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4IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems, F-59000
Lille, France.

5Department of Mathematics, University of Houston, Houston, USA.

*Corresponding author(s). E-mail(s): bauer@math.fsu.edu;
Contributing authors: ehartman@math.fsu.edu; emery.pierson@courrier.dev;

mohamed.daoudi@imt-nord-europe.fr; ncharon@central.uh.edu;
†These authors contributed equally to this work.

Abstract
This paper introduces a new framework for surface analysis derived from the general setting of elastic Rieman-
nian metrics on shape spaces. Traditionally, those metrics are defined over the infinite dimensional manifold of
immersed surfaces and satisfy specific invariance properties enabling the comparison of surfaces modulo shape
preserving transformations such as reparametrizations. The specificity of our approach is to restrict the space of
allowable transformations to predefined finite dimensional bases of deformation fields. These are estimated in a
data-driven way so as to emulate specific types of surface transformations. This allows us to simplify the repre-
sentation of the corresponding shape space to a finite dimensional latent space. However, in sharp contrast with
methods involving e.g. mesh autoencoders, the latent space is equipped with a non-Euclidean Riemannian metric
inherited from the family of elastic metrics. We demonstrate how this model can be effectively implemented to
perform a variety of tasks on surface meshes which, importantly, does not assume these to be pre-registered or to
even have a consistent mesh structure. We specifically validate our approach on human body shape and pose data
as well as human face and hand scans for problems such as shape registration, interpolation, motion transfer or
random pose generation.

Keywords: Elastic Shape Analysis, Human Body Analysis, Geometric Deep Learning, Riemannian Shape Metrics

1 Introduction
Overview and Main Contributions: In this article,
we introduce a novel pipeline designed to quantify the
geometric difference between the shapes of surfaces.

Furthermore, we are not only interested in quantifying
shape differences between two individual data points,
but we aim to estimate in addition plausible deforma-
tion processes between different shapes and allow for
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statistical shape analysis tasks such as extrapolation of
deformations, transposition to new data, and the gen-
eration of random shapes. Finally, the proposed model
does not assume a consistent mesh structure across
the data, making it applicable to a variety of tasks on
surface meshes with real data.

Our approach is grounded in the field of Elas-
tic Shape Analysis (ESA) (Srivastava and Klassen,
2016) and further leverages the varifold representa-
tion of surfaces (Charon and Trouvé, 2013), thereby
bypassing the common requirement of having con-
sistent mesh structures and available point correspon-
dences across the dataset. In contrast to standard ESA,
our method relies on enforcing specific structure on
the deformation model via the introduction of a data
driven basis for the space of admissible shape changes.
In the terminology of machine learning, this can be
interpreted as a latent space representation but, unlike
typical approaches involving autoencoders, in our
framework, this latent space is equipped with a non-
Euclidean Riemannian metric inherited from the class
of second-order invariant Sobolev metrics on the space
of surfaces. In comparison to existing geometric deep
learning frameworks, our approach’s training process
is notably straightforward and does not demand a sub-
stantial amount of training data. Moreover, as our
results suggest, it leads to strong out-of-sample gen-
eralization properties when dealing with unseen data.
We demonstrate the usability of our framework in a
variety of different experiments (registration, inter-
polation, extrapolation, random shape generation and
motion transfer) on two distinct types of data – human
body meshes from the FAUST, DFAUST and SHREC
repositories as well as face scans from the COMA
dataset.

This work is based on the authors’ previous con-
ference publication (Hartman et al., 2023a), but intro-
duces several new important additions to that initial
approach. This includes in particular:

• a more general and in-depth presentation of the
mathematical framework of basis restricted elas-
tic shape analysis. Indeed, Hartman et al. (2023a)
is entirely focused on the setting of human body
shapes and assumed a specific splitting of the latent
space into two subspaces associated to changes in
body identity and pose changes respectively; here,
we lift such restrictions and introduce our frame-
work with any generic space of admissible defor-
mations of a reference template, see Sec. 2 for more
details. While it leads to optimization problems

formally equivalent to those presented in Hartman
et al. (2023a), this extended framework allows us to
go beyond the sole case of human body shapes and
investigate applications to other types of data.

• a more comprehensive description and justification
of the computational model and proposed method-
ology, including several ablation studies to validate
our choice of number of basis vector fields, shape
matching functions and Riemannian metric on the
latent space, see Sec. 8.

• an extended comparison with state-of-the-art latent
space methods for body shape analysis (including
FARM and 3D-coded), c.f. Sec. 6;

• experiments on an extra dataset of human bodies
from SHREC, c.f. Sec. 6.

• an experiment on the shape and pose disentangle-
ment properties of our framework both with and
without the presence of labels in the training data,
cf. Sec. 6.4;

• a new application of the method on different
data highlighting the effectiveness of this approach
for scans of human faces and human hands; c.f.
Sec. 6.5 and Sec. 7.2.

• a new section on constructing the deformation bases
in the absence of 4D training data, c.f. Sec. 7;

• an open source coding package for basis restricted
ESA with precomputed bases for human body
and face analysis, available at https://github.com/
emmanuel-hartman/BaRe-ESA.

1.1 Related Work and Motivation
Analyzing three-dimensional (3D) surfaces has
become an increasingly important topic, where the
need for such algorithms is motivated by the emer-
gence of high-accuracy 3D scanning devices, that
have resulted in a significant increase in the avail-
ability of such data. The resulting application range
from human health analysis (Desrosiers et al., 2017),
facial animation (Qin et al., 2023; Otberdout et al.,
2022a), computer graphics (Deng et al., 2022) or syn-
thetic human data generation (Zhang et al., 2020) to
computational anatomy (Grenander and Miller, 1998).

Although the framework developed in this article
is fairly general and, we believe, could be relevant
for a variety of real data applications, our simulations
will primarily focus on datasets of 3D human bod-
ies and faces. These involve particularly challenging
problems given the high degree of variation in shape
and pose, and the lack of point correspondences and
consistent mesh structure across such datasets.
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Geometric shape analysis: The general field of Rie-
mannian shape analysis has produced several mathe-
matical frameworks and numerical pipelines to tackle
some of the key problems in the comparison and
statistical analysis of 3D surfaces. These models
are built from a Riemannian metric on a ”shape
space”, in which the ”shape” of a surface is usually
regarded as what information remains after factoring
out shape-preserving transformation groups such as
reparametrizations or rigid motions. Two main frame-
works have in particular stood out in constructing
Riemannian metrics on such shape spaces: on one
hand, the diffeomorphic approach of Beg et al. (2005);
Younes (2019) and, on the other, the elastic metric
setting introduced in (Younes, 1998; Srivastava and
Klassen, 2016). An important aspect in both mod-
els is that the formulation of basic shape analysis
tasks such as the estimation of the geodesic distance
between two given surfaces for instance, is typically
framed as the minimization of a reparametrization
invariant matching energy in which computation of
the distance and of the optimal registration (i.e. of
the unknown point correspondences) must be tack-
led jointly. This should be viewed in sharp contrast
with the majority of traditional approaches in shape
analysis (Audette et al., 2000) in which registration
is performed as a pre-processing step using meth-
ods such as functional maps (Ovsjanikov et al., 2012)
and where the subsequent analysis is then done inde-
pendently of this registration. This practice has been,
however, increasingly questioned as it can, in some
cases, lead to a severe loss of data structure/informa-
tion or generate bias in the analysis, see e.g. Srivastava
and Klassen (2016) and the references therein. On the
other hand, the joint estimation of distance and reg-
istration often induces several practical challenges in
particular when working with simplicial meshes such
as triangulated surfaces. Some approaches (Kurtek
et al., 2012; Jermyn et al., 2017; Su et al., 2020a;
Tumpach et al., 2016; Laga et al., 2022) rely on analyt-
ical representations or approximations for the surfaces
and the reparametrization group (using e.g. spherical
harmonics) but are therefore often limited to a prede-
fined topology. As an alternative, it was proposed, first
for the diffeomorphic model in (Vaillant and Glaunes,
2005; Charon and Trouvé, 2013), and later adapted
to the ESA framework (Bauer et al., 2021; Hartman
et al., 2023b), to instead introduce discrepancy loss
functions built from measure representations of sur-
faces. Those discrepancy functions, in particular the
metrics derived from the framework of varifolds, have

been shown to provide robustness to scan inconsisten-
cies, such as varying mesh samplings and topological
noise.

Despite those successes, one of the key remain-
ing limitation of Riemannian shape analysis is the
fact that pure geodesic trajectories are often not inher-
ently representative of realistic longitudinal changes
in real data. For instance, in one of the data applica-
tion of this paper, it has been observed that simple
geodesic interpolation between two human body poses
does not generally reproduce the natural body motion
that would be expected, c.f. Section VI of the sup-
plementary material. An important current research
challenge is thus to develop ways to enforce various
types of physical, biological or data-specific con-
straints within Riemannian shape frameworks. In the
diffeomorphic setting, some progress has been made
towards that goal either through the introduction of
sub-Riemannian (Arguillère et al., 2015; Gris et al.,
2018) or other types of constrained models (Charlier
et al., 2018; Hsieh et al., 2022; Charon and Younes,
2023). Yet these approaches are typically built around
user specified constraints or principles rather than
being entirely data-driven and are also known to be
numerically costly when working with high resolu-
tion data. The basis restricted approach of the present
work in part overcomes those difficulties by leverag-
ing, on the one hand, the advantages of the elastic
metric framework when it comes to numerical com-
plexity and, on the other hand, by extracting from
the dataset itself the adequate constrained subspace
of deformations. In the registered setting a similar
approach has been used in the conference paper (Pier-
son et al., 2022) by some of the authors and Tumpach.
Such basis models are highly related to latent space
models, popular in geometric deep learning (Bronstein
et al., 2017, 2021), which we will describe next.
Low dimensional deep deformation models:
Recently, deep deformation models have become
increasingly popular for shape representation and
deformation. These approaches propose to build a
deformation model for different types of deformable
shapes, such as the human body (Bouritsas et al.,
2019; Lemeunier et al., 2022; Huang et al., 2021;
Groueix et al., 2018a), the human face (Bouritsas
et al., 2019; Otberdout et al., 2022b; Besnier et al.,
2023), or animals (Huang et al., 2021) based on a
limited training set of parameterized shapes.

However, those methods need to deal with param-
eterization invariance at inference. This is often done
using a PointNet encoder (Qi et al., 2017; Besnier
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et al., 2023), which maps a shape to its latent vector
independently of its discretization. Other approaches
have been proposed, but they come with an high
training cost (Trappolini et al., 2021) or use intrin-
sic quantities such as the Laplacian (Sharp et al.,
2022; Wiersma et al., 2022), that can be sensitive to
topological changes. We note, however, that in prac-
tice, the invariance of those methods remains limited,
because of their reliance on large datasets of parame-
terized surfaces for training purposes. They often need
additional post-processing registration steps in infer-
ence to reproduce plausible geometric reconstruction
of shapes (Huang et al., 2021; Groueix et al., 2018b;
Trappolini et al., 2021).

