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Abstract

Computing the diameter, and more generally, all eccentricities of an undirected graph
is an important problem in algorithmic graph theory and the challenge is to identify
graph classes for which their computation can be achieved in subquadratic time. Using
a new recursive scheme based on the structural properties of median graphs, we provide
a quasilinear-time algorithm to determine all eccentricities for this well-known family of
graphs. Our recursive technique manages specifically balanced and unbalanced parts of
the Θ-class decomposition of median graphs. The exact running time of our algorithm is
O(n log4 n). This outcome not only answers a question asked by Bénéteau et al. (2020)
but also greatly improves a recent result which presents a combinatorial algorithm running
in time O(n1.6408 logO(1) n) for the same problem.

Furthermore we also propose a distance oracle for median graphs with both poly-
logarithmic size and query time. Speaking formally, we provide a combinatorial algorithm
which computes for any median graph G, in quasilinear time O(n log4(n)), vertex-labels
of size O(log3(n)) such that any distance of G can be retrieved in time O(log4(n)) thanks
to these labels.

1 Presentation of the contributions: ideas and impact

A wide literature in graph theory, and more specifically in metric graph theory, is dedicated
to median graphs. Given two vertices u, v ∈ V (G), the interval I(u, v) is the set containing all
vertices x metrically between u and v, i.e. x ∈ I(u, v) if d(u, v) = d(u, x) + d(x, v). Formally,
median graphs are the graphs G such that for any triplet of distinct vertices u, v, w ∈ V (G),
the intersection I(u, v)∩ I(v,w)∩ I(w, u) is a singleton. From the applications point of view,
median graphs are crucial in the study of phylogenetic networks [8, 36]. They are usually
mentioned as “median networks” in this area of research. They are, in particular, widely
considered in the visualization of sequence variations in human mitochondrial DNA [7, 9, 11,
41]. From a more theoretical point of view, median graphs are in bijection with numerous and
diverse notions from discrete mathematics. For example, they represent solutions of 2-SAT
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formulae [33, 38]. In geometric group theory, median graphs are exactly the 1-skeletons of
CAT(0) cube complexes [4, 21]. In abstract models of concurrency, median graphs are in
bijection with event structures [12, 37]. Finally, median graphs form a natural subclass of
partial cubes, i.e. isometric subgraphs of hypercubes [34].

From a graph theory point of view now, median graphs admit many characterizations and
structural properties. First, median graphs are bipartite (hence, triangle-free) and do not
admit any induced K2,3. They are exactly the retracts of hypercubes [2], and the Cartesian
product of two median graphs is also median [4]. Median graphs are sparse: the number m
of edges of any median graph G satisfies m ≤ n log2 n, where n = |V (G)|. Among the most
famous subclasses of median graphs, we can cite: trees, hypercubes, grids (of any dimension),
and cogwheels. A very practical characterization of median graphs come from the notion of
Θ-classes which provide us with natural edge separators satisfying convexity properties. This
concept, used in most of the algorithmic literature cited below, will be a key instrument of
our contributions in this article.

Recently, several efficient algorithms, dedicated to solving distance problems on median
graphs, have been proposed [14, 15, 16, 20, 23, 26]. An important outcome is the algorithm
proposed by Bénéteau et al. [14] which computes both the median set and the Wiener index
of median graphs G in linear time O(m), where m = |E(G)|. A second one [15] computes all
eccentricities of median graphs in subquadratic time Õ(n1.6408), where the Õ notation neglects
poly-logarithmic factors. Constant 1.6408 comes from a slight improvement on a first version
of the algorithm, which achieved Õ(n

5
3 ).

Other contributions focused on subclasses of median graphs too. There is a linear-time
algorithm [16] which determines the diameter of median graphs for which the dimension of
the largest induced hypercube is bounded. Furthermore, Chepoi et al. [23] designed distance
and routing labeling schemes of O(log3 n) bits for cube-free median graphs.

Our contributions. The main outcome of this paper consists in the proposal of a
combinatorial algorithm which computes all eccentricites of a median graph in quasilinear
time. Before stating formally this contribution, let us recall the problem we treat here. The
distance d(u, v) between two vertices u, v ∈ V (G) is the length of a shortest (u, v)-path. Given
a vertex u ∈ V (G), its eccentricity ecc (u | G) is the maximum distance from u to any other
vertex of G. The diameter and radius, which are certainly the most studied metric parameters
on graphs, correspond respectively to the maximum/minimum eccentricity of the graph.

Eccentricities

Input: A median graph G = (V,E).
Output: All labels ecc (u | G) = max{d(u, v) : v ∈ V } for each vertex u ∈ V .

In this article, we focus in fact on a more general problem, which is a weighted version of
the Eccentricities problem. The input graph is a vertex-weighted median graph and the
objective is to determine, for each vertex u, its weighted eccentricity ecc (u | (G,ω)), which is
the maximum value d(u, v) + ω(v). In other words, the weight of the arrival vertex is added
to the standard distance. Obviously, it generalizes Eccentricities since fixing weights 0 to
each vertex is equivalent to the classical problem.

Weighted Eccentricities

Input: A weighted median graph G = (V,E, ω), with ω : V → N.
Output: All labels ecc (u | (G,ω)) = max{d(u, v) + ω(v) : v ∈ V } for each u ∈ V .
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The main contribution of this article is thus stated below. Observe that it greatly enhances
the literature as, for now, the best running time for computing all eccentricies of a median
graph was in Õ(n1.6408), from [15]. Moreover, we handle a more general problem.

Theorem 1. There exists a combinatorial algorithm which computes all weighted eccentrici-
ties of a weighted median graph (G,ω) in quasilinear time O(n log4(n)).

This result is described in Sections 3 and 4. The idea of our algorithm is in fact relatively
simple: Θ-classes, which are presented in the preliminary Section 2, are separators of the
input graph G and admit several convexity properties. Hence, inspired by well-known divide-
and-conquer methods on graphs [31], we make a tradeoff on the balance of these separators:
either the sizes of the two sides generated by the separator are comparable, or not. Thus, we
distinguish two cases.

When the median graph G admits a balanced Θ-class (this notion is defined in Section 3.1),
we retrieve all weighted eccentricities by recursively focusing on each side of the separator,
with an extra procedure that runs in linear time. As the Θ-class is balanced, there is a
non-negligible decrease of the size of each side compared to n = |V (G)|. After obtaining the
weighted eccentricities of each side recursively, our extra procedure consists in retrieving the
weighted eccentricities of the whole graph by looking for large distances between vertices of
different sides. This can be achieved thanks to the gatedness of each side: this property of
Θ-classes will be recalled in Section 2.1.

However, when no Θ-class of the input graph is balanced, the previous technique is not
efficient anymore since for any Θ-class, the size of its sides does not decrease enough. We
provide a list of characterizations of median graphs without balanced Θ-classes. In particular,
we observe that such graphs admit a unique median vertex v0. Then, we prove how a BFS
starting from v0 together with a reasonable number of recursive calls on convex subgraphs
help us in finding all weighted eccentricities of (G,ω). This second part of our algorithm is
more technical than the first one.

As a second result, we propose a distance oracle (DO) for median graphs. The objective
beyond our DO is to locally store some information so that one can retrieve the distance
between any pair of vertices by inspecting the labels in a very short time. Concretely, we
propose an algorithm which assigns a label to each vertex of the graph, and then we show
how these labels can be used to compute fast any value d(u, v). Observe however that our
labeling is not a distance labeling scheme, since we might need to look at more than two vertex
labels in order to compute some distance d(u, v). Indeed, the information given by the labels
of u and v might not be sufficient to obtain d(u, v), extra labels must be taken into account.
Our result is described in Section 5.

Theorem 2. There exists a combinatorial algorithm which computes in quasilinear time
O(n log4(n)), for any median graph G, vertex-labels (ΛG(u))u∈V (G) of size O(log3(n)) such

that the distance d(x, y) between a pair x, y of vertices can be retrieved in time O(log4(n))
thanks to the labels.

The proof re-uses the splitting between the balanced and unbalanced cases. When a Θ-
class is balanced, we apply similar arguments to those used for the computation of eccentric-
ities, with the difference that the necessary information is put into vertex labels. Concretely,
any vertex u is labeled with the identity of the balanced Θ-class considered, the side of u, the
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closest-to-u vertex on the other side (its gate), the distance to its gate, and finally the label of
u in the graph induced by its side regarding the balanced Θ-class. This whole package allows
us to retrieve any distance between two vertices in poly-logarithmic time.

The unbalanced case requires more effort. Our idea consists in partitioning all vertices
of the graph in function of their “direction” regarding the central vertex v0. To do so, we
launch a BFS from v0 and take note of some information, that will be added to the label of
any vertex u 6= v0: the distance from v0 to u, the Θ-classes traversed to go from v0 to u, etc.
In addition, some gates of u through certain small convex sets are also computed. With this
information, we show again how to retrieve any distance in poly-logarithmic time.

Perspectives. First, we believe that the techniques proposed in this article offer not only
tools for different problems on median graphs but also for more general classes of graphs.
Observe that larger families of graphs are still impacted by the notion of Θ-class, the main
difference consisting in weaker convex characterizations: almost median graphs [17], pseudo-
median graphs [10, 39] or partial cubes [40]. In our work, we exploit several times the fact
that the boundary of each Θ-class is convex, which is a property specific to median graphs
and not to these superclasses. Therefore, one should be able to get rid of this argument in
order to handle larger families of graphs. However, a tradeoff on the balance of Θ-class stays,
in our opinion, a promising starting point for tackling them.

Coming back to median graphs, one can hope producing efficient algorithms by exploiting
again this tradeoff technique. A future direction of research could be trying to design algo-
rithms which improve the naive general method for computing other metric parameters, such
as the hyperbolicity [27], the betweenness and reach centralities [1],. . . The techniques proposed
in our paper can be useful tools for such problems. Eventually, we mention a problem which
was not studied yet on median graphs to the best of our knowledge: Weighted Center [13].
Given a median graph G with vertex weights ω : V → N, the objective is to determine the
weighted center of (G,ω), i.e. the vertex u which minimizes maxv∈V (G) ω(v)d(u, v). Observe
that, with Theorem 1, we can deduce, from the weighted eccentricities, some kind of weighted
center where weights stand as an additive term and not multiplicative. For this reason, we
believe that the techniques we proposed can be fruitful for solving Weighted Center in
quasilinear time. Note that Weighted Center admits exact quasilinear-time algorithms
for trees and cactii [13], hence targeting median graphs is a natural challenge.

2 Preliminaries

We begin with a reminder of some notions of graphs, and more particularly on median graphs.
We emphasize on a very important tool in this area: Θ-classes, which are equivalences classes
over the edge set of median graphs, and especially the orthogonality between these Θ-classes.
From the mathematical point of view, notation log refers to the natural logarithm, i.e. log n =
loge n. When another base is considered, we mention it as a subscript, e.g. log2.

2.1 Definitions and properties from metric graph theory

All graphs G = (V,E) considered in this paper are undirected, simple (loopless and without
multiple edges), finite and connected. To avoid confusions when several graphs are considered,
we denote by V (G) (resp. E(G)) the vertex set (resp. edge set) of G. Usually, we use n to
denote the size of the vertex set of G, i.e. |V (G)|, while m denotes the size of the edge set:

4



m = |E(G)|. To improve readibility, edges (u, v) ∈ E are sometimes denoted by uv. Let N(u)
be the open neighborhood of u ∈ V , i.e. the set of vertices adjacent to u in G. We extend it
naturally: for any set A ⊆ V , the neighborhood N(A) of A is the set of vertices outside A
adjacent to some u ∈ A.

A subgraph G′ of G is a graph G′ = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). For
any U ⊆ V , let E [U ] be the set of edges of G with two endpoints in U . We denote by G [U ]
the subgraph of G induced by U : G [U ] = (U,E [U ]).

Given two vertices u, v ∈ V , let d(u, v) be the distance between u and v, i.e. the length of
a shortest (u, v)-path. When the context is not clear enough, we might notice, as a subscript,
in which graph these distance are considered, e.g. dG(u, v). As a weighted version is defined
in the remainder, we may refer to this notion as the unweighted distance. The eccentricity
ecc (u | G) of a vertex u ∈ V in graph G is the length of a longest shortest path starting
from u. Put formally, ecc (u | G) is the maximum value d(u, v) for all v ∈ V : ecc (u | G) =
maxv∈V d(u, v). The diameter of graph G is the maximum distance between two of its vertices:
diam(G) = maxu∈V ecc (u | G).

