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Abstract: We extend the Bloch wave-based reduced order models in the Wave Finite Element
Method (WFEM) framework for fast wave-damage interaction analysis. It aims at fault detection
and diagnosis of periodic structures. A finned tube heat exchanger, which can be seen as a 1D
system, is used as a numerical application. Reduced model results and performance are compared
to a standard WFEM model. Diffusion curves are obtained more than a hundred times faster
with the proposed scheme, moving toward massive generation of wave-damage scenarios and

indicators to perform damage detection.
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1. INTRODUCTION

Ultrasonic guided waves are already part of current non-
destructive evaluation practice, and they are becoming
increasingly popular in the structural health monitoring
field, its industrial deployment and standardization being
well established for energy and transport industries such
as oil and gas pipes, as well as rails (Cawley (2018);
Ricci et al. (2022)). Damages like cracks or corrosion
in such one dimensional waveguides induce reflections of
injected elastic waves (compressional, torsional or flexural
modes), and resulting reflections allow a long-range (~ 50
m) inspection of the structure, possibly identifying (i.e.,
locating and quantifying) these structural defects.

This paper is focused on the damage identification problem
in periodic structures, i.e., a structure composed of repet-
itive geometrical forms or unit cells. Typical examples of
such structures are airframes, sandwich panels, architec-
tured materials or a finned tube heat exchanger, which
is the presented model for numerical validation. Wave
propagation is relatively simple in homogeneous structures
like tubes, cylinders and plates, but it is much more
complicated in these periodic structures where bandgaps,
mode conversion and multiple reflections take place. It is
thus important to develop suitable methods for the wave-
damage interaction analysis to successfully identify dam-
ages in periodic structures. This could be greatly helped by
numerical simulations and machine learning techniques to
perform data-driven and physics-based analysis (Willberg
et al. (2015); Fiborek and Kudela (2021)) where several
damage models would be used to assess the nondestructive
evaluation method performance.

Among the many numerical methods to simulate wave
propagation in periodic waveguides, the Wave Finite El-
ement Method (WFEM), initially developed by Mead
(1973), constitutes a numerically efficient way for disper-

sion, forced response and diffusion analysis, by reducing
the problem of periodic waveguides to that of a single
unit cell. Moreover, free wave modes that propagate in
the waveguide (Bloch modes) can be used to describe its
dynamic motion, in the same way as the modal decompo-
sition for modal analysis. This wave mode decomposition
or Bloch wave expansion is of standard use in the WFEM
literature (Mencik and Ichchou (2005); Mead (2009)).

More importantly, computational cost reductions are ob-
tained by means of a reduced order model (ROM), and
among the published methods in the WFEM context, the
Bloch wave ROM proposed in Boukadia et al. (2018);
Droz et al. (2014) leads to significant computation time
reduction factors when applied to dispersion curves and
forced response analysis. This ROM strategy is extended
here to the context of diffusion analysis, i.e., the wave-
based model reduction of a coupling element to obtain
reflection and transmission curves. Its results and perfor-
mances are compared against the Bloch wave expansion
method (standard WFEM).

Any remarkable time reduction in the wave-damage inter-
action analysis would encourage the exploration of mas-
sively generated wave-damage scenarios (damage identifi-
cation performance) and indicators (frequency responses,
scattering coefficients) to assess the structural integrity by
means of machine learning techniques, with vast amounts
of labeled guided waves and damages. This could open
the way to multiple scattering problems, complex damage
models using non-linear approaches, and more generally
the development of digital twins.

In this paper, we develop an efficient diffusion formulation
based on the Bloch wave ROM that yields a well deter-
mined reduced linear system, providing us faster dynamic
analysis results that could generate a database of wave-
damage scenarios.
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2. WAVE FINITE ELEMENT METHOD (WFEM)
FRAMEWORK

The Wave Finite Element Method (Mead (1973); Duhamel
et al. (2006)), begin with a numerical finite element
(FE)-discretized model description of the unit cell of
a periodic waveguide, involving its mass, damping and
stiffness matrices M, C, and K, all being real symmetric
and of size ng, which is equal to the number of degrees
of freedom of the unit cell. The size of the unit cell
is d, that represents the distance between its left and
right boundaries, which have the same mesh in order to
numerically assemble the unit cells forming a waveguide.

In harmonic regime, the equation of motion of a unit
cell is written Dq = f, where q € C"¢ are the nodal
displacements, f € C™¢ the nodal forces, and D = —w?M+
JjwC + K is the dynamic stiffness matriz, with w € R the
angular frequency. We separate all the degrees of freedom
of a unit cell into three parts, L and R for those at left
and right boundaries and I for the inner ones. Accordingly,
D,q and f are partitioned and indexed by L,R and I.
Considering that external loads will be applied only at the
side boundaries of the unit cell, i.e., f; = 0 for the internal
nodes, we can write the condensed equation of motion:

Bubu{al-{t} o

where D = D, — D;;D; /Dy Vi, k € {L, R}.