Moreover, the performance of these methods is
often limited in the context of large deformations:
they regularly fail to sufficiently learn the non-linear
map from the flat latent space to the shape space.
Consequently, they are lacking generalizability when
confronted with unseen data. To address these issues
multiple deformation energy losses have been intro-
duced in the training phase, such as geodesic dis-
tances (Cosmo et al., 2020), ARAP (Huang et al.,
2021; Muralikrishnan et al., 2022), or volumetric con-
straints (Atzmon et al., 2021). Manifold regularization
of learned pose spaces (Tiwari et al., 2022; Freifeld
and Black, 2012) has also been proposed. Those geo-
metric quantities however increase the total training
costs of those approaches.

In contrast, our approach does not rely on a
non-linear map but imposes an affine map, called
the affine decoder, from a given low dimensional
latent space to a corresponding space of shapes.
This space is defined using pre-estimated basis. We
impose non-linearity on the deformation space via the
pullback of a second-order, parametrization-invariant,
Sobolev (Riemannian) metric. The registration of a
scan becomes an interpolation problem between the
template and the scan representation in the low dimen-
sional space, cf. Eq. (5), proposing plausible registra-
tions of the shape. Moreover, interpolation and extrap-
olation problems are formulated as geodesic boundary
and initial value problems and are easily implemented
using modern scientific computation libraries.

2 Mathematical background

2.1 The Riemannian shape space of
immersed surfaces

In this article, the ”shapes” of interest are surfaces
immersed in the Euclidean space R3. Mathemati-
cally, and from the continuous viewpoint, we define a
parametrized shape as an immersion from a generic
2D parameter domain T (a compact 2-dimensional
manifold) into R3, i.e. a smooth mapping q : T → R3

such that the Jacobian map dq(u) is injective for all
u ∈ T . For instance, T can be taken as a compact
domain of R2 if one considers open surfaces (such as
human faces) or the sphere S2 in the case of closed
surfaces (such as whole human body surfaces). We
shall denote by Imm the space of all immersions from
T to R3.

In order to provide a quantitative way to compare
such shapes, one needs to introduce a similarity mea-
sure on Imm. As pointed out in the introduction, we
are here interested in similarity measures that origi-
nate from a Riemannian setting, in other words we
wish to view Imm as an infinite dimensional manifold
and equip it with a Riemannian metric. In this setup
the corresponding geodesic distance function provides
the similarity measure for shape comparison. In addi-
tion this will allow us to reduce tasks such as shape
interpolation and extrapolation to geometric opera-
tions – the geodesic initial and boundary value prob-
lem. First, note that, as an open subset of C∞(T ,R3),
Imm can be directly viewed as a Fréchet manifold for
which the tangent space Tq Imm at each immersion q
can be naturally identified with C∞(T ,R3) or equiva-
lently as the space of smooth deformation fields along
the parametrized surface q, cf. Figure 1 for an explana-
tory illustration of the shape space of parametrized
immersed surfaces.

In this setting, a Riemannian metric G is a family
of inner products Gq : C∞(T ,R3) × C∞(T ,R3) →
R+ that depends smoothly on the foot point q ∈ Imm.
We further recall that, from G, one obtains a ”dis-
tance” on Imm which, for any q0, q1 ∈ Imm, is
obtained as:

dG(q0, q1)
2 = inf

{∫ 1

0

Gq(t)(h(t)), h(t))

}
(1)

where h(t) = ∂tq(t) ∈ Tq(t) Imm and where the
infimum is taken over all paths q : [0, 1] → Imm
with q(0) = q0 and q(1) = q1. We call (1) the
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Fig. 1: Illustration of the Riemannian shape space of
parametrized immersed surfaces.

parametrized matching problem. Any minimizing
path, if it exists, is then a geodesic between q0 and q1.

To define the Riemannian metric G we will rely
on the setting of elastic shape analysis (ESA) which
has derived various families of metrics that further sat-
isfy the key property of reparametrization-invariance.
To explain this property we introduce the notion of
a reparametrization ϕ as an element of the diffeo-
morphism group Diff(T ), i.e., the set of smooth and
bijective maps on the parameter domain . This group
acts on any given immersion q by right composi-
tion, i.e., (q, ϕ) 7→ q ◦ ϕ. The metric G is called
reparametrization invariant if for any ϕ ∈ Diff(T ) we
have

Gq◦ϕ(h ◦ ϕ, k ◦ ϕ) = Gq(h, k) (2)

and the importance of this property will become clear
below in Section 2.2, where we will quotient out the
action of this group.

Perhaps the simplest of those metrics is the so
called invariant L2 metric defined for all q ∈ Imm and
h, k ∈ C∞(T ,R3) via:

Gq(h, k) =

∫
T
⟨h, k⟩ volq

where volq is the volume measure on T induced by
q, that is, denoting (u1, u2) some coordinates on T ,
volq = |∂u1

q ∧ ∂u2
q|. The integration with respect to

this induced volume measure is precisely what leads
to the invariance of the metric (and by extension of
the geodesic distance). One crucial shortcoming of
the above metric however, which was first shown by
Michor and Mumford in (Michor and Mumford, 2005;
Bauer et al., 2012), is that the associated dG turns out
to be fully degenerate and a fortiori not a true dis-
tance, i.e., with respect to this metric all shapes are
considered to be equal.

One way to address this issue is by introduc-
ing higher-order metrics on Imm. In this article, we
shall focus on the class of second order invariant
Sobolev metrics which has shown several desirable
properties in past works (Bauer et al., 2011; Hart-
man et al., 2023b). More specifically we will con-
sider the 6-parameters family of metrics obtained
by the following combination of 0-th, 1-st and 2-nd
order terms weighted by the nonnegative constants
a0, a1, b1, c1, d1 and a2:

Gq(h, k) =

∫
T

(
a0⟨h, k⟩+ a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+ d1g
−1
q (dh0, dk0) + a2⟨∆qh,∆qk⟩

)
volq .

(3)
In the above, dh denotes the vector-valued 1-form on
T given by the differential of h which we can alterna-
tively view, in a given coordinate system, as a 3 × 2
matrix field on T , gq is the pullback of the Euclidean
metric on R3 which we may view as a 2× 2 symmet-
ric positive definite matrix field on T , in which case
g−1
q (dh, dh) = tr(dhg−1

q dhT ). The second-order
term involves the vector Laplacian ∆q induced by the
parametrization which in coordinates can be written as
∆qh = 1√

det(gq)
∂u1

(√
det(gq)g

u1u2
q ∂u2

h
)

. Lastly,

let us briefly comment on the particular splitting of the
first-order part of the metric in the four different terms
appearing in (3). For the sake concision, we shall refer
the interested reader to the appendix (or to (Su et al.,
2020b; Charon and Younes, 2023)) for the technical
definition of the orthogonal decomposition of dh into
the sum of the tensors dhm, dh+, dh⊥, dh0. We will
only say at this point that such a splitting is motivated
by its interpretation from linear elasticity theory, with
the terms weighted by a1, b1, c1 in (3) corresponding
to thin shell shearing, stretching and bending ener-
gies induced by the deformation field h respectively:
more specifically: the term involving dhm measures
the change in the local surface metric (this corre-
sponds to shearing of the surface), whereas the term
involving dh+ measures the change of the area vol-
ume density which corresponds to local stretching of
the surface. Finally, the term involving dh⊥ measures
the change of the surface normal vector, which can be
associated to surface bending.

Consequently, the class of invariant H2 metrics
(3) provides a flexible family allowing, through the
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selection of the weighting coefficients, to emphasize
or penalize different types of deformations. Each of
those metrics is reparametrization-invariant and unlike
the L2 case it induces a true distance on Imm:
Theorem 1. Let a0 > 0 and let either a1, b1, c1, d1 >
0 or a2 > 0 then the induced geodesic distance of the
metricG on the space Imm is non-degenerate, i.e., for
any two surfaces q0, q1 ∈ Imm with q0 ̸= q1 we have
dG(q0, q1) > 0.

For a proof of this result we refer to the supple-
mentary material. Furthermore, as we shall explain
later, there are natural discretization schemes to com-
pute such second-order metrics on e.g. triangulated
meshes.

2.2 Quotienting out reparametrizations
Note that the model described so far leads to distances
and geodesics between parametrized shapes. From a
practical standpoint, this intrinsically assumes known
point to point correspondences, namely point q0(u)
on the source surface is matched to q1(u) on the tar-
get. Apart from pre-registered datasets (such as the
DFAUST one described below), it is common in most
applications that raw or segmented surface meshes
do not come with such given correspondences, and
even display inconsistent number of vertices and/or
mesh structures. Thus one is typically interested in
comparing surfaces independently of how they are
parametrized/sampled.

Mathematically, this can be done by looking at
the quotient shape space S = Imm /Diff(T ) of the
equivalence classes [q] = {q ◦ ϕ : ϕ ∈ Diff(T )}
of all possible reparametrizations of q. A key advan-
tage of the invariant metric framework introduced in
the previous section, and in particular of the invariant
Sobolev metrics (3), is that one can recover a Rieman-
nian distance on S as follows. Given unparametrized
surfaces [q0] and [q1], the quotient distance is obtained
by fixing a parametrization q0 and solving the follow-
ing unparametrized matching problem:

dG([q0], [q1])
2

= inf
(q(·),ϕ)

{∫ 1

0

Gq(t)(∂tq(t), ∂tq(t))

}
(4)

where the minimization is now over paths q : [0, 1] →
Imm and reparametrization ϕ ∈ Diff(T ), with the
constraint that q(0) = q0 and q(1) = q1 ◦ ϕ i.e.
[q(1)] = [q1]. In other words, the quotient distance is

obtained by jointly finding an optimal path from q0 to
an optimal reparametrization of the target.

However, the variational problem (4) is generally
challenging to tackle and to implement on discrete sur-
face meshes. It involves estimating parametrizations
of the two surfaces over a predefined domain (such
as the sphere) and then requires discretizing and opti-
mizing over the group Diff(T ) (Jermyn et al., 2017;
Su et al., 2020b). An alternative approach in regis-
tration problems is rather to enforce the matching
constraint [q(1)] = [q1] indirectly via a discrep-
ancy function Γ([q(1)], [q1]) that only depends on
the unparametrized shapes and therefore consider the
relaxed matching problem:

inf
q(·)

{∫ 1

0

Gq(t)(∂tq(t), ∂tq(t)) + λΓ([q(1)], [q1])

}
(5)

in which λ > 0 acts as a Lagrange multiplier for the
terminal constraint, and the minimization is now only
over parametrized surface paths t 7→ q(t); in other
words, we bypass the need for directly optimizing
reparametrizations.

