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Bridging auditory perception 
and natural language processing 
with semantically informed deep 
neural networks
Michele Esposito 1*, Giancarlo Valente 1, Yenisel Plasencia‑Calaña 3, Michel Dumontier 4, 
Bruno L. Giordano 2 & Elia Formisano 1,3*

Sound recognition is effortless for humans but poses a significant challenge for artificial hearing 
systems. Deep neural networks (DNNs), especially convolutional neural networks (CNNs), have 
recently surpassed traditional machine learning in sound classification. However, current DNNs map 
sounds to labels using binary categorical variables, neglecting the semantic relations between labels. 
Cognitive neuroscience research suggests that human listeners exploit such semantic information 
besides acoustic cues. Hence, our hypothesis is that incorporating semantic information improves 
DNN’s sound recognition performance, emulating human behaviour. In our approach, sound 
recognition is framed as a regression problem, with CNNs trained to map spectrograms to continuous 
semantic representations from NLP models (Word2Vec, BERT, and CLAP text encoder). Two DNN 
types were trained: semDNN with continuous embeddings and catDNN with categorical labels, both 
with a dataset extracted from a collection of 388,211 sounds enriched with semantic descriptions. 
Evaluations across four external datasets, confirmed the superiority of semantic labeling from 
semDNN compared to catDNN, preserving higher-level relations. Importantly, an analysis of human 
similarity ratings for natural sounds, showed that semDNN approximated human listener behaviour 
better than catDNN, other DNNs, and NLP models. Our work contributes to understanding the role 
of semantics in sound recognition, bridging the gap between artificial systems and human auditory 
perception.

Keywords  Sound recognition, Deep neural networks, Semantic embeddings, Natural language processing, 
Cognitive neuroscience, Auditory perception, Acoustic-to-semantic transformation

Recognizing sounds involves the conversion of acoustic waveforms into meaningful descriptions of the sound-
producing sources and events. Automatic and effortless in humans, sound recognition poses a considerable 
challenge for artificial hearing. Various machine learning (ML) algorithms have been proposed that treat sound 
recognition as a classification problem. Typically, these algorithms entail the initial extraction of diverse fea-
tures from the acoustic waveform, which are further analyzed and assigned to predefined classes1. In recent 
developments, deep neural networks (DNNs) have emerged as superior to traditional ML algorithms in sound 
recognition tasks. Following parallel advancements observed in visual object recognition research2, convolutional 
neural networks (CNNs) have been used for sound classification tasks3–5 (here, referred to as sound-to-event 
CNNs). Trained on a large-scale dataset of human-labeled sounds (Audioset6), Google’s VGGish and Yamnet 
yield remarkable performance. These networks receive spectrogram representations as input and can classify 
sounds into a large number of classes (527 and 521 classes, for VGGish and Yamnet, respectively). Since their 
publication, VGGish and Yamnet (and related networks5) have been fine-tuned for applications in several special-
ized acoustic domains, from neonatal heartbeat and lung sound quality assessment7 to aircraft detection system8 
and speech-emotion recognition9.
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In addition to the basic set of labels, Audioset6 introduced a taxonomy specifying an additional set of super-
ordinate labels and their (hierarchical) relations to the basic set. While DNN models frequently employ the 
Audioset basic labels (or subsets of them) for training purposes10, the taxonomic information is generally not 
utilized (see11 for an exception). This is because labels are commonly encoded as binary categorical variables 
using one-hot or multi-hot (in case of simultaneous multiple labels) encoding as depicted in Fig. 1. DNNs trained 
with this approach in fact map sounds to a set of orthogonal labels.

Research in cognitive psychology12 and cognitive neuroscience13 suggests that human listeners, when engaged 
in listening to and in comparing real-world sounds, exploit higher-level semantic information about sources in 
addition to acoustic cues. In a recent study by Giordano et al.13, behavioural data involving perceived sound (dis)
similarities, assessed through a hierarchical sorting task14, were analyzed to investigate the explanatory power of 
sound-to-event DNNs, such as VGGish and Yamnet, and other models related to acoustic, auditory perception, 
and lexical-semantic (natural language processing, NLP). The results demonstrated that sound-to-event DNNs 
surpassed all other models in predicting human judgments of sound dissimilarity, indicating that sound-to-event 
DNNs provide, at present, the best approximation of human behaviour for sound (dis)similarity judgments. 
In addition, the results highlighted the ability of NLP models, specifically Word2Vec15 to capture variance in 
behavioural data that couldn’t be accounted for by sound-to-event DNNs trained with categorical labels.

Motivated by these findings, the present study sought to develop DNNs that—mimicking human behav-
iour—incorporate lexical semantic information in the recognition of sounds. To this aim, we formulated sound 
recognition as a regression problem, training a convolutional DNN to learn the mapping of spectrograms to 
continuous and distributed semantic representations. In particular, we obtained these representations as the 
embeddings from NLP models. We considered word-level, pre-trained embeddings: Word2Vec15, and context-
dependent embeddings: Bidirectional Encoder Representations from Transformers (BERT)16. Additionally, we 
considered the semantic embeddings obtained from the Contrastive Language-Audio Pretraining (CLAP) text 
encoder, a contrastive-learning model that brings audio and BERT embeddings into a joint multimodal space17.

To evaluate the impact of semantics on sound recognition, we trained two types of DNNs: semDNN, utilizing 
one of the described continuous semantic embeddings, and catDNN, employing categorical, one-hot encoded 
labels. To ensure a fair comparison, we trained the DNNs from scratch using a curated dataset of 388,211 sounds 
from the Super Hard Drive Combo18. In this dataset, a rich semantic description of each sound can be derived 
from the associated metadata. We expected that, compared with a homologous network trained with categorical 
labels, semDNN would produce semantically more accurate labeling in sound recognition tasks and that sem-
DNN embeddings would preserve higher-level lexical semantic relations between sound sources. Furthermore, 
we expected that semDNNs would better approximate human behaviour in auditory cognitive tasks compared to 
catDNNs due to the preservation of semantic relations in NLP embeddings. Our approach differs from previous 
studies that combined sound-to-event DNNs with language embeddings17,19, as we specifically focus on evaluating 
the effects of semantic representation types and predicting human perceptions. In summary, our work aims to 
bridge the gap between artificial sound recognition systems and human auditory perception by incorporating 
semantic information into DNNs20.