We denote by I(u, v) the interval of pair u, v ∈ V . It contains exactly the vertices which
are metrically between u and v: I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}. The vertices
of I(u, v) are lying on at least one shortest (u, v)-path.

Definition 1 (Convex and gated sets). We say that a set H ⊆ V (or equivalently the induced
subgraph G [H]) is convex if I(u, v) ⊆ H for any pair u, v ∈ H. Moreover, we say that H is
gated if any vertex v /∈ H admits a H-gate gH(v) ∈ H, i.e. a unique vertex that belongs to
all intervals I(v, x), x ∈ H. For any x ∈ H, we have d(v, gH (v)) + d(gH(v), x) = d(v, x).

Observe that, if v ∈ H, then it admits a natural H-gate: itself, since v belongs not only
to H but also to all intervals I(v, x), x ∈ H. Gated sets are convex by definition. Indeed,
by contradiction, for a gated set H, if a shortest path from x ∈ H to y ∈ H was containing
a section outside H, it would imply the existence of two H-gates for the vertices of this
section. Conversely, convex sets are not necessarily gated in general (e.g. any pair of vertices
in the 3-clique K3). But, we will see in the remainder that, on median graphs, convexity and
gatedness are equivalent notions.

A well-known property is that the intersection of two gated sets is itself gated.

Lemma 1 (Intersection of gated subgraphs [4]). Given two gated sets H1,H2 of a graph G,
the set H1 ∩H2 is gated.

We naturally focus on the set of vertices which admit a given vertex as a gate.

Definition 2 (Fibers [4]). Given a gated set H of G and a vertex x ∈ H, the fiber FH [x] is
the set of vertices which admit x ∈ H as a gate for H.

As each vertex in H is its own gate, the fibers FH [x], x ∈ H, partition V (G). A fiber is
thus a set of vertices which all admit the same gate for a given gated H. In fact, the H-gate
of some v /∈ H is necessarily the vertex of H minimizing the distance to v. Observe that,
except x itself, FH [x] contains vertices outside H: FH [x] \ {x} ⊆ V (G) \H. In the following
sections, we often manipulate this set FH [x] \ {x} that we call the open fiber.

Definition 3 (Open fibers). Given a gated set H of G and a vertex x ∈ H, we define the
open fiber as FH(x) = FH [x] \ {x}.
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There is a natural linear-time algorithm (in fact, a very slight variation of BFS) for com-
puting the fibers (and open fibers) of a given gated set H. To keep this paper as self-contained
as possible, we recall a sketch of this algorithm, proposed in [23]. The classical BFS uses a
queue to store the visited vertices of the graph. Here, we initialize this queue by putting into
it all the vertices of H (instead of a single starting vertex). Each vertex v ∈ V is labeled by
three variables: d(v) (distance to the gate), f(v) (parent of v in the BFS tree) and fib(v)
(H-gate of v). All vertices x ∈ H are initialized with d(x) = 0, f(x) = NULL, and fib(x) = x.
Then, we proceed the search as follows. Once a vertex v is at the head of the queue, all
not yet discovered neighbors w of v are inserted into the queue, and we fix d(w) = d(v) + 1,
f(w) = v, fib(w) = fib(v). At the end of the execution, each vertex v is labeled by not
only its gate fib(v) = gH(v) in H but also the (unweighted) distance towards its gate d(v).
For the correctness of this BFS traversal, see Lemma 16 and Corollary 6 from [22], the open
access version of [23].

Lemma 2 ([22, 23]). For any gated set H of a graph G, one can compute, in linear time
O(m) = O(n log n), all fibers FH [x], with x ∈ H, but also all distances from each v ∈ V (G)
to its H-gate.

Let us denote by (G,ω) = ((V,E), ω) the weighted graph G when it is equipped with
an integer non-negative weight function on its vertices ω : V → N. In brief, in this paper,
expression weighted graph refers to vertex-weighted graphs. Observe that the definitions of
the structural notions we introduced above are independent from any weight consideration.
Notions of interval, gate, convex and gated sets, and fiber only depend on unweighted dis-
tances.

Now, considering a weighted graph (G,ω), the distance is generalized to a ”weighted
distance” which is not symmetrical anymore: dω(u, v) = d(u, v) + ω(v). In particular,
dω(u, u) = ω(u). When there is some ambiguity on the graph considered, we may write
the weighted distance as d(G,ω)(u, v). The weighted eccentricity of a vertex u ∈ V is the max-
imum weighted distance from this vertex, i.e. ecc (u | (G,ω)) = maxv∈V dω(u, v). In future
sections, this notion of weighted distances/eccentricities will allow us to describe recursive
algorithms on median graphs based on gated sets.

2.2 Median graphs and Θ-classes

From now on, we focus on the family of graphs which is studied in this article: median graphs.

Definition 4 (Median graph). A graph is median if, for any triplet (x, y, z) of distinct vertices,
the set I(x, y) ∩ I(y, z) ∩ I(z, x) contains exactly one vertex m(x, y, z) called the median of
(x, y, z).

Trees, hypercubes, grids and squaregraphs [6] are median graphs. Median graphs are
bipartite and do not contain any induced K2,3 [4, 29, 34]. The Cartesian product of two
median graphs is also median [18].

Given an integer k ≥ 1, we denote by Qk the hypercube of dimension k. Inductively,
graph Q1 is the single-edge graph, and Qk is the Cartesian product of Qk−1 and Q1 for k ≥ 2.
In other words, Qk is obtained by taking graph Qk−1 with a copy of it, and connecting each
vertex with its own copy. For example, Q2 is a square and Q3 is the well-known 8-vertex cube
of dimension 3.
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Figure 1: Example of median graph G with d = 3. Two Θ-classes are highlighted.

Definition 5 (Dimension d). The dimension d = dim(G) of a median graph G is the dimen-
sion of the largest hypercube contained in G as an induced subgraph.

In other words, d = dim(G) means that G admits Qd as an induced subgraph, but not
Qd+1. Median graphs with d = 1 are exactly the trees. Median graphs with d ≤ 2 are
called cube-free median graphs. Figure 1 provides us with an example of median graph with
dimension d = 3. In general, since Qd contains 2d vertices:

d = dim(G) ≤ log2 n.

As stated previously, in general graphs, all gated subgraphs are convex. In median graphs,
these two characterizations are equivalent.

Lemma 3 ([4, 14]). A subgraph of a median graph is gated if and only if it is convex.

In fact, fibers are also gated.

Lemma 4 ([19, 23]). For any gated set H of a median graph G and any vertex x ∈ H, the
set FH [x] is gated.

We recall the notion of Θ-class [25] and its implications on median graphs. We say that
the edges uv and xy are in relation Θ0 if there is a square uvyx, where uv and xy are opposite.
Notation Θ refers to the reflexive and transitive closure of relation Θ0. The classes of the
equivalence relation Θ are denoted by E1, . . . , Eq and the set of Θ-classes is E(G).

Definition 6 (Θ-classes). Two edges uv and u′v′ belong to the same Θ-class if there is a
sequence uv, u1v1, . . . , urvr, u

′v′ such that uivi and ui+1vi+1 are opposite edges of a square.

The size q of E(G) can fluctuate: hypercube Qk admits q = k Θ-classes but 2k vertices,
while a tree has q = n − 1 Θ-classes (as many as edges). In any case, the Θ-classes can be
assigned to edges of a median graph in linear time.

Lemma 5 (Θ-classes in linear time [14]). There exists an algorithm which computes the
Θ-classes E1, . . . , Eq of a median graph in linear time O(m) = O(n log n).

In median graphs, each class Ei, 1 ≤ i ≤ q, is a perfect matching cutset and its two sides
H ′

i and H ′′
i admit convex characterizations.

Lemma 6 (Halfspaces of Ei [14, 28, 35]). Let G be any median graph and Ei ∈ E(G). For
any 1 ≤ i ≤ q, the graph G deprived of edges of Ei, i.e. G\Ei = (V,E\Ei), has two connected
components with respective vertex sets H ′

i and H ′′
i , called halfspaces. Edges of Ei form a

matching. Halfspaces satisfy the following properties:

7



• Both H ′
i and H ′′

i are convex/gated.

• If uv is an edge of Ei with u ∈ H ′
i and v ∈ H ′′

i , then:
H ′

i = {x ∈ V : d(x, u) < d(x, v)}
H ′′

i = {x ∈ V : d(x, v) < d(x, u)}.

We say a minority halfspace is a halfspace, say H ′
i w.l.o.g, such that |H ′

i| < |H
′′
i |. The

opposite halfspace H ′′
i is thus naturally called a majority halfspace. Moreover, we say that H ′

i

and H ′′
i are egalitarian halfspaces if |H ′

i| = |H
′′
i |. In summary, a pair (H ′

i,H
′′
i ) is made up of

either a minority-majority configuration or two egalitarian halfspaces.
A very nice and powerful characterization of median graphs is the construction by convex

expansions proposed by Mulder [34, 35]. Indeed, given a graph G with two convex subgraphs
G1 and G2 covering G, the convex expansion G′ of G is the graph obtained by adding both
an isomorphic copy of G1∩G2 and a matching connecting the corresponding vertices between
G1 ∩ G2 and its copy. While G1 ∩ G2 stays attached to G1, its copy replaces it in G2, and
the matching connects both versions of G1 ∩G2. The apparition of this matching in the new
graph G′ consists in the creation of a new Θ-class. In summary, any median graph can be
obtained by successive convex expansions starting from the single-vertex graph [34].

We denote by ∂H ′
i the subset of H

′
i containing the vertices which are adjacent to a vertex

in H ′′
i : ∂H ′

i = N(H ′′
i ). Put differently, the set ∂H ′

i is made up of vertices of H ′
i which are

endpoints of edges in Ei. Symmetrically, set ∂H ′′
i contains the vertices of H ′′

i which are
adjacent to H ′

i. We say these sets are the boundaries of halfspaces H ′
i and H ′′

i respectively.
A halfspace satisfying H ′

i = ∂H ′
i is called a peripheral halfspace and its associated Θ-class is

also called a peripheral Θ-class. As observed in [14] any median graph necessarily admits at
least one peripheral Θ-class.

Lemma 7 (Boundaries [14, 28, 35]). Let G be a median graph and Ei ∈ E(G). Both ∂H ′
i and

∂H ′′
i are convex/gated. Also, the edges of Ei define an isomorphism between ∂H ′

i and ∂H ′′
i .

As a consequence, suppose uv and u′v′ belong to Ei: if uu′ is an edge and belongs to
class Ej , then vv′ is an edge too and it belongs to Ej . We pursue with another property
related to the fact that median graphs G are bipartite. The v0-orientation of the edges of
G according to some vertex v0 ∈ V (G) is such that, for any edge uv, the orientation is # »uv if
d(v0, u) < d(v0, v). Indeed, we cannot have d(v0, u) = d(v0, v) as G is bipartite.

Lemma 8 (Orientation [14]). All edges of a median graph G can be oriented according to any
vertex v0 ∈ V (G).

Considering such orientation fixed, we might refer to the vertex v0 as the canonical base-
point. Given two vertices u, v ∈ V , the set which contains the Θ-classes separating u from v
is called the signature σu,v. For example, if u ∈ H ′

i and v ∈ H ′′
i , then Ei ∈ σu,v.

Definition 7 (Signature σu,v [15]). We say that the signature of the pair of vertices u, v,
denoted by σu,v, is the set of classes Ei such that u and v are separated in G\Ei. In other
words, u and v are in different halfspaces of Ei.

As stated in [16], the signature of two vertices provides us with the composition, in terms
of Θ-classes, of any shortest (u, v)-path.

8



Lemma 9 ([16]). For any shortest (u, v)-path P , the edges in P belong to classes in σu,v and,
for any Ei ∈ σu,v, there is exactly one edge of Ei in path P . Conversely, a path containing at
most one edge of each Θ-class is a shortest path between its departure and its arrival.

This lemma is a consequence of the convexity of halfspaces. Indeed, a shortest path that
would pass through two edges of some Θ-class Ei would escape temporarily from an halfspace.
This is not possible since any halfspace is convex (Lemma 6).

2.3 Orthogonal Θ-classes, POFs and ladder sets

We now present other notions on median graphs related to the orthogonality of Θ-classes [30].

Definition 8 (Orthogonal Θ-classes [30]). We say that classes Ei and Ej are orthogonal
(denoted by Ei ⊥ Ej) if there is a square uvyx in G, where uv, xy ∈ Ei and ux, vy ∈ Ej.

