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Abstract: Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells
after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with
chromosome segregation and requires the fine orchestration of several processes, such as constriction
of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces
cerevisine, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis
by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity.
Yeast septins form a collar at the division site that undergoes major dynamic transitions during the
cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the
implications of their dynamic remodelling for cell division.

Keywords: S. cerevisiae; septins; cytokinesis

1. Introduction

Septins form an evolutionarily conserved family of cytoskeletal proteins expressed in
many eukaryotic organisms but absent in land plants [1,2]. Septins were initially discovered
in budding yeast through mutagenesis screens aimed at identifying genes involved in the
cell division cycle (CDC [3]). Temperature-sensitive mutations affecting the genes CDC3,
CDC10, CDC11, and CDC12 cause hyperpolarized growth and cytokinesis failure at high
temperatures, suggesting a role in cell morphogenesis and cell division [4,5]. Electron and
immunofluorescence microscopy studies revealed that the products of these genes localize
at the bud neck, forming a filamentous collar [6-8]. Given their role in septation, these
proteins were named “septins”. Subsequently, three additional septin genes were identified
in budding yeast based on sequence homology: SHS1, expressed like the aforementioned
septins in vegetative cells, and SPR3 and SPR28, which are expressed exclusively during
meiosis [9-11].

Yeast septins participate in a wide range of cellular functions, including cell polar-
ity [12], cell cycle progression [13-15], spindle positioning [16], cytokinesis and septum
formation [4,17-19]. Since their discovery in budding yeast, septin orthologs have been
identified in animals, fungi and protists, where they are involved in numerous cellular pro-
cesses, such as cytokinesis [20-25], exocytosis [26], phagocytosis [27], morphogenesis [28-32],
ciliogenesis [33-35], cell motility [36,37], spermatogenesis [38], lipid metabolism [39,40],
synaptic activity [41-43] and bacterial entrapment during cell infection [44,45].

Given their pivotal roles in cellular organization and function, it is not surprising that
septins are implicated in a range of pathological conditions. Indeed, septin dysfunction has
been associated with cancer, neurodegenerative disorders, infectious diseases and infertility
(reviewed in [46]).

Septins are GTP-binding proteins characterized by a conserved GTPase domain and
variable N-terminal and C-terminal regions. A septin-unique element is a distinctive feature of
all septins, although its precise function remains unknown [47]. Septins invariably assemble
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into rod-shaped hetero-complexes composed of two copies of each septin monomer organized
in a palindromic fashion (reviewed in [48]). Septin hetero-complexes then interact to form
non-polar filaments and/or higher-order structures, such as bundles, rings or gauzes, as
observed both in vitro and in vivo across various organisms [6,22,24,31,38,49-60].

Membranes play a crucial role in septin organization. Septins associate with lipid
membranes containing negatively charged phospholipids, particularly phosphatidylinos-
itol 4,5-bisphosphate (PI1(4,5)P;) [61-65]. In budding yeast, P1(4,5)P; is enriched at the
presumptive bud site in G1 [66], thus accounting for septin recruitment at this specific
cellular location. Additionally, perturbing the amount of PI(4,5)P, at the plasma membrane
causes the septin collar to be disassembled at the bud neck and/or septin filaments to form
aberrant structures cytoplasm, such as small rings and arcs [64,67], indicating that PI(4,5)P,
is crucial for septin organization in vivo.

How septins bind to membranes is unclear. A protein motif rich in basic residues
at the N-terminus of septins has been implicated in membrane binding via electrostatic
interactions with the negative charges of phospholipids [63,68-70]. However, whether this
polybasic motif is actually exposed on the surface of septins or buried, thus precluding a
prominent role in membrane binding, is still debated [48].

Septin binding to membranes is also affected by membrane curvature, showing a
strong preference for micrometric curvatures [71-73]. Consequently, septins are frequently
located at curved membranes, such as the hyphal branch sites of filamentous fungi, the
base of primary cilia, and the annulus of sperm tails [31-33,50,74,75].

Finally, multiple septin-associated proteins and post-translational modifications are
likely involved in septin organization in different physiological contexts, highlighting the
complexity and dynamic nature of septin regulation.