An infinite waveguide can be assembled from the unit cell,
as depicted in Figure 1. Free wave propagation is found
when qr = A\qr and fgp = —Afy, with A\ = exp(ikd) being
the propagation constant, k € C the wavenumber. The
complex displacement and force vectors at the interfaces
are of size n, the number of degrees of freedom at the left
and right boundaries. The internal force equilibrium at
each of the interfaces of an assembled infinite waveguide
gives us the following quadratic eigenvalue problem:

(AM>Drr+ ANDrr +Dgrr) +Dgrr)d =0 (2)

The 2n eigenvalues A\ are the propagation constants, and
the 2n eigenvectors ¢ € C" are the nodal displacements
at a side boundary from which the Bloch waves (wave
modes of free wave propagation in periodic media) can
be recovered.

(k — 1)-th UC (k)-th UC (k + 1)-th UC

Fig. 1. Infinite 1D periodic waveguide.

Partial eigensolutions of (2) can be obtained to form a
Bloch wave basis, consisting of those for which |\ =
1. This is done with an iterative Arnoldi method on a
linearized form of (2) proposed by Huang et al. (2009).

Considering a set of 2s solutions to form a partial Bloch
basis, the s right-going are collected in @+ and the s left-
going wave modes in 7. These are rectangular matrices of

size n X s and the propagation constants A form a diagonal
matrix of size s.

Bloch wave expansion can be used to estimate the nodal
displacements in terms of this partial wave basis, as
in Duhamel et al. (2006). For an infinite waveguide with
waves propagating from a single location —the left interface
of the cell number 0- we can estimate the left interface
nodal displacements of k-th cell as:

d! ~ dtAFat + ® A Fa VkezZ (3)
This approximation permits us to describe the waveguide
dynamic motion in terms of the wave amplitudes a*,
a~ that are related to physically meaningful waves —the
Bloch modes—, i.e, torsional waves, compressional waves,
flexural waves, etc. This approach is very common in
the WFEM literature (Mead (2009); Mencik and Ichchou
(2005)), because it avoids poor numerical conditioning
of highly evanescent modes and better computational
efficiency (Waki et al. (2009)).

3. WAVE SCATTERING THROUGH A COUPLING
ELEMENT

The study of reflection and transmission of waves through
a junction or coupling element in the WFEM framework
started with the works of Mencik and Ichchou (2005);
Ichchou et al. (2009). In these formulations, incident,
reflected and transmitted waves are related among each
other by means of nodal displacements and forces, and
a diffusion matriz is obtained by linear least squares es-
timation (Moore-Penrose inverse). A first application of
the method for wave-damage interaction was presented by
Ichchou et al. (2009) and it required the use of Lagrange
multipliers in the mortar method framework to perform
a mesh tying and to ensure displacement field continuity
between different mesh surfaces at the interface between
the waveguide and the coupling element. Later Renno
and Mace (2013) proposed a formulation for compatible
meshes, i.e., without the need of Lagrange multipliers, but
nodal displacements and force vectors were used and pseu-
doinversion remained as the solution of an overdeterminate
system.

A practical formulation was presented in Droz et al. (2018)
and later applied to damage detection in Droz et al.
(2020). The Bloch wave expansion in an infinite waveguide
expressed in (3) was used, altogether with a Bloch reduced
order model (ROM), to describe the dynamic motion of a
waveguide that encounters a junction or coupling element.
Here, the formalism is presented in detail for the Bloch
ROM. It is also shown that the formalism could be used
in a standard WFEM framework, and this is applied in
the next section to compare it against the Bloch ROM
diffusion formulation.

Most wave modes evolve in the frequency domain with a
certain smoothness, and this evolution can be described
by a small collection of Bloch waves ¢ across the fre-
quency range of interest selected after a singular value
decomposition (SVD) to preserve the r relevant ones and
form a Bloch wave basis I'" of size n x r. This original
idea was presented in Droz et al. (2014) for the study of
coupled elasto-acoustic problems (e.g., fluid-filled pipes),
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and it was improved in Boukadia et al. (2018). For the
ROM projection, the I' basis is combined with a com-
ponent mode synthesis, namely Craig-Bampton reduction
(Craig and Bampton (1968)). We have then the following
projection matrix B:

r o o
B= |®!T ®, &1 (4)
0 0o T

with ®L and ®F being the constrained modes, and ®,,
being the dynamic modes. The relation between nodal
displacements, forces and dynamic stiffness matrices of the
full and reduced basis are projections, i.e.,q = Bq, f = Bf
and D = BUDB.