We focus on the set of Θ-classes which are pairwise orthogonal.

Definition 9 (Pairwise Orthogonal Family (POF) [15]). We say that a set of classes X ⊆
E(G) is a POF if for any pair Ej , Eh ∈ X, we have Ej ⊥ Eh.

The empty set is considered as a POF, such as the singletons of elements of E(G). The
notion of POF has natural connections with induced hypercubes in median graphs. As an
extreme case, the whole set E(G) is a POF if and only if graph G is a hypercube of dimension
log2 n [30, 32]. Conversely, if G does not admit any POF of size at least 2, then it is a tree, as
it means that there is no square in G. The following lemma states an important observation
linking POFs and hypercubes.

Lemma 10 (POFs and hypercubes [16]). Let X be a POF, v ∈ V (G), and assume that for
each Ei ∈ X, there is an edge of Ei adjacent to v. There exists a hypercube Q containing
vertex v and all edges of X adjacent to v. The Θ-classes of the edges of Q are the Θ-classes
of X.

Furthermore, a natural bijection between the vertices of a median graph and its POFs
was highlighted in the literature [5, 11]. As a consequence, the number of POFs is equal to
n = |V (G)|.

Lemma 11 (POF/vertex bijection [5, 11]). Let G be a median graph and v0 ∈ V (G) an
arbitrary basepoint. We consider the v0-orientation of G. Given a vertex v ∈ V (G), let
N−(v) be the set of edges going into v and E−(v) ⊆ E(G) the Θ-classes of the edges in N−(v).

• For any vertex v ∈ V (G), E−(v) is a POF. Moreover, both v and the edges of N−(v)
belong to an induced hypercube whose edges are in the Θ-classes of E−(v).

• For any POF X, there is an unique vertex vX such that E−(vX) = X. Vertex vX is the
closest-to-v0 vertex v such that X ⊆ E−(v). As vX and N−(vX) belong to a common
induced hypercube, any POF X verifies |X| ≤ d.

9



E4 E1

E2

E3

v0

v

u

Figure 2: The v0-orientation of some median graph G and some of its Θ-classes. For example,
E−(u) = {E1, E2, E3}.

An example is given in Figure 2 with the same median graph than in Figure 1. The
v0-orientation of this graph is represented, with a sample of four Θ-classes. With the notation
used in the previous lemma, we have: E−(v0) = ∅, E

−(v) = {E4}, and E
−(u) = {E1, E2, E3}.

One can check that each vertex admits its own incoming set of Θ-classes. Due to this
POF/vertex bijection, POFs of a median graph can be enumerated in linear time [11, 30].
Furthermore, as with the v0-orientation, at most d arcs enter in each vertex (E−(u) is a POF),
median graphs are relatively sparse: m ≤ dn ≤ n log2 n.

We focus on another notion strongly related to POFs, defined in [16], called ladder set.

Definition 10 (Ladder set [16]). Given two vertices u 6= v of a median graph G, the ladder
set Lu,v is the set of Θ-classes which are both adjacent to u and belong to σu,v:

Lu,v =
{

Ei ∈ σu,v : u ∈ ∂H ′
i ∪ ∂H ′′

i

}

.

For example, in Figure 2, we have Lv,u = Lv,v0 = {E4} and Lu,v = Lv0,u = {E1, E2, E3}.
In fact, the Θ-classes of a given ladder set are pairwise orthogonal.

Lemma 12 ([16]). Any ladder set Lu,v is a POF.

Less formally, the ladder set Lu,v provides us with the Θ-classes of the induced hypercube
containing u covered by the set of all shortest (u, v)-paths.

Given a basepoint v0, all ladder sets Lv0,v, with v ∈ V (G) \ {v0} can be enumerated in
quasilinear time thanks to a BFS starting at v0. Such an algorithm is evoked in [15] but is
not clearly stated, hence we do so.

Lemma 13 ([15]). Given a basepoint v0 of some median graph G, the list of all ladder sets
Lv0,v with v 6= v0 can be enumerated in quasilinear time O(n log2 n).

Proof. Initialize the queue with the starting vertex v0. Label all vertices with a set lad(x) = ∅.
Once a vertex v is at the head of the queue, all its not yet discovered neighbors w of v are
inserted into the queue, and we fix lad(w) = lad(v) ∪ Ei if vw ∈ Ei and v0 is adjacent to
Ei, otherwise lad(w) = lad(v). Labels lad exactly compute ladder sets from Definition 10:
lad(v) contains the Θ-classes adjacent to v0 which separates v from v0. As ladder sets are
POFs which contain the identity of at most log2 n Θ-classes, the size needed to store each
label is at most (log2 n)

2. BFS execution together with the writing of labels gives a total
running time O(n log2 n) since m = O(n log n).

10



2.4 Median set and majority rule

It was recently proposed in [14] a linear-time algorithm which computes the median set of
median graphs. We recall here some key observations of this article but also previous works
that will be useful for us. We begin with the definition of a median set.

Definition 11 (Median vertex and set). Given a graph G, a median vertex of G is a vertex
u which minimizes Γ(u) =

∑

v∈V (G) d(u, v). The median set Med(G) is the set containing all
median vertices.

In median graphs, the median set admits an interesting characterization related to the
Θ-classes. Indeed, any vertex which belongs to at least one minority halfspace is not median.

Lemma 14 (Majority rule [3]). Med(G) is the intersection of all majority halfspaces. It
coincides with the interval of a diametral pair of its vertices.

The majority rule is a key tool for the algorithm presented in [14]. The first part consists
in computing the cardinality of each halfspace of the input median graph G. This is based on
a peripheral peeling that we describe briefly. Consider G where all vertex weights are fixed to
1. Pick up some peripheral Θ-class Ei : first retrieve the cardinality of its peripheral halfspace
(say H ′

i = ∂H ′
i) by summing up all weights of H ′

i, second transfer the weights of vertices in H ′
i

to their Ei-neighbors. Remove H ′
i from the current graph and recurse the process on another

peripheral Θ-class.

Lemma 15 (Halfspaces sizes [14]). Given a median graph G, there is a combinatorial al-
gorithm computing in linear time O(m) = O(n log n) all triplets (Ei, |H

′
i|, |H

′′
i |) where Ei ∈

E(G).

Once the cardinality of each halfspace is known, the majority rule allows them to retrieve
the median set Med(G). The second part consists simply in orienting edges uv (say uv ∈ Ej

and u ∈ H ′
j w.l.o.g) such that v is the head of the arc iff |H ′′

j | > |H
′
j|. From Lemma 14, the

median set coincides with the sinks of this partially directed graph.

Corollary 1 ([14]). Med(G) can be computed in linear time O(m) = O(n log n).

3 Exploiting halfspaces for the computation of eccentricities

Our objective is to determine the weighted eccentricities of a weighted median graph (G,ω).
Please note that notation G naturally refers to the same graph without any weight considera-
tion. To achieve our goal, we introduce the notion of balanced Θ-classes. Our algorithm will
distinguish two cases: either G contains a balanced Θ-class or not. If it is the case, then we
will pick up such a Θ-class and retrieve the eccentricities of (G,ω) by computing recursively
the eccentricities of the two halfspaces (G[H ′

i ], ω) and (G[H ′′
i ], ω).

3.1 Balanced Θ-classes

As stated in Section 2, the Θ-classes are natural separators for a median graph. Consequently,
the ratio between the size of the two halfspaces is a potential tool to design divide-and-conquer
procedures on this family of graphs. We begin with the definition of f -balanced Θ-classes.

11



Definition 12 (Balanced and unbalanced Θ-classes). Let N∗ = N \ {0} be the set of positive
integers. Given some median graph G and a function f : N∗ → N∗, a Θ-class Ei of G is
f -balanced if:

min{|H ′
i|, |H

′′
i |} ≥

|V (G)|

f(|V (G)|)
. (1)

Conversely, a Θ-class is f -unbalanced if it is not f -balanced, so formally either |H ′
i| <

|V (G)|
f(|V (G)|)

or |H ′′
i | <

|V (G)|
f(|V (G)|) .

The halfspaces of a Θ-class Ei form a bipartition of V (G). Hence, being f -unbalanced
means that one halfspace has size less than n

f(n) , with n = |V (G)|, while the other halfspace

is large with cardinality at least n(1 − 1
f(n)). Star graphs are the most natural examples of

median graphs without balanced Θ-classes: for each Θ-class, its minority halfspace has size 1.
Observe that the case f being a constant function (for example, f(n) = 3 for all integers n)
is the classical sense given to a balanced separator in graphs, as defined originally by [31]. In
the remainder of this article, we will focus more particularly on f -balanceness, with f being
a logarithmic function.

It should be noticed that certain median graphs do not admit any f -balanced Θ-classes,
for some given function f .

Definition 13 (Unbalanced median graphs). Let Uf be the family of all median graphs G
satisfying the following property: all Θ-classes of G are f -unbalanced.

For Sections 3 and 4, we fix a specific function f and the notion of balanced/unbalanced
Θ-class will be naturally associated with this function : let f = 2 log, i.e. the function
f : n → 2 log(n). We denote by U2 log the family of median graphs which do not admit any
(2 log)-balanced Θ-classes. Fixing f = 2 log, which is less restrictive than a constant function,
is crucial to make our algorithm work: this choice will be justified in the proof of Theorem 1
(as presented in section 1).

Checking whether a median graph admits (or not) a balanced Θ-class can be achieved in
linear time O(n log n), according to Lemma 15. As a consequence, we are able in linear time
either to pick up a balanced Θ-class (for any balance criterion f) or answer that the input
median graph contains only unbalanced ones. It consists simply in applying the algorithm of
Lemma 15 and returning a balanced Θ-class when Equation (1) is satisfied.

The idea of our future recursive scheme is to identify whether a balanced Θ-class of
the input median graph G exists. If it is the case, we compute recursively the weighted
eccentricities of its halfspaces in order to retrieve the weighted eccentricities of the whole
graph. Otherwise, we fall into the case G ∈ U2 log which will be treated in Section 4.

We state an analytical result on some integer sequences which will be a key win-win
argument for this global recursive process. The consequence of the following lemma is that
the depth of the recursive tree, built upon balanced Θ-classes separation, is at most poly-
logarithmic.

Lemma 16. Let (sn) be a sequence of integers such that s0 is a positive integer, and let λ ≥ 2
be a positive real number such that:

sn+1 =

{

⌊sn
(

1− 1
λ log(sn)

)

⌋ if sn > 2

sn if sn ≤ 2

12



The total stopping time τ of sequence sn, i.e. the minimum positive integer τ such that
sτ = sτ+1, verifies τ ≤ λ(log(s0))

2. Moreover, sτ ∈ {1, 2}.

Proof. Consider a finite subsequence s0, s1, . . . , sn and assume that sn > 2. By definition, it
is monotonically decreasing since λ log(si) > 1 for any 0 ≤ i ≤ n.

Then, sn ≤ s0
∏n−1

i=0

(

1− 1
λ log(si)

)

≤ s0

(

1− 1
λ log(sn)

)n

. Assume by contradiction that

n ≥ λ(log(s0))
2, then by exploiting the fact that (1− 1

x
)x ≤ 1

e
for x ≥ 2,

sn ≤ s0

(

1−
1

λ log(sn)

)λ(log(s0))2

≤ s0

(

1−
1

λ log(sn)

)λ log(sn) log(s0)

≤ s0e
− log(s0) = 1.

This yields a contradiction since we assumed sn > 2. Hence, for n ≥ λ(log(s0))
2, sn ≤ 2, so

the total stopping time verifies τ ≤ λ(log(s0))
2. Now, we verify that sτ > 0. As sτ−1 ≥ 3, we

have sτ = ⌊sτ−1

(

1− 1
λ log(sτ−1)

)

⌋ ≥ ⌊3(1 − 1
2 log(3))⌋ ≥ 1. Therefore, sτ ∈ {1, 2}.

3.2 Retrieving all eccentricities thanks to Θ-classes

The following theorem is crucial for our algorithm: it states that, given a Θ-class and the
weighted eccentricity of each vertex inside its induced halfspace, we can re-assemble all
weighted eccentricities of (G,ω) in linear time.

Theorem 3. Let (G,ω) be a weighted median graph and Ei one of its Θ-classes. Assume
that:

• all weighted eccentricities of (G[H ′
i], ω) are known,

• all weighted eccentricities of (G[H ′′
i ], ω) are known.

Then, one can compute all weighted eccentricities of (G,ω) in linear time O(|E(G)|) =
O(n log n).