2. Budding Yeast Septins and Their Localization

In vegetative cells, budding yeast septins form two hetero-octamers with a common
core composed of Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdcl2 and comprising either Cdcl1 or
Shs1 at both extremities [58,59,76]. Surprisingly, septin octamers always have symmetric
termini, while asymmetric complexes capped by Cdcll and Shsl at each end cannot
be formed, at least in vitro [76]. The linear septin complexes are often referred to as
septin “rods” and measure 32-35 nm in length and 4-5 nm in diameter [58,59]. In vitro
reconstitution assays using recombinant septins have shown a striking difference between
Cdcll-capped and Shsl-capped yeast octamers, where the former can spontaneously
polymerize end-to-end to form long, paired filaments in solution, while the latter appear
unable to polymerize [50,58,59,77,78]. Shsl-capped octamers can nevertheless interact
laterally and stagger on top of each other to form curved bundles, rings and spirals
in vitro [59]. Additionally, in the presence of lipids or upon an SH51 mutation mimicking
constitutive phosphorylation of Ser259, Shs1-capped octamers form gauze-like structures in
addition to rings, suggesting that the cellular context and post-translational modifications
influence the supramolecular organization of septins [59,60]. Despite being unable to
polymerize into linear filaments, Shs1-capped rods can form heterotypic interactions with
the termini of Cdcl1l-capped octamers [78], suggesting that they may be interspersed in
septin filaments and higher-order structures. Consistently, the five mitotic septins display a
completely superimposable localization in vegetative cells throughout the cell cycle.

Formation of septin filaments is essential for cell division, as shown by the lethal-
ity of mutants incapable of septin polymerization [79]. This may explain why Cdc11 is
required for viability in most yeast backgrounds, while Shsl is dispensable [10,47,79].
During sporulation, the aforementioned septin hetero-octamers are replaced by the Spr28-
Spr3-Cdc3-Cdc10-Cdc10-Cde3-Spr3-Spr28 meiotic-specific complex, where Spr28 and Spr3
replace the terminal septin and Cdc12, respectively [80]. Unlike its mitotic Cdcl1-capped
counterpart, the Spr28-capped meiotic complex is unable to polymerize in solution, but
it readily forms filaments on PI(4,5)P,-containing lipid monolayers [80], suggesting that
its polymerization requires binding to the plasma membrane. Its function during meiosis
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is linked to proper biogenesis of the prospore membrane and cell wall assembly, thereby
ensuring high sporulation efficiency [81].

The functional organization of septins is based on their assembly into higher-ordered
structures. In vegetative cells, septins undergo dynamic changes in their structural or-
ganization during the cell cycle. First, in late G1, septins form a dynamic cortical ring
at the presumptive bud site. Then, as the bud emerges, the septin ring expands into an
hourglass-shaped structure, referred to as septin collar, around the bud neck. Finally, at the
onset of cytokinesis, the septin collar splits into a double ring that sandwiches the AMR
(Figure 1). This dramatic septin remodelling, which is essential for cell division (see below),
is often referred to as septin ring splitting. Each split ring then persists in the mother and
daughter cell, respectively, until the next cell cycle [7,82,83]. Florescence recovery after
photobleaching (FRAP) experiments have shown that the newly forming septin ring is
dynamic, as shown by its ability to exchange septins from an unassembled pool. In contrast,
the septin collar is a stable and immobile structure. At cytokinesis, split septin rings become
again relatively dynamic [84,85].

septin ring AMR
splitting and constriction and secondary
septin septinring  septin collar AMR primary septum  septum cell
recruitment formation assembly assembly formation formation separation
CW,
bs
pm
G1 S G2 metaphase anaphase telophase cytokinesis
I Septins Chs2 n: nucleus pm: plasma membrane
| Myo1 | primary septum c: cytoplasm bs: bud scar
H AMR W secondary septum cw: cell wall

Figure 1. Main cell cycle events relevant for budding yeast cytokinesis and cell division. See text
for details.

In cells exposed to mating pheromones, septins form a fuzzy band or a set of parallel
bars at the base of the polarized projection (i.e. the shmoo) [7,83,86]. Upon cell fusion
during mating, septins form an annulus at the midzone of the zygote that seems to affect
the redistribution of supramolecular complexes and organelles [87].