Methods
In this section, we outline the methods used in our study (see also Fig. 2). We begin with the extraction of raw 
sound descriptors from a large database. These descriptors are then refined into meaningful sound-describing 
words with a natural language processing pipeline. Subsequently, these words are transformed into numerical 

Fig. 1.   Categorical vs semantic label encoding. Comparison of t-stochastic nearest embedding (t-SNE)21 
visualizations between one-hot encoding (a) and Word2Vec (b) spaces: Embeddings were made by a one-hot 
encoding transformation of the words (a), or through the use of the GoogleNews-300D Word2Vec model15 (b). 
In (a), words are equidistant from one another, and the proximity of words with semantic relationships follows 
the order in which the words are listed. However, in (b), words that are semantically related are closer to each 
other, demonstrating a more meaningful representation.
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representations, involving both categorical (one-hot encoding), and continuous encoding formats through lan-
guage models as Word2Vec, BERT, and CLAP. One-hot encoding is applied using a binary vector format where 
each label is represented as a distinct dimension (see Fig. 2a).

Raw audio waveforms are then segmented into 1-s patched spectrograms. This step prepares the audio data 
for neural network analysis by capturing essential sound features, shown in Fig. 2b. Next, we designed our model 
architecture as a CNN, incorporating variations in the final dense layer to differentiate between the classification 
task, for categorical labelling, and the regression task for continuous labelling, (see Fig. 2c).

In the evaluation phase, we then transition from neural network embeddings to word-level predictions. At this 
step, we employ various quantitative metrics to assess the model’s performance, and the alignment with expected 
sound categorizations (see Fig.  2d). Finally, we use Representational Similarity Analysis (RSA) to evaluate the 
ability of our models to predict human behavioural data (see Fig. 2e).

Semantic models
We employed three language models for label transformation: GoogleNews Word2Vec-300D15, BERT-768D16, 
and CLAP-1024D text encoder17.

Word2Vec is a word-based encoder trained on large corpora to learn distributed representations that capture 
semantic similarities and relationships between words.

BERT, Bidirectional Encoder Representations from Transformers, is a pre-trained language model that learns 
to capture deep relationships and context between words in sentences.

Contrastive Language-Audio Pretraining (CLAP) is a transformer-based architecture that is fine-tuned for 
the audio-to-text task using a large dataset of paired audio and text descriptions encoded with BERT. The text 
encoder is trained jointly with the audio encoder using a contrastive loss function, which encourages the audio 
and text representations to be similar in the joint multimodal space. Specifically, the contrastive loss function 
aims to maximize the similarity between the representations of a given audio-text pair while minimizing the 
similarity between the representations of different pairs.

Fig. 2.   Proposed framework: from preprocessing to evaluation. (a) Label encoding strategy: transition 
from lexical units to either orthogonal (one-hot encoder) representations or continuous representations 
(word encoder). (b) Audio Preprocessing: conversion of waveforms to 1 s patched spectrograms. (c) Model 
Architecture: Note the variation in the final dense layer. (d) Evaluation Phase: transition from embeddings to 
word-level predictions, with the computation of quantitative metrics to gauge model performance. (e) Model 
Comparison: Representational Similarity Analysis (RSA) is adopted to compare the ability of models to predict 
human behavioural data.
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Label encoding strategies
To extract semantic embeddings from the sound descriptions we performed the label transformation depicted in 
Fig.  2a. For CatDNN, we used one-hot encoding. Each label was represented as a binary vector of 9960 dimen-
sions, as the number of entities contained in the dictionary (see section “Training dataset”), with a value of 1 
indicating the presence of the label in the description.

To obtain a single embedding describing the sound semantics in SemDNN, we directly used the single-word 
labels as input to word-based encoders. Specifically, we computed the Word2Vec, BERT or CLAP embeddings 
for each word present in the label and then averaged these word embeddings. This resulted in a single embed-
ding that captured the overall semantic information of the sound (sound-level embedding). This process was 
straightforward for Word2Vec, as it produces a single, context-independent embedding for each word. However, 
for BERT and CLAP, we needed to make some preliminary adjustments before applying the same method.

BERT and CLAP embeddings BERT is a context-dependent language model, which means that the embed-
ding of a single word changes depending on its position in the sentence, the surrounding words, and the sentence 
length. To obtain word-level BERT embeddings, we first considered all the sentences contained in the SoundIdeas 
dataset (see section “Training dataset”). From these sentences, we generated an initial dictionary consisting of the 
words present in the sentences. This dictionary was specifically designed for BERT representation and associated 
each word with two elements: its single-word embedding within a particular sentence and the corresponding 
sentence itself. This approach was taken in order to capture the variations in single-word BERT embeddings 
across different sentences where the word appears. The computation of these sentence-dependent word-level 
BERT embeddings required careful handling of tokenization. For this, we utilized the bert-base-uncased model 
and its built-in tokenizer. It is worth noting that, when calculating the BERT embeddings for single words, we 
focused on the word-specific token representation. This strategy differs from using the [CLS] token, which 
represents the entire sentence’s embedding. The reason behind this decision was to ensure a more granular 
representation of individual words. In contrast, the [CLS] token, although it represents the overall semantic 
content of the sentence16 , does not provide a focused representation of each unique word within the sentence. 
We then averaged the embeddings associated with each word across different sentences to obtain a final word-
level BERT embedding. This averaging was motivated from the fact that sentence-dependent word-level BERT 
embeddings are more similar among them compared to embeddings of different words. This is illustrated in 
Fig. 3a for 10 sampled words from the dictionary. For these words, we calculated the cosine similarity between 
pairs of vectors reflecting context-sensitive word embeddings. This resulted in a similarity matrix, which is 
visualized as a heatmap, where brighter squares indicate higher similarity and darker squares indicate lower 
similarity. It can be observed that sentence-dependent BERT embeddings exhibit contextual variations, but are 
still more similar among them than to the other words. Thus, averaging across sentences allowed us to obtain 
contextually robust word-level embedding for each word and reduce the BERT dictionary to the same diction-
ary we used for Word2Vec.

Unlike BERT, CLAP is fine-tuned to reduce dissimilarity between audio and text pairs in a multimodal set-
ting. As part of this process, CLAP aligns audio and text representations to occupy a joint multimodal space17. 
This alignment ensures that similar audio and text pairs are closer together, while dissimilar pairs are farther 
apart. During the fine-tuning process, the model weights, including those used to generate embeddings, are 
updated to minimize the loss on the specific task, which is a symmetric cross-entropy loss function. Furthermore, 
CLAP generates a single embedding per sentence or word because it is a fine-tuned version of BERT, with an 
additional Dense layer at the end of its architecture. As a result, CLAP embeddings exhibit less variation com-
pared to BERT embeddings. This can be observed in Fig.  3b. Given these reasons, there is no need to compute 
multiple-word embeddings per word across different sentences. Therefore, we constructed a dictionary where 

Fig. 3.   BERT and CLAP normalized similarity matrices. Comparing BERT and CLAP embeddings across 
100 different sentences reveals interesting patterns. While BERT embeddings exhibit noticeable variation 
for each word, implying some degree of divergence, CLAP embeddings display, in most cases, remarkable 
consistency and reduced variation.
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each word contained in the Super Hard Drive Combo’s labels is associated with its word embedding generated 
by the CLAP-text encoder.