To define Γ, one typically introduces a measure
of similarity between the geometric point sets q1(T )
and q(1)(T ); we discuss a few possible options in
the Supplementary Material, including the Hausdorff
and Chamfer distances often used for that purpose
in computer vision. In this paper, following many
other works and our previous publication (Hartman
et al., 2023b), we instead rely on similarity terms
derived from geometric measure theory, specifically
the family of kernel metrics on the space of varifolds
(Kaltenmark et al., 2017). A notable advantage of this
framework is that it leads to actual distances that can
be differentiated with respect to the point positions of
either shape. Although we will abstain from present-
ing this construction in the main text for concision,
we refer the reader to the Appendix for details and
qualitative comparison of varifold metrics with other
classical point set discrepancies.

3 Restricted latent space model
As highlighted in the introduction, one limitation of
the general H2 metric framework is that it does not
impose any restriction on deformation fields beyond
the energy penalties in the metric (3). When it comes
to modelling human body motion for example, it has
been observed that geodesics between two poses most
often do not emulate a ”natural” interpolation of the
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pose, despite the flexibility in the choice of met-
ric coefficients. A second practical downside is the
numerical complexity of having to solve a very high
dimensional optimization problem over paths of sur-
faces for any estimation of a distance and geodesic,
which can become quite significant when generalizing
that approach for more complex statistical tasks such
as Fréchet mean estimation or parallel transport.

3.1 Latent space representation
As a way to address the above challenges, we propose
a simplified and linearized finite dimensional shape
space model by restricting ourselves to parametrized
surfaces q that result from a fixed template surface
q̄ ∈ Imm and a predefined admissible set of P lin-
early independent deformation fields {hi}Pi=1 of the
template. More precisely, with the affine mapping F :
RP → C∞(T ,R3) defined by:

F : (αi)i=1,...,P 7→ q̄ +

P∑
i=1

αihi, (6)

we introduce the space Lq̄ = F (RP )
⋂

Imm.
Remark 1 (Relation to Linear Blend Skinning formu-
lations). The formulation resembles the Linear Blend
Skinning (LBS) formulation present in common mod-
els of the human body (Loper et al., 2015; Anguelov
et al., 2005): the shape is represented as a template
deformation, which is a sum of body pose and iden-
tity deformations. The main difference is that standard
LBS formulations the pose deformation is done using
a precomputed skeleton which is linearly rigged to the
template mesh, inducing non-linear pose deformation
as a combination of skeletal articulation rotations. In
our model, the non-linearity directly comes from the
Riemannian metric, and no skeleton is needed.

Consequently any surface q ∈ Lq̄ can be then
represented uniquely by a finite-dimensional vector
α = (αi) ∈ RP we will call the latent code of
q, thus allowing us to work on a potentially much
lower-dimensional space. Yet Lq̄ should still remain
rich enough so as to express the predominant geo-
metric variations in the dataset of interest. As we
shall address in 5.2, this suggests using a basis {hi}
that is built in a data-driven way. Furthermore, this
latent space model allows the use of composite bases,
where different subsets of vector fields are associ-
ated to distinct types of morphological variations. This
will prove particularly relevant to the applications of

this paper when we are interested in e.g. disentan-
gling body pose from body type changes or facial
expression from facial morphology changes.
Remark 2. Note that, in general, Lq̄ is an open subset
of the affine space F (RP ) and contains q̄. However,
not all elements of F (RP ) are immersions unless
certain specific conditions on the vector fields are sat-
isfied. This holds in particular if for all i = 1, . . . , N
and u ∈ T , dhi(u)T dq̄(u) = 0. However, we will not
assume this condition in the rest of the paper.

3.2 Induced Riemannian metric
The next logical question to address is which metric
to take on the above latent space. In sharp contrast
to most encoder models in geometric deep learning
which often implicitly consider the standard Euclidean
structure, our approach is rather to take advantage of
the properties of invariant metrics on shape spaces and
pull the metric back to the latent space. Namely, for
any α ∈ F−1(Lq̄) and β, η ∈ RP , let us define:
Gα(β, η) := GF (α)(dαF (β), dαF (η)) in which G
is a Riemannian metric on Imm which we shall take
from the invariant family (3). As the mapping F is
affine, this pull back metric on RP can be expressed
more explicitly as:

Gα(β, η) = GF (α)

(
P∑
i=1

βihi,

P∑
j=1

ηjhj

)
= βTGαη

where, in the last equation, Gα = [GF (α)(hi, hj)]
is the symmetric positive definite P × P matrix giv-
ing the metric at the latent code α. Estimation of
the distance between any two surfaces q0 = F (α0)
and q1 = F (α1) then reduces to standard finite-
dimensional Riemannian geometry and is obtained by
finding a path of coefficients t 7→ α(t) ∈ RP minimiz-
ing E(α) =

∫ 1

0
(∂tα)

TGα(∂tα)dt with α(0) = α0

and α(1) = α1.

4 Shape analysis in latent space
Relying on the latent space representation and
its Riemmanian metric introduced in the previous
section, one can perform efficiently a variety of shape
analysis related tasks, which we describe in the fol-
lowing paragraphs.
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4.1 Calculating latent space
representations

We start by describing how we can calculate a latent
space representation that is (up to numerical accuracy)
independent of the parametrization of the surface, i.e.,
given a surface q ∈ Imm we aim to find a latent code
representation α such that F (α) = q ◦ ϕ for some
(unknown) reparametrization function ϕ ∈ Diff(T ).
To tackle this problem we rely again on the varifold
similarity term, i.e., we reformulate the latent repre-
sentation problem as the task of finding a latent code
representation α such that

Γ(F (α), q) = 0. (7)

One remaining difficulty is that, for most datasets such
as those of Section 5.1, raw surface scans are not given
with consistent mesh structures and a fortiori cannot
be assumed to all belong to Lq̄ for a given fixed tem-
plate q̄. To circumvent this difficulty we consider a
relaxed formulation of the latent code representation
problem; instead of searching for a latent code α sat-
isfying equation (7) we simply aim to minimize the
varifold distance Γ(F (α), q) over all latent codes α ∈
RP . In our experiments it turned out to be beneficial
to add an extra regularizing term to this minimization
problem, which we choose to be the geodesic distance
of F (α) to the template q̄, i.e., we minimize the energy(

Γ(F (α), q) +
1

λ
d
Lq̄

G (q̄, F (α))2
)

(8)

over all α ∈ RP , where λ > 0 is a weight parameter.
Using the definition of the geodesic distance dLq̄

G on
the latent space Lq̄ this requires us to minimize the
path energy

Γ(F (α(1)), q) +
1

λ

∫ 1

0

Gα(∂tα(t), ∂tα(t))dt (9)

over all paths α : [0, 1] → RP . Numeri-
cally, we consider time-discrete paths of coefficients
α = (α(0), α(1/T ), α(2/T ), . . . , α(1)) for a selected
number of time steps T , with ∂tα being approximated
by forward finite difference. Furthermore, q and q̄ are
in practice given as sets of vertices and triangular
meshes while each hi is of a collection of vectors sam-
pled on the vertices of q̄. This turns the problem into an
unconstrained minimization over RP (T−1) for which
we use the L-BFGS algorithm of the scipy library; here

the free variables are only in RP (T−1) as the path starts
at q̄ and thus α(0) = 0. The precise discretization of
the different terms in (11), based on the principles of
discrete differential geometry, is detailed in the Sup-
plementary Material. Our implementation, that builds
on some of the authors’ previous package for surface
matching1, is done in Python and relies on libraries
such as PyTorch and PyKeops which allow to auto-
matically differentiate those terms on the GPU. Our
implementation is also publicly available on Github2

and relies on the same libraries.

4.2 Shape comparison and interpolation
Quantifying the global difference between surfaces is
generally essential when attempting for example to
cluster data in a population. The Riemannian metric
setting gives a direct way to measure such differ-
ences via the distance itself and, what is more, lead
to geodesic paths that interpolate between the objects.
The availability of such geodesic paths has the double
advantage of allowing to interpret the properties and
behaviour of the distance while also providing a way
to reconstruct a dynamical evolution from one data
point to another.

Within the framework of Section 3, we have seen
that the estimation of distance and geodesics between
two surfaces q0 = F (α0) and q1 = F (α1) in L can be
done by finding a path of least Riemannian energy in
the latent space, i.e., by minimizing the path energy∫ 1

0

Gα(∂tα(t), ∂tα(t))dt (10)

over all paths α : [0, 1] → RP such that α(0) =
α0 and α(1) = α1. Discretizing the path in time
t this leads to an unconstrained minimization prob-
lem over RP (T−2) with the free variables being
α(1/T ), α(2/T ), . . . , α((T − 1)/T )) as α(0) = α0

and α(1) = α1 are fixed.
Given new data, for which we have not yet calcu-

lated a latent space representation, we could proceed
as follows: calculate first a latent space representa-
tion using the method of the previous section and then
solve the geodesic problem using the above algorithm.
In practice it is, however, more effective to solve both
of these tasks in one step. This can be done using
again the varifold distance and by considering the path

1https://github.com/emmanuel-hartman/H2 SurfaceMatch
2https://github.com/emmanuel-hartman/BaRe-ESA
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minimization problem

∫ 1

0

Gα(∂tα, ∂tα)dt

+ λΓ(F (α(0)), q0) + λΓ(F (α(1)), q1). (11)

where α : [0, 1] → RP is again a path in the latent
space Lq̄. The presence of the two discrepancy terms
in (11) is necessary to make the above problem well-
defined for any q0 and q1 in Imm and not just in
Lq̄. The solution (11) can be thus interpreted as the
distance and geodesic between the closest approxima-
tions of q0 and q1 by elements of the latent space.

4.3 Shape extrapolation
The shape extrapolation problem consists in predict-
ing the future evolution of a surface given an initial
deformation direction. In our Riemannian framework
this reduces to solving the geodesic equation with
given initial condition q(0) = q0 (the initial pose) and
∂tq(0) = h (the deformation direction), cf. Figure 1.
The geodesic equation is the first order optimality con-
dition of the energy functional; it is a non-linear PDE,
that is second order in time t and forth order in space
(twice the order of the metric). For the exact formula
of this equation, which is rather lengthy and not par-
ticularly insightful, we refer the interested reader to
the literature, see eg. Bauer et al. (2011). To solve
such initial value problems in our latent space, we
modify methods of discrete geodesic calculus (Rumpf
and Wirth, 2013) to our setting. We approximate the
geodesic starting at α0 in the direction of β with a PL
path with N + 1 evenly spaced breakpoints. At the
first step, we set α1 = α0 + 1

N β and find α2 such that
F (α1) is the geodesic midpoint of F (α0) and F (α2),
i.e., we solve for α2 such that

α1 = argmin
α̃

[Gα0(β0, β0) +Gα̃(β̃, β̃)]

where β0 = α̃ − α0 and β̃ = α2 − α̃. Differenti-
ating with respect to α̃ and evaluating the resulting
expression at α1, we obtain the system of equations

2Gα0(β0, hi)− 2Gα1(β̃, hi) +Dα1G·(β̃, β̃)i = 0,

2Gα0(β0, ki)−2Gα1(β̃, ki)+Dα1G·(β̃, β̃)i+m = 0
(12)

where {hi, ki} is our basis of deformations as intro-
duced above. We denote the system of equations

in (12) by Φ(α2;α1, α0) = 0, where we stress again
that α0 and α1 are here fixed and known. We solve
this system of equations for α2 using a nonlinear least
squares approach, i.e., by computing

α2 = argmin
α̃

∥Φ(α̃;α1, α0)∥22.