Proof. At the beginning of our computation, every vertex of V (G) is labeled with a weighted
distance: the vertices u′ ∈ H ′

i are labeled with their weighted eccentricity in G[H ′
i], formally

ecc (u′ | (H ′
i, ω)). Similarly, each vertex u′′ ∈ H ′′

i is labeled with ecc (u′′ | (H ′′
i , ω)).

For any vertex u′ ∈ H ′
i, we determine its H ′′

i -gate g(u′) ∈ H ′′
i and, conversely, for any

vertex u′′ ∈ H ′′
i , we determine its H ′

i-gate g(u′′). This operation can be achieved in total
O(n log n) time, as recalled in Lemma 2, by launching two BFSs: one with a starting queue
made up of H ′

i, and one with a starting queue H ′′
i . We compute, for any v′ ∈ ∂H ′

i (resp.
v′′ ∈ ∂H ′′

i ) its open fiber FH′
i
(v′) in H ′′

i (resp. FH′′
i
(v′′) in H ′

i). Through this BFS, we store
the unweighted distance from any vertex to its gate: we obtain all values d(u′, g(u′)) (resp.
d(u′′, g(u′′)) also in linear time.

One can retrieve at this moment the weighted eccentricity of u′ ∈ H ′
i (resp. u

′′ ∈ H ′′
i with

the same arguments). Indeed, the farthest vertex from u′ (in the weighted sense) is either in
H ′

i or in H ′′
i . If it belongs to H ′

i, as this halfspace is convex, the weighted eccentricity of u′

is its label ecc (u′ | (H ′
i, ω)). Else, as H

′′
i is gated, for any vertex v′′ ∈ H ′′

i , there is a shortest
path from u′ to v′′ passing through the H ′′

i -gate g(u′). Conversely, any shortest path induced
in H ′′

i from g(u′) to some v′′, concatenated with a shortest (u′, g(u′))-path, produces a shortest
(u′, v′′)-path, since d(u′, g(u′)) + d(g(u′), v′′) = d(u′, v′′) . Hence, the weighted eccentricity of
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H ′
i

H ′′
i

x

v

FH′
i
(v)

u′′

Ei

Figure 3: The largest weighted distance from u′′ ∈ H ′′
i to some vertex x ∈ H ′

i is given by
the (unweighted) distance from u′′ to its gate v = gH′

i
(u′′) in addition with the weighted

eccentricity of v: ecc (v | (H ′
i, ω)) = d(v, x).

u′ can be decomposed as the sum of d(u′, g(u′)) (distance to the gate) with the weighted
eccentricity of g(u′) in H ′′

i . Formally,

ecc
(

u′ | (G,ω)
)

= max
{

ecc
(

u′ | (H ′
i, ω)

)

, d(u′, g(u′)) + ecc
(

g(u′) | (H ′′
i , ω)

)}

.

Figure 3 illustrates this formula with a vertex u′′ ∈ H ′′
i instead of u′ ∈ H ′

i.
The whole procedure, consisting first in computing the gates g(u) and second in applying

the latter formula, takes time O(n log n).

Theorem 3 immediately yields a recursive algorithm scheme based on Θ-classes. But its
complexity is not necessarily subquadratic.

When our input graph G has a balanced Θ-class Ei, one can recursively compute the
weighted eccentricities of the two induced halfspaces G[H ′

i] and G[H ′′
i ] and then retrieve the

weighted eccentricities of G with an extra linear time. With some “ideal” instance, we could
always find such a balanced Θ-class and use this recursive scheme until falling into the trivial
case of a single weighted vertex. Observe that, with such a utopian situation, the total
running time would be quasilinear: the depth of the recursive tree is poly-logarithmic thanks
to Lemma 16. Indeed, fixing s0 = n = |V (G)| and λ = 2, value sn gives an upper bound of
the number of vertices remaining in each branch of the recursive tree after n calls.

Nevertheless, we might find at some moment an induced subgraph of G which has no
balanced Θ-class, in other words which belongs to U2 log. Obviously, even the input G could
belong to this family. Then the time complexity of the recursive scheme could be quadratic.

As a conclusion of this section, we observe that, to pursue the description of our recur-
sive algorithm, we need to focus on the case of weighted median graphs which admit only
unbalanced Θ-classes.

4 Computation of eccentricities on median graphs without

balanced Θ-classes

The study of median graphs with only unbalanced Θ-classes is of interest since, as we prove
it now, the existence of a quasilinear-time algorithm finding all weighted eccentricities for the
subfamily U2 log of median graphs will imply the same result for the whole family of median
graphs. In Sections 4.1 and 4.2, we fix (G,ω) ∈ U2 log.
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4.1 Slice decomposition

We now pursue with new concepts about Θ-classes. As all Θ-classes Ei of G ∈ U2 log are
unbalanced, all of them admit both a minority halfspace denoted from now on by H ′

i (the
halfspace with the smaller size), and a majority halfspace denoted by H ′′

i . From Definition 12,
we have |H ′

i| ≤
n

2 log(n) with n = |V (G)|. Also, we assume that graph G ∈ U2 log has at least

three vertices: n ≥ 3 and log n ≥ 1 (case n ≤ 2 will be treated trivially).
No graph of U2 log contains an egalitarian halfspace since all its Θ-classes are unbalanced.

Consequently, these graphs admit a unique median vertex.

Lemma 17 (Unique median vertex in G ∈ Uf ). For any n-vertex median graph G ∈ Uf where
f(n) ≥ 2, there exists a unique vertex v0 such that, for any Θ-class Ei, this vertex v0 belongs
to the majority halfspace of Ei.

Proof. From Lemma 14, the median set of a graph G ∈ Uf is the intersection of all majority
halfspaces and there exists u, v ∈ V (G) such that Med(G) = I(u, v). Assume that u 6= v.
As Med(G) is connected, consider two adjacent vertices x, y ∈ Med(G) and let xy ∈ Ei.
The Θ-class Ei admits two egalitarian halfspaces since, otherwise, either x or y would not
be a median vertex. We have a contradiction: Ei is clearly balanced, but it should admit a
halfspace of size strictly smaller than n

f(n) ≤
n
2 .

From now on, this unique median vertex v0 will be taken as the basis of the orientation
of G. We consider a second vertex umax (potentially equal to v0) which is a farthest vertex
from v0.

Definition 14. Let umax be a vertex such that dω(v0, umax) = ecc (v0 | (G,ω)). If several
candidates for umax exist, then select one arbitrarily, except in one case: when v0 itself is a
candidate for umax, then fix umax = v0.

We begin with a straightforward observation: if umax = v0, then v0 is the farthest vertex
from any u 6= v0.

Lemma 18. If v0 = umax, then for any vertex u ∈ V (G) \ {v0}, ecc (u | (G,ω)) = dω(u, v0).

Proof. By definition of umax, we have ω(v0) ≥ dω(v0, u). Consider any vertex v 6= v0. By
triangular inequality, d(u, v) ≤ d(u, v0) + d(v0, v), so dω(u, v) ≤ d(u, v0) + d(v0, v) + ω(v) =
d(u, v0) + dω(v0, v). But dω(v0, v) ≤ ω(v0) which implies that dω(u, v) ≤ dω(u, v0). As a
consequence, v0 is the farthest vertex from any u 6= v0.

A natural consequence of the previous lemma is that, if umax = v0, then the eccentricities
of (G,ω) ∈ U2 log can be computed in linear time in a very simple way.

Corollary 2. Let (G,ω) ∈ U2 log with umax = v0. All eccentricities of (G,ω) can be computed
in linear time O(m) = O(n log n) thanks to a BFS starting at v0.

Proof. Executing a BFS with departure vertex v0 allows us to obtain all unweighted distances
between v0 and all other vertices. We know from Lemma 18 that, in our case, for any u 6= v0,
ecc (u | (G,ω)) = dω(u, v0) = d(u, v0) + ω(v0). Moreover, ecc (v0 | (G,ω)) = ω(v0) since
umax = v0. In summary, after computing all unweighted distances from v0 in linear time, one
can retrieve all eccentricities of (G,ω) also in linear time as a second step.
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From now on, we can assume that umax 6= v0 as otherwise the weighted eccentricities can be
computed trivially. We define L(G) as a ladder set Lv0,umax between v0 and one farthest-to-v0
vertex umax.

Definition 15 (Wide ladder). We denote by L(G) the wide ladder of G, which is the POF
containing the Θ-classes Ei adjacent to v0 such that umax belongs to their minority halfspace,
i.e. umax ∈ H ′

i. Formally, L(G) = Lv0,umax and ℓ = |L(G)| is its size.

For sake of simplicity, we modify the indices of the Θ-classes such that:

L(G) = {E1, E2, . . . , Eℓ}.

Observe that this change has no impact on the previous results since the indices of Θ-classes
played no role yet.

Our technique to handle median graphs without balanced Θ-classes relies on the following
crucial observation. All vertices v of G such that Lv0,v ∩ L(G) = ∅ form, due to the unbal-
ancedness of the Θ-classes, a large set of vertices. Moreover, we can directly deduce their
weighted eccentricity which is dω(v, umax). As a consequence, the eccentricity of at least half
of the vertices of the graph are already known. We will explain how to handle the remaining
vertices afterwards, in Section 4.2.

Lemma 19. Let G ∈ U2 log and v0 its median vertex. Any vertex v such that Lv0,v∩L(G) = ∅
has a weighted eccentricity ecc (v | (G,ω)) = d(v, v0) + dω(v0, umax) = dω(v, umax).

Proof. It suffices to show that v0 ∈ I(v, umax). Let P be a (v, umax)-path consisting in
the concatenation of a shortest (v, v0)-path (denoted by Q) with a shortest (v0, umax)-path
(denoted by R). It suffices to show that P is made up of edges belonging to pairwise different
Θ-classes (Lemma 9). Assume by contradiction that there exists a Θ-class Ej ∈ σv0,v∩σv0,umax

and that there is no other Θ-class Ek ∈ σv0,v ∩ σv0,umax such that:

• the edge of Ek on path Q is closer to v0 than the edge of Ej on Q,

• the edge of Ek on path R is closer to v0 than the edge of Ej on R.

In brief, if we assume σv0,v ∩ σv0,umax nonempty, we fix Ej as a Θ-class of this set which is
minimal by distance towards the median vertex v0. Such a minimal class necessarily exists.

By definition of Ej, there is no Θ-class that appears twice in the path Pj , defined as
the connected sub-path containing v0 obtained after removing edges of Ej in the path G[P ].
Hence, Pj is a shortest path. Moreover, its endpoints both belong to the same boundary ∂H ′′

j

of Ej . As ∂H
′′
j is convex (Lemma 7) and v0 ∈ Pj , then v0 ∈ ∂H ′′

j . This yields a contradiction
since Ej is adjacent to v0 and should be part of Lv0,v ∩ L(G).

Definition 16 (Large sets). We define recursively a finite sequence (Gi)0≤i≤ℓ of induced
subgraphs of G called large sets. Let G0 = G and, for any integer 0 ≤ i ≤ ℓ− 1,

Gi+1 = Gi \H
′
i+1.

In other words, Gi+1 is incrementally obtained from Gi by removing all vertices in the minority
halfspace of Ei+1 ∈ L(G).
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A first trivial remark is that the number of vertices of the graphs of the sequence is
decreasing: |V (Gi+1)| ≤ |V (Gi)|. A second fact is that each Gi is a gated subgraph of G.

Lemma 20. For each 0 ≤ i ≤ ℓ, Gi is a gated subgraph of G.

Proof. We proceed by induction. Obviously, as the base case, G0 = G is trivially gated.
We assume that Gi is a gated subgraph of G: V (Gi) is gated in G. Moreover, the halfspace

H ′′
i+1 is also gated in G (Lemma 6). As we know from Definition 16, V (Gi+1) = V (Gi)\H

′
i+1 =

V (Gi) ∩ H ′′
i+1. The intersection of two gated sets is gated (Lemma 1). Hence, V (Gi+1) is

gated and our induction step holds.

In fact, we can rewrite, for any 1 ≤ i ≤ ℓ, the definition of Gi as the following one:

Gi = G[H ′′
1 ∩H ′′

2 ∩ . . . ∩H ′′
i ]. (2)

As all large sets Gi are convex/gated subgraphs of G, they are median graphs. So, they
admit Θ-classes which can in fact be retrieved from the Θ-classes of the original graph G.

