79-82.

URL: https://doi.org/10.8854/cr030079

Witczak, M., Korbicz, J., Mrugalski, M. & Patton, R. J. (2006), ‘A gmdh neural network-based approach to
robust fault diagnosis: Application to the damadics benchmark problem’, Control Engineering Practice
14(6), 671-683.

Wood, S. N. (2011), ‘Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models’, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73(1), 3-36.

URL: https://doi.org/10.1111/§.1467-9868.2010.00749.x
Xie, X., Hu, X., Gu, P, Li, S., Ji, Y. & Xie, Y. (2020), ‘Nnbench-x: A benchmarking methodology for

neural network accelerator designs’, ACM Transactions on Architecture and Code Optimization (TACO)
17(4), 1-25.

22

A PREPRINT - DECEMBER 6, 2022

Table 5: All convergence scores per package:algorithm sorted by minimum RMSE

Input parameter RMSE score Other score

Package Algorithm Input format Maxit Learn. rate min median D51 MAE WAE
nlsr 41. NashLM full fmla & data 200 1 3 16 3 6
rminer 45. nnet_optim(BFGS) fmla & data 200 2 1 6 1 1
nnet 42. optim (BFGS) x &y 200 3 2 17 2 3
56. optim(BFGS) x &y 200 4 4 10 4 5
57. optim(CG) x &y 1000 8 6 10 5 4
validann 58. optim(L-BFGS-B) x &y 200 15 13 30 14 13
59. optim(Nelder-Mead) x &y 10000 45 44 45 46 42
60. optim(SANN) x &y 1000 55 53 51 56 55
MachineShop 32. nnet_optim(BFGS) fmla & data 200 5 9 22 9 7
traineR 55. nnet_optim(BFGS) fmla & data 200 6 5 15 6 2
radiant.model 44. nnet_optim(BFGS) y & data 200 7 8 32 12 10
monml 34. optimx(BFGS) x &y 200 9 10 18 9 11
p 35. optimx(Nelder-Mead) x &y 10000 47 47 45 44 47
12. optim(BFGS) x &y 200 10 28 48 21 40
CaDENCE 14. Rprop x &y 1000 0.01 51 54 60 52 58
13. pso__psoptim x &y 1000 54 56 56 54 56
h2o0 24. first-order y & data 10000 0.01 11 7 7 8 8
EnsembleBase 23. nnet optim(BFGS) x &y 200 12 15 34 15 15
caret 15. avNNet_nnet_optim(BFGS) x &y 200 13 10 21 11 9
brnn 11. Gauss-Newton x &y 200 14 12 9 13 12
qrnn 43. nlm() x &y 200 16 14 25 7 36
51. Rprop x &y 1000 17 23 52 25 28
52. SCG x &y 1000 18 17 26 18 19
53. Std__Backpropagation x &y 1000 0.1 27 32 31 31 36
RSNNS 47. BackpropChunk x &y 1000 29 34 41 32 34
48. BackpropMomentum x &y 1000 30 35 39 35 30
49. BackpropWeightDecay x &y 1000 31 30 43 33 31
46. BackpropBatch x &y 10000 0.1 49 48 27 50 48
50. Quickprop x &y 10000 57 58 36 58 57
8. trainwgrad__adam x &y 1000 0.01 18 20 35 16 20
automl 9. trainwgrad RMSprop x &y 1000 0.01 26 31 50 29 39
10. trainwpso x &y 1000 43 41 49 41 38
deepnet 20. BP x &y 1000 0.8 18 18 38 24 17
38. rprop+ fmla & data 100000 21 23 40 23 24
37. rprop- fmla & data 100000 22 21 42 21 18
neuralnet 40. slr fmla & data 100000 31 39 37 39 46
39. sag fmla & data 100000 38 49 59 47 52
36. backprop fmla & data 100000 0.001 50 51 10 49 45
28. adamax x &y 10000 0.1 23 18 20 20 16
27. adam x &y 10000 0.1 34 28 44 30 25
29. nadam x &y 10000 0.1 36 39 58 40 41
keras 26. adagrad x &y 10000 0.1 37 43 53 42 35
25. adadelta x &y 10000 0.1 40 35 19 34 33
31. sgd x &y 10000 0.1 44 45 47 45 43
30. rmsprop x &y 10000 0.1 52 55 57 55 54
2. ADAPTgdwm x &y 1000 0.01 24 22 29 16 26
1. ADAPTgd x &y 1000 0.01 35 25 8 26 21
AMORE 4. BATCHgdwm x &y 10000 0.1 39 33 14 37 27
3. BATCHgd x &y 10000 0.1 41 38 24 42 31
minpack.lm 33. Levenberg-Marquardt full fmla & data 200 24 16 5 19 14
6. rmsprop x &y 1000 0.01 28 25 33 27 23
ANNZ2 5. adam x &y 1000 0.01 33 27 27 28 21
7. sgd x &y 1000 0.01 42 37 22 36 29
16. adam x &y 10000 0.4 46 42 1 38 44
deepdive 19. rmsProp x &y 1000 0.8 53 46 4 48 50
p 18. momentum x &y 1000 0.8 56 52 3 53 51
17. gradientDescent x &y 10000 0.8 58 57 2 57 53
snnR 54. SemiSmoothNewton x &y 29 200 48 49 13 50 48
elmNNRcpp 21. ELM x &y 59 59 55 59 59
ELMR 22. ELM fmla & data 60 60 53 60 60

PN

	Introduction
	Multilayer perceptron with a single hidden layer
	Methodology
	Convergence and termination
	Performance
	Phase 1 - Preparation of benchmark datasets and selection of packages
	Phase 2 - Review of packages and development of a benchmarking template
	Phase 3 - Collection of and analysis of results
	Results collection
	Analysis

	Results, discussion and recommendations
	Second-order algorithms
	Lower-order algorithms
	Untested packages
	Further analysis of TOP-5 packages

	Conclusion and perspective
	Acknowledgements
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Appendix D