BERT and CLAP embeddings have a dimensionality of 768 and 1024, respectively, whereas Word2vec embed-
dings have 300 dimensions. Thus, as a final step for calculating, we reduced the dimensionality of BERT and 
CLAP embeddings using an autoencoder (see supplementary material). This reduction brought the embeddings 
to the same dimensionality as the Word2Vec model (300), while resulting in a negligible information loss (autoen-
coder reconstruction loss was 0.89% for BERT and 0.005% for CLAP,see suppl. material). We then substitute the 
original length embeddings of the preliminary BERT and CLAP dictionaries with theses reduced ones.

Thus, by calculating word-level embeddings and aligning the dimensions of all the models, we ensured a fair 
and meaningful comparison across the different semantic models. All the dictionaries have the same 9960 entities, 
extracted from the SoundIdeas sound labels, and an associated word representative 300-dimensional embedding. 
Sound-level embeddings are then obtained as the average of all word-level embeddings in the sound description.

Network architecture
We developed two different neural network configurations for sound recognition task: semDNN and catDNN 
(Fig. 2c). Both networks resemble the VGGish3 architecture and share similar components, such as four main 
convolutional blocks with 64, 128, 256, and 512 filters. Compared to VGGish3, we added a dropout layer (rate 
= 0.222) and a batch normalization layer23 after each down-sampling operation, and after the fully connected 
layers to improve the model’s generalization ability, prevent overfitting, and facilitate more stable and efficient 
training in comparison to VGGish. We also applied global average pooling after the last convolutional block to 
summarize the feature maps into a fixed-length vector. However, they differ in the output layer. Whereas VGGish 
has a 128-unit dense layer, SemDNN has a 300-unit layer with linear activation, and catDNN has a 9960-unit 
dense layer with a sigmoid activation function. We used a different loss function for each of these architectures. 
For semDNN, we used an angular distance loss function, due to the nature of the regression task that aims to 
minimize the angle between the true word embedding and the word embedding predicted during training. This 
loss function is suitable for semantic embeddings, as it encourages the network to learn the continuous repre-
sentation of words within the fitting domain15,24–26. On the other hand, catDNN uses a binary cross-entropy loss 
function, which is suitable for the multi-label classification task27. This loss function measures the difference 
between the predicted probabilities and the true labels and encourages the network to learn a discrete represen-
tation of words that can be used for classification.

SemDNN and its variant We employed different strategies to train SemDNN. Specifically, we trained 
SemDNN using the Word2Vec, BERT, and CLAP representations as labels. Furthermore, as a purely acoustic 
approach, we trained a Convolutional Auto Encoder (CAE) with the architecture depicted in Fig. 2c for the 
encoder, and a reversed architecture for the decoder. The CAE was trained using only acoustic inputs, without 
involving a categorical/semantic label. The Mean Square Error was employed as the loss function for the CAE. To 
provide an additional control network, we also considered SemDNN with random Normal-HE initialization28, 
without training it. A summary of the variants is depicted in Table 1. Additionally, to assess the efficacy of 
semantically balanced training, we trained SemDNN using a randomly chosen dataset of the same length as the 
training set that was generated from hierarchical clustering (see section “Training dataset”).

Preprocessing and input features The input audio clips were preprocessed as follows: first, we resampled 
signals to a standard 16 kHz sampling rate format and converted them to mono. Then, we split the clips into 
non-overlapping segments of 960 ms. For each segment, we computed a short-time Fourier transform on 25 ms 
Hanning-windowed frames with a step size of 10 ms. This allowed us to break down the signal into its constituent 
frequencies at each moment in time and perform a detailed analysis of the audio data. Next, we aggregated the 
resulting power spectrogram into 64 mel bands covering the range of 125–7500 Hz.

Finally, we generated a stabilized spectrogram consisting of 96-time windows per 64 log mel bins. To obtain 
the log mel spectrogram, we took the logarithm of the mel spectrogram values. Additionally, we applied a sta-
bilization technique to prevent numerical instability during this step. The stabilization involved adding a small 
offset of 0.01 to the mel-spectrum before taking the logarithm. This offset ensures that the logarithm operation 
does not encounter zero values, which could lead to undefined or erroneous results. The resulting stabilized 
spectrogram was then utilized as the input for training and evaluation of the deep neural networks (DNNs) and 
it is the same procedure applied in3. Each 1 s sound frame inherited the same label.

Table 1.   Summary of SemDNN variant networks.

Network Key aspects

SemDNN Utilized Word2Vec15 representation as labels

SemDNNBERT Utilized BERT16 representation as labels

SemDNNCLAP Utilized CLAP17 representation as labels

SemDNNunbal Trained with randomly chosen training dataset

SemDNNnoTrain No training, random Normal-HE28 initialization

CAE Mirrored encoder architecture of SemDNN, see Fig. 2c
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Training dataset
The networks have been trained using sounds and labels from SuperHard Drive Combo (SHDC) by Sound 
Ideas18, a collection of 388,199 variable-length sounds (2584 h) covering a wide range of sound sources and 
events. SHDC contains 7 different natural sound databases that can be considered as independent datasets: 
DigiEffects29, General Hard Drive Combo30, Hollywood Edge31, Mike McDonough Speciality32, Serafine33, 
SoundStorm34, and Ultimate35.

We employed a natural language processing (NLP) pipeline to extract a dictionary of sound-descriptive words 
from the SHDC metadata. The initial step involved eliminating all non-informative tokens from the filename meta-
data. This included numbers, serial IDs, stop-words, and all non-English words that were not included in the Goog-
leNews300D-Word2Vec36 model dictionary. In the majority of cases, these filenames contained information about 
the sound sources and events occurring in the sounds. For instance, “ManSneezesWhugeLoCRT​026004.wav”was 
reduced to “man_sneezes”, and “ Rhythmic − Percussion− Variation− Short − Version− 21PET10− 088.wav
”was transformed into “rhytmic_ percussion_variation”. Our next step was to replace nouns that were either 

Table 2.   Top 5 predictions. Top-5 word predicted from NNLS (for SemDNN and its variants) and sigmoid 
activations (for CatDNN). Note also the results of the NLP pipeline to retrieve labels from the sounds’ 
filename.

