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Abstract 13 

Since the initial description of toll receptors in Drosophila and their mammalian counterparts 14 

Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their 15 

crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten 16 

human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), 17 

a component of gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 18 

is also a versatile virus sensor. This review provides a background on the discovery of TLR4 19 

and how this knowledge laid a foundation for characterization of its diverse roles in antiviral 20 

responses, examined through genetic, biochemical, structural, and immunological 21 

approaches. These advances have led to a deeper understanding of the molecular functions 22 

that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells 23 

(APCs) to initiate appropriate and regulated antiviral immune responses. 24 
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Highlights 26 

● TLR4 is a single-pass transmembrane protein whose structure and function as a PRR 27 

are highly conserved in mammals  28 

● TLR4 can be located on the cell surface and/or within cytoplasmic vesicles  29 

● TLR4 participates in direct and indirect interactions with viruses and viral proteins to 30 

trigger antiviral responses 31 

● In several instances, TLR4 polymorphisms can influence virulence 32 

● TLR4 agonist are being used to improve vaccine efficacy 33 

● Extracellular proteins, including antimicrobial peptides and danger associated 34 

molecular patterns (DAMPs) impact TLR-mediated antiviral responses  35 
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Milestones in toll-mediated immunity 36 

Until the end of the 20th century, most immunologists focused on the adaptive arm of the 37 

immune system. In 1989, Charles Janeway proposed that in addition to the interaction of 38 

specific ligands with somatically rearranged antigen receptors, lymphocytes require another 39 

signal from antigen-presenting cells (APCs) [1]. Janeway predicted that such signals must be 40 

the result of the recognition of microbial molecules via germline encoded pattern recognition 41 

receptors (PRRs), as opposed to the refined antigen receptors of the adaptive immune system. 42 

Janeway posited that such microbial components should be i) absent from the host to 43 

distinguish between self and non-self, ii) conserved among a large number of pathogens, and, 44 

iii) essential components of the microbe’s lifecycle, preventing escape from recognition 45 

through mutations [1]. The identification of toll genes in Drosophila and Toll-like receptor genes 46 

in mammals opened the gates to understanding an evolutionarily ancient arm of host defense, 47 

dubbed “innate immunity” [2,3]. Extensive research following the identification of TLRs 48 

deciphered how pathogen-associated molecular patterns (PAMPs) such as bacterial, fungal, 49 

viral nucleic acids, proteins or components induce signaling cascades that lead to inflammation 50 

in vertebrate and invertebrate animals [4] (Figure 1). 51 

Archetypal role in bacterial sensing  52 

LBP, an extracellular LPS-binding protein, facilitates LPS extraction from bacterial outer 53 

membrane forming an LPS-LBP complex. This complex is then recognized by soluble or 54 

membrane-bound CD14, which shuttles it to an MD-2-TLR4 complex, leading to TLR4 55 

dimerization (Figure 2A) [5,6]. Mechanistically, the contact of lipid A, a hydrophobic 56 

component of LPS, with MD-2 induces the formation of TLR4 homodimers, leading to a 57 

multilayered signaling cascade that eventually induces NF-κB translocation to the nucleus and 58 

the transcription of genes encoding pro-inflammatory cytokines (Box 1) [7]. In addition to LPS, 59 

lipo-oligosaccharides and lipoteichoic acid (an anchor for peptidoglycans on some gram-60 

positive bacteria) interact with the TLR4-MD-2 complex on the surface of human immune cells 61 

[8–10].  62 

Genetic evidence of the impact on viral infections 63 

At the turn of the century, Beutler and colleagues linked differences in responses to LPS to 64 

TLR4 single nucleotide polymorphisms (SNPs) [11,12]. These polymorphisms, likely caused 65 

by selective pressure from pathogens, are found in the promoter, introns, and exons. Although 66 

detailed analyses have not been performed, it is likely that SNPs outside the coding regions 67 

modify TLR4 levels in APCs, while those within exons lead to changes in PAMP recognition 68 

[13–15] (Figure 2B). TLR4 SNPs, such as RS4986790 and RS4986791 cause an aspartic acid to 69 
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glycine substitution at position 299, and isoleucine to threonine at 399, respectively, which alter 70 

the formation of the TLR4/MD-2 complex [16]. The first epidemiological study that identified 71 