We repeat this processN−1 times, thereby construct-
ing the discrete solution up to time t = 1.

4.4 Motion transfer in latent space
As previously discussed, composite bases offer a
means to independently depict various modes of shape
deformation. Specifically, when applied to human
body and facial morphology, these bases allow us to
separate identity and pose alterations, enabling motion
transfer. In practical terms, when presented with a
series of unregistered scans depicting a single identity
engaged in an action, we can obtain latent code repre-
sentations for each frame of the action. We then substi-
tute the coefficients of the shape basis with the shape
coefficients of the desired identity. This process yields
a sequence of shapes that faithfully embodies the
desired motion transferred onto the desired identity.
Note that this is significantly simpler (albeit different)
than performing parallel transport in the Riemannian
manifold of surfaces as done in e.g. Hartman et al.
(2023b).

4.5 Random shape generation
Additionally, we can utilize the Riemannian structure
on our latent space representation to offer a data-
driven method for generating random shapes from
unregistered data. We may do this by learning an
empirical distribution on the tangent space of the tem-
plate shape. Given a data set of unregistered shapes,
we solve the latent code retrieval problem and com-
pute the initial vectors of the resulting geodesics in
the latent space. We can then fit Gaussian mixture
model on the resulting collection of tangent vectors
and solve the initial value problem from the tem-
plate in the direction of the vector generated from this
model. In the case where we compute multiple bases
to describe different modalities of shape change, the
model may be fit to independently generate different
types of shape changes.
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5 Experimental Methodology
In this section we will describe the different datasets,
which we will use in the experimental section, as well
as the corresponding basis construction and the choice
of parameters. In addition we will present differ-
ent ablation studies, that further motivate the chosen
energy functional.

5.1 Used Datasets
Human Body dataset: The main type of data con-
sidered in this article consists of human body scans.
To construct our basis we will make use of the pub-
licly available Dynamic FAUST (DFAUST) (Bogo
et al., 2017) dataset. This dataset contains high qual-
ity scans, along with corresponding registered meshes
that will be used as training data. More specifically
DFAUST (Bogo et al., 2017) is comprised of 4D scans
captured at 60 Hz of 10 individuals performing 14
in-place motions. Due to the high speed of the record-
ing, DFAUST scans contains several singularities in
the surface, such as holes or even artificial objects (eg.
parts of walls). The corresponding registered surfaces
to each scan are created using image texture informa-
tion and a novel body motion model. A set of 7 long
range sequence are left for testing. The remaining 133
sequences, which we denote DFaustT, make up the
training set from which we compute the deformation
and motion basis.

For the quantitative experiments, we consider
three testing datasets on which we validate our model
trained on DFaustT; first, we consider a subset of
the static FAUST dataset (Bogo et al., 2014) for test-
ing our models performance for registration and point
correspondences. The static FAUST database is a 3D
static scan dataset designed for human mesh registra-
tion tasks, that contains scans of minimally clothed
humans and corresponding registered meshes. We
selected scans of 10 individuals in 9 different poses
from the training set that show no rotations along
with the corresponding ground truth registrations and
use them as our first testing set, denoted FaustE.
In addition, we consider a subset of the SHREC
dataset (Marin et al., 2020) to demonstrate the general-
izability of our model in shape reconstruction tasks as
it contains human shapes from significantly different
modalities than that of our training set including scans
of clothed humans and synthetic shapes of human
bodies. For our third and final testing set, we divide
the 7 sequences from DFAUST left aside for testing

into 10 representative mini-sequences which we use to
evaluate our framework’s ability to reconstruct human
motions. We denote this DFaustE.
Face scan dataset: As a second validation dataset, we
consider human face scans from the COMA (Ranjan
et al., 2018) database. It contains high-quality scans
of human faces, along with corresponding registered
meshes in the FLAME topology (Li et al., 2017) that
will be used as training data. More specifically COMA
is comprised of 4D scans of human faces captured at
60 Hz of 12 individuals performing 12 extreme facial
expressions. The scans are available as raw scans of
the whole face and often contain significant parts of
the chest that are not present in the final registrations.
Moreover, some detailed parts can be cropped or dis-
appear in the scans, e.g. ears of the individual. The
corresponding registered surfaces to each scan are cre-
ated using image texture information, face landmarks
and the FLAME model. A set of 12 sequences are left
for testing and the remaining 132 sequences were used
to compute the deformation and motion basis.
Hand dataset: As a third type of data we also consider
human hand scans from the MANO database (Romero
et al., 2017); a dataset comprising more than 800 reg-
istered hands with various poses from 50 individuals.
These individuals were asked to reproduce daily life
poses that were then scanned. The training set com-
prises approximately 800 registered hand poses and
the MANO database provides a separate testing set
consisting of 50 scans with available ground truth
registrations.

5.2 Constructing the space Lq̄

To construct the deformation bases for motion
and identity changes, we interpret registered mesh
sequences of motions (expressions, resp.) as paths
in shape space whose tangent vectors are implic-
itly restricted to the space of valid motions. We first
collect meshes of the same pose (expression) from
each identity and compute the (unrestricted) pair-
wise geodesics between these meshes with respect to
our second-order Sobolev metric, where we use the
Pytorch implementation of Hartman et al. (2023b).
Note that these meshes show only moderate deforma-
tions and thus there are no difficulties with applying
the unrestricted matching algorithm. We then collect
the tangent vectors to these paths and perform PCA to
define our basis for shape/identity deformations.

It would be possible to adopt a similar strategy
for generating the body pose (or face expression)
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deformation basis, i.e., collect shapes with the same
body type (face identity, resp.) and calculate the unre-
stricted pairwise geodesics between these meshes.
However, we had previously noticed Hartman et al.
(2023a) that this may sometimes lead to unnatural
motions for large movements. Instead, we shall first
take advantage of the available 4D data in our targeted
application datasets, allowing us to perform principle
component analysis directly on the tangent vectors of
those real motion sequences to obtain a valid pose
(expression) data basis. This will be the approach used
in the experiments of Section 6. Yet, in order to also
validate our approach in the absence of 4D data, we
present, in section 7.1, results obtained by following
the same procedure as for the identity basis i.e. based
only on 3D data for the basis construction. In the final
experiments involving the MANO dataset (Section
7.2), we use an even simpler strategy to construct the
bases: namely we simply consider linear deformations
between all shapes in the training data as set of vectors
for our PCA construction. As we will demonstrate,
for this application, this cheaper procedure already
produces satisfactory results outperforming the bench-
mark methods.

We should also note that we here pre-construct all
bases from a fixed predefined training set. Another
possible approach, used for instance in Muralikrish-
nan et al. (2023) (albeit only for shape deformations),
is to progressively enrich some initial estimation of a
basis via a bootstrapping scheme, providing a possible
alternative way to build shape/pose deformation bases
from only a small training set of registered meshes.

5.3 Parameter selection
Next we describe the choice of parameters in our
experiments. For the human bodies the coefficients
for the H2-metric were chosen to enforce close to
isometric deformations that allow for some stretch-
ing and shearing to allow change in body type. In
the case of human body faces, we reduce the strec-
thing and shearing penalization, and enforce normal
consistency. We added a small coefficient to the
remaining terms to further regularize the deforma-
tions. The final six parameters for the H2-metric are
set to (1, 1000, 100, 1, 1, 1) for human bodies and and
(1, 10, 10, 10, 1, 1) for human faces and hands. The
basis size for all three applications is as follows (the
number of basis vectors was chosen experimentally,
cf. Section 8): the motion basis has n = 130 elements
(70 elements for hands), whereas the basis for the

body type variation has only m = 40 elements. Fur-
thermore, we perform sequential minimizations where
the parameter σ of the varifold term is decreased from
0.4 to 0.025 and the balancing term λ is increased
from 102 to 108. In the applications to human faces
and to human hands, we needed only two minimiza-
tions with the parameter σ of the varifold term at 0.01
and 0.005 and the balancing term λ at 106 and 1010.

5.4 Evaluation methods
In our experiments, we will evaluate results qual-
ity using different similarity measures (distances)
between the outputs of the different methods and
the original scan. The “shape” matching is evalu-
ated by comparing each method against the original
scans using three different remeshing invariant simi-
larity measures. First, we evaluate the methods using
the varifold metric introduced before. As our method
minimizes this distance during the registration pro-
cess, we include two additional metrics to avoid bias:
the widely used Hausdorff distance, which provides
a good insight for the quality of a mesh reconstruc-
tion, but can be sensitive to single outliers present in
low-quality scans and the Chamfer distance (Fan et al.,
2017; Groueix et al., 2018b), which is more robust to
such outliers.

In the first set of experiments – latent code
retrieval, Section 6.1 – we will in addition evaluate the
quality of the obtained point correspondences – in this
section, we use data with given ground truth point cor-
respondences. Therefore we will compute the mean
squared error of each method to the ground truth reg-
istrations of the testing set. Unfortunately, one method
(LIMP) does not return the same mesh structure as
the ground truth registrations and thus we could not
compare it this way. We thus add the geodesic error
metric, to evaluate the matching quality. From the
registered mesh, we extract point-to-point correspon-
dences between the template and the given scan. Then
for each point of the scan, we compute the geodesic
distance (on the template mesh) between the proposed
corresponding point and the ground truth correspon-
dence. The final computed metric is the mean of these
errors. For a detailed description of all these evaluation
metrics, we refer to the supplementary material.

5.5 Comparison methods
Finally, we will briefly describe the other state-of-
the-art methods that we considered for comparison.
A more detailed description of these methods can be
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found in the supplementary material. We primarily
compare to methods that rely on latent space learn-
ing for registration, interpolation, and extrapolation
tasks and do not consider other methods that can
potentially tackle the same tasks but without a low
dimensional latent space (Eisenberger et al., 2021), or
that are specifically designed for other tasks (Mura-
likrishnan et al., 2022). We compare our approach
to LIMP (Cosmo et al., 2020), which models shape
deformations using a variational auto-encoder with
geodesic constraints; ARAPReg (Huang et al., 2021),
which models deformations using an auto-decoder
with regularization through the as rigid as possi-
ble energy; and 3D-Coded (Groueix et al., 2018a),
which is similar to LIMP but with lighter training
and without geometric loss regularization. LIMP and
3D-Coded both utilize a PointNet architecture as an
encoder, which enables invariance to parameteriza-
tion. On the other hand, ARAPReg recovers latent
vectors within a registered setting utilizing the L2

metric, which assumes that the target meshes pos-
sess an identical mesh structure as the model’s output.
To make this framework viable for our application
we replace the L2-metric by the varifold distance
thereby extending ARAPReg to unregistered point
clouds. We trained all three networks on the DFAUST
dataset using reported training details from the respec-
tive papers. As a final comparison, we consider the
FARM approach (Melzi et al., 2019) from the class of
functional maps-based methods. As FARM does not
compute any interpolation or extrapolation of shape
changes, we will however exclusively compare to this
method for shape registration tasks.