The palindromic eigenproblem (2) can now be expressed
with reduced dynamic stiffness matrices. Now the 2r
eigenvalues A are the propagation constants, and the 2r
eigenvectors P € C" are the reduced nodal displacements
at a side boundary from which the Bloch waves can be
recovered. Full solution of the eigenvalue problem gives
us a similar set like in the partial Bloch basis (®T,®7),
but now A is a diagonal matrix of size r and ¥ and
W~ are square matrices of size r. Moreover, the reduced
nodal displacements can be approximated by the Bloch
wave expansion as in (3).

The great advantage of this Bloch model order reduction
is, firstly, that r < s < n and for large models r < n,
and secondly, ®* and ®~ are square matrices of size
r, which facilitates the formulation of boundary value
problems, leading to determinate problems to find the
wave amplitudes of the Bloch modes.

For the wave scattering problem, the FE model of the
coupling element must respect the periodicity both in
the geometry of the cross section and in the interface
degrees of freedom to ensure continuity of the displacement
field. Modeling the coupling element dynamic stiffness
matrix S, and recalling the ROM projection, we have
S = BHSB, where this time the B matrix is obtained from
the previously computed I' matrix of the waveguide and
the ®L ®L @, matrices from Craig-Bampton reduction
on the coupling element.

For right-going waves, we have the wave amplitudes a™
of incident Bloch waves that get reflected in a- and
transmitted in b™ wave amplitudes, as depicted in Figure

Fig. 2. Right-going waves on an infinite waveguide

The nodal displacements at the interfaces can be written:

VkeZAk<0: g =wtArat + & A Fa
VkeZAak>1: ¥l =wtA1pt
a = R11a+

b+ = T21a+
(5)

Recalling (1) and the internal equilibrium at the interfaces
that gave us (2), we can write for both interfaces of the
coupling element:

(6)

(0] (1

f)RL(l[L_l] + (Dgrr + gLL)fl[LO] + gLR(l[Ll] =0
Srrd; + (Srr+ DLL)flL] + DLREI[E] =0

With (5) in (6) we can compute the reflection and trans-
mission matrices Rq; and Ts;, considering the scattering
matriz A :

A= ];)RL‘I’_A + (Drr+SLL)¥™
Ay =S pPT

Ay = SﬁL\I’7 _ _

Asy = (Sprr+Dpr)¥t + D rPTA

and by solving our determinate system, we obtain:

[Rn] — Al [ERL‘I’+A_1 + (Drr+S.L)¥" (7)

T21 ERL‘I’jL

In like manner, for left-going waves we have the wave
amplitudes b~ of incident Bloch waves that get reflected
in b* and transmitted in a~ wave amplitudes, as depicted
in Figure 3:

Fig. 3. Left-going waves on an infinite waveguide

Writing the nodal displacements as:

VkeZAk<0: Gl =w A Fa

VEEZAk>1: GV =wtAF bt 4w A Do
b+ = RQQb_
a- =Tyb™

(8)

we obtain the reflection and transmission matrices Rao
and T15 as:

T12 — _ AL _ SLR_‘_I]i _ (9)
Roo DLR‘I’_A_1+(SRR+DLL)‘I’_
Although the formalism presented here concerns the Bloch
ROM, the diffusion relations (7) and (9) can be developed
for a Bloch basis with non-reduced dynamic stiffness
matrices in (6), which implies that the ¥ matrices will be
replaced by the ® matrices. It is important to note that
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the size of the scattering matrix A is not anymore 2r x 2r
but 2n x 2r, giving an overdeterminate system. This will
be referred as the standard WFEM or Bloch basis ® in the
next section, since no Bloch wave-based ROM is applied.

4. NUMERICAL APPLICATION

As an application of the previous methodology, we present
a diffusion analysis in a finned tube heat exchanger. This
kind of structures is likely to be inspected by guided waves
for damage detection (Malinowski et al. (2015)) and results
of its numerical modeling such as the dispersion curves
help in the selection of wave modes and frequency ranges
before in situ testing. Moreover, damage models can be
generated to understand how the propagating waves in the
waveguide interact with them, therefore, diffusion curves
help select wave modes sensitive to certain kinds of damage
in a defined frequency range. Another important applica-
tion of the diffusion analysis is the time domain recon-
struction of a wave scattering through damage problem by
means of Fourier synthesis. This is included in commercial
softwares for guided wave based nondestructive evaluation,
as explained in Baronian et al. (2016).

N
\

A&\

\
\\

[

Fig. 4. Industrial finned tube heat exchanger. Credit:
Thermofin.