SNP-virulence links concerned severe forms of bronchiolitis caused by respiratory syncytial 72 

virus (RSV) [17] (see Table 1 for a list of viruses and Table 2 for virulence-associated SNPs). 73 

Of recent interest, SARS CoV-2 and RS4986790 or RS4986791 were associated with cytokine 74 

storms, possibly via increased spike-TLR4 interactions or dysregulation of the TLR4 signaling 75 

cascade [18]. To add another layer of complexity, the impact of RS4986790 and RS4986791, may 76 

be due to dominance of a guanine or cytosine, as the final base in the respective codon [19–77 

23]. In the case of human papillomavirus (HPV), transient TLR4 engagement leads to the 78 

inhibition of the HPV genome integration, while chronic activation by high-mobility group box 1 79 

protein (HMGB1), a by-product of HPV infection, may induce HPV-associated tumorigenesis 80 

[24]. A study of Han women (the largest ethnic group in China), and women from Gujarat (one 81 

of India's western states) showed that the risk of developing HPV-associated cervical cancer 82 

was higher in carriers of RS7873784-G and RS1927911, respectively [25,26].  83 

Direct or indirect interactions with TLR4/MD-2 complex  84 

The interactions between viruses and TLR4 can be loosely divided into i) direct interactions 85 

(Figure 2C), ii) interactions via a bridging protein, or iii) detection of viral components during 86 

propagation (Figure 3). Virus-receptor interactions are often context dependent, and therefore 87 

drawing broad conclusions can be challenging because viruses tend to enter different cell 88 

types using different receptors and mechanisms. Considering this, one needs to take into 89 

account the possibility that virus can use multiple modes of entry, and therefore blocking one 90 

pathway may have a modest impact on some readouts. Another caveat is that studies have 91 

tended to focus on TLR4-virus interactions at the cell surface, while downplaying TLR4 92 

interactions in endosomal vesicles. 93 

Direct interactions 94 

Coronavirus (e.g., SARS-CoV-2, NL63, 229E, OC43, and HKU1) 95 

The immunopathology of COVID-19, is due, in part, to exacerbated expression of 96 

proinflammatory cytokines like interleukin‐6 (IL-6) and TNF, which are prototypic products of 97 

TLR activation. Using in silico studies, Choudhury & Mukherjee suggested that the SARS‐CoV‐98 

2 spike glycoprotein has stronger interactions with TLR4 compared to TLR1 or TLR6 99 

(respective binding energy values of -120 vs -57 or -68 kcal/mol) in docked protein complexes 100 

[27]. Interestingly, high valued antigenic epitopes were at the interacting interface of the spike 101 

protein and the TLR‐binding region. Affinity-based interactions using surface plasmon 102 

resonance were consistent with spike interacting with TLR4 with a Kd of 300 nM [28].  103 
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A handful of labs explored the impact of spike protein on the transcriptome of TLR4-expressing 104 

human and rodent APCs [28–31]. RT-qPCR assays showed that SARS‐CoV‐2 spike induces 105 

TLR4-associated transcription. The key assays included the use of TAK-242 or siRNA 106 

knockdown of mouse TLR4. In addition to transcriptional responses, biochemical assays 107 

showing modification of TNF, phosphorylated NF-κB p65 and JNK p54 levels also supported 108 

the conclusion that spike activates TLR4 [30]. In addition to the TLR-4-mediated response in 109 

APCs, Li et al. found that seasonal coronaviruses (229E or OC43) seeded an NLRP3 110 

inflammasome [32]. An inflammasome is a multiprotein platform containing a PRR that 111 

promotes aggregation of ASC (apoptosis-associated speck-like protein containing a caspase 112 

activation and recruitment domain). ASC recruits and auto-activates pro-caspase-1, which can 113 

be followed by protease cleavage of the N terminus of gasdermin D, which initiates pore-114 

formation leading to the loss of plasma membrane integrity [33] (Figure 2D). Canonical 115 