6 Experimental Results using
4D-training data

In this section, we will demonstrate the capabilities of
our framework in several different experiments. For
human body scans, which will be our main targeted
application, we will present a thorough comparison to
several other state-of-the-art algorithms. Therefore we
will provide quantitative and qualitative analysis of the
registration and point correspondence accuracy, the
shape reconstruction quality, and the accuracy of inter-
polations and extrapolations to recreate real sequences
of human motions. Furthermore, we give qualitative
examples of our framework applied to random shape
generation and motion transfer tasks. At the end of the
section, we will present similar experiments for the

LIMP ARAPReg 3D-Coded FARM BaRe-ESA
MSE NA 0.035 0.053 0.043 0.014
Geodesic Error 0.15 0.031 0.038 0.038 0.013

Table 1: Human body shape registration results.
We compute the registration error on the FaustE
data set. Where applicable, we compute the mean
squared error (MSE) and geodesic error between
each method’s outputs and the ground truth registra-
tions of FaustE.

Hausdorff Chamfer Varifold
FAUST SHREC FAUST SHREC FAUST SHREC

LIMP 0.23 0.17 0.098 0.070 0.073 0.057
ARAPReg 0.11 0.11 0.117 0.028 0.021 0.036
3D-Coded 0.07 0.07 0.020 0.022 0.023 0.034
BaRe-ESA 0.08 0.13 0.019 0.029 0.014 0.034

Table 2: Human body shape reconstruction results.
We compute the Hausdorff, Chamfer, and Varifold
reconstruction errors between the outputs of the
methods and the original scans. We evaluate these
methods on the FaustE and ShrecE testing sets.

COMA dataset, which consists of human face scans.
The computational cost of our method is discussed in
the supplementary material.

6.1 Mesh invariant latent code retrieval
To demonstrate the effectiveness of our latent code
retrieval algorithm, cf. Section 4.1, we tested its per-
formance on the three human body testing data sets
described in Section 5.1. In this experiment, we con-
struct latent code representations with BaRe-ESA,
LIMP, 3D-Coded, ARAPreg, and FARM and measure
the distance from the reconstructed meshes to the orig-
inal scans using the evaluation methods outlined in
Section 5.4. In Fig. 2 we present a qualitative compar-
ison of the obtained results. A quantitative comparison
of the performance of the different methods is pre-
sented, with shape registration evaluation in Tab. 1 and
geometric reconstruction of the human shape in Tab. 2.
Both evaluations demonstrate that BaRe-ESA signif-
icantly outperforms the mesh autoencoder methods
with respect to the registration and reconstruction
evaluation metrics, with a performance quite similar
to 3D-Coded in terms of reconstruction quality.

6.2 Interpolation and Extrapolation
Results

We now turn our attention to the interpolation problem
for human bodies, i.e., the task of constructing a defor-
mation between two different human body poses, that
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BaRe-ESA

ARAPReg

3D-Coded

FARM

GROUND

TRUTH

Fig. 2: Registration of seven elements of FAUST
using four methods trained on DFAUST. The registra-
tions produced by 3D-Coded, FARM, and ARAPReg
have regions with large deformation errors. BaRe-
ESA consistently produces a decent representation in
all examples. The coloring of each mesh encodes the
pointwise registration error from the ground truth with
blue encoding 0mm error and red encoding ≥ 15mm
error.

follows a “realistic” motion pattern. We use the start
and end points of our 10 test mini-sequences from the
DFAUST data set as the input for these experiments.
This allows us to compare the obtained results to the
full mini-sequences, seen as a ground truth motion
(see the supplementary material for their correspond-
ing animations). In Fig. 3, we show a qualitative com-
parison of our method with ARAPReg, 3D-Coded,
and LIMP. Our method is successful at recovering the
latent codes that represent the endpoints and produc-
ing interpolations that remain in the space of human
shapes. We further perform a quantitative compar-
ison of the methods by measuring the distance to
the ground-truth sequences at each break point with
respect to the evaluation metrics introduced in Section
5.4; these results are displayed in Tab. 3. One can
clearly observe that our method again outperforms the
others both qualitatively and quantitatively.

BaRe-ESA

LIMP

ARAPReg

3D-Coded

GROUND

TRUTH

Source Interpolation Target

Fig. 3: Interpolation results comparison between our
method, LIMP, ARAPReg and the Ground Truth from
DFAUST. While the path produced by LIMP does not
properly register the endpoints and the path produced
by ARAPreg does not stay in the space of human bod-
ies, BaRe-ESA successfully produces a path of human
shapes whose endpoints match the source and target
shapes.

Next, we consider the related problem of human
body shape extrapolation, i.e., the task of predicting
the future movement given a body shape and an ini-
tial movement (deformation). We consider again the
10 mini-sequences from the DFAUST dataset. We then
recover the latent codes of the first two meshes in the
sequence and use the first latent code and the differ-
ence of the codes as input to the method described in
Section 4.3. In Fig. 4, we present again a qualitative
comparison of our results to the extrapolations com-
puted using LIMP, 3D-Coded, and ARAPreg (see the
supplementary material for their corresponding ani-
mations). One can see that our method is successful
at producing extrapolations that capture the correct
motion of the mesh without any extraneous move-
ments and without leaving the space of human bodies.
As with the interpolation comparison, we measure
the distance to the ground-truth sequences at each
breakpoint and display the results of the quantitative
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Interpolation
Hausdorff Chamfer Varifold

LIMP ARAPReg 3D-Coded BaRe-ESA LIMP ARAPReg 3D-Coded BaRe-ESA LIMP ARAPReg 3D-Coded BaRe-ESA
punching 4.650 4.786 4.882 1.009 1.488 1.553 1.694 0.350 1.373 0.869 1.182 0.252

running on spot 2.045 0.977 1.357 0.820 1.026 0.334 0.454 0.475 0.786 0.359 0.441 0.372
running on spot b 2.367 1.726 1.931 1.134 1.039 0.653 0.706 0.548 0.767 0.488 0.545 0.366

shake arms 1.698 1.145 1.456 0.847 0.764 0.327 0.496 0.326 0.672 0.206 0.391 0.180
chicken wings 4.774 4.926 4.951 1.289 2.058 2.356 2.535 0.636 1.276 0.666 0.807 0.296

knees 12.898 2.797 19.593 0.718 8.803 0.496 18.153 0.461 2.067 0.627 1.925 0.338
knees b 5.516 1.055 0.738 1.995 1.862 0.262 0.249 0.693 0.748 0.298 0.279 0.347

jumping jacks 1.397 1.320 1.164 0.811 0.762 0.350 0.380 0.333 0.769 0.253 0.329 0.229
jumping jacks b 3.518 2.140 2.607 1.482 1.635 0.672 1.005 0.692 0.882 0.369 0.523 0.254

one leg jump 1.931 0.748 0.853 0.616 0.806 0.274 0.281 0.221 0.739 0.329 0.367 0.264
mean 4.079 2.162 3.953 1.072 2.024 0.728 2.595 0.474 1.008 0.447 0.679 0.290

Table 3: Full interpolation comparison on 10 DFAUST sequences. The Hausdorff, Chamfer and varifold distance
are computed against ground truth sequences.

Extrapolation
Hausdorff Chamfer Varifold

LIMP ARAPReg 3D-Coded BaRe-ESA LIMP ARAPReg 3D-Coded BaRe-ESA LIMP ARAPReg 3D-Coded BaRe-ESA
punching 4.232 8.142 5.792 4.952 1.494 2.436 2.685 1.424 1.506 1.551 1.441 0.901

running on spot 2.846 3.437 2.340 1.973 1.184 1.617 1.095 1.071 0.805 1.135 0.607 0.788
running on spot b 2.404 2.435 1.699 1.392 1.122 0.828 0.759 1.073 0.787 0.749 0.515 0.839

shake arms 2.090 2.737 1.734 1.109 1.017 0.892 0.630 0.421 0.771 0.528 0.520 0.330
chicken wings 4.778 12.790 5.224 4.952 2.230 5.127 2.536 2.373 1.475 1.673 1.117 1.121

knees 42.529 6.713 49.820 3.632 32.943 1.144 39.805 2.074 6.794 1.470 2.699 1.428
knees b 9.993 2.418 1.942 3.455 3.343 0.554 1.050 1.323 1.380 0.633 0.506 0.722

jumping jacks 4.116 5.873 8.696 2.149 1.767 2.345 6.449 0.917 1.099 1.038 0.699 0.476
jumping jacks b 2.219 3.519 1.759 1.436 0.992 0.984 0.702 0.411 0.765 0.623 0.498 0.270

one leg jump 2.195 1.970 1.989 0.867 0.906 0.757 0.915 0.427 0.758 0.858 1.800 0.540
mean 7.740 5.004 8.100 2.592 4.700 1.668 5.663 1.151 1.614 1.026 1.040 0.742

Table 4: Full extrapolation comparison on 10 DFAUST sequences. The Hausdorff, Chamfer and varifold distance
are computed against ground truth sequences.

comparison in Tab. 4. Similar to the previous exper-
iments, our method significantly outperforms LIMP,
ARAPReg and 3D-Coded.

6.3 Motion Transfer and Random Shape
Generation

As two further examples of the capabilities of the pro-
posed framework, we present applications to motion
transfer and random shape generation. To perform
motion transfer, we first represent a motion as a
sequence of latent codes and then simply replace the
shape coefficients of each element of the sequence
with the shape coefficients of the target shape. An
example of this method in action is displayed in Fig. 5.
Another possible application of our framework is ran-
dom shape generation. The idea is to use a data-driven
distribution on the human shape tangent space. There-
fore we first perform latent code retrieval on a subset
of DFAUST. We then compute the initial tangent vec-
tor of each of these paths in the latent space, separated
in pose and shape components. For each of these
collections of tangent vectors, we fit a Gaussian mix-
ture model, which is popular for generating human
shapes (Bogo et al., 2016; Omran et al., 2018). We
used 10 and 6 components respectively, which proved

BaRe-ESA

LIMP

ARAPReg

3D-Coded

GROUND

TRUTH

Input Extrapolation

Fig. 4: Extrapolation results comparison between
our method, LIMP, ARAPReg and DFAUST Ground
Truth. While all methods capture the primary motion
of lifting a leg, the extrapolations of LIMP and ARA-
Preg include extraneous motions of arms and slight
changes in body type.
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Fig. 5: Motion Transfer: We display the original
motion in the top row and the transfer of the motion to
the target shapes in the second and third row.

Fig. 6: Random Shapes: 22 random shapes generated
using a Gaussian mixture model on the space of initial
velocities.

to be sufficient to get visually satisfying random body
surfaces. The generation process consists of sampling
a pose and shape vector in the tangent space and solv-
ing the corresponding geodesic initial value problem
from the template in the direction of the generated
vector. We display a selection of 22 generated shapes
in Fig. 6.