Filename True label SemDNN CatDNN SemDNN_BERT SemDNN_CLAP

Chain-Large-Over-Alumin-
ium-Ladder-ShortGEN-
HD2-28782.wav

Chain aluminum ladder Metal door cart roll drawer Foley foot glass gun metal Metronome metal paper 
hammer polish Door cart metal ladder chain

Auctioneer-MaleAuction-
One-Hundred-Dol-
larVKT16489.wav

Human vocal auctioneer 
male

Vocal human female male 
adult

Auctioneer female human 
male vocal

Human vocal male female 
adult

Male vocal auctioneer 
human female adult

Gun-Machine-Gun-
45-Caliber-Tommy-Gun-
MILIT391.wav

Gun machine caliber Gun machine guns rifle 
weapon

Caliber footsteps gun guns 
metal

Guns gun caliber walker 
cannon

Machine gun gun caliber 
rifle

Radio-Interference-Heavy-
Clicking-Distortion-
COMM-1253.wav

Radio interference clicking 
distortion

Car buick grand drives 
machine

Buzz electricity hum 
machine power

Electric airlock cycle swal-
lowed bopper

Distortion clicking radio 
interference

TriangleMedSpins1ME1001.
wav Triangle spins Triangle bell orchestra tone 

ring
Bell church music mystical 
ring

Bell telephone blast beater 
gauge

Spins triangle bell tone 
orchestra

CoolerPlastic9003768.wav Cooler plastic Wood door drop construc-
tion drums

Drop gun machine metal 
switch

Latch nitrogen rushing 
exhibit shelf

Plastic cooler door wood 
drop

WoodDoor9011291.wav Wood door Door doors wood metal 
kitchen Door doors gun metal wood Door doors footsteps 

cabinet feet
Door wood doors metal 
kitchen

Sirens-Motorcycle-Yelper-
StB01-07173.wav Sirens motorcycle yelp Sirens wail police car yelp Police siren sirens wail yelp Sirens wail yelp motorcycle 

police
Motorcycle sirens yelp wail 
police

HarrierLandoff-
LongPE213501.wav Jet land off Car jet airplane aircraft bus Car machine pass tone wind Car industry discovery pink 

import
Car truck train wind 
machine

DogsWolvesCoyotes-
Wolves-85B05-03165.wav Dogs wolves coyotes Wolves dogs coyotes doors 

vehicle
Foot hall indoor metal 
skateboard

Dogs coyotes wolves barking 
footsteps

Dogs dog coyotes wolves 
footsteps

Paper-Movemen-
tRustleTurni5B06B-02345.
wav

Paper movement rustle Paper movement rustle 
wrapping foley

Feet foley footsteps guns 
paper

Paper wrapping movement 
boots footsteps

Paper movement sweeping 
footsteps wrap

Fig. 4.   Labels distributions. The most frequent word in the dataset is “car”, followed by “door” and “metal”. 
To avoid over-representation of the most frequent classes, we developed and applied a method for creating a 
semantically-balanced dataset.
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too specific (subordinate categories) or too general (super-ordinate categories) with basic-level descriptors. 
For example, in first case, specific car models like “Subaru Impreza” or “Audi TT” were replaced with the more 
general term “car ”, and specific dog breeds like “labrador ” or “pincher” were replaced with “dog ”. In the rare 
case of super-ordinate categories, expressions that were excessively vague such as “animals” were replaced with 
basic-level descriptors that provided more specific information. For instance, for the file that was called “Ani-
malVarious_ DIGIMEGADISC-60.wav”, we replaced “animal_various”, after listening to the sound with “lion_ 
growls_ bats_swarm”, thus preserving the semantic integrity of the sound while avoiding excessive generality. This 
process was initially automated using the NLP pipeline. To ensure accuracy, the results were manually reviewed 
and corrected as necessary, as demonstrated in the example mentioned above. The decision to standardize 
descriptors to a basic level was driven by the need to balance specificity and generality, maintaining meaning-
ful semantic information without overloading the model with excessive detail. This approach allows for a more 
manageable and semantically consistent representation of heterogeneous natural sounds, enhancing the model’s 
ability to learn and generalize from the sound-descriptive words in the SHDC metadata37. The resulting output 
of the aforementioned NLP pipeline was sound labels extracted from the filenames of the sounds and an entities-
dictionary of 9960 units. The first two columns of Table  2 show some examples, note in the last row how the 
transformation in the base-level category occurs, from Harrier to jet.

An initial analysis of the word-frequency distribution in the database (Fig. 4) revealed that sound labels were 
highly skewed towards words such as “car”, “door”, “metal”, and “engine” from a prominent portion of the data-
base dedicated to vehicle sounds. To rectify this imbalance, we implemented a semantics balancing procedure 
relying on a hierarchical clustering analysis of the Word2Vec embeddings of the sound-descriptors dictionary. 
We initially computed the Word2Vec embedding of each word and generated a normalized pairwise cosine 
similarity matrix. This matrix was subsequently input to a hierarchical clustering algorithm (ward-linkage38). 
Different cluster counts (100, 200, 300, 400, 500) were tested to assess the impact of clustering granularity on the 
performance, which was measured using the evaluation procedure described in the section “Semantic-learning 
accuracy”. Our results indicated that the optimal performance was obtained with 300 clusters (see Fig. S1 in the 
Supplementary Material). Finally, we randomly selected up to 20 words from each cluster, matching the average 
number of words per cluster. We also chose 300 sounds for each of the selected words, leading to a more balanced 
dataset. The resulting balanced dataset included 273,940 sounds (training set = 90% = 246,546 sounds; 1,366,848 
frames; validation set 5% ; internal evaluation set = 5%).

Fig. 5.   t-SNE visualization of the top 25 semantically related word clusters. Spatial arrangement of words in 
the embedding space, where each point represents a semantically related word. Color-coded clusters highlight 
the organization of words in the reduced-dimensional space, providing insight into the ideal relationships 
between spectrograms and their associated semantic representations.
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In the next phase, we conducted a quality check to evaluate the spatial arrangement of the words within 
clusters in the embedding space. Specifically, we ranked the clusters based on their inter-cluster cosine similar-
ity, from highest to lowest. Utilizing t-Stochastic Nearest Embedding (tSNE)21, we visualized the top 25 clusters, 
ensuring the words within each cluster were semantically related (see Fig. 5). The figure results in a visual rep-
resentation of the semantic space. Each point in the plot corresponds to a semantically related word contained 
in a specific color-coded cluster. The top 25 clusters are highlighted, showcasing the arrangement of words in 
the reduced-dimensional space.