Lemma 21 (Θ-classes of isometric subgraphs [15]). Let G be a median graph. If H is an
isometric1 subgraph of G, then the Θ-classes of H are exactly the nonempty subsets among
Ei ∩ E(H), for Ei ∈ E(G).

Since gated subgraphs are also isometric (the converse is false), then the Θ-classes of Gi

are inherited from the Θ-classes of G.
We define slices as the subgraphs withdrawn from each transition between Gi and Gi+1.

Definition 17 (Slices). We define a finite sequence (Si)0≤i≤ℓ−1 of graphs called slices:

Si = Gi \ V (Gi+1).

The vertex set of each Gi can be thus partitioned in 2 parts V (Si) and V (Gi+1).

S0

S1V (G2)

...

...

. . .

...
...

umax

v0

E1

E2

Figure 4: Illustration of the slice decomposition of some median graph G with L(G) =
{E1, E2}. For example, V (G1) = V (S1) ∪ V (G2).

We refer to the expression slice decomposition in order to refer to the whole collection
of slices. Slices Si can be rewritten as the intersection of the minority halfspace H ′

i+1 with

1a subgraph which preserves the distances of the original graph
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the current vertex set V (Gi): Si = Gi[H
′
i+1]. Hence, by definition, slices are pairwise vertex-

disjoint. In fact,
Si = G

[

H ′
i+1 \

(

H ′
1 ∪H ′

2 ∪ . . . H ′
i

)]

. (3)

Figure 4 gives an illustration of the slice decomposition on some example. It represents a
part of the graph: only umax together with the vertices belonging to hypercubes which contain
the median vertex v0 are drawn. The wide ladder (ladder set Lv0,umax) contains two Θ-classes
E1 and E2: ℓ = 2. In such case, there are two slices: S0 is exactly the minority halfspace H ′

1

and S1 is H ′
2 deprived of the vertices of H ′

1: S1 = G[H ′
2 \H

′
1]. Sets S0, S1, and V (G2) are

disjoint and cover the graph.

Lemma 22. For each 0 ≤ i ≤ ℓ− 1, Si is a gated subgraph of G

Proof. Graph Gi is gated subgraph of G (Lemma 20). Consequently, Si is gated since it is
the intersection between H ′

i+1 and V (Gi) (Lemma 1).

In terms of cardinality, slices are thus small, |V (Si)| ≤ |H
′
i+1| ≤

n
2 log(n) , while even the

last large set Gℓ contains at least half of the vertices.

Lemma 23 (Cardinality of large sets). For any 0 ≤ i ≤ ℓ, |V (Gi)| ≥ n(1− i
2 log(n)).

Proof. By induction: i = 0 trivially holds. The large set Gi+1 corresponds to Gi after
withdrawing the slice Si, which contains at most n

2 logn vertices. Therefore by induction,

|V (Gi+1)| ≥ |V (Gi)| −
n

2 log n
= n

(

1−
i

2 log(n)

)

−
n

2 log n
= n

(

1−
i+ 1

2 log(n)

)

.

Which yields the announced inequality for all integers 0 ≤ i ≤ ℓ− 1.

Indeed, as ℓ ≤ d ≤ log n, we have |V (Gℓ)| ≥ n(1 − ℓ
2 log(n)) ≥

n
2 . From Equation (2),

set V (Gℓ) contains exactly the vertices which does not belong to any H ′
1, . . . H

′
ℓ, in other

words whose ladder set has no intersection with L(G). As stated in Lemma 19, the weighted
eccentricities of all vertices v of V (Gℓ) can be directly deduced. On the other hand, any
vertex v with a ladder set Lv0,v intersecting L(G) belongs to one of the slices S0, . . . , Sℓ−1

(Equation (3)). The input graph, by definition of slices and large sets, satisfies V (G) =
V (Gℓ)∪ V (S0) ∪ V (S1) ∪ . . . ∪ V (Sℓ−1). Furthermore, the large sets generally satisfy, for any
0 ≤ i ≤ ℓ− 1:

V (Gi) = V (Gℓ) ∪ V (Si) ∪ V (Si+1) ∪ . . . ∪ V (Sℓ−1).

4.2 Peeling the slices

We show that, assuming we know all the weighted eccentricities on slices, which are small-sized
induced subgraphs of the input graph (G,ω) ∈ U2 log, we can deduce all weighted eccentricities
of G. We begin with a description of how to modify weights on slices so that our recursive
calls will enable us to retrieve all eccentricities of (G,ω).

Definition 18. Let (G,ω) ∈ U2 log with umax 6= v0 and an integer 0 ≤ i ≤ ℓ− 1. The weight
function ω∗

i on slice Si is defined as:
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• for any x ∈ ∂H ′
i+1 ∩ V (Si), ω

∗
i (x) is equal to the maximum distance dω(x, z) where z

belongs to the fiber FH′
i+1

(x) of Gi.
2

• for any y ∈ V (Si) \ ∂H
′
i+1, ω

∗
i (y) = ω(y).

We state now a theorem which introduces our recursive process to compute the weighted
eccentricities of (G,ω) ∈ U2 log. As we already observed it, all weighted eccentricities of the
large set Gℓ are already known. Therefore, we focus on computing the eccentricities of the
vertices which belong to at least one slice.

Let us now define a labeling function Bi, for any 0 ≤ i ≤ ℓ − 1 on the vertices of slices
Si ∪ Si+1 ∪ . . . ∪ Sℓ−1. The label of Bi for some vertex u is denoted by Bi(u).

Definition 19 (Labeling Bi). For any 0 ≤ i ≤ ℓ− 1 and any vertex u ∈ V (Si) ∪ V (Si+1) ∪
. . . ∪ V (Sℓ−1), label Bi(u) is equal to the weighted eccentricity of u on graph (Gi, ω):

Bi(u) = ecc (x | (Gi, ω)) .

Observe that labeling B0 would allow us to determine all eccentricities of (G,ω): for
vertices in the slices, the labels give their eccentricity while for vertices in Gℓ, we can use
Lemma 19.

Our proposition is the following. Assume that we already computed some labeling Bi+1

and our intention is to obtain Bi. Our idea to achieve this recursive step consists in launching
two recursive calls, in order to compute the weighted eccentricities on graph Si but with two
different weight functions ω and ω∗

i . We prove that given labeling Bi+1 and the results of
these calls, we can retrieve labeling Bi.

Theorem 4. Let 0 ≤ i ≤ ℓ− 1. Assume that the following values are known:

• all weighted eccentricities of (Si, ω),

• all weighted eccentricities of (Si, ω
∗
i ),

• all labels of Bi+1.

One can compute in linear time O(|E(Gi)|) all labels of Bi.

Proof. We apply the BFS traversal evoked in Lemma 2 for graph Gi with the gated set Si. We
recall that the vertex set of Gi can be partitioned into V (Gi+1) and V (Si). We thus obtain
in time O(|E(Gi)|) all the unweighted distances d(gSi

(v), v), for each v ∈ V (Gi+1), and as a
consequence, also all weighted distances dω(gSi

(v), v) = d(gSi
(v), v) + ω(v). Our objective is

to compute the labels Bi(x). We distinguish two cases: either x belongs to the current slice
Si, or in a former slice Si+1 ∪ . . . ∪ Sℓ−1.

Case 1: x ∈ V (Si). We determine the labels Bi(x) for vertices x ∈ Si which are from
Definition 19 their eccentricity in (Gi, ω). The weighted distance between some x ∈ Si and
v ∈ V (Gi+1) is:

dω(x, v) = d(x, gSi
(v)) + dω(gSi

(v), v) = d(x, gSi
(v)) + d(gSi

(v), v) + ω(v). (4)

2Here, we abuse notation: H
′
i+1 refers to the intersection of V (Gi) with H

′
i+1, which is a halfspace of the

Θ-class Ei+1 ∩E(Gi) (Lemma 21).
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Let us recall that, from Definition 18, when x belongs to the boundary of Si, ω
∗
i (x) is equal

to the maximum dω(x, v) such that v ∈ FSi
(x) - or, said differently, x = gSi

(v). Otherwise,
ω∗
i (x) = ω(x).
We consider two cases for vertex x ∈ V (Si). If x ∈ ∂H ′

i+1, its weighted eccentricity is
achieved:

• either with a vertex z of Si: dω(x, z) = ecc (x | (Si, ω)), known by the assumption on
(Si, ω),

• or with a vertex z of FSi
(x): dω(x, z) = ω∗

i (x), computed with the BFS traversal,

• or with a vertex z of V (Gi+1) not in the fiber FSi
(x): in this case, it will be given by

dω(x, z) = d(x, gSi
(z)) + ω∗

i (gSi
(z)).

If the weighted eccentricity of x is attained for some vertex z ∈ V (Gi+1) (which corresponds
to the two latter bullets), its value is equal to ecc (x | (Si, ω

∗
i )). Written briefly,

ecc (x | (Gi, ω)) = max {ecc (x | (Si, ω)) , ecc (x | (Si, ω
∗
i ))} . (5)

From the statement assumptions, all the values needed to compute ecc (x | (Gi, ω)) in Equa-
tion (5) are supposed to be known.

If x ∈ V (Si) \ ∂H
′
i+1, the reasoning is relatively similar: either the weighted eccentricity

of x is achieved either with some v ∈ Si, or with v ∈ V (Gi+1). In the latter case, from
Equation (4), the weighted eccentricity of x is d(x, gSi

(v)) + ω∗
i (gSi

(v)) = dω∗
i
(x, gSi

(v)). As
the weight difference between ω∗

i and ω lies only on the boundary, we have: ecc (x | (Gi, ω)) =
max {ecc (x | (Si, ω)) , ecc (x | (Si, ω

∗
i ))}. Figure 5 illustrates these two possibilities on the

example already introduced in Figure 4: either the maximum weighted distance from x goes
towards Si or towards V (Gi+1). We completed the first part of the proof: the weighted eccen-
tricities of all x ∈ Si in graph (Gi, ω) can be directly deduced from the theorem assumptions:
Bi(x) = ecc (x | (Gi, ω)).

S1G2

v0

x

E2 ecc (x | (S1, ω))
ecc (x | (S1, ω

∗
1))

Figure 5: Retrieving the eccentricities of x ∈ V (Si) in graph Gi: example with ℓ = 2 and
i = 1. Either the largest weighted distance from x is with a vertex of Si, or with one in the
other side V (Gi+1).

Case 2: x ∈ V (Si+1) ∪ . . . ∪ V (Sℓ−1). We determine the labels Bi(x) for vertices x ∈
V (Si+1)∪ . . .∪ V (Sℓ−1). Since we know all labels of Bi+1, we have the eccentricity Bi+1(x) =
ecc (x | (Gi+1, ω)) of x in graph (Gi+1, ω). By definition, Bi(x) ≥ Bi+1(x) and the only chance
to have Bi(x) > Bi+1(x) is that the weighted eccentricity of x in Gi is the distance from x to
some vertex v ∈ V (Si), as V (Gi) \ V (Gi+1) = V (Si). So, we compute the maximum distance
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dω(x, v) for v ∈ V (Si) and verify whether it is larger than Bi+1(x) or not. Thanks to the BFS
traversal, we know gSi

(x) and then the maximum distance D(x) = max{dω(x, v) : v ∈ V (Si)}
is given:

D(x) = d(x, gSi
(x)) + ecc (gSi

(x) | (Si, ω)) .

In summary, all these values can be computed since not only d(x, gSi
(x)) but also all eccen-

tricities of (Si, ω) are known:

Bi(x) = max {Bi+1(x), d(x, gSi
(x)) + ecc (gSi

(x) | (Si, ω))}

.

The latter theorem stands as the recursive step to prove that the weighted eccentricities
of (G,ω) ∈ U2 log can be computed in linear time, assuming that we already have the weighted
eccentricities of all slices.

Corollary 3. Let (G,ω) ∈ U2 log with umax 6= v0 given with its slice decomposition. Assume
that, for each integer 0 ≤ i ≤ ℓ− 1, all weighted eccentricities of (Si, ω) but also all weighted
eccentricities of (Si, ω

∗
i ) are known. Then, one can compute all weighted eccentricities of

(G,ω) in time O(n log2 n).

Proof. We proceed by induction in order to prove that labeling Bi can be determined in time
O((ℓ − i)m). The base case is the computation of labeling Bℓ−1. We focus on graph Gℓ−1

which is partitioned by Θ-class Eℓ into two halfspaces: Sℓ−1 and V (Gℓ). The idea is similar
to the ones explained in the proof of Theorem 4. We begin by applying the BFS traversal of
Lemma 2 in order to retrieve the Sℓ−1-gates of any vertex of graph Gℓ−1. For x ∈ Sℓ−1, its
weighted eccentricity in Gℓ−1 is given by:

Bℓ−1(x) = max{ecc (x | (Sℓ−1, ω)) , ecc
(

x | (Sℓ−1, ω
∗
ℓ−1)

)

}.