6.4 Supervised and Unsupervised
Disentanglement

All the above experiments made use of data with
labels that distinguish identities and poses in the train-
ing phase. In this section, we will show that the
obtained latent space representation inherits this prop-
erty from the training phase, i.e., that the obtained
latent variables do split into a set of pose deformations
and a set of identity deformations. Besides, recent
works (Yang et al., 2023) have started to explore
approaches that alleviate this label dependency by
constructing latent spaces that automatically disen-
tangle these different types of deformations. In the
second part of this section, we will thus show that

Fig. 7: On the left, we display a TSNE plot of the
coefficients of a testing set of surfaces corresponding
to pose deformations. The colors in this plot corre-
spond to the ground truth poses of the testing set. On
the right, we repeat this process with the coefficients
of the deformation basis vectors with the colors corre-
sponding to the ground truth identity labels.

the BaRe-ESA framework shares this capability, i.e.,
that the presence of labels is not a necessity and that
our method can be adapted so as to automatically
disentangle identity and pose information (and more
generally between multiple different deformation sub-
spaces, cf. Remark 3).

We start by calculating the latent codes of a set
of testing data from DFAUST. We then calculate t-
distributed Stochastic Neighbor Embeddings (TSNE)
of the coefficients corresponding to both the pose and
the identity coefficients. As expected, the clustering
shown in Figure 7 matches the ground truth exactly,
proving that the developed deformation basis effec-
tively separates changes in pose from those in identity.

Next we demonstrate our method’s ability to dis-
entangle shape deformation modalities without rely-
ing on any prior labels. Therefore we consider again
a training set of human body scans from DFAUST.
In contrast to the previously described method, we
will, however, construct our PCA basis without using
any label information, i.e., we will treat paths (tan-
gent vectors, resp.) stemming from motions exactly
the same as paths (tangent vectors, resp.) stemming
from changes in identity. In a first step, we then per-
form PCA on the tangent vectors of all these paths
with respect to the H2-inner product at the template
shape.

After the construction of this unified deformation
basis (containing both pose and identity changes) we
calculate the H2-norm of each vector in the PCA
basis. Guided by the empirical observation that defor-
mations due to changes in pose are on a different
H2 scale as compared to those caused by changes in
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body shape, we separate these vectors in two groups
using an automatically chosen threshold on the H2

norm using Otsu’s method (Otsu, 1979). We treat the
first group as the pose deformation basis and the sec-
ond group as the basis for identity deformations. Both
the H2-norms of these basis vectors and the chosen
threshold are shown in Fig. 8. To compare the results
with the original (label-based) basis, we take the same
total number of vectors by taking the 130 vectors
above the threshold as the first group and the top 40
below the threshold as the second group. We compute
the chordal Grassmann distance between the subspace
spanned by the pose vectors of the original basis and
the subspace spanned by first group of vectors from
the basis computed without prior label information as
0.00398. For comparison we (experimentally) com-
puted the mean distance between random subspaces
of the same dimension based on 1000 simulated pairs
of random subspaces of the same dimension, which
turned out to be 17.085. A similar computation for
the shape vectors of the original bases and the second
group of vectors from the unsupervised basis returns a
chordal Grassmann distance of 0.00166. For compar-
ison we computed again the mean distance between
random subspaces of this dimension, which turned
out to be 9.581. This experiment demonstrates that
the unsupervised basis construction leads to essen-
tially the same bases for pose and shape deformations
as the original label based basis construction thereby
showing the label-independence of our framework.

To further demonstrate this result qualitatively, we
compute the latent coefficients with respect to the
unsupervised basis for the same testing set of human
bodies as used in Fig. 7. To illustrate the disentan-
glement of this basis, we again present TSNE plots
of the coefficients corresponding to the basis vectors
above and below the chosen threshold, with points
colored according to their ground truth poses and
identities, respectively. The resulting clustering, dis-
played in Fig. 8, again aligns perfectly with the ground
truth as in the experiment using labeled data. This
demonstrates that also the unsupervised disentangle-
ment accurately separates the deformation basis into
changes in pose and shape.
Remark 3 (Automatic Disentanglement in the pres-
ence of multiple deformation modules). We should
emphasize that the approach described in this section
to automatically separate pose and identity defor-
mation basis vectors extends to situations in which
one is interested in splitting a given basis into multi-
ple distinct deformation modules (subspaces), at least

Fig. 8: Unsupervised disentanglement capabilities of
BaRe-ESA: in the top plot, we present the H2 norms
of the elements of a deformation basis constructed
without prior pose and shape information and the cho-
sen threshold by which we separate the basis. Below
on the left, we display a TSNE plot of the coefficients
of a testing set of surfaces corresponding to the basis
vectors above the threshold. The colors in this plot cor-
respond to the ground truth poses of the testing set.
On the right, we repeat this process with the coeffi-
cients of the deformation basis vectors (those below
the threshold) and with the colors corresponding here
to the ground truth identity labels.

in situations where those different types of deforma-
tions are expected to result in H2 energies of different
orders. Following a similar process, one can simply
compute the H2 norms of each vector in the PCA
basis estimated from the training set, and, using e.g.
a multilevel Otsu thresholding method (Liao et al.,
2001), separate those basis vectors into a finite num-
ber of groups. The final deformation modules are
then constructed by choosing the dominant defor-
mation directions from each of these clusters. More
generally, when the different type of deformations
are not expected to operate on different H2-scales,
other approaches to separate the latent space can be
explored; e.g. one might construct non-local metrics
specifically penalizing deformations of certain parts
of the shape or adapt methods similar to those in the
recently proposed Geolatent framework (Yang et al.,
2023).
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Hausdorff Chamfer Varifold
LIMP 0.15 0.087 0.034
ARAPReg 0.12 0.015 0.0089
3D-Coded 0.16 0.059 0.020
BaRe-ESA 0.12 0.016 0.0091

Table 5: Face reconstruction results. We
compute the Hausdorff, Chamfer, and
Varifold reconstruction errors between
the outputs of the methods and the cor-
responding scans.

6.5 Application to Human Faces
In this part we showcase the capabilities of our frame-
work in the context of human face scan analysis
from the COMA dataset, where the chosen parame-
ters and the testing and training data are described in
Sections 5.1-5.3. As a first meansurent we claculated
again the shape reconstruction error for BaRe-ESA,
ARAPReg and 3D-Coded, cf. Table Tab. 5. In this
task ARAPReg performed the best, with BaRe-ESA’s
performance being only marginally lower. The perfor-
mance of 3D-Coded is an order of magnitude worse.
One reason for the better performance of ARAPReg
as compared to LIMP and 3D-Coded is probably the
use of the varifold distance in our adapted implemen-
tation of this approach, the original implementation of
ARAPReg not being capable of dealing with unregis-
tered data. The other learning-based methods (LIMP
and 3D-coded) use instead the Chamfer distance. We
believe that this might be one source of the signif-
icantly worse performance of these methods on the
COMA dataset.

In Figure 9, we show two latent code reconstruc-
tions of two different noisy scans of human faces,
an example of an interpolation between two different
expressions and an expression transfer to a different
identity. Additional examples of registration, inter-
polations, and a qualitative comparison to the other
deep learning methods are shown in the supplemen-
tary material. One can see again that our method leads
to more natural interpolation and extrapolation results
as compared to the other methods.

7 Experimental Results from
3D-training data

In the previous section we took advantage of the exis-
tence of full 4D-data during the training phase. In
this section we will demonstrate the capabilities of our
framework starting solely from 3D-data. Here we will

Fig. 9: Experimental results for COMA faces. Here we
present several qualitative results from this framework
applied to the COMA dataset. In the first row, we show
our latent code reconstruction (red) of two different
noisy scans of human faces (yellow). In the second
row, we display an example of a solution to a geodesic
boundary value problem to interpolate between two
shapes (purple). In the third row, we display an exam-
ple of expression transfer in our framework. The blue
mesh on the left represents a target face registered
with our framework, each red mesh on the right repre-
sents three additional identities and the purple meshes
below represent the transfer of the expression onto
these identities.

consider again the DFAUST dataset, and in addition
present experiments on the MANO dataset, a (static)
database of human hands.

7.1 A comparison between 3D and 4D
training data using the DFaust dataset

Here we compare the results of our framework where
we generate our motion basis using two different
methods:

1. first, we use the same method as in the previous
section, namely using all of DFaustT with real
4D data sequences containing 39159 meshes;
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2. second, we start from extremely limited 3D-data:
we consider only 270 scans from the FAUST
dataset and we generate the necessary motion
and deformation paths with an elastic matching
algorithm during the training phase.

In Tab. 7 we present the mean error for the interpo-
lation problem for the same ten DFAUST sequences
considered in Section 6.2: comparing these results
with those of Tab. 3 one can observe that the interpo-
lation error is indeed higher as compared to the error
obtained by training BaRe-ESA with 4D-data. Nev-
ertheless we still outperform the three other baselines
(LIMP, ARAPReg, 3D-Coded) in all three measures of
performance (Hausdorff, Chamfer, Varifold). As one
can see in Tab. 6 and Tab. 8 the same holds true for the
extrapolation task and for the registration tasks. For
the shape reconstruction task the performance drops
to the level of ARAPReg and LIMP. This certainly
demonstrate the advantage of having access to 4D-
training data (or at least signifincantly large training
data), but at the same time shows the capability of our
framework to lead to a superior performance without
this additional information. We want to emphasize that
all the comparison methods are trained with the full
39159 meshes, – i.e., with more than hundred times
the amount of meshes – making the results of BaRe-
ESA from this very limited training data all the more
remarkable.

MSE Hausdorff Chamfer Varifold
mean 0.028 0.21 0.046 0.025

Table 6: Registration results using only data from
Faust (3D) for training. The mean errors are cal-
culated for a testing set from DFAUST.

Hausdorff Chamfer Varifold
mean 2.004 0.683 0.405

Table 7: Interpolation results using only
data from Faust (3D) for training. The
mean errors are calculated for the same
ten sequences from DFAUST as pre-
sented in 6.2.

7.2 Application to Human Hands
Finally we showcase the capability of our framework
for human hands analysis. We apply our method to the

Hausdorff Chamfer Varifold
mean 4.853 1.256 0.899

Table 8: Extrapolation results using only
data from Faust (3D) for training. The
mean errors are calculated for the same
ten sequences from DFAUST as pre-
sented in 6.2.

Hausdorff Chamfer Varifold
LIMP 0.063 0.035 0.0067
ARAPReg 0.039 0.016 0.0022
3D-Coded 0.068 0.031 0.0051
BaRe-ESA 0.0053 0.0048 0.0003

Table 9: Hands reconstruction results.
We compute the Hausdorff, Cham-
fer, and Varifold reconstruction errors
between the outputs of the methods and
the corresponding scans.