NLRP3-based inflammasome formation is typically preceded by a transcriptional priming event 116 

that produces mRNAs of inflammasome components and cytokines [34]. However, in human 117 

monocytes, LPS-TLR4 engagement induces an alternative inflammasome activation 118 

characterized by IL-1β release in the absence of a transcriptional priming event, inflammasome 119 

aggregation, and pyroptotic cell death [33]. Li et al. concluded that 229E- and OC43-TLR4 120 

priming induced inflammasome activation in PMA-differentiated THP-1 cells (where TAK-242 121 

inhibited this cascade) [32].  122 

While Zhao et al. used THP-1 cells (a human monocyte cell line) to identify SARS‐CoV‐2 spike-123 

TLR4 interactions (presumably in liaison with CD14 and MD-2 on the cell surface) and 124 

signaling [28], van der Donk et al. proposed more nuanced conclusions [35]. Donk et al. found 125 

that primary human monocyte-derived dendritic cells (moDCs) respond to SARS‐CoV‐2 126 

nanoparticles (analyzing IP10 & IL-8 protein levels, IL6, IL10, IFNb mRNA, and phenotypic 127 

readouts) only when infected by SARS-CoV-2 via ectopically expressed ACE2. These data led 128 

to the conclusion that innate immune sensing in some cells occurs via cytosolic TLRs [35]. In 129 

addition, van der Donk et al. also suggested that SARS-CoV-2 suppresses TLR4-induced 130 

immunity via DC-SIGN (a C-type lectin receptor on DCs) via the Raf-1 pathway [36]. Finally, a 131 

SARS-CoV2 spike-TLR4 axis was also challenged by Khan et al., who found that all 132 

inflammatory pathways were still activated in Tlr4-/- murine bone marrow-derived macrophage 133 

[37]. Importantly, neither TAK-242 nor TLR4 blocking antibodies were used in these latter 134 

studies. Given the differences in species (mouse vs human), cell lines vs. primary cells, 135 

agonists (spike proteins, nanoparticles, pseudotyped virions), and readouts, distilling a 136 

simplified conclusion is unwarranted. 137 
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Chikungunya is a disease caused by the Chikungunya virus (CHIKV). CHIKV is transmitted 138 

by Aedes mosquitoes, and therefore referred to as an arbovirus (arthropod-borne virus). 139 

CHIKV can bind to cells by using several cell surface proteins including Eps15, TIM-1, DC-140 

SIGN, PHB1 & 2, and Mxra8, which may contain glycosaminoglycans as post-translational 141 

modifications. Using in vivo and in vitro murine models, as well as human PBMCs, Mahish et 142 

al. showed that TAK-242, anti-TLR4 Abs, or knockout of TLR4 prevented CHIKV-induced 143 

increase in inflammatory cytokine production (TNF, IL-6, MCP-1) and reduced activation of 144 

p38, JNK and NF-κB signaling pathways and cell maturation, leading to decreased CHIKV 145 

infection and prolonged survival of mice [38]. To complement the functional data, Mahish et al. 146 

also used molecular docking to propose eleven polar interactions between the extracellular 147 

domain of TLR4 (from aa 454-592) and CHIKV E2 protein (primarily between aa 303-315). 148 

Respiratory syncytial virus (RSV): Upon infection by RSV, syncytia (large multinucleated 149 

“cell-like structures'') arise due to the effect of RSV fusion protein (F) causing neighboring cell 150 

membranes to merge. More than 20 years ago, Kurt-Jones et al. reported TLR4 involvement 151 

in RSV sensing [39] by using recombinant F protein and neutralizing antibodies binding F 152 

protein in TLR4-/- and CD14-/- mice [39]. Using in silico molecular docking simulations, Akagawa 153 

et al. proposed that TLR4 binding affinity increases during pre- to post-fusion conformational 154 

changes [40]. 155 

Indirect TLR4 interactions via bridging molecules 156 

One complex challenge faced when exploring virus-receptor interactions is modelling and/or 157 

understanding an in vivo environment. Relatively simplified in vitro assays, using cultured cells 158 

in defined media, poorly take into account the impact of extra-cellular factors that could interact 159 

with viral particles and influence binding and uptake.  160 

The Adenoviridae family contains greater than 300 different types [41]. Much of the impetus 161 

for characterizing adenovirus-induced immune responses has been their use as gene transfer 162 