Evaluation datasets
We evaluated the performance of our proposed approach with four publicly-available natural sound datasets: 
FSD50k10, consisting of 10,231 44.1 kHz mono audio files and 200 labels; Environmental Sound Classification-50 
(ESC-50)39, made up of 2000 5-s, 44.1 kHz mono, sounds and 50 label-classes; Urban Sound 8K40, comprising 
8732 sounds with lengths of up to 4 s, 44.1 kHz mono, and 10 class labels; and Making Sense Of Sounds41, which 
includes 500 5-s, 44.1 kHz mono, sounds divided into two level categories, 5 macro-classes, and 91 subclasses. 
In addition, we used a 5% subset of the SoundIdeas dataset consisting of 13,697 sounds (not used for training 
our models) to evaluate the performance of our models (internal evaluation).

Semantic‑learning accuracy
We compared semDNN and catDNN using two prediction-accuracy metrics: Ranking score and Average Max 
Cosine Similarity (AMCSS). For the different variants of semDNN, which produce semantic embeddings as 
predictions, we employed Non-Negative Least Squares (NNLS) regression42 to convert the embeddings back into 
word predictions. The models’ training involved generating embeddings using Word2Vec, BERT, and CLAP for 
individual labels in the sound descriptions. However, in the evaluation phase (see  section “Semantic-learning 
accuracy”) these embeddings were averaged to create one single representative semantic embedding for each 
sound. To retrieve the constituent single-word embeddings from the predicted mixture, we used a NNLS42 
approach. The NNLS regression projected the predicted semantic embeddings onto the single-word embed-
ding space, considering the entire dictionary as the design matrix of dimension 9960x300. By applying a non-
negativity constraint in the NNLS, the coefficients of the linear combination remained non-negative, preserving 
the original averaging process.

Ranking Score To evaluate the prediction accuracy of the NNLS regression coefficients, known as β-values 
(for semDNN, in all its variants) and the sigmoid output probabilities (for catDNN), we employed a ranking-
based metric called the “ranking score.” This metric allows us to compare the models’ predictive abilities while 
considering the relative positions of the true labels within the sorted predictions. First, we obtained the NNLS 
β-values, which represent the coefficients assigned to the different words of the dictionary (9960 β-values). The 
obtained β-values were sorted in descending order based on their magnitudes.

Similarly, we obtained sigmoid output probabilities from CatDNN and we sorted with the same criteria. These 
probabilities represent the model’s confidence scores for each possible class or label. To calculate the ranking 
score, we utilized the sorted predictions. The ranking score is defined as follows:

Here, m represents the ranking score, N represents the length of the dictionary, and rank is the position in the 
dictionary of the predicted label corresponding to the true label. We computed the ranking score individually 
for each word in multi-word labels and then averaged the scores.

The ranking score penalizes predictions that deviate significantly from the true labels, resulting in a lower 
score for predictions ranked further away from the true label. Conversely, a higher score indicates a closer align-
ment between the predicted label and the ground truth. The ranking score is threshold-independent, allowing a 
comprehensive comparison of all words in the dictionary (9960 words) with their respective true labels.

Average Maximum Cosine Similarity Score (AMCSS) To compare the performance of the different networks 
we used a novel metric, the Average Maximum Cosine Similarity Score (AMCSS). The AMCSS (Average Maxi-
mum Cosine Similarity Score) is computed by considering the predicted labels and true labels. The true labels 
are extracted from a fixed dictionary, which is described in section “Label encoding strategies”. The AMCSS is 
defined as:

where | S | represents the number of true sound labels, S represents the set of true sound labels, P represents the 
set of predicted labels, PN represents the top N = 10 words obtained from the predicted labels, X(s) represents 
the word embeddings of the true sound label s, Y(p) represents the word embeddings of the predicted label p and 
the operation in fraction calculates the cosine similarity between the word embeddings X(s) and Y(p).

To calculate the AMCSS, we compare the word embeddings of the true labels and the top 10 words obtained 
from the NNLS (for Word2Vec, BERT, and CLAP) or sigmoid output (for catDNN) generated from the model 
predictions. We calculate the cosine similarity between each word embedding in the true labels and the top 10 
words. The maximum cosine similarity value among all the comparisons is taken as the AMCSS. The AMCSS 
is computed as the average of the maximum cosine similarity scores for each word, ensuring more robustness 
as compared to using only the top word from NNLS (or sigmoid). The AMCSS reflects the network’s ability to 

(1)m = 1−
rank− 1

N − 1

(2)AMCSS =
1

| S |

∑

s∈S

max
p∈PN

X(s) · Y(p)

�X(s)��Y(p)�
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identify relevant words and concepts associated with the true label, even if the exact label is not among the top 
predictions.

However, such a metric is influenced by the geometry of the manifold where the embeddings lie, and it 
is therefore misleading to directly compare the AMCSS obtained with Word2Vec with the one obtained, for 
instance, with BERT. We illustrate this problem more in detail in Fig. 6, where we considered 500 randomly 
chosen sounds from the internal test set and computed the cosine similarity matrix between the predicted and 
true embeddings of all the sounds. The upper row represents the values on the main diagonal of the similarity 
matrix, i.e. the cosine similarity between the sound embedding and its prediction, for each sound. The lower 
row displays instead the values outside the main diagonal, thus the cosine similarities between the prediction 
of a sound embedding, and the true embeddings of different sounds. A model that discriminates well a correct 
predictions would result in high values for the diagonal elements (top row), and lower values for the off-diagonal 
elements (lower row). Notably, BERT and CLAP exhibit high cosine similarity values both on the diagonal and 
off-diagonal, resulting in a right-skewed and lower variance distribution. In addition, the difference between the 
mean values of the diagonal and off-diagonal is considerably smaller for BERT and CLAP. On the other hand, 
Word2Vec, despite having lower overall similarity values, demonstrates higher selectivity, showing greater dif-
ferences between the mean values of diagonal and off-diagonal elements. Based on these findings, we computed 
AMCSS using the same dictionary for all language models and decided to use Word2Vec as a reference, ensuring 
a more discriminative metric to compare models.

Behaviour prediction accuracy
We evaluated to what extent layer-by-layer embeddings of semDNN and its variants and catDNN, and of sev-
eral control networks, including the CAE, predicted perceived dissimilarity judgments obtained with humans.