During meiosis I, septins first form ring-like structures at the leading edge of mem-
brane sacs, also known as prospore membranes, that originate in close apposition to the
cytoplasmic face of the spindle pole bodies and that will later extend to engulf each of the
four haploid nuclei. At the end of meiosis II, septins seem to localize quite uniformly at the
plasma membrane surrounding the developing spore [9,88] (Figure 2). Interestingly, the
septin Cdc10 accumulates in each mature spore to form a cortical cluster opposite to its
neighboring sister spores in the ascus. This septin cluster serves as a prepolarity marker
to direct the later polarised growth to penetrate the ascus wall during germination [89,90]
(Figure 2). Additionally, upon germination but before bud emergence, Cdcl0 localises as a
band at the boundary between the two unequal halves of the germinating spore, suggesting
that septins may form a cortical barrier between the growing and non-growing parts of the
germinating spore [90].
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Figure 2. Septin localization during meiosis in budding yeast. Upon nitrogen deprivation and in the
presence of poor carbon sources, budding yeast diploid cells stop dividing (stationary phase) and
undergo meiosis. See text for details.

Thus, budding yeast septins display a wide range of high order architectures depend-
ing on the physiological context, but they seem to be invariably associated with membranes,
while in other eukaryotes, septins clearly also associate with the actin and microtubule
cytoskeleton (reviewed in [91]).

3. Septin Organization and Cytokinesis in Budding Yeast

Our current knowledge of septin architecture at the bud neck of mitotic yeast cells
comes mainly from ultrastructural studies. Freeze-fracture and platinum-replica electron
microscopy on unroofed spheroplasts or cryo-electron tomography on intact cells have
shown that the mature septin collar at the bud neck is made by a network of axial filaments
lying parallel to the mother bud axis and circumferential filaments that are orthogonally
oriented, thus forming a gauze-like meshwork (Figure 3) [49,52,92]. Conversely, the septin
double ring at cytokinesis is made exclusively of circumferential filaments [92], in line with
polarized fluorescence microscopy studies showing that the average orientation of septin
filaments in the split septin rings is perpendicular relative to the polarity axis [93-95]. Since
fluorescently labelled septins show a marked decrease in fluorescence at the bud neck at
the moment of septin ring splitting [18,85,94,96], current models envision that at the onset
of cytokinesis the axial septin filaments disassemble and possibly partially reassemble into
two arrays of circumferential filaments, forming the double ring (reviewed in [97]).

Cytokinesis is a delicate process that must precisely partition an equal complement
of the replicated genomes and organelles to each daughter cell. It relies on assembly and
contraction of an actomyosin ring (AMR) and must be tightly controlled and coordinated
with other cell cycle processes, such as chromosome segregation. Typically, yeast cytokinesis
can be divided into four steps: selection of the division site, assembly of the AMR, cleavage
furrow ingression and primary septum formation powered by the AMR, and localized
membrane remodelling. In budding yeast, septins are involved in most of these cytokinetic
steps by adopting different structural organizations.

The first steps of cytokinesis occur very early during the cell cycle. The selection of the
bud site, which is also the division site, is determined in late G1 by the cell polarization ma-
chinery controlled by the master polarity GTPase Cdc42 that also recruits septins (reviewed
in [98]; see below). Bud site selection follows a very specific pattern depending on whether
cells are haploid or diploid. In haploid cells, the emergence of a new bud occurs proximally
to the division site (axial budding pattern), while in diploid cells, it occurs distally (bipolar
budding pattern). Such a stereotypical pattern depends on polarity landmark proteins that
precisely mark the future bud site (reviewed in [98]). Despite their recruitment before bud
emergence, septins are not required for bud emergence [4,99], but they contribute to the
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axial budding pattern by recruiting to the bud neck landmark proteins, such as Bud3 and
Bud4 [100-103]. In addition, they facilitate the formation of a narrow cluster of Cdc42 at the
presumptive bud site by recruiting GTPase-activating proteins (GAPs) that in turn inhibit
Cdc42 in the membrane area surrounding its activated cluster (Figure 3) [104].