vectors and vaccines [42]. An initial clue that some adenovirus types interact with TLR4 came 163 

from Amalfitano and colleagues [43]. They used transgenic mice to identify TRIF, and TRIF-164 

interacting TLRs, that differentially modulate vector-induced immune responses. In a 165 

syngeneic approach, Doronin et al. show that factor X (FX) binding to some human adenovirus 166 

types leads to activation of the TLR4/Myd88-TRIF pathway in murine macrophages [44]. Using 167 

modified capsids that do not bind FX, they concluded that FX acts as a bridging molecule 168 

between the capsid and TLR4 to induce an innate immune response. Paradoxically, human 169 

adenovirus type 5, a benchmark of adenovirus-induced immunogenicity, poorly induces human 170 

DC maturation and cytokine production [45].  171 
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In addition to coagulation factors, some adenovirus types interact with antimicrobial peptides 172 

(AMPs). AMPs are innate immune effector molecules that can also promote the maturation of 173 

APCs and amplify or synergize with innate responses [46]. Neutrophils are a rich source of 174 

AMPs and, following a breach in tissue homeostasis, release their cytoplasmic content which 175 

can be up to 20% AMPs. Lactoferrin and α-defensins are alarmins (a subset of AMPs) that 176 

also impact innate and adaptive immune responses by activating PRRs in APCs [47]. In 177 

epithelial cells, -defensins impairs human adenovirus type 5, 12, and 35 infection by 178 

stabilizing their vertices, thus preventing the disassembly of the capsid in endocytic vesicles 179 

[48]. In two studies, Eichholz, Cheneau, Tran et al. found that lactoferrin and human neutrophil 180 

defensin 1 bind, with micro- to nanomolar affinity, to the capsid of adenovirus type 5, 26, and 181 

35. Then, via a bridging mechanism, the AMPs bind to TLR4 on the surface of human APCs 182 

to facilitate AdV uptake [33,49]. Downstream of the adenovirus-AMP interactions with TLR4, 183 

the APCs undergo maturation via the induction of an NLRP3-associated inflammasome.  184 

Detection of secreted viral proteins 185 

Similar to bacteria, virus propagation often involves active or passive release of intracellular 186 

pathogen components into the extracellular environment. Consequently, viral proteins that may 187 

not be exposed on the surface of viral particles can still act as TLR4 agonists.  188 

The five Dengue virus (DENV) serotypes cause a spectrum of disease. During propagation, 189 

a polyprotein precursor of ~3,400 aa is cleaved into three structural (C, prM and E) and seven 190 

nonstructural proteins (NS1, 2A & B, 3, 4A & B, and 5). In 2015, Modhiran et al. demonstrated 191 

that NS1, released from infected cells as soluble lipid-associated hexamer, activates TLR4 on 192 

the surface of endothelial cells to increase vasculature leakage [50]. In addition to the 193 

interaction with APCs, NS1 appears to be linked with thrombocytopenia by triggering TLR4-194 

mediated platelet activation [51]. 195 

There are six Ebolavirus (EBOV) species: Bundibugyo, Reston, Sudan, Taï Forest, Bombali, 196 

and Zaire, with the latter causing the largest number of outbreaks and highest mortality rate. 197 

EBOVs are filamentous-shaped particles with genomes that encode seven proteins: NP 198 

(nucleoprotein), VP30, -35, -40 & 42 (matrix proteins), L (an RNA-dependent RNA 199 

polymerase), and GP (which encodes two glycosylated spike proteins). NP, L, VP30 and -35 200 

form the nucleocapsid containing the genome. During an active EBOV infection, GP, the key 201 

protein in EBOV virulence, is shed from both cells and virions (the EBOV envelope is decorated 202 

by the membrane-bound trimeric GP [52]) due to cleavage by ADAM17 (A disintegrin and 203 

metalloprotease 17). Due to reading errors during transcription and error-prone post-204 

translational processes due to seven uracil residues, three GP variants are produced: i) full-205 
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length type I transmembrane GP (pre-GP1,2), ii) a furin-cleaved pre-GP that creates GP1 and 206 