Behavioural data
In Giordano et al.’s study (Experiment 214), data were collected from two groups, each with 20 participants. 
Random assignment placed participants in either the sound dissimilarity or word dissimilarity condition. In the 
sound dissimilarity condition, participants estimated the dissimilarity between 80 natural sounds. In the word 
dissimilarity condition, participants assessed the dissimilarity of sentences describing the source of each sound 
(e.g., “meowing cat”). For the behavioural datasets, name plus verb sound descriptors were derived from the 
results of a preliminary verbal identification experiment (14, Experiment 1), during which 20 individuals, who 
did not take part in Experiment 2, were asked to identify the sound-generating events using one verb and one 
or two nouns. In particular, for each of the sound stimuli, the name plus verb sound descriptors considered for 
the analyses in this study, and evaluated by participants in the word condition, were the modal verbs and nouns 
(that is, the most frequent verbs and nouns) across the 20 participants in the verbal identification experiment. 
Each condition involved evaluating two sets of 40 stimuli categorized as living or non-living objects. The stimuli 
had a median duration of 5.1 s. Sessions were conducted separately for each stimulus set, with the presentation 
order balanced across participants. Participants performed a hierarchical sorting task. Initially, they grouped 
similar sounds or verbal descriptors into 15 groups using onscreen icons. Clicking on the icons activated the 

Fig. 6.   Distribution of cosine similarities between true and predicted embeddings for different SemDNN 
variants. Cosine Similarity (CS) distributions between true embeddings and predictions of 500 random sounds 
from the SoundIdeas43 test set. The upper row represents the cosine similarity between the sound embedding 
and its prediction, measuring the network’s accuracy in predicting embeddings for the same sound (diagonal 
values of the similarity matrix). The lower row shows the cosine similarities between the prediction of a sound 
embedding, and the true embeddings of different sounds (off-diagonal values of the similarity matrix), reflecting 
the network’s performance in comparing a reference sound to different sounds.
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Fig. 7.   Pairwise comparison of ranking scores among models. Averaged ranking scores of CatDNN, 
SemDNN with Word2Vec, SemDNN with CLAP, and SemDNN with BERT embeddings. Points below the 
equality line indicate better performance of the model on the x-axis for the corresponding dataset, and vice 
versa.

Fig. 8.   Pairwise comparison of AMCSS among models. Average AMCSS (Average Maximum Cosine 
Similarity Score) for CatDNN, SemDNN with Word2Vec, SemDNN with CLAP, and SemDNN with BERT 
embeddings. Points below the equality line indicate superior performance of the model on the x-axis for the 
corresponding dataset, and vice versa.
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corresponding stimuli. Participants then iteratively merged the two most similar groups until all stimuli were 
consolidated into one group. The dissimilarity between stimuli was determined based on the merging step at 
which they were grouped, with dissimilar sounds or words being merged at a later stage of the procedure than 
similar sounds or words. The resulting output is a dissimilarity matrix.

Cross‑validated representation similarity analysis
We employed a cross-validated computational modeling framework, similar to Giordano et al.13, to predict 
behavioural dissimilarities using model distances derived from the network representations. To this purpose, we 
initially computed cosine the distance between stimuli within each layer of a specific network (encoder-only for 
CAE). For each network separately, we then used layer-specific distances to predict group-averaged behavioural 
dissimilarities within a cross-validated linear regression framework. More specifically, we adopted a repeated 
10-fold cross-validation split-half approach to estimate the behaviour variance ( R2

CV ) predicted by each network 
(100 random splits of participants into training and test groups, with independent standardization of group-
averaged training and test dissimilarities). R2

CV was estimated as 1− SSEtest
SSTtest

 , where SSEtest is the sum of squared 
prediction errors for the test set, and SSTtest is the total sum of squares for the test set. We performed 10,000 row 
per column permutations for each split, ensuring that the same object permutations were maintained across the 
splits. We also estimated the noise ceiling, representing the maximum predictable variance, to determine the need 
for model or data improvements13. This approach provided a robust framework to validate the predictive perfor-
mance of our computational model against behavioural data. As additional comparison models, we considered 
four NLP embeddings (Word2Vec15, BERT16 and CLAP17 with no dimensionality reduction applied) to compare 
semantic learning in our audio-based semDNN with text-based learning. For Word2Vec, we computed a single 
semantic embedding for each sound by taking the average of the semantic embeddings for the name and verb 
sound descriptors. However, for BERT and CLAP, we directly obtained a single semantic embedding for each 
sound by estimating the semantic embedding for the name plus verb sentence. We also considered four pre-pub-
lished categorical sound-to-event CNNs (Yamnet3, VGGish3, Kell44, and CNN-14 from PANNs models45) along 
with variants of the semDNN network ( SemDNNBERT,SemDNNCLAP,SemDNNUnbal , SemDNNNoTrain).

Results
In this section, we present the results of our experiments evaluating the performance of models in predicting 
semantic relations between sounds and matching human behaviour in an auditory cognitive task.

The semantic predictivity of the networks was evaluated considering both the internal SuperHardDrive 
Combo dataset (used for training the networks), and also considering the external datasets (FSD50k, US8k, 
ESC-50, and MSOS) which were not used for the training or potential subsequent fine-tuning. Figure 7 shows 
the pairwise comparisons of the averaged Ranking Score across all evaluation sounds from the internal and 
external datasets for the four tested models: CatDNN, SemDNN with Word2Vec, SemDNN with CLAP, and 
the model trained with BERT. Additionally, Fig. 8 showcases the AMCSS comparison between the models. The 
graph depicts the average AMCSS or Ranking score on the two axes, with the intersection representing the cor-
responding metrics for each model. In the graph, points below the line of equality indicate that the model on the 
x-axis performs better on that dataset, and vice versa. SemDNN trained with Word2Vec emerges as having the 
best performance across all the comparisons, outperforming competing models in terms of both AMCSS and 
Ranking scores (see Fig. 9, for bar plots of average performance metrics across all datasets).

Table 2 shows some examples of the top 5 predicted words retrieved from the NNLS, for SemDNN and 
its variants, and from the sigmoid activations, for catDNN. To show the results of our NLP pipeline (see sec-
tion “Training dataset”) in order to get labels from the SoundIdeas43 dataset, we present in the first column the 
name of the filenames. Note in the last row how we moved from Harrier, which is a type of fighter jet, to its 
base-level category.

Our hypothesis was that SemDNN embeddings would outperform CatDNN in predicting higher-order 
semantic relations between sounds. To test this, we evaluated the MSOS dataset (see "Evaluation datasets"), 
where sounds are grouped into five macro-classes: sound effects, human, music, nature, and urban. For both 
SemDNN and CatDNN models, we computed pairwise normalized cosine distances between sound embed-
dings in the last intermediate layer (Fig.  2, arrow). In Fig. 10, the upper left panel illustrates an idealization, 
which synthetically reflects the original macro-class organization constructed in the left panel. In this synthetic 

Fig. 9.   Bar plot summary comparison of Ranking Scores and AMCSS. The bar plot on the left represents the 
average Ranking Scores for CatDNN, SemDNN with Word2Vec, SemDNN with CLAP, and the BERT-trained 
model. The bar plot on the right represents the average AMCSS for the same models. SemDNN trained with 
Word2Vec consistently outperforms the other models.
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construction, we assigned a within-category distance of 0 and a between-category distance of 1, allowing for a 
clear distinction between categories.