MANO dataset. The chosen parameter and the train-
ing and testing data are described in Sections 5.1-5.3.
Different from the two other modalities, MANO con-
tains only static shapes. To create the PCA basis we
use simple linear deformations between the registered
hands in the training data to build our shape and pose
basis. We started again with calculating the recon-
struction errors, which are shown in Tab. 9. As one can
see, our approach significantly outperformed the other
methods by an order of magnitude. We believe that the
reason lies in the limited size of the training data com-
pared, which is not sufficient for these other methods;
in the previous Sec. 7.1 we only trained our method
from a small set of training data, but the comparison
methods still saw the full set of training data. Qual-
itative results of reconstruction and interpolation are
shown in Fig. 10; while there is no ground truth avail-
able the obtain interpolations follow a visually natural
hand movement.

8 Ablation Studies
Within this section, we conduct a sequence of ablation
studies to validate our selections regarding the number
of shapes and pose basis elements, the shape-matching
function, and the Riemannian metric employed in the
calculation of path energy.

8.1 Choice of basis size
Our first ablation study considers the choice of basis
size: in Table 10, we present the registration error
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Fig. 10: Experimental results on MANO hands. Here
we present several qualitative results from this frame-
work applied to the MANO dataset. In the first row, we
show our latent code reconstruction (red) of two dif-
ferent scans of human hands (yellow). In the second
row, we display an example of a solution to a geodesic
boundary value problem to interpolate between two
shapes (purple).

10 70 130 190
10 0.090 0.072 0.016 0.015
40 0.092 0.068 0.014 0.015
70 0.089 0.063 0.015 0.014
100 0.087 0.062 0.016 0.016

Table 10: Ablation study on the
number of basis elements. We report
the registration errors where we vary
the number of pose and shape basis
vectors of used in the matching pro-
cess.The basis vectors are derived
from training with DFAUST and the
errors of the methods are calculated
using data from FAUST.

corresponding to various numbers of shape and pose
basis vectors. Each value in the table is determined by
optimizing the latent vector reconstruction energy, as
detailed in Equation (9), for an identical number of
optimization iterations. The obtained results suggest
that our choice of basis size provides the ideal balance
of minimizing the latent space dimension while max-
imizing the expressivity of the obtained shape model.

8.2 Choice of matching functional and
latent space metric

To justify our choice of shape matching functional
and path energy, we compute the mean registration

errors and interpolation errors for different combina-
tion of shape matching and path energy functionals. In
particular, we experiment with replacing the varifold
distance with the Chamfer distance and the elas-
tic energy with the Euclidean distance on the latent
space. The results of these experiments are reported
in Table 11. First, we compare the performance of the
Chamfer and varifold distances and demonstrate that
the choice of the varifold metric leads to significantly
lower registration errors than the Chamfer distance. In
a second experiment, we demonstrate that the elastic
matching energy produces significantly lower interpo-
lation errors than that of an Euclidean path energy on
the latent space.

Shape Matching Path Registration Interpolation Errors
Term Energy Error Haus. Cham. Var.
Chamfer H2 0.032 1.273 0.510 0.348
Varifold Euclidean 0.015 1.787 0.632 0.335
Varifold H2 0.014 1.072 0.474 0.290

Table 11: Ablation study on the shape matching
and path energy functions. We report the registra-
tion and interpolation errors for each combination of
shape matching and path energy functions. For these
experiments, we train the method using DFAUST
and tested with FAUST.

9 Conclusions
In this paper, we proposed a general framework for
basis restricted elastic shape analysis on the space
of unregistered surfaces. We demonstrated superior
performance compared to state-of-the-art methods in
various tasks such as shape registration, interpolation,
motion transfer, and random pose generation. Our
framework utilizes a finite-dimensional latent space
representation, which we equip with a non-Euclidean
Riemannian metric inherited from the family of elas-
tic metrics. This allows for a simplified representation
of shape space while preserving the ability to compare
surfaces modulo shape preserving transformations,
i.e., our approach does not assume pre-registered sur-
faces or consistent mesh structures, making it appli-
cable to a wide range of surface meshes with real
data. Furthermore, the framework shows good gener-
alization properties and does not require a substantial
amount of training data. The paper presents qualita-
tive examples and quantitative analysis to support the
effectiveness of the proposed framework in various
experiments, including human body shape and pose
data as well as human face and hand scans.
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Lastly, we want to mention limitations and cor-
responding open directions for future work. There-
fore we first point out that, as compared to some
of the other latent space methods, the non-Euclidean
nature of the latent space comes at the price of solv-
ing optimization problems to estimate interpolated or
extrapolated geodesic paths, which can encumber to
significant computational cost for large data applica-
tions. A possible way around this limitation would be
to train neural networks in a supervised setting to learn
the geometry of the latent space, i.e., to approximate
the solutions of the interpolation and extrapolation
problems.

Finally, we want to mention a simple yet poten-
tially relevant extension of our model, namely to intro-
duce distinct Sobolev Riemannian metrics on the dif-
ferent shape modalities, e.g. for the shape change and
the pose change deformation field in the human body
motions. This comes with the idea of adapting the met-
ric to the different nature of those deformations, and
thus even better disentangling these quantities.
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Appendix A

A.1 Geodesic distance bounds
In this section we will study the induced geodesic
distance of the second order Sobolev metric used
in this article. For a finite dimensional Riemannian
manifold the induced geodesic distance is always a
true distance function, i.e., it is symmetric, satisfies
the triangle inequality and is non-degenerate. This
last property can, however, fail in infnite dimensions:
there exists Riemannian geometries such that the
geodesic distance between distinct points is zero or
it might even vanish on the whole manifold. This
startling phenomenon was first observed by Eliash-
berg and Polterovich (1993) for theH−1 metric on the
symplectomorphism group and later by Michor and
Mumford for the L2 metric on spaces of immersions
and diffeomorphisms (Michor and Mumford, 2005;

Bauer et al., 2012). In the following theorem, we will
prove that, under certain conditions on the parameters,
the geodesic distance of the family of elastic Rieman-
nian metric used in this article is non-degenerate:
Theorem 1. Let a0 > 0 and let either
a1, b1, c1, d1 > 0 or a2 > 0 then the induced geodesic
distance of the metric G on the space Imm is non-
degenerate, i.e., for any two surfaces q0, q1 ∈ Imm
with q0 ̸= q1 we have dG(q0, q1) > 0.

Proof. We start with the case that a1, b1, c1, d1 > 0.
For this case we will make use of a generalization of
the SRNF (Jermyn et al., 2012, 2017) as introduced
in Su et al. (2020a). To be more specific in Su et al.
(2020a) they considered the mapping

Q : Imm → Met(T )× C∞(T ,R3)

q 7→ (q∗⟨., .⟩, ψq),
(A1)

where Met(T ) denotes the space of all Riemannian
metrics on T and where ψq denotes the SRNF of q. On
the space of all Riemannian metrics there exists a one
parameter family of Riemannian metrics GE , called
the Ebin or DeWitt metric (DeWitt, 1967; Ebin, 1970).
Among other beneficial properties this Riemannian
metric admits an explicit formula for its correspond-
ing geodesic distance as derived by Clarke (2010) and
Gil-Medrano and Michor (1991). For the precise for-
mula we refer to (Su et al., 2020a, Theorem 2). For
the purpose of this proof it is only important that this
distance is non-degenerate, i.e., dGE (g0, g1) > 0 if
g0 ̸= g1. On the second factor of the image of Q,
i.e., on C∞(T ,R3) we consider the standard non-
invariant L2 inner product as a Riemannina metric.
This has again an explicit expression for the geodesic
distance given by dL2(ψ1, ψ2) = ∥ψ1 − ψ2∥2L2 . The
relevance of these results for our family of metrics can
be found in the fact, that the pull-back of this product
Riemannian metric via the mapping Q yields exactly
the Riemannian metric G with parameters a0 = d1 =
a2 = 0 and a1, b1, c1 ̸= 0 (depending on the parameter
choice in the DeWitt metric and of the weighting of the
two Riemannian metrics on the product space, see (Su
et al., 2020a, Theorem 3) for the precise statement of
this result).

Unfortunately the image of the map Q in the prod-
uct space Met(T ) × C∞(T ,R3) is far from being
totally geodesic and thus we cannot directly calculate
the geodesic distance of the metric G via this trans-
form. Nevertheless, this construction still provides a
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lower bound for the geodesic distance of G on Imm,
i.e., we have:

dG(q0, q1) ≥ dGE (g0, g1) + ∥ψ0 − ψ1∥2L2 , (A2)

where (gi, ψi) = Q(q). Next we note, that Q(q0) =
Q(q1) if and only if q0 and q1 differs only by a
translation and we have shown that the geodesic dis-
tance of the elastic metric G is non-degenerate on
the quotient space Imm /translation. It remains to
deal with the case that q0 = q1 + v for some
v ∈ R3. In this case the immersions q0 and q1 are
also different elements in the quotient shape space
S of unparametrized immersions, where the non-
degeneracy has been shown using an area-swept-out-
bound, see Bauer et al. (2011). This concludes the
proof assuming a1, b1, c1, d1 > 0. It remains to prove
the result under the assumption that a2 > 0, but in this
situation the result follows directly from the above and
the Sobolev embedding theorem.

A.2 Discretization of invariant H2

metrics
In this section, we detail the computation of the Rie-
mannian metric termGq(h, h) for discrete meshes and
vector fields. We shall however refer to Crane (2018)
for a more comprehensive presentation and justifica-
tion of the discrete differential approximations being
used here. Let us assume that q is a triangulated ori-
ented surface mesh given by the ordered list of vertices
V = (v1, v2, . . . , vN ) with each vi ∈ R3 and set of
triangle faces F where each f ∈ F corresponds to an
ordered triplet of distinct indices f = (f0, f1, f2) of
{1, . . . , n}. We then view the vector field h as a list of
vectors (hi)i=1,...,N attached to each vertex of q. Note
that, equivalently, one can interpret the discrete q and
h as piecewise affine linear maps on each face of the
mesh, by interpolation of the values at the vertices.

We start with the L2 term of the metric:∫
T ⟨h, h⟩ volq. The discrete volume form can be first

expressed over the mesh triangular faces. Specifically,
for each face f ∈ F , we can calculate its area as
volf = ∥(vf1 − vf0) × (vf2 − vf0)∥. The volume
form on the vertices is then obtained by distributing
the areas of the adjacent faces, namely for each ver-
tex vi, we take volvi

= 1
3

∑
f∋i volf . This leads to the

following discrete version of the L2 term:

∫
T
⟨h, h⟩ volq ≈

N∑
i=1

∥hi∥2 volxi
.