The knowledge of the eccentricities of (Sℓ−1, ω) and (Sℓ−1, ω
∗
ℓ−1), but also of all distances to

Sℓ−1-gates in Gℓ−1 thanks to the BFS, allows us to obtain the labeling Bℓ−1. The running
time is made up of the BFS traversal with a linear number of maximum computations, which
is O(m) and independent from ℓ.

The inductive step consists in applying Theorem 4. Indeed, labeling Bi can be determined
from labeling Bi+1 in time O(m), given that we have the eccentricities of both (Si, ω) and
(Si, ω

∗
i ). Hence, from the induction hypothesis, the running time of the whole process is

O((ℓ− i− 1)m+m) = O((ℓ− i)m).
Consequently, labeling B0 is obtained in time O(dm) = O(n log2 n), as ℓ ≤ d ≤ log2 n.

For any vertex x belonging to a slice, i.e. x ∈ S0 ∪ . . . ∪ Sℓ−1, value B0(x) is its weighted
eccentricity on (G0, ω) = (G,ω). Concerning vertices z ∈ V (Gℓ), as observed earlier, their
ladder set Lv0,z has no intersection with L(G), so their weighted eccentricity can be directly
computed (Lemma 19). All in all, the weighted eccentricities of (G,ω) are known.

4.3 Summary and analysis for the eccentricities computation

Given the observations and subroutines presented above, we present now our recursive al-
gorithm which computes all weighted eccentricities of a median graph (G,ω). We call this
algorithm MΘrse (acronym for Median Θ-class Recursive Scheme for Eccentricities) and its
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Algorithm 1: Algorithm MΘrse

1: Input: A weighted median graph (G,ω).
2: Output: All eccentricities ecc (u | (G,ω)) for each u ∈ V (G).
3: if |V (G)| ≤ 2 then

4: return all eccentricities by enumerating all (at most 2) shortest paths

5: endif

6: Compute all Θ-classes Ei ∈ E(G) (Lemma 5) and their halfspaces sizes (Lemma 6)
7: if there exists a Θ-class Ei which is balanced then

8: list1 ←MΘrse(G[H ′
i ], ω)

9: list2 ←MΘrse(G[H ′′
i ], ω)

10: return all eccentricities of (G,ω) retrieved from list1/list2 (Theorem 3)

else

11: Compute the unique median vertex v0 as G ∈ U2 log (Lemma 17)
12: Launch a BFS starting from v0 to determine all distances from v0, but also umax

and L(G)
13: if umax = v0 then return all eccentricities retrieved with Lemma 18
14: Give a unique (arbitrary) identifier for each class of L(G), from 1 to ℓ = |L(G)|
15: Determine all large sets Gj and slices Si for each 0 ≤ j ≤ ℓ and 0 ≤ i ≤ ℓ− 1
16: collec ← list of ℓ empty lists; wcollec ← list of ℓ empty lists;
17: for i from 0 to ℓ− 1 do

18: collec[i] ←MΘrse(Si, ω)
19: wcollec[i] ←MΘrse(Si, ω

∗
i )

20: endfor

21: return all eccentricities of (G,ω) retrieved from collec and wcollec

(Theorem 4)

22: endif

pseudocode is given in Algorithm 1. The base case of MΘrse is when the number of vertices
of the graph is at most 2. Trivially, one can compute the weighted eccentricites of such graph
in constant time O(1) (line 4 of Algorithm 1). We focus now on the recursive calls launched
by MΘrse.

It starts with the computation of Θ-classes and their halfspaces sizes (line 6) which can
be done in time O(n log n), according to Lemmas 5 and 6. Then, it distinguishes two cases:
either the input graph (G,ω) contains at least one f -balanced Θ-class (with f = 2 log) or not.

If (G,ω) admits a balanced Θ-class Ei, then the procedure is relatively simple. We call
recursively MΘrse in order to obtain the weighted eccentricities of both halfspaces, i.e.
of G[H ′

i] and G[H ′′
i ] (lines 8-9). Thanks to Theorem 3, we know that we can retrieve all

eccentricities of (G,ω) in linear time (line 10).
Otherwise, (G,ω) ∈ U2 log, and there is a unique median vertex v0 which belong to all

majoritarian halfspaces of G (Lemma 17). It is computed in linear time (Corollary 1). Then,
we execute a BFS from v0 (line 12) which allows us to determine umax and L(G), according
to Lemma 13. The slice decomposition of G can be directly deduced from this BFS since the
vertices of Si are exactly the vertices v such that Ei+1 ∈ Lv0,v but E1, . . . , Ei /∈ Lv0,v, see
Equation (3). Then, we apply recursively MΘrse on all instances (Si, ω) and (Si, ω

∗
i ), with
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0 ≤ i ≤ ℓ− 1. Eventually, one can retrieve the eccentricites of (G,ω) in linear time according
to Theorem 4.

We show that MΘrse is executed in quasilinear time.

Theorem 1. There exists a combinatorial algorithm which computes all weighted eccentrici-
ties of a weighted median graph (G,ω) in quasilinear time O(n log4(n)).

Proof. Both Theorems 3 and 4 ensure us that MΘrse computes exactly all eccentricities of
the weighted median graph (G,ω). Our effort consists now in showing that its running time
is quasilinear.

We prove the following statement: if |V (G)| ≥ 3, the computation of MΘrse(G,ω), in
addition with a running time O(|V (G)| log2 |V (G)|), launches recursive calls on a collection C
of weighted subgraphs of G satisfying:

•

∑

(G′,ω′)∈C

|V (G′)| ≤ |V (G)|

• max {|V (G′)| : (G′, ω′) ∈ C} ≤ |V (G)|
(

1− 1
2 log(|V (G)|)

)

(G,ω)

(G[H ′
i], ω) (G[H ′′

i ], ω)

(S0, ω) (S0, ω
∗
0) (S1, ω) (S1, ω

∗
1) (S2, ω)

Depth 0
Size |V (G)| = n

Depth 1
Max size ≤ n(1− 1

2 logn)

Depth 2

≤ n
2 logn(1−

1
2 log( n

2 log n
))

. . .
. . .

...
...

...
...

...
...

/∈ U2 log

∈ U2 log
umax = v0

∈ U2 log
umax 6= v0

Figure 6: Tree of recursive calls: an example where the input (G,ω) admits a balanced Θ-class
Ei; then (G[H ′

i], ω) ∈ U2 log with umax = v0 hence its weighted eccentricities can be directly
computed in linear time (Corollary 2); finally (G[H ′′

i ], ω) ∈ U2 log but umax 6= v0 so 2ℓ recursive
calls are launched.

If (G,ω) admits a balanced Θ-class Ei, two recursive calls are achieved on its halfspaces
which partition the vertex set of G. Moreover, from Definition 12, none of these halfspaces

has a size greater than n
(

1− 1
2 logn

)

with n = |V (G)|. Otherwise, when (G,ω) ∈ U2 log,

the situation is trickier. If umax = v0, all eccentricities can be computed in linear time
(Corollary 2) and there is no recursive call (red node of the tree in Figure 6). But, if umax 6= v0,
two recursive calls are launched for each slice Si, 0 ≤ i ≤ ℓ − 1: one with weight function
ω and one with ω∗

i . Each slice is the subset of a minority halfspace, hence |Si| ≤
n

2 logn <
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n
(

1− 1
2 logn

)

. Then, observe that two different slices do not intersect each other by definition.

As ℓ ≤ log(|V (G)|), we have:

∑

(G′,ω′)∈C

|V (G′)| =
ℓ−1
∑

i=0

2|Si| ≤
2ℓ|V (G)|

2 log(|V (G)|)
≤ |V (G)|.

In both cases, the inequalities claimed above are satisfied. We analyze the tree of recursive
calls, admitting the input (G,ω) as a root and, as leaves, either cases umax = v0 or very small
weighted graphs (at most two vertices). At each depth k of the tree, the total number of
vertices involved in the instances is at most n = |V (G)|. The extra running time needed to
retrieve the weighted eccentricities of the instances at depth k from the weighted eccentricities
of instances at depth k + 1 is O(n log2 n): it is O(n log n) when a balanced Θ-class is present
(Theorem 3), O(n log2 n) otherwise (Corollary 3). Let sk be the maximum number of vertices
of some weighted graph at depth k ≥ 0. Obviously, s0 = n. Sequence (sk) follows the scheme
introduced in Lemma 16 with λ = 2: in particular, when sk ≥ 3, then sk+1 ≤ ⌊sk(1−

1
2 log(sk)

)⌋.
Indeed, according to the second inequality above, as sk is the maximum size of some instance
at depth k, any instance at depth k+1 cannot exceed ⌊sk(1−

1
2 log(sk)

)⌋. As a conclusion, the

depth of the recursive tree cannot overpass 2 log2 n (Lemma 16).
As the running time needed per depth is O(n log2 n) and the depth of the tree of recursive

calls is upper-bounded by 2 log2 n, then the total running time of MΘrse is O(n log4 n).

5 Distance oracle

We present in this section the second outcome of this paper, which is the design of a distance
oracle (DO) for (unweighted) median graphs with a poly-logarithmic size of labels and query
time. In this section, the notions of balanced/unbalanced Θ-classes will be associated with
a different function f than in Sections 3 and 4. Indeed, we fix f as the constant function:
f : n → 3. We denote by U3 the set of median graphs without any 3-balanced Θ-classes. In
other words, if G ∈ U3, then for each Ei ∈ E(G), either |H ′

i| <
n
3 or |H ′′

i | <
n
3 .

The main technique used to achieve this goal is similar to the one used in Sections 3
and 4: we exploit balanced Θ-classes. We propose a recursive scheme where, at each step, a
non-negligible number of vertices is withdrawn for each recursive call. When the number of
vertices n = |V (G)| is at most 2, the label of each vertex has size 0: it does not contain any
bit. Indeed, the distance towards the other vertex is necessarily 1, as G is connected.

Now we fixed this trivial case, we focus on median graphs G with n ≥ 3. We distinguish
two cases: either G admits a 3-balanced Θ-class, or G ∈ U3.

5.1 Recursive scheme exploiting gated halfspaces

We propose a distance oracle ΛG for median graphs G. Any label ΛG(u) is a sequence of
bits. The size of the DO is the maximum size of all sequences ΛG(u): we denote |ΛG| =
maxu∈V (G) |ΛG(u)|. Then, we say that the DO ΛG has a query time τ(n) if, for any pair
u, v ∈ V (G), the time needed to retrieve d(u, v) thanks to labeling ΛG is at most τ(n). The
DO we propose has both poly-logarithmic size and query time.

Theorem 5. Let G be a median graph and Ei ∈ E(G). Assume that:
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• a DO ΛH′
i
of graph G[H ′

i] is known with query time τ1(|H
′
i|),

• a DO ΛH′′
i
of graph G[H ′′

i ] is known with query time τ2(|H
′′
i |).

Then, one can build a DO ΛG of graph G with size at most 3 log2 n+1+max
{

|ΛH′
i
|, |ΛH′′

i
|
}

and query time τ(n) = O(log2 n) + max {τ1(|H
′
i|), τ2(|H

′′
i |)}. The construction takes time

O(n(log2 n+max{|ΛH′
i
|, |ΛH′′

i
|})).

Proof. Thanks to our assumptions, every vertex of V (G) is initially associated with a label of
the halfspaces of Ei. The vertices u

′ ∈ H ′
i are labeled with ΛH′

i
(u′) while the vertices u′′ ∈ H ′′

i

are labeled with ΛH′′
i
(u′′).

For the construction of ΛG, we begin with the computation of the gate of each vertex
thanks to the BFS of Lemma 2. As a reminder, for any vertex u′ ∈ H ′

i, we determine its
H ′′

i -gate g(u′) ∈ H ′′
i , and conversely for each vertex u′′ ∈ H ′′

i we determine its H ′
i-gate g(u′′).

This operation is achieved in time O(n log n) by launching a BFS with a starting queue made
up of H ′

i, and a second one with a starting queue H ′′
i (as it was done with the eccentricities,

see the proof of Theorem 3). At the end of the execution, for each u ∈ V (G), we know all
distances d(u, g(u)).