To compare the performance of different SemDNN variants and CatDNN, we calculated normalized cosine 
distances and Pearson correlation coefficients between the synthetic matrix and the computed dissimilarities. 
The matrix in the upper right panel represents the SemDNN trained with Word2Vec embeddings dissimilarities, 
while the matrix in the lower left panel represents the CatDNN embeddings. The left two panels are the dissimi-
larities of SemDNN trained with BERT and CLAP, respectively. The color scale in all the matrices represents the 
normalized distances, ranging from minimum (blue) to maximum (yellow).

Among the SemDNN variants, the SemDNN model trained with Word2Vec embeddings demonstrated a 
stronger correlation with the true categorical model, with a Pearson correlation coefficient of 0.340. Compara-
tively, the SemDNN models trained with BERT and CLAP embeddings exhibited lower correlation coefficients of 
0.194 and 0.224, respectively. The CatDNN embedding displayed a correlation coefficient of 0.202. Therefore, the 
SemDNN trained with BERT representations exhibited the weakest correlation with the true categorical model.

Figure 11 shows the ability of the various models to predict behavioural, sound, and word, dissimilarities 
using the cross-validated R-squared statistic. Models are grouped in four classes: semantics (blue), acoustics(light 
blue), CatDNNs(green), and SemDNNs (red). The noise ceiling represents the upper bound or best possible 
performance given data limitations or experimental constraints.

Table 3 presents a summary of the two RSA results, highlighting, on the left column, SemDNN’s superior 
predictivity of perceived sound dissimilarity (highest R2

CV value) than CatDNN and other models (see also Fig.  
11). Importantly, SemDNN outperformed all the competing networks trained with categorical labels (VGGish, 
PANNs CNN-14, Yamnet, and Kell). CLAP was instead the most predictive of the semantic models. These results 
confirm our hypothesis that a network that learns continuous semantic representations from acoustics better 

Fig. 10.   Comparison of embedding dissimilarity matrices for SemDNNs and CatDNN. Normalized Cosine 
distances between MSOS sound embeddings of the intermediate layer 512-D of CatDNN and SemDNN trained 
with Word2Vec, BERT, and CLAP representations (arrow in Fig. 2). The matrix on the upper left reflects the 
true macro-classes, where the color scale represents the minimum (blue) and maximum (yellow) normalized 
distances, specifically within-category distance = 0; between-category distance = 1. The SemDNN trained with 
Word2Vec embedding matrix demonstrates a stronger reflection of the macro-class organization compared 
to the CatDNN embedding matrix and the other two SemDNN variants, as indicated by higher Pearson 
correlation coefficients with the true categorical model: 0.340 for SemDNN with Word2Vec, 0.194 for SemDNN 
with BERT, 0.224 for SemDNN with CLAP and 0.193 for CatDNN.
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Fig. 11.   Cross-validated RSA results for sound condition and word condition. The color distributions 
correspond to the plug-in distribution of R2

CV
 across CV folds, represented by the box plots. The center of 

the box plot represents the median, while the lower and upper box limits indicate the 1st and 3rd quartiles, 
respectively. The bottom and top whiskers depict the data within 1.5 interquartile ranges from the 1st and 3rd 
quartiles, respectively. The dark gray color represents the cross-CV fold median of the permutation results. 
The orange color indicates the noise ceiling, with the dashed line representing the median noise ceiling across 
CV folds. The upper graph shows the performance of the evaluated models in predicting perceived sound 
dissimilarity (SemDNN outperforms all other models). The lower graph shows the performance of the evaluated 
models in perceived word dissimilarity, notably, Word2Vec outperforms all the other models.

Table 3.   R2
CV

 obtained from the cross-validated RSA. Bold values indicate the highest Rsquare scores within 
each model category, highlighting the best-performing models under each condition.

Model Sound condition R2

CV
Word condition R2

CV

BERT 0.1655 0.2627

Word2Vec 0.2112 0.3826

CLAP 0.2201 0.1890

CAE 0.0903 0.0849

Kell 0.1790 0.0844

CatDNN 0.2097 0.1403

VGGish 0.2262 0.1177

PANNsCNN-14 0.2627 0.1451

Yamnet 0.3015 0.1552

SemDNNnoTrain 0.0337 0.0570

SemDNNunbal 0.2651 0.1824

SemDNNCLAP 0.2786 0.1912

SemDNNBERT 0.2831 0.2014

SemDNN 0.3713 0.2393
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approximates human behaviour compared to models considering only acoustic information, relying solely on 
semantic information, or learning categorical semantic representations from acoustics. SemDNN trained with 
Word2Vec representations outperformed SemDNN trained with CLAP or BERT representations. Additionally, 
training SemDNN on a semantically balanced dataset yielded better results compared to training on a randomly 
chosen dataset (semDNNunbal ), highlighting the importance of a balanced dataset37. We also evaluated the 
performance of an untrained network (semDNNnotrain ) initialized with random values, serving as a baseline. 
The right column of Table  3 focuses on the prediction of word perceived dissimilarity of the considered models 
measured by their respective R2

CV values. Notably, Word2Vec emerges as the most successful semantic model in 
this task. This outcome is in line with our expectations, considering the nature of our labels, which are keywords, 
and not actual sentences, representing the semantic content of the sounds. Among the DNN models, SemDNN 
stands out as the top performer in predicting word-perceived dissimilarity. This can be attributed to the fact 
that SemDNN is trained using Word2Vec representations, which aligns well with our keyword-based labels. The 
inherent strength of Word2Vec in capturing semantic relationships and similarities enables SemDNN to leverage 
this knowledge effectively, resulting in superior performance compared to other DNN models.

Discussion
We conducted a systematic exploration of the impact of employing continuous semantic embeddings (Word2Vec, 
BERT, and CLAP) in training DNNs for sound recognition, contrasting them with categorical labels (one-hot 
encoding).

Through our experiments and analyses, we gained significant perspectives into how the choice of semantic 
representations influences the performance of artificial hearing algorithms.