GP2 to form a heterodimer that assembles into the trimeric 450-kDa spike at the surface [53], 207 

and iii) a dimeric pre-shed GP, which is generated by “correct” transcription and post-208 

translational processes. Shed GP (sGP) molecules diffuse through the bloodstream and can 209 

activate TLR4-expressing cells at distal locations [54]. sGP interacts directly with TLR4/MD-2 210 

through the hydrophobic internal fusion loop to activate the signaling pathways leading to a 211 

storm of pro-inflammatory and antiviral cytokines [55]. Harty and colleagues used EBOV-like 212 

particles, in which they could selectively incorporate proteins, and analyzed cytokine 213 

production from human cell lines to screen for an interaction with TLR4 [56]. 214 

Immunoprecipitation assays suggested an interaction between GP and TLR4, which was 215 

consistent with TLR4-associated signaling cascade. Of note, the 150-residue mucin-like 216 

domain of GP1,2 is heavily glycosylated, which may be associated with its ability to induce 217 

cytokine storms and increase virulence [56]. Volchkov and colleagues found that extensive 218 

enzymatic-based deglycosylation decreased GP-induced cytokine production [57], a finding 219 

however recently challenged by Scherm et al. using non-glycosylated mutants of GP [55]. 220 

Using mice and recombinant GP as a ligand, Lai et al. also found a direct involvement of GP 221 

in TLR4 activation [58].  222 

Similar to EBOV, Marburg virus can cause hemorrhagic fever. Younan et al. showed that the 223 

TLR4 antagonist eritoran prevented the death of mice following challenge with EBOV and 224 

Marburg virus via reduced pro-inflammatory cytokine production and decreased systemic 225 

levels of infiltrating neutrophils and CD4+ and CD8+ T cells [59]. Eritoran also protects EBOV-226 

infected mice by reducing the inflammatory effects of oxidized phospholipids, which interfere 227 

with maturation of DCs, resulting in limited lymphocyte activation.  228 

Cellular environments and cellular partners 229 

Cellular environments 230 

Although TLR4 is canonically found on a subset of immune myeloid cells, some tissue-resident 231 

epithelial cells express low levels of TLR4 on their surface, which may contribute to organ and 232 

tissue immunosurveillance. Bulk transcriptome analyses detect TLR4 mRNA in many organs 233 

and tissues [60], and data suggest that some tissues and cell types modulate TLR4 expression 234 

levels in pathophysiological conditions [61]. Of note, the pattern of TLR4 mRNA and protein 235 

expression in situ parallels those of CD14 and LY96 (MD-2). TLR4 location and levels are 236 

relevant when considering the cellular environment and the impact on host inflammation and 237 

viral infections. As such, TLR4 engagement by PAMPs or DAMPs can induce a MyD88-238 

dependent inflammatory response, as well as a MyD88-independent antiviral environment, 239 
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both of which impact host immune responses and virulence [62]. Massive engagement of TLR4 240 

complexes should lead to a deleterious response (cytokine storm), while a fine-tuned TLR4-241 

mediated IFN-dependent response favors the host by abrogating virus propagation [63].  242 

When TLR4 engagement increases virulence, then strategies to prevent TLR4 signaling might 243 

be beneficial [63,64]. For example, blocking TLR4 signaling prior to infection by Tembusu virus 244 

(TMUV), a flavivirus causing egg drop disease syndrome in birds, led to replication inhibition 245 

[65]. Also, HTLV-I protein p30 may directly impact TLR4-dependent host immune tolerance or 246 

anergy by interfering with activation and expression in macrophages [66]. Additionally, Wilks 247 

and colleagues showed that mouse mammary tumor viruses (MMTV) can incorporate TLR4 248 

into their envelope, which leads to an LPS-dependent enhancement of transmission [67]. 249 

Extra- and intracellular partners 250 

An underappreciated aspect of TLR4 versatility is its different subcellular locations. While the 251 

recognition of PAMPs by TLR4 certainly occurs at the cell surface, TLR4 can also traffic 252 

through endosomal compartments to initiate interactions or signaling events that regulate 253 

antiviral or pro-viral pathways via structural and spatiotemporal parameters [35,68]. The TLR4 254 

complex can also interact with extracellular alarmins, leading to the amplification of 255 

surrounding inflammation upon viral infections. Indeed, alarmins are passively or actively 256 

secreted upon cellular stress or viral infections and can interact with inflammatory receptors 257 

such as TLR4 or RAGE [69]. Interestingly, viral infections leading to severe inflammatory 258 

disorders often rely on uncontrolled and excessive release of alarmins, like HMGB1 or 259 

members of the S100 proteins family (which may aid as biomarkers of disease severity) [69]. 260 