We are ready to describe the content of the DO ΛG. For each u ∈ V (G), the sequence of
bits ΛG(u) contains successively:

1. ΛΘ
G(u): the index i of the Θ-class Ei, encoded by log2 n bits, since q ≤ n,

2. Λside
G (u): the side of u regarding Ei encoded with one bit: either u ∈ H ′

i or u ∈ H ′′
i ,

3. Λgate
G (u): the identity of its gate g(u) through the opposite halfspace encoded with log2 n

bits,

4. Λdist
G (u): the distance d(u, g(u)) encoded with log2 n bits,

5. Λrec
G (u): the label of u in its halfspace: if u ∈ H ′

i, then we add ΛH′
i
(u), otherwise ΛH′′

i
(u).

In summary, label ΛG(u) is the concatenation of 3 log2 n+1 preliminary information in addi-
tion with the label of u in its Ei-halfspace: ΛG(u) = ΛΘ

G(u)·Λ
side
G (u)·Λgate

G (u)·Λdist
G (u)·Λrec

G (u).
Hence, its size is at most O(log2 n) + max{|ΛH′

i
|, |ΛH′′

i
|}. Moreover, the time needed for the

construction of ΛG includes the BFS evoked in Lemma 2 but also the writing of sequence
ΛG(u). The latter takes at most O(log2 n + max{|ΛH′

i
|, |ΛH′′

i
|}) and is executed for each

vertex of G.
Let us explain how any distance d(u, v) can be retrieved thanks to the DO ΛG. From the

log2 n first bits of ΛΘ
G(u) (or ΛΘ

G(v)), we obtain the Θ-class which was used as a separator.
Then, we look at the next bit Λside

G for each vertex, it allows us to know into which halfspace
u and v are. If they belong to the same halfspace , say H ′

i w.l.o.g., then we obtain d(u, v)
thanks to the DO ΛH′

i
, given by both Λrec

G (u) and Λrec
G (v). Else, if u ∈ H ′

i and v ∈ H ′′
i

w.l.o.g., we first retrieve the gate g(u) of u in H ′′
i thanks to the part Λgate

G (u), together
with the distance d(u, g(u)) thanks to Λdist

G (u). Second, we determine the distance d(g(u), v)
with a query on the DO ΛH′′

i
, given by both Λrec

G (g(u)) and Λrec
G (v). Finally, we obtain

d(u, v) = d(u, g(u)) + d(g(u), v).
The query time consists in the analysis of the first 3 log2 n+1 bits to retrieve the different

information: Ei, halfspace of each vertex, gate of u and d(u, g(u)). Then, we necessarily launch
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a query on either ΛH′
i
or ΛH′′

i
. All in all, the query time is upper-bounded by O(log2 n) +

max{τ1(|H
′
i|), τ2(|H

′′
i |)}.

We formulate an observation similar to the one we gave for the eccentricities problem
after Theorem 3. We could apply recursively Theorem 5 until we find base cases, i.e. median
graphs of at most 2 vertices. Unfortunately, if we select the Θ-class Ei arbitrarily, such an
approach can lead to labels of linear size. However, in an utopian situation, we could select a
balanced Θ-class Ei at each recursive step. In this way, the depth of the recursive tree would
be logarithmic. The issue is that many median graphs do not admit any balanced Θ-class.
For this reason, we provide in the next subsection a labeling procedure for graphs G ∈ U3.

5.2 Oracle construction for median graphs without balanced Θ-classes

In order to handle the case of median graphs without any balanced Θ-class, we label each
vertex with not only its distance to the median vertex v0, but also its gates for the “neigh-
boring” fibers around it. In this way, one can retrieve any distance d(u, v) by looking at the
successive distances from gate to gate a logarithmic number of times. The query time is thus
poly-logarithmic, such as the size of the labeling.

Consider a median graph G ∈ U3. According to Lemma 17, there is a unique median
vertex v0 for G belonging to all majority halfspaces. Each vertex v 6= v0 admits a ladder set
Lv0,v, hence the vertices of G can be partitioned in function of their ladder Lv0,v. We denote
by VL ⊆ V (G) \ {v0} the set of vertices v with ladder set Lv0,v = L. Set VL can also be seen,
from Definition 10, as the intersection of all minority halfspaces of Θ-classes in L:

VL =
⋂

Ei∈L

H ′
i.

For any POF L containing only Θ-classes adjacent to v0, VL is not only nonempty but also
gated, as shown in the next lemma.

Lemma 24. For any POF L adjacent to v0, VL is nonempty and gated.

Proof. As all Θ-classes of L are adjacent to v0, there is a hypercube QL containing both v0
and edges of L adjacent to v0 (Lemma 10). We denote by vL the farthest-to-v0 vertex of
QL, said differently the opposite vertex of v0 in QL. By definition, the ladder set of vL is L,
therefore VL is nonempty.

Let St(v0) be the subgraph of G made up of the vertices which belong to a common
induced hypercube with v0. This notion was defined in [23] and called the star of a vertex.
The authors (Proposition 2, [23]) proved that, for any vertex v, St(v) is a gated subgraph of
G. Consequently, the fibers of St(v0) are gated (Lemma 4).

We claim that VL is exactly the fiber of vertex vL: in brief, VL = FSt(v0)[vL]. Let u ∈ VL

and z ∈ St(v0): we show that vL ∈ I(u, z) necessarily. If σvL,u ∩ σvL,z = ∅, then our claim
holds, according to Lemma 9. By contradiction, assume that some Θ-class Ej belongs to both
σvL,u and σvL,z. As Ej ∈ σvL,z, then by convexity of St(v0), Ej is adjacent to v0. However,
at the same time, we have L = Lv0,u = σv0,vL ⊆ σv0,u. Hence, vL ∈ I(v0, u) and σvL,u ⊆ σv0,u
does not contain any Θ-class adjacent to v0 since all of them are present, by definition, in
σv0,vL . So, Ej is not adjacent to v0, which contradicts our first observation. As a consequence,
vL is the St(v0)-gate of any u ∈ VL. As fibers are gated (Lemma 4), then we conclude that
set VL is gated.
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The idea beyond our DO follows. We do not give any label to the median vertex v0.
We exploit the partition {VL : L 6= ∅, POF adjacent to v0} of V (G) \ {v0}. We compute
recursively the DO of all median subgraphs VL. Observe that, for any Θ-class Ei ∈ L, then
VL ⊆ H ′

i and hence each set contains at most n
3 vertices, since G ∈ U3. Then, we complete

each label ΛVL
(u) with the identity of the ladder set L = Lv0,u, the distance d(v0, u), and the

pair gate-distance from u to its gate in any neighboring fiber VL′ of VL. The formal (recursive)
definition of the DO ΛG for G ∈ U3 is given below.

Definition 20 (DO ΛG for G ∈ U3). Let G ∈ U3 with n ≥ 3. The label ΛG(v0) is empty. For
u ∈ V (G) \ {v0}, sequence ΛG(u) contains:

1. ΛL
G(u): the ladder set Lv0,u, encoded with (log2 n)

2 bits,

2. Λdist
G (u): the distance d(v0, u), encoded with log2 n bits,

3. Λfib
G (u): each triplet (L \ L′, gL′(u), d(u, gL′ (u))), for all subsets L′ ( L = Lv0,u with
|L′| = |L| − 1, where gL′(u) is the gate of u for the gated fiber VL′. Each triplet is
encoded with 3 log2 n bits, so the sequence of all triplets has size O((log2 n)

2),

4. Λrec
G (u): the label ΛVL

(u) of the DO ΛVL
computed recursively on the median subgraph

G[VL].

We have ΛG(u) = ΛL
G(u) · Λ

dist
G (u) · Λfib

G (u) · Λrec
G (u).

... . . .

...

. . .

V{E1,E3}
V{E1}

V{E3}

u

v0

g{E1}(u)

g{E3}(u)

E1

E2

E3

ΛG(u) = {E1, E3} : (log2 n)
2 bits

d(v0, u) : log2 n bits
(

{E1}, g{E1}(u), d(u, g{E1}(u)
)

(

{E3}, g{E3}(u), d(u, g{E3}(u)
)

ΛV{E1,E3}
(u)

{
Λfib
G (u) :

O((log2 n)
2)

bits

Figure 7: The label ΛG(u) of some vertex u ∈ V (G), G ∈ U3

An example of label ΛG(u) is given in Figure 7. The definition of our labeling ΛG is now
complete. Remember that, if the graph G has at most 2 vertices, |ΛG| = 0: there is no need to
label the vertices since they are necessarily at distance 1. Else, we distinguish two cases. If G
contains a 3-balanced Θ-class Ei, then we compute recursively the DO of each halfspace and
label a logarithmic number of bits for each vertex in addition with the DO of its halfspace, as
described in Theorem 5. If G contains no 3-balanced Θ-class, i.e. G ∈ U3, then we proceed as
in Definition 20: we compute recursively the DO of each fiber VL and label each vertex with
a poly-logarithmic number of bits in addition with the DO of its fiber VL. We thus conclude
on the size of the labeling ΛG.
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Lemma 25. For any median graph G, the size of ΛG is poly-logarithmic: |ΛG| = O((log2 n)
3)

Proof. Let α(n) be the maximum size of a DO ΛG on median graphs G satisfying |V (G)| = n.
For n ≥ 3, we show that α(n) ≤ 4(log2 n)

2 + log2 n+ α(⌊2n3 ⌋).
If G admits a 3-balanced Θ-class, as shown in Theorem 5, the size of the labeling ΛG is

at most 3 log2 n + 1 + α(⌊2n3 ⌋) since each halfspace of a 3-balanced Θ-class contains at most
⌊2n3 ⌋ vertices.

However, if G ∈ U3, let us justify that, in this case, the size of the labeling ΛG is upper-
bounded by 4(log2 n)

2 + log2 n + α(⌊n3 ⌋). As already stated in Definition 20, the size of the
first two parts of the labeling, i.e. ΛL

G and Λdist
G , is (log2 n)

2 + log2 n. The third part Λfib
G

is trickier to analyze. Let u ∈ V (G) and L = Lv0,u. The label Λfib
G (u) contains as many

triplets as the number of subsets L′ of L with exactly one element left. As |L| ≤ d ≤ log2 n,
there are at most log2 n such subsets. The triplet is made up of the singleton L \ L′, the
gate gL′(u) and the distance d(u, gL′(u)). Each component of the triplet can be encoded with
log2 n bits. Therefore, the size of Λfib

G (u) is at most 3(log2 n)
2. Finally, ΛG(u) also contains

the part Λrec
G (u), which is the label of u for the DO on graph G[VL]. As |VL| <

n
3 , we have

|ΛG(u)| ≤ 4(log2 n)
2 + log2 n+ α(⌊n3 ⌋).

Combining the inequalities obtained for the two possible cases, i.e. G ∈ U3 or G /∈ U3, we
have: α(n) ≤ 4(log2 n)

2 + log2 n + α(⌊2n3 ⌋). Furthermore, as a base case, α(1) = α(2) = 0.
The depth of this recursive sequence is logarithmic since we divide at each recursive step the
number of vertices of the graph by a constant factor smaller than 1. The extra size added into
the labeling at each recursive step is O((log2 n)

2). We conclude: α(n) = O((log2 n)
3).

The size of labeling ΛG for any median graph G is guaranteed to be poly-logarithmic. We
show now that obtaining labels ΛG(u) for each vertex u ∈ V (G) can be achieved in quasilinear
time.

Lemma 26. There is a combinatorial algorithm which, given any median graph G, outputs
the labeling ΛG in quasilinear time O(n(log2 n)

4).

Proof. Let T (n) be the maximum construction time of a labeling ΛG for median graphs G
satisfying |V (G)| = n. We almost entierely handled the case where G /∈ U3: in Theorem 5, we
proved that, given a balanced Θ-class Ei and the labeling ΛH′

i
and ΛH′′

i
of its halfspaces, we

build the labeling ΛG in time O(n(log2 n +max{|ΛH′
i
|, |ΛH′′

i
|})). Now, we naturally add the

construction time for labelings ΛH′
i
and ΛH′′

i
which were supposed to be known in Theorem 5.

Moreover, thanks to Lemma 25, values |ΛH′
i
| and |ΛH′′

i
| can be upper-bounded by O((log2 n)

3).