I Axial septins filaments B AMR

I Circumferential septins filaments Chs2

| Myo1
septin septin ring early septin mature septin septin
patch collar collar double ring

>
=3 /m\ W

Bnn,Septm rlng /Septin collar Septin_
CIa4 \ AxI2 CDKs T 1 double ring

G|C1/2:Cdc42<—Bem1 -Cdc24 Cla4 | Bni5| Dma1 /S
Gin4 | |Dma2 Bud3 | Hoft
\'«\Elm/ Bud4 MEN~”"

Figure 3. Septin architecture during different cell cycle phases. Septins are first recruited in G1 to the
presumptive bud side as an unorganized patch that is rapidly converted into a cortical ring formed
by radial septin filaments. Septin recruitment and/or ring formation involve the Cdc42 GTPase, in
turn activated by the scaffold Bem1 and the GEF Cdc24, the Cdc42 effectors Cla4 and Gicl-2, the
formin Bnil and the axial landmark protein AxI2. At S phase entry, the septin ring expands into a
septin collar that spans the bud neck and then matures into an hourglass-shaped structure formed by
axial and circumferential septin filaments. Septin collar assembly involves the kinases Cla4, Gin4 and
Elm1, CDKs, the septin-interacting protein Bni5 and the ubiquitin ligases Dmal and Dma2. At the
onset of cytokinesis, the axial septin filaments are depolymerized and possibly repolymerized into
two arrays of circumferential filaments that make a double ring sandwiching the constricting AMR.
Septin reorganization requires the MEN (mitotic exit network), its phosphorylation target Hof1 and
other unidentified effectors. The septin double ring is patterned and stabilised by the Bud3 protein
and the anillin-like Bud4. Solid arrows indicate established regulatory relationships; dashed arrows
indicate hypothetical regulatory interactions. See text for further details.

Before bud emergence, Myol, the sole myosin-II heavy chain in budding yeast, is
recruited along with its regulatory light-chain Mlc2 in a septin-dependent manner, forming
aring (Figure 1) [19,105-107]. At the time of the bud emergence, the septin ring expands
around the bud neck, forming an hourglass-shaped structure that remains stable during
mitosis. AMR assembly proceeds until the end of anaphase (Figure 1), when the IQGAP Iqg1
appears at the bud neck to recruit actin [19,105,108,109]. Around the same time, the essential
myosin light chain Mlcl arrives at the bud neck to interact with Myol and to enhance
Myol targeting to the neck, thus further increasing its local levels [106,110]. Concomitantly,
Mlcl also promotes Iqgl recruitment to the bud neck by binding to its IQ motifs [111].
Two formins, Bnil and Bnrl, are redundantly essential for actin polymerization at the
AMR [112,113]. Furthermore, formins have been shown to contribute to the accumulation
of Mlc1 at the bud neck during cytokinesis [114], suggesting an additional mechanism
by which they could participate in AMR assembly. After mitotic exit, the chitin synthase
Chs2 is recruited to the AMR to promote formation of the primary septum along with
AMR constriction [115-119]. Additionally, a protein complex made by Hofl, Inn1 and
Cyk3 also joins the AMR and partially constricts alongside it to boost Chs2 recruitment and
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activity [113,116,120-128]. Several of the aforementioned AMR components and regulators,
namely Myol [19,105], Mlc1 [106,108], Bnr1 [129,130] and Hof1 [128], require septins for
their bud neck localization, suggesting that the septin collar orchestrates AMR assembly.

Constriction of the AMR marks the beginning of cytokinesis (Figure 1). AMR constric-
tion may occur partly through sliding of bipolar myosin filaments along actin filaments that
are tethered to the plasma membrane, similar to the way by which actomyosin generates
force in the striated muscle [131,132]. However, actin depolymerization by cofilin plays
a predominant role in budding yeast AMR constriction [133]. Iqgl degradation by the
APC/C complex might also contribute to AMR disassembly [134,135].

AMR constriction drives membrane invagination inward and is also coupled to tar-
geted deposition of post-Golgi vesicles to the division site to increase surface area and
deliver the chitin synthase-II Chs2 to drive primary septum formation (PS) [118,136,137].
Thus, AMR constriction guides PS formation, which in turn stabilises the AMR during
constriction [138-140].