Next, we consider the first order terms of the met-
ric. For any face f ∈ F , we can view both q and h as
affine maps on f , by interpolation of their values at the
three vertices of f . Then their differentials are constant
on f and given by the following (3× 2) matrices:

dqf =
[
hf1 − hf0 , hf2 − hf0

]
,

dhf =
[
hf1 − hf0 , hf2 − hf0

]
We further have the following discrete versions of the
metric gq and unit normal nq on the face f :

gf =

[
∥e01∥2 e01 · e02
e01 · e02 ∥e02∥2

]
,

nf =
e01 × e02
∥e01 × e02∥

.

where e01 = vf1 − vf0 , e02 = vf2 − vf0 are the two
edges of the face f passing through the vertex vf0 . We
then rely on the interpretation and the discretization of
the different first order terms introduced in Su et al.
(2020b). Namely,∫

T g
−1
q (dhm, dhm) volq ≈∑

f∈F tr(g−1
f δgfg

−1
f δgf ) volf

in which δgf represents the variation of the metric ten-
sor gf resulting from the variation of the vertices of
the mesh in the direction of the vector field h. In prac-
tice, in the computation of geodesics, δgf is calculated
from one discrete time point to the next by taking the
difference of the respective metric tensors of face f .
Similarly,∫

T
g−1
q (dh+, dh+) volq ≈

∑
f∈F

tr(g−1
f δgf )

2 volf

where each term inside the sum can be interpreted as
the change of in the area of the face f and∫

T
g−1
q (dh⊥, dh⊥) volq ≈

∑
f∈F

⟨δnf , δnf ⟩ volf

in which δnf stands for the variation of the normal
vector nf resulting from the variation of the vertices
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Fig. A1: Discrete volume form and Laplacian on a
mesh.

of the mesh in the direction of the vector field h. The
last first order term is discretized as follows:

∫
T
g−1
q (dh0, dh0) volq ≈

∑
f∈F

tr(g−1
f ξfg

−1
f ξTf ) volf

where ξf = dqTf dhf − dhTf dqf .
Finally, for the discretization of the Laplacian in

the second order term of the metric, we use the stan-
dard approximation on triangular meshes based on the
cotangent formula. Letting E be the set of oriented
edges in the mesh viewed as ordered pairs of distinct
vertex indices, we take for any i ∈ {1, . . . , N}:

(∆qh)vi =
∑

j|(i,j)∈E
or (j,i)∈E

(cot(αij) + cot(βij))(hi − hj).

where αij and βij are the angles defined as in Figure
A1. Then the full discrete second order order term is
obtained as:

∫
T
⟨∆qh,∆qk⟩ volq ≈

N∑
i=1

∥(∆qh)vi∥2 volxi
.

A.3 Mesh invariant similarity measures
In this section, we add some details regarding the sim-
ilarity metrics being used in the registration procedure
as well as for the evaluation and comparison of the
different methods. With similar notations to the previ-
ous section, we consider two discrete surfaces q and
q′ with possibly different number of vertices and mesh
structure. We denote by (v1, . . . , vN ) the vertices of q
and F its set of faces, and similarly (v′1, . . . , v

′
N ′) and

F ′ the vertices and faces of q′.

First, we remind that the Hausdorff distance
between the two shapes is given by the formula:

dH(q, q
′) = max

{
sup

i=1,...,N
inf

j=1,...,N ′
∥vi − v′j∥,

sup
j=1,...,N ′

inf
i=1,...,N

∥v′j − vi∥
}

In our numerical experiments, we use the approximate
implementation provided by libigl (Jacobson et al.,
2018). Note that this metric is typically very sensitive
to outliers.

In contrast, the Chamfer distance (Fan et al., 2017;
Groueix et al., 2018b) provides a more regular simi-
larity cost which is defined as:

dCh(q, q
′) =

1

N

N∑
i=1

inf
j=1,...,N ′

∥vi − v′j∥

+
1

N ′

N ′∑
j=1

inf
i=1,...,N

∥v′j − vi∥.

We use the Pytorch implementation of Thibault
Groueix3. One of the downsides of this metric for
comparing discrete surfaces, however, is that it is not
necessarily robust to local changes of point density
since it is designed as a distance between point clouds
(without taking the triangle mesh into account) and it
remains somewhat sensitive to outliers and noise (Wu
et al., 2021).

As similarity terms for the algorithms of this paper
and final measure of reconstruction quality, we instead
favor distances that are based on measure representa-
tions of shapes, as introduced in (Charon and Trouvé,
2013; Kaltenmark et al., 2017). Specifically, we rely
on the representation of surfaces as varifolds equipped
with kernel Hilbert metrics. The resulting family of
metrics is equally defined for continuous and dis-
crete surfaces and the properties of those metrics have
been well studied, c.f. the aforementioned papers. In
practice, they are computed via the following formula:

dVar(q, q
′)2 =

∑
f,f̃∈F

k(cf , nf , cf̃ , nf̃ ) volf volf̃

− 2
∑
f∈F
f ′∈F ′

k(cf , nf , cf ′ , nf ′) volf volf ′

3https://github.com/ThibaultGROUEIX/ChamferDistancePytorch
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Method Training Retrieval Interpolation

LIMP 1.5w <1s <1s
3D-Coded 12h 160s <1s 160s
ARAPReg 2w 160s <1s 160s
BaRe-ESA <1h 160s 91s 160s

Table A1: This table presents the compu-
tation costs for the different methods and
the three tasks of model training, latent
code retrieval (once trained) and interpolation
between two shapes. In the case of interpola-
tion, we display on the left the running times
when latent codes are available vs, on the
right, when they are not.

+
∑

f ′,f̃ ′∈F ′

k(c′f ′ , n′f ′ , c′
f̃ ′ , nf̃ ′) volf volf̃ ′

where cf (resp. c′f ′) denote the barycenter of the tri-
angle face f (resp. f ′) in q (resp. q′). Here k is a
positive definite kernel function on R3 × S2. While
several different families of kernels are possible (see
the discussion in Kaltenmark et al. (2017)), in all
the experiments of this paper, we specifically take

k(x, n, x′, n′) = e−
∥x−x′∥2

σ2 (n · n′)2 where σ can be
interpreted as a spatial scale of sensitivity of the met-
ric which is chosen to be quite small (σ = 0.025)
in our examples. In this work, we adapted the Python
implementation used in H2 SurfaceMatch4 which
itself relies on the PyKeops library (Feydy et al., 2020)
for efficient evaluation and automatic differentiation
of kernel functions on the GPU. We emphasize that
such varifold metrics derive from distances between
continuous surfaces which are independent of their
parametrization. In practice, when considering dis-
crete surface meshes, this typically leads to those
metrics being approximately insensitive to variations
in mesh sampling, at least for a certain range of kernel
scale σ. We illustrate this property empirically with
the example of Figure A2.

A.4 Computational cost
As stated in the paper, our pipelines are optimization
based. We provide a substantial comparison for the
different approaches.

All the other approaches require significant train-
ing costs compared to BaRe-ESA which requires less

4https://github.com/emmanuel-hartman/H2 SurfaceMatch

Fig. A2: Empirical illustration of the varifold dis-
tances approximate invariance to mesh sampling. Top
row: a triangular mesh of a human face with 57,836
faces (left) and its downsampled version with 2000
faces (right). Bottom plot: the relative error in varifold
norm dV ar(q, q

′)/∥q′∥V ar between the full surface
and the downsampled one, as a function of the kernel
scale σ. One can see that this relative error remains
close to 0 for scales larger than σ = 0.1 but increases
for smaller kernels. Note for reference that the surface
diameter is normalized to 1 while the average diameter
of the mesh triangles in the original and downsampled
mesh are respectively 9.4× 10−3 and 4.6× 10−2.

than one hour, cf Table A1. On the other hand, BaRe-
ESA, ARAPReg and 3d-Coded require additional
optimization for the latent code retrieval, which we
found takes approximately the same time for all three
methods. The optimization cost is driven by the mesh
invariant costs – varifold or Chamfer – which have n2

complexity, where n is the number of vertices. LIMP
is the only method that does not require optimization,
but the network behaves notably bad when the poses
are unseen as showed in the experiments. For the inter-
polation problem our method requires approximately
90 seconds if the latent codes are already available,
whereas it takes approximately the same time as one
latent code retrieval if they are not available. All tim-
ing results were obtained using a standard home PC
with a Intel 3.2 GHz CPU and a GeForce GTX 2070
1620 MHz GPU.
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A.5 Description of state-of-the-art
methods

We propose a detailed description of the state-of-the-
art method we use as baselines. We selected deep
learning methods that builds a flat latent space for
human shape deformations. They describe as follows:

• Learning Latent Shape Representations with Met-
ric Preservation (LIMP) is a deep learning method
modeling deformations of shapes using a varia-
tional auto encoder with geodesic constraints. The
encoder part use a PointNet architecture, which
makes it invariant to parameterization. The decoder
part is a Multi Layer Perceptron. The geometric
constraints are used a loss functions during the
training process. The latent space is divided in an
extrinsic part and an intrinsic part and the loss is
applied on the interpolation in those dimensions.
The intrinsic part is constrained using the com-
putation of full geodesic matrix, which make the
training process particularly heavy.

• As-Rigid-As-Possible Regularization (ARAP) is a
deep learning method modeling deformations of
shapes using an auto-decoder architecture. The
latent codes and the decoder are learned altogether.
During the training, an As-Rigid-As-Possible loss
is imposed such that the decoder directions are sim-
ilar to the ARAP ones. This procedure also makes
the training procedure heavy. In order to make it
parameterization invariant, we replace the L2 met-
ric by the varifold distance, as an alternative to our
Riemannian latent space.

• 3D correspondences by deep deformation (3D
Coded) is a deep learning method modeling defor-
mations of shapes using a variational auto encoder.
Similarly to LIMP, the encoder part use a PointNet
architecture, which makes it invariant to parameter-
ization. The decoder uses a Multi Layer Perceptron
to deform a template mesh, but no constraint is
imposed on the interpolation of latent variables.
By taking advantage of a high number of training
samples (> 200000), they obtained state-of-the-art
results for human shape correspondence.

• Functional Automatic Registration Method for
3D Human Bodies (FARM) is a functional-maps
based approach for human body registration. The
approach consists of multiple stages that enhance
the initial mesh structure of a human body scan
to propose a valid final functional map, based on
a set of 15 landmark extracted automatically from

Fig. B3: First line: optimal deformation calculated
using the basis informed ESA of the present article.
Second line: optimal deformation calculated using a
standard H2-matching.

the scan, between a given human body scan and a
human body template. A final step of registration
between the SMPL body model and the obtained
correspondence is proposed.

In the paper, all those methods are trained using the
same training set as Bare-ESA, from Dynamic FAUST
and reported parameters from the respective papers.

Appendix B

B.1 Comparison to the framework
of Hartman et al. (2023b)

In Figure B3 we compare BaRe-ESA to the unre-
stricted method of Hartman et al. (2023b). Note, that
BaRE-ESA is significantly cheaper to compute as we
reduced the dimension of the minimization problem
– the latent space dimension will be in the order of
100s, while the dimension of the unrestricted method
is on the order of 10000s. More importantly, one can
observe that BaRe-ESA leads to significantly more
natural deformations, cf. the movement of the arms in
Fig. B3.
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