In summary, we obtain: T (n) ≤ O(n(log2 n)
3)+T (λn)+T (µn), where λ =

|H′
i|

n
and µ =

|H′′
i |
n

,
hence λ+ µ = 1 and max{λ, µ} ≤ 2

3 .
We focus now on the case G ∈ U3. Let u ∈ V (G) \ {v0}. First, a BFS starting from v0

gives us the ladder Lv0,u (Lemma 13) together with the distance d(v0, u). Second, we present a
procedure to obtain all labels Λfib

G (u). We begin with looking at all edges of the graph: if they
connect a vertex of a fiber VL with another vertex of a fiber VL′ , where L′ ( L, |L′| = |L| − 1,
we associate this edge to the pair (L,L′). We denote by ∂EL,L′ this kind of edges and by
∂VL,L′ the set of vertices of VL′ which admit a neighbor in VL.

For any POF L adjacent to v0 and any subset L′ ( L, |L′| = |L| − 1, we launch a BFS on
graph GL,L′ = (VL∪∂VL,L′ , E[VL]∪∂EL,L′) in order to determine, for each u ∈ VL, its VL′-gate
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gL′(u) and also d(u, gL′(u)) (Lemma 2). The running time of this operation depends on the
total number of edges of all graphs GL,L′ . Any edge of VL belongs to at most d ≤ log2 n
such graphs, as there are |L| possible subsets L′ of L. The edges connecting two sets VL

and VL′ are thus taken into account in only one graph GL,L′ . All in all, as each edge is
considered in at most log2 n such graphs GL,L′ , the total running time of this procedure is
O(m log2 n) = O(n(log2 n)

2). With the writing of each label, the total time spent to determine
blocks ΛL

G, Λ
dist
G and Λfib

G is O(n(log2 n)
3). Finally, we need to compute recursively the DO of

each fiber VL. In brief, T (n) ≤ O(n(log2 n)
3) +

∑

L T (|VL|). As each |VL| <
n
3 , we can write:

T (n) ≤ O(n(log2 n)
3) +

∑

k T (αkn), where
∑

k αk = 1 and max{αk} <
1
3 .

Both inequations for T (n) fall into the domain of the Master theorem described in [24].
At each recursive step, an extra time O(n(log2 n)

3) is needed and, at the same time, the
size of the instances on which recursive calls are launched is decreased by a constant factor.
Moreover, the total number of vertices considered at each depth of the recursive tree stays
equal to n. All in all, we have: T (n) = O(n(log2 n)

4).

The last part of our proof is certainly the most important of course: even if the labeling
ΛG has poly-logarithmic size and can be computed in quasilinear time, we do not know yet
whether it allows us to retrieve any distance in poly-logarithmic time. The algorithm we
present below use a new technique for the case G ∈ U3: to retrieve distance d(u, v), we
compare the ladder sets of both vertices, i.e. Lv0,u and Lv0,v. The idea consists in going from
u to v via ”neighboring” ladder sets (differing from only one Θ-class), using the information
of labeling Λfib

G .

Theorem 6. Let G be a median graph and u, v ∈ V (G). One can retrieve any distance d(u, v)
thanks to ΛG with poly-logarithmic query time O(log4(n)).

Proof. For graphs with at most two vertices, one can retrieve distances in constant time. We
proceed by induction on the size of |V (G)| to prove that labeling ΛG is a DO. For median
graphs G /∈ U3: according to Theorem 5, if the DOs ΛH′

i
and ΛH′′

i
are known, then the labeling

ΛG we built is a DO. By induction hypothesis, our labeling is a DO for graphs with a smaller
number of vertices, in particular G[H ′

i] and G[H ′′
i ]. So, ΛG is a DO for G /∈ U3 with query

time τ(n) = O(log2 n) + max{τ(|H ′
i|), τ(|H

′′
i |)} ≤ O(log2 n) + τ(⌊2n3 ⌋).

Let us focus on the more complicated case G ∈ U3: our objective is to retrieve a distance
d(u, v), for some pair u, v ∈ V (G). A first simple case occurs when one of these vertices is v0,
w.l.o.g. u = v0. The label Λdist

G (v), which is a part of ΛG(v), gives directly distance d(v0, v).
Hence, we retrieve this distance in constant time.

Assume that both u and v are different from v0. Both admit a ladder set with v0, which
can be deduced from ΛL

G(u) and ΛL
G(v). Say, w.l.o.g., that |Lv0,u| ≤ |Lv0,v|. Another simple

case is when Lv0,u = Lv0,v. The distance d(u, v) can be computed thanks to a query on
the labels ΛVL

(u) and ΛVL
(v), where L = Lv0,u. Indeed, VL is gated, so G[VL] is a median

subgraph of G. These two labels are given by the part Λrec
G of ΛG over each vertex. The query

time in this situation is thus τ(⌊n3 ⌋) by induction hypothesis, as |VL| <
n
3 .

Nevertheless, in general, Lv0,u 6= Lv0,v. A third case easy to handle is when Lv0,u∩Lv0,v =
∅. In this scenario, the signatures σv0,u and σv0,v have no Θ-class in common: if they had one,
say Ei, by convexity of its boundary ∂H ′′

i , then v0 ∈ ∂H ′′
i and Ei must belong to both ladder

sets from Definition 10. So, v0 ∈ I(u, v) and the distance d(u, v) = d(u, v0) + d(v0, v) can be
retrieved from labels Λdist

G (u) and Λdist
G (v).
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The remaining (and hard) case is the following one: Lv0,u 6= Lv0,v and Lv0,u ∩ Lv0,v 6= ∅.
First, we compute the ladder sequence Su,v between these two sets Lv0,u and Lv0,v: this a
finite sequence of POFs, starting from Lv0,u and finishing at Lv0,v. The size gap between
two consecutive POFs of this sequence is exactly 1. The first part of Su,v starts with Lv0,u

and goes towards Lv0,u ∩ Lv0,v. At each step, a Θ-class of Lv0,u \ Lv0,v is withdrawn from
the current POF. The second part of Su,v starts with Lv0,u ∩Lv0,v and goes towards Lv0,v by
adding to the current POF a Θ-class of Lv0,v \ Lv0,u at each step. The elements of sequence
Su,v are denoted by:

Su,v =
(

L(−r), L(−r+1), . . . , L(−1), L(0), L(1), . . . , L(t−1), L(t)
)

,

where r and t are nonnegative integers, L(−r) = Lv0,u, L
(t) = Lv0,v, and L(0) = Lv0,u ∩ Lv0,v.

For any integer 0 ≤ i ≤ r − 1, L(−i+1) is obtained from L(−i) by withdrawing one Θ-class
belonging to L(−i) \ Lv0,v. Similarly, for any 0 ≤ j ≤ t − 1, L(j) is obtained from L(j+1) by
withdrawing one Θ-class of L(j+1) \Lv0,u. As an example, if Lv0,u = {E1, E2, E3} and Lv0,v =
{E3, E4, E5}, then Su,v might be: ({E1, E2, E3}, {E2, E3}, {E3}, {E3, E4}, {E3, E4, E5}). As
each ladder set has size at most d, the length of sequence Su,v is upper-bounded by 2d.

For any integer 0 ≤ i ≤ r − 1, we denote by E(−i) the Θ-class of the singleton L(−(i+1)) \
L(−i). Similarly, E(j) denotes the Θ-class of L(j+1) \ L(j), for 0 ≤ j ≤ t − 1. We show that
there is a shortest (u, v)-path passing through all sets VL for L ∈ Su,v. We proceed in three
steps, each one characterized by a claim.

Claim 1 : the median of triplet u, v, v0, vertex m = m(u, v, v0) (see Definition 4), belongs to
VL(0) . As m ∈ I(u, v), then it belongs, by convexity, to the minority halfspaces of all Θ-classes
in Lv0,u ∩Lv0,v. But, as m ∈ I(v, v0) and both v and v0 are into the majority halfspace of all
Θ-classes of Lv0,u \Lv0,v, then m is also in the majority halfspace of these Θ-classes. Observe
that the same argument holds for Lv0,v \Lv0,u, because m ∈ I(u, v0). In summary, m belongs
to the majority halfspace of all Θ-classes in the symmetric difference between Lv0,u and Lv0,v,
but to the minority halfspace of all Θ-classes in Lv0,u∩Lv0,v. Therefore, Lv0,m = Lv0,u∩Lv0,v.

Claim 2 : there exists a shortest (u,m)-path passing through all fibers VL(−i) , 0 ≤ i ≤ r.
We show briefly that a way to go from u to m is to traverse fiber VL(−r+1) . We will see that,
applying the same argument iteratively, leads to the same conclusion than Claim 2. Vertex u
belongs to the minority halfspace of E(−r+1) while m belongs to its majority halfspace. So,
u admits a gate g−r+1(u) for the majority halfspace of E(−r+1). Vertex g−r+1(u) belongs to
VL(−r+1). Then, we can pursue with the same argument for the gate g−r+1(u): it admits a
gate g−r+2(u) in the majority halfspace of E(−r+2), and so on. Finally, we produce a sequence
of gates, all belonging by definition to I(u,m). The last gate of this sequence, g0(u), belongs
to VL(0) , such as m, hence the last part of the shortest (u,m)-path stays in VL(0) , by convexity
of fibers.

Claim 3 : there exists a shortest (v,m)-path passing through all fibers VL(j) , 0 ≤ j ≤ t.
The argument is the same as the one for Claim 2: we start from v and determine iteratively
the successive gates on the majority halfspaces of respectively Θ-classes E(t−1), E(t−2), . . .

As a conclusion of the three claims, since m ∈ I(u, v) belongs to VL(0) , we ensure that
there exists a shortest (u, v)-path, consisting first in a section from u to m passing through
all fibers indexed negatively (Claim 2), second in a section from m to v passing through all
fibers indexed positively (Claim 3). In brief, there is a shortest (u, v)-path passing successively
through the fibers VL, where L follows the sequence Su,v. An example is provided in Figure 8,
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with a sequence Su,v = ({E1, E3}, {E1}, {E1, E2}). The orange dashed path represents a
shortest (u, v)-path traversing all successive fiber gates.

... . . .

. . .

V{E1,E3}
V{E1}

V{E3}

V{E1,E2}

u

v

v0

g{E1}(u)

g{E1}(v)

E1

E2

E3

Figure 8: A concrete view of a median graph G ∈ U3 and its fiber to show how we retrieve
distance d(u, v), with Lv0,u = {E1, E3} and Lv0,v = {E1, E2}

In order to retrieve distance d(u, v), we use some labels of each fiber VL, where L ∈ Su,v.
From label Λfib

G (u), we obtain the gate of u for the set VL(−r+1) , which is necessarily g−r+1(u)
since VL(−r+1) is a subset of the majority halfspace of E(−r+1). Then, from Λfib

G (g−r+1(u)), we
obtain the second gate, which belongs to set VL(−r+2) , and so on. In summary, we follow the
sequence Su,v of logarithmic size and obtain from Λfib

G successively the pair gate/distance in
the next majority halfspace considered. By simply summing up all the distances between the
different gates, we obtain d(u, v). The distance that remains unknown even after the pick up
of pairs gate/distance is the distance between the two gates obtain in fiber VL(0) (e.g. vertices
g{E1}(u) and g{E1}(v) in Figure 8). To compute the distance between these two final gates, a
query on Λrec

G for these gates suffices. Hence, distance d(u, v) is now determined.
As u and v belong to different fibers but with a nonempty intersection, the whole process

consists in (i) retrieving the ladder set of both vertices thanks to ΛL
G, (ii) computing the

sequence Su,v and then the successive gates thanks to Λfib
G , (iii) obtaining the distance between

all successive gates thanks to Λfib
G , and (iv) computing the distance between the gates of VL(0)

thanks to Λrec
G . The cost of (i) is negligible compared to the one of (ii) and (iii) together, which

is O((log2 n)
3), since the computation of one gate takes O(|Λfib

G |) = O((log2 n)
2) and there are

at most 2d of them. So, taking also (iv) into account, we have τ(n) = τ(⌊n3 ⌋) +O((log2 n)
3).

Considering all possible cases, an upper bound is τ(n) = τ(⌊2n3 ⌋) + O((log2 n)
3), conse-

quently, by Master theorem, τ(n) = O((log2 n)
4).

The labeling ΛG thus guarantees all the properties listed in the following statement, which
is the second contribution of our paper.

Theorem 2. There exists a combinatorial algorithm which computes in quasilinear time
O(n log4(n)), for any median graph G, vertex-labels (ΛG(u))u∈V (G) of size O(log3(n)) such

that the distance d(x, y) between a pair x, y of vertices can be retrieved in time O(log4(n))
thanks to the labels.
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