At the onset of cytokinesis, the septin hourglass is split into two rings that sandwich
the AMR (Figure 1) [82,96,141]. This septin reorganization is an essential prerequisite for
cytokinesis [96,142]. Indeed, lack of septin ring splitting prevents AMR constriction and PS
formation. Thus, the septin collar has both a positive and a negative role in cytokinesis: during
mitosis, it organises the cytokinetic machinery by recruiting several cytokinetic proteins to
the bud neck, but at cytokinesis, it must be displaced from the bud neck (through septin ring
splitting or clearance altogether) to allow AMR constriction [96,142]. Consistently, septins are
not required for AMR constriction once the AMR has been assembled [96,143]. The septin
double ring could nevertheless facilitate plasma membrane closure by acting as a diffusion
barrier that concentrates membrane remodelling factors, such as the polarisome and the
exocyst complex, to the cleavage site [143].

Once the primary septum has been laid down, a secondary septum (SS) is assembled
by glucan synthases and the chitin synthase Chs3 on both the mother and daughter sides of
the PS, thus leading to abscission (Figure 1) [125,136]. By recruiting Hof1 to the bud neck,
which in turn inhibits precocious activation of Chs3, septins indirectly set the timing of SS
assembly so that it occurs only after the PS has been deposited [121,144].

The final step of yeast cytokinesis is cell separation (Figure 1), which involves PS
digestion and SS remodeling by chitinase and endoglucanases, respectively (reviewed
in [145]). If and how septins are involved in the control of cell separation is not known.
Intriguingly, however, in fission yeast glucanases are localized in between the two split
septin rings and are unable to form a proper ring at the cortex in septin mutants [146],
suggesting that the septin double ring may form a diffusion barrier for the enzymes
involved in cell separation.

4. The Control of Septin Dynamics during the Cell Cycle

We can distinguish three main steps in the dynamics of septin architecture during the
budding yeast cell cycle: (1) septin recruitment and ring assembly; (2) maturation into the
septin collar; and (3) transition into the septin double ring.

4.1. Septin Recruitment and Ring Assembly

Septins accumulate at the presumptive bud site initially as a cloud or patch (Figure 3).
This process depends on the Rho GTPase Cdc42, which is a conserved master regulator
of cell polarity [82,84,147]. Indeed, Cdc42 depletion leads to an unbudded cell phenotype
lacking cortical septin structures [148], and cdc42 mutants are defective in septin recruitment
to the presumptive bud site or display septin mislocalization [103,147,149]. However, in
some of these mutants Cdc42 cannot hydrolyze GTP and is locked in a GTP-bound state,
while overexpression of Cdc42 GTPase-activating proteins (GAPs) can restore proper septin
localization and function in septin mutants [147,148]. These observations have led to the
proposal that Cdc42 must continuously cycle between a GTP- and a GDP-bound state in
order to gather septins at the future bud neck [149]. Alternatively, active GTP-bound Cdc42
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may be required to establish the first polarity cue necessary for septin recruitment (e.g., to
define a membrane domain permissive for septin accumulation), while the active GTPase
actually prevents septins from piling up.

Once at the plasma membrane, septins rapidly organise into a cortical ring (Figure 3).
Polarized exocytosis and insertion of membrane vesicles by Cdc42 and the exocyst complex
are critical to this process by inhibiting septin accumulation in the center of the septin cap
at the incipient bud site, thus creating the ring [104]. Thus, it is possible that the septin
mislocalization phenotype of some GTP-bound cdc42 mutants is accounted for by excessive
or untargeted membrane vesicles tethering that disrupts septin ring assembly.

Several studies have attempted to link the function of Cdc42 in septin ring assembly
to specific Cdc42 effectors (Figure 3). The p21-activated kinases (PAK) Cla4 and Ste20 are
turned on by Cdc42 and Cla4 has been implicated in septin recruitment to the presumptive
bud site through phosphorylation of several septins [99,150-152]. On the other hand,
Cla4 binds the Cdc42 membrane scaffold Bem1 and recruits and phosphorylates Cdc24,
the GEF (guanine-nucleotide exchange factor) for Cdc42, thus promoting its GTP-bound
state [153-155]. Such a positive feedback loop suggests that the role of PAK kinases in
septin recruitment may be partly mediated by a global enhancement in Cdc4?2 activity.
In parallel, the Cdc24-Bem1 complex binds Cdc11, helping to bring septins to the bud
site [156]. Two additional Cdc42 effectors, i.e. the paralogous membrane proteins Gicl and
Gic2, interact directly with septins and are involved in septin recruitment and organization
in vivo and in vitro [104,148,157-159]. Accordingly, septin deposition and budding mostly
fail in gic1 gic2 double mutants at high temperatures [148]. Gicl colocalizes with septins
at the presumptive bud site at early stages of the cell cycle and at the bud neck later
on [148], and it has been shown to bundle and cross-link septin filaments in vitro, thereby
stabilizing them [159]. However, similar to PAK kinases, Gicl and Gic2 are also involved in
a positive feedback loop for Cdc42 activation, and overexpression of CDC42 suppresses
the lethality of cells lacking Gicl and Gic2 at high temperatures [160,161], suggesting that
septin recruitment to the future bud site may be empowered by Cdc42 itself or by effectors
other than Gic proteins.