The numerical model of the heat-exchanger unit cell
and the coupling element —which aims to reproduce a
corrosion-induced section loss— are shown in Figure 5.
Unit cell and coupling element sizes are d = 6.35 mm,
and their left and right interfaces have the same mesh,
with n = 1140 DOF. The heat-exchanger materials are
aluminum (fins) and copper (inner tube).

Fig. 5. The unit cell of the heat exchanger (left) and the
coupling element as a section loss (right).

Dispersion curves of the unit cell are shown in Figure 6,
they show the real part of the wavenumber R(k), which are
solutions of the reduced palindromic eigenproblem over the
frequency range [0, 20] kHz. We can identify six propagat-
ing modes, and we can note that the compressional mode
goes evanescent around 14 kHz, flexural modes undergo a
conversion around 13 kHz (two wave modes are needed to
represent a flexural mode in an axisymmetric structure).

In contrast, torsional mode remains a propagating one
through the whole frequency range.

500

450 - Bloch modes
— = Flexural 1.1 i
g 400
% Flexural 1.2 i
< 350 i
ST = Compressional :“
?;5 300 Torsional “

1

. 250 Flexural 2.1 2
3} I\
£ 200 {| = = = Flexural 2.2 /1
3
g 150
> ]
@ -
= 100 — e -~

50 —

P .
0 T T

Frequency [kHz]

Fig. 6. Dispersion curves of the heat-exchanger unit cell.

Diffusion curves that represent wave scattering through
the coupling element are shown in Figure 7, they show,
for a mode j, the reflection (R? = Rn?j), transmission
(T? = Ty13;) and diffusion (6 = 1 — R? — T?) amplitudes
through the frequency range [0, 10] kHz, to remain in a
zone without mode conversion in the waveguide. We can
see that the presence of the damage does not significantly
alter a compressional wave. In contrast, the torsional wave
gets significantly reflected with almost no transmission in
the frequency ranges [1, 3] kHz and [5, 10] kHz. These
results encourage the selection of a torsional wave in the
range [5, 10] kHz for this particular damage detection.

Compressional wave

1.0
N Diffusion

—_ 0.8 —— Reflection
j —— Transmission
< 0.6 4
=]
=
B 0.4
g
<

0.2

0.0

Torsional wave

1.0 \
_ 08 7\
o
< 06 ) ;
B R =80 R s=40
B 04 — T% 5=80 T*, 5=40
=t X
< \

0.2 - N

0.0 T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10
Frequency [kHz|

Fig. 7. Diffusion curves for compressional (above) and
torsional (below) wave modes.

A relevant method comparison is also shown in Figure
7, since reflection, transmission and diffusion curves are
shown for the Bloch ROM, but also reflection and trans-
mission curves with lower opacity are shown for the Bloch
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basis ® model, aiming to show that results appear to
converge towards the ROM solution when increasing the
number of waves s in the Bloch basis, but also computation
costs are significantly higher, as shown in Table 1. Addi-
tional computation times of this numerical application are
the Craig-Bampton reduction of the waveguide unit cell
(1 m 50 s), the Craig-Bampton reduction of the coupling
element (29 s) and the Bloch ROM (1 m 02 s).

Table 1. Method comparison

Method Size Time ROM Factor
Bloch ROM - ¥ r =40 17 s 1
Bloch basis - ® n=1140,s =40 36 m 22s 128
Bloch basis - ® n=1140,s =80 58 m 08 s 205

Using Bloch basis ® can be at least 128 times more
expensive than the Bloch ROM W, when setting s = r to
compare both methods with the same number of waves.
Nonetheless, s = r does not show good agreement with
the Bloch ROM results, and so s = 2r was tried, showing
that diffusion results tend to fit the ROM results, but at
a higher cost (205 times the ROM cost).

5. CONCLUSION

Numerical simulations are helpful to properly understand
wave propagation and its interactions with damages to
extend the guided wave testing practice to the nonde-
structive evaluation of periodic structures. In the WFEM
context, diffusion analyses involve an overdeterminate sys-
tem, solved through linear least squares estimation. A
Bloch wave-based model order reduction was included into
the diffusion analysis, which gives us the benefit of a
smaller determinate problem, i.e., less computation time
and higher accuracy.

Beyond increased accuracy and faster convergence, the
number of Bloch waves r can be significantly smaller
than the number of interface degrees of freedom n, which
reduces the cost of the partial eigenvalue problem solved
at each frequency. For the presented model, with » = 40
and n = 1140, reduction factors as high as 205 were found
when compared against a standard WFEM formulation.
These results strongly encourage the exploration of mas-
sively generated wave-damage scenarios through machine
learning techniques to perform model-assisted guided wave
testing in periodic waveguides.
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