We compared the different models and the categorical model by using averaged Ranking Scores and AMCSSs 
(Figs. 7 and  8) on various datasets (FSD50k, US8k, ESC-50, MSOS, and the internal SuperHardDrive Combo 
dataset). The results consistently demonstrated that SemDNN trained with Word2Vec outperformed CatDNN 
and SemDNNs trained with CLAP and BERT. These findings imply that training DNNs to map sounds into a 
dense space preserving semantic relationships between sound sources enhances the network’s ability to recog-
nize and comprehend individual sound events. The superiority of semDNN trained with Word2Vec over those 
using BERT and CLAP suggests that the complexity of the optimal semantic space lies between a categorical 
representation, lacking semantic relations, and a context-dependent natural language space, which may involve 
excessively fine-grained information. Our study employed keyword labels instead of full sentences, potentially 
limiting models’ contextual learning. While Word2Vec performs well with keywords, BERT and CLAP are both 
optimized for sentence-level context and might have faced limitations in this keyword-based setup. Moreover 
it is worth to clarify, as that we are not using context vectors (CLS) for CLAP or BERT (see section “Label 
encoding strategies”). Instead, we are averaging the word embeddings of each word in the label, which dilutes 
the contextual information. These factors may have limited the effectiveness of BERT and CLAP in our current 
evaluation framework. It may be interesting, in future work, to conduct similar analyses with sounds described 
with fully-formed sentences, such as those used in automated-captioning challenges46, and especially focusing 
on words for which the BERT/CLAP embeddings show sufficient variability (see e.g. “rock” in Fig. 3). Nonethe-
less, Word2Vec outperformed these models, suggesting that natural sound semantics may not require complex 
contextual information for comprehension. This finding challenges the traditional view of natural sound percep-
tion’s semantic complexity, often examined through the lens of language semantics47. It suggests that the inherent 
characteristics of natural sounds, well-captured by Word2Vec’s relatively simple semantic mapping, may not 
necessitate the contextual information demanded by language semantics.

Our hypothesis was that DNNs that are trained to recognize sounds and simultaneously learn the semantic 
relation between the sources would mimic human behaviour better than other existing networks. We assessed 
this hypothesis in two steps: First, we examined the ability of the DNNs to form higher-order semantic classes; 
second, we assessed their ability to approximate human behaviour in auditory cognitive tasks.

In the first step, we focused on the MSOS dataset, which organizes sounds into five macro-classes (effects, 
human, music, nature, and urban). We computed the pairwise cosine distances between sound embeddings in 
the last intermediate layer of SemDNN and CatDNN (Fig. 10). The results indicated that the SemDNN embed-
ding better reflected the macro-class organization compared to the CatDNN embedding. The Pearson correlation 
coefficient with the true categorical model of the five macro-classes was higher for SemDNN (0.330) compared 
to CatDNN (0.202). Notably, semDNN (and the other networks) were not explicitly trained to group individual 
sounds into macro-classes. The superiority of semDNN over catDNN underscores that semDNNs leverage the 
semantic relation between sound sources in addition to the acoustic similarity of specific sounds.

To address the second question, we conducted a cross-validated RSA (Representational Similarity Analysis) 
and assessed the performance of different models in explaining perceived sound and word dissimilarity ratings 
(Fig. 11). The results, summarized in Table 3, demonstrated that for the sound condition, SemDNN achieved 
the highest R2

CV value among all the models, indicating its superior ability to emulate human behavioural data. 
It outperformed not only CatDNN and other DNNs trained with categorical labels but also purely semantic 
models such as Word2Vec, BERT, and CLAP. Interestingly, SemDNN trained with Word2Vec representations 
exhibited better performance than SemDNN trained with CLAP or BERT representations. Moreover, we trained 
SemDNN with Word2Vec on a random choice dataset (SemDNNunbal ) to compare the performance with a 
semantically balanced dataset. The results showed that SemDNN still outperformed SemDNNunbal , highlighting 
the importance of a semantically balanced dataset in training the model. Additionally, we included a baseline 
model (SemDNNnotrain ) that was untrained and solely initialized with random weights. For the word condi-
tion, the results are summarised in Table  3 and depicted in the lower graph of Fig.  11. Word2Vec outperforms 
other semantic models in predicting word dissimilarity, as expected. Since our labels are keywords rather than 
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complete sentences, Word2Vec effectively captures the semantic content of the sounds. None of the CatDNNs 
stand out among the others showing the limitations of this network to perform a simple linguistic task. On the 
other hand, Word2Vec’s ability to capture semantic relationships and similarities enables SemDNN to leverage 
this knowledge effectively, leading to superior performance compared to other DNN models. Yet, for SemDNN 
(and the other DNNs), the behavioural data are predicted using all layers and thus DNN-based predictions 
include contributions from both early-mid layers (acoustics) and late layers (semantics), which may explain the 
lower performance of SemDNN in the word task compared to the language models.

Overall, these results provide strong evidence for the effectiveness of SemDNN in capturing both acoustic 
and semantic information and approximate human behaviour in auditory cognitive tasks. Integrating acoustic 
and semantic features proved more successful than considering acoustic information alone (CatDNN) or relying 
solely on pure semantic models. It’s worth noting that SemDNNs were trained with over 1 million examples, 
while 1 billion examples were considered to train VGGish and Yamnet6, supporting the idea that—when the goal 
is to approximate human behaviour—ecological, balanced datasets may be more relevant than large amounts 
of unbalanced training data37.

Conclusions
In this study, we investigated the performance of various models in performing sound recognition tasks and 
in their ability to approximate human behaviour in auditory cognitive tasks (sound dissimilarity ratings). Our 
findings provide an important understanding of the role of semantic information in these two aspects. The key 
conclusions drawn from our analysis are as follows: 

1.	 SemDNN, combining both acoustic and semantic information,consistently outperformed CatDNNs in both 
sound recognition performance and approximating human behavioural data. This suggests that our approach 
of mapping sounds to a continuous space is a valid and advantageous alternative to the conventional method 
of training sound-to-event DNNs for discrete sound categories.

2.	 SemDNN models trained with Word2Vec representations exhibited superior performance compared to other 
semantic representations like BERT or CLAP. This underscores the effectiveness of Word2Vec embeddings 
in basic sound recognition tasks. Future work should explore the generalizability of these findings, especially 
when using datasets with complex linguistic descriptions of sounds.

3.	 Training SemDNN models on a semantically balanced dataset improved the prediction of human behavioural 
data compared to training on a randomly chosen dataset. It outperformed many other models trained on a 
larger number of sounds, emphasizing the importance of dataset curation and the use of ecologically valid 
datasets, particularly when aiming to approximate human behaviour.

In summary, our study advances our understanding of the interplay between acoustics and semantics in both 
sound-to-event DNNs and human listeners. This paves the way for future research to optimize models and 
enhance their alignment with human perceptual judgments.

Data availability
The data that support the findings of this study are available from SoundIdeas Inc.43 but restrictions apply to 
the availability of these data, which were used under Royalty free license48 for the current study, and so are not 
publicly available.
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