PAK kinases possess a pleckstrin-homology domain that binds preferentially to
PI(4,5)P, [162]. Similarly, Gic2 (and possibly Gicl) bears a cluster of basic residues that
binds to PI1(4,5)P, [158]. Thus, the PI(4,5)P, binding properties of these Cdc42 effectors
might influence their interaction with and organization of septin into a ring.

The formin Bnil contributes to septin ring formation along with Cla4 (Figure 3), as bnil
cla4 double mutants form a cap of septins at the presumptive bud site that is not converted
into a ring [151]. This could be related to the function of Cdc42 in polarized exocytosis
along actin cables generated by Bnil and in creating the hole in the middle of the septin
ring [104].

Finally, AxI2 is a bud site landmark protein that also participates in septin recruitment
(Figure 3) [163,164]. Recent two-hybrid and bimolecular fluorescence complementation
(BiFC) assays indicated that AxI2 interacts with the septin Cdc10, as well as with Cdc42-
GTP and Bud3, and contributes to the efficient gathering of septins to the cell division
site [103].

In summary, while Cdc42 effectors, activators and cell polarity proteins have been
implicated in septin organization, the precise mechanistic processes underlying septin
recruitment and septin ring formation need to be further elucidated.

Another Rho GTPase, Rhol, has been implicated in timely and efficient septin recruit-
ment and septin collar stability through activation of one of its downstream effectors, the
kinase Pkc1 that in turn phosphorylates the septin-interacting protein Syp1 and promotes
its turnover at the bud neck [165,166]. Syp1l appears at the presumptive bud site concomi-
tant with septins and in vitro is able to align laterally and bundle septin filaments, thus
offering mechanical stability to the new-forming septin ring/collar [167].
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4.2. Maturation into the Septin Collar

As the bud emerges, the septin ring at the bud neck expands into a rigid hourglass-
shaped septin collar. Whether this septin remodeling occurs suddenly at the G1/S transition
or progressively throughout mitotic progression is not known. As mentioned above, the
mature septin hourglass is a gauze-like, very stable septin assembly comprising axial and
circumferential filaments (Figure 3) [49,84,85,92]. Likely, the transition from the initial
septin ring, which is mainly composed by radial septin filaments converging towards a
central hole [92], into the septin collar is controlled by the cell cycle machinery.

One of the first septin-interacting proteins that was found to be involved in septin
organization is the Nim-related kinase Gin4. Mutations in GIN4 are synthetically lethal
with cdc12 and cause septins to form a fuzzy band or parallel axial “bars” at the bud
neck instead of the hourglass [86]. A similar phenotype was observed in cells lacking the
Gin4-binding protein Napl [14] or the septin Shsl [13] and in cells exposed to mating
pheromones [7,83,86]. These observations suggest that Gin4 may be involved in stabilising
the circumferential septin filaments, which in turn require Shsl for the overall gauze-like
organization in a septin collar [92,94]. Consistently, Gin4 phosphorylates directly Shsl, thus
contributing to the robustness of the hourglass [168,169]. Gin4 colocalises with septins from
septin appearance throughout mitosis, but is displaced from the bud neck before septin ring
splitting and is absent in septin structures of mating cells [86]. Its association with septins
requires Nap1, Shs1, the PAK kinase Cla4 and cyclin-dependent kinases (CDKs) [168], thus
partly explaining the links between septin collar organization and cell cycle progression.
Accordingly, Shsl phosphorylation by G1 CDKs stabilises the interaction of septins with
Gin4 [170]. Two additional Nim-related kinases, Hsll and Kcc4, associate with septins
in yeast cells [171-177]. Although the lack of Hsl1 or Kcc4 does not cause any obvious
defect in septin organization [14], these kinases may share with Gin4 partially overlapping
functions in building up the architecture of the septin collar [174].

During bud emergence, Gin4 targets to the bud neck the LKB1-like kinase Elm1, which
contributes to septin collar architecture and stability until cytokinesis (Figure 3) [178-181].
In turn, EIm1 phosphorylates and activates Cla4, Gin4 and Hsl1 [14,168,169,180-182]. Its
efficient recruitment to the bud neck requires the Dmal and Dma2 ubiquitin ligases,
which in turn are involved in proper septin stability at the bud neck through an unknown
molecular mechanism [183,184]. The role of EIm1 in septin organization also involves
the phosphorylation and functionality of Bni5 [179,185], a septin-interacting protein that
was identified as a dosage suppressor of septin mutants [186]. Bni5 can dimerize and
in vitro is able to crosslinks septin filaments into networks by bridging pairs or multiple
filaments [185,187]. Additionally, Bni5 interacts with the C-terminal extension of Cdc11
and Shsl and recruits Myol to the septin ring and collar throughout most of the cell cycle
except during cytokinesis [110,188]. The exact role of Myol at the septin collar is unclear,
but myosin II filaments may assemble on the membrane-distal side of the septin hourglass
perpendicular to the axial septin filaments and somehow contribute to the appropriate
septin architecture [92].

Post-translational modifications (PTMs) likely play an important role in the organi-
zation and stability of the septin hourglass. Besides the aforementioned septin phospho-
rylations by Cla4, Gin4 and CDKs, septins may be phosphorylated by other septin- and
bud neck-associated kinases (e.g. Hsl1, Kcc4, polo kinase Cdc5, Mob1-Dbf2, etc.). Plenty of
septin phosphorylation sites have been identified by phosphoproteomics, and some them
are regulated across the cell cycle [189-198], suggesting that they may play an important
role in the control of septin dynamics. However, their elevated number has so far hampered
their systematic characterization. Septin SUMOYylation occurs mainly during mitosis and
could potentially promote the stability of the septin hourglass or septin interactions [199].
However, non-SUMOylatable septin mutants do not show any obvious defects in septin
architecture and experience only a mild delay in septin disassembly after cell division [199].
Septin acetylation may also impact the overall architecture of the septin collar, as septin
mutants with reduced acetylation levels have defects in septin localization [200]. Finally,
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some septins have also been found to be ubiquitylated [191], but the functional significance
of this PTM has not been explored so far.

Since the septin collar is necessary for the recruitment of several cytokinetic proteins
to the bud neck (see above), it is often considered as a “scaffold” for cytokinesis. However,
septins actually inhibit AMR constriction and are no longer required for cytokinesis after
AMR assembly [96,143]. Thus, whether the term “scaffold” is appropriate may be ques-
tionable. Why certain cytokinetic factors require to bind the septin collar in order to be
incorporated into the AMR remains to be further investigated. Possibly, the septin collar
congregates these proteins at the bud neck to reach threshold concentrations necessary for
AMR assembly, thus acting as a molecular crowder. A non-mutually exclusive hypothesis
is that binding to septins may induce specific protein conformations that are compatible
with AMR interactions.

4.3. Transition into the Septin Double Ring

During cytokinesis, the septin collar undergoes a sudden and dramatic reorganization,
resulting in its splitting into two distinct rings that sandwich the AMR (Figure 3) [105,141].
This septin displacement is crucial for AMR constriction and cytokinesis, indicating that
building a force-generating AMR requires at least two septin-related steps. Initially, the
septin collar spurs the assembly of the cytokinetic machinery at the right place while
preventing AMR-driven membrane ingression; subsequently, the confined eviction of
septins from the division site during septin ring splitting initiates AMR constriction [96,142].

Formation and maintenance of the double septin ring depend on the anillin homo-
logue Bud4 and the Rho-GEF Bud3 (Figure 3) [18,94,201-203], which have been previously
implicated in the axial budding pattern of haploid yeast cells [101,202,204]. In the absence
of Bud3 and Bud4 the septin collar disassembles completely at mitotic exit, without any
obvious consequence on the kinetics of AMR constriction and cytokinesis [201], in line with
the notion that septin clearance after AMR assembly is not detrimental for cytokinesis. Both
Bud3 and Bud4 localise as a double ring at the edges of the septin collar during mitosis
and then remain associated with the split septin rings, suggesting that these proteins act as
spatial cues to pre-pattern the septin double ring [100,101,201,205-207].

Septin ring splitting requires the activity of the mitotic exit network (MEN; Figure 3), a
Hippo-like pathway triggered by a top GTPase (Tem1) that turns on two sequentially acting
protein kinases (Cdcl5 and Mob1-Dbf2) to ultimately promote the activation of the Cdc14
phosphatase (reviewed in [208]). In turn, Cdc14 dephosphorylates and activates its upstream
kinases Cdc15 and Mob1-Dbf2 in a positive feedback loop [209,210]. Cdc14 is the main
CDK-counteracting phosphatase in budding yeast, and its function, together with that of its
upstream MEN regulators, is essential for mitotic exit and cytokinesis [211-216]. Mitotic exit
elicits several processes, such as spindle disassembly and licensing of replication origins, and it
is an essential prerequisite for cytokinesis through dephosphorylation of specific mitotic CDK
substrates [217]. However, MEN also promotes septin ring splitting independently of its role
in mitotic exit [96], suggesting that one or more MEN targets prompt septin remodelling at
cytokinesis. We have recently identified the cytokinetic protein Hof1 as one of such septin ring
splitting regulators (Figure 3) [218]. Hofl is involved in cytokinesis and is an established target
of MEN [113,128,219,220]. It plays a major role in the control of actin polymerization and
bundling, partly by modulating formin activity [221-226]. Consistently, it has been implicated
in polarised growth [224,227]. However, the cytokinetic function of Hofl was mainly linked to
activation of the chitin synthase Chs2, and CHS2 overexpression or gain of function mutations
can suppress the lethality of hofl A mutants at high temperatures [113,127]. Our recent data
indicate that hof] mutants also display defects in septin remodeling at cytokinesis [218].
During mitosis, Hof1 associates with septins, forming two closely spaced rings at the edges of
the septin collar [128,218,219,228]. In vitro, it can induce the formation of intertwined septin
bundles, suggesting that during this cell cycle stage it may contribute to the robustness of the
septin hourglass [218,225]. However, shortly before septin ring splitting, Hof1 is displaced
from the septin collar and relocates to the AMR, where it partially constricts alongside
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it [128,218,219,228]. This rapid translocation from septins to the AMR is triggered by Hof1l
phosphorylation, primarily by the MEN kinase Dbf2, which disengages Hof1 from the septins,
allowing it to join the AMR [218-220]. Phospho-mimicking HOF1 mutant alleles can bypass
the septin reorganization defects seen in MEN mutants by displacing Hof1 from septins and
enhancing its translocation to the AMR. Importantly, septin remodeling by Hof1l depends
on its membrane-binding F-BAR domain, suggesting that a local membrane reorganization
could underlie septin disassembly from the cleavage site and remodelling into the double
ring [218]. Since BAR domains can induce membrane curvature [229,230], Hofl may bend the
membrane at the division site to a radius that causes septin disassembly. Another possibility,
stemming from the ability of BAR domains to cluster phosphoinositides [229,230], is that
Hofl may promote septin ring splitting by modifying the local composition of the plasma
membrane. The non-essentiality of HOF1, especially in some strain background, suggests that
additional, as-yet unidentified proteins participate in septin ring splitting alongside Hof1.

5. Conclusions and Perspectives

Cytokinesis is a fundamental yet vulnerable process that requires the orchestration of
many players. Given the prominent role of septins in budding yeast cytokinesis, under-
standing how septin remodeling is controlled during the yeast cell cycle is key in order to
gain insights into how cytokinesis is regulated in time and space. Unresolved questions that
deserve further investigation regard the precise mechanism underlying septin membrane
interactions, the impact of septin-binding proteins and post-translational modifications
on septin structural organization, and the possible interplay between septins and other
cytoskeletal elements. Unravelling how the yeast septin collar inhibits AMR constriction is
another critical question for future research. As we continue to tease apart the complexity
of septin biology, their integral role in cellular organization and function becomes increas-
ingly apparent, opening exciting avenues for our comprehension of septin functions in
physiological and pathological conditions.
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