This is the case of viral myocarditis caused by Coxsackievirus B3 and for which HMGB1 and 261 

S100A8/S100A9 are involved [70]. Similarly, acute respiratory disease caused by RSV, SARS-262 

CoV1/2, or influenza virus A is associated with elevated levels of HMGB1 [71] and/or 263 

S100A8/S100A9 [72], which can exacerbate TLR4-mediated cytokine production. There is 264 

therefore a clinical interest to better detect and control the alarmin-TLR4 axis upon virus-265 

induced inflammatory disorders. Therefore, it is not only the TLR4-virus interaction, but also 266 

associated elements and parameters such as TLR4 localization and conformation, protein 267 

partners, and antigen presentation, that impact the inflammatory response. 268 

Impact on T- and B-cell responses 269 

TLR4 and host antiviral cellular immunity 270 

TLR4-mediated immune responses are intimately linked to the adaptive immune system of 271 

vertebrates. The involvement of TLR4 in adaptive immune responses was thought to mainly 272 

rely on the adjuvant capacity of TLR4 activation that enhances functional maturation and 273 
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migratory capacities of APCs [73]. It became clear that TLR4-mediated control of CD4+ T cell 274 

priming impacts inflammatory cytokines expression and overcoming suppressive effects from 275 

regulatory T cells [74]. Interestingly, the strength of TLR4 stimulation might differentially 276 

regulate the profile of T helper 1 cells (Th1) towards Th2 responses, which could become 277 

deleterious in a context of viral infection [75]. Furthermore, the engagement of TLR4 with 278 

natural or engineered ligands influences adaptive immunity against HIV-1 [76,77] and LCMV 279 

[78] infections. 280 

Importantly, a better understanding of the dynamics between viral infections, TLR4 complex, 281 

and host cellular immunity, will help identify strategies to enhance antiviral immunity and design 282 

effective vaccines. TLR4 targeting is a potent option in vaccine development strategies against 283 

viral infections. Promising ex vivo and in vivo data suggest that TLR4 engagement potentiates 284 

humoral and cellular immune responses upon HBc-AdV-B7-VLPs immunization [79], and 285 

confers resistance to HBV [80], and Marek's disease virus [81] infections - as well as inducing 286 

robust mucosal immune responses [82] and even improving immunotherapeutic approaches 287 

[83].  288 

TLR4 and host antiviral humoral immunity 289 

The interaction between TLR4 and B-lymphocyte responses is multifaceted. A seminal study 290 

by Pasare and Medzhitov reported that the addition to CD4+ T-cell help, the generation of T 291 

cell-dependent antigen-specific antibody responses require TLR4 activation in B cells [84]. 292 

Similarly, TLR4 is an intermediate immune effector between host innate and adaptive immune 293 

responses against RSV [39]. This was demonstrated in a study uncovering that optimal specific 294 

antibody responses were dependent on CD4+ T-cell help and triggering of TLR4 and TLR7 on 295 

B cells and DCs [85]. Indeed, immunization with nanoparticles containing Yellow fever virus-296 

vaccine, plus ligands signaling through TLR4 and TLR7, protected birds from lethal avian, 297 

swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 298 

influenza in rhesus macaques [85]. 299 

These studies highlighted the concept that viral infections and virus-derived vaccines can 300 

leverage TLR4-mediated signaling to enhance B-cell activation and promote the production of 301 

protective antibodies. This was indeed the case in the context of HBc-HAdV7-VLPs 302 

immunization [79], Enterovirus-71 virus-like particles [86], and adenovirus-based anthrax 303 

vaccine [87]. A recent study showed that inflammatory signals upon immunization with 304 

influenza A virus + LPS functioned as B-cell fate-determinants for the rapid generation of 305 

protective antiviral extrafollicular responses [88]. TLR4-B-cell receptor co-engagement also 306 

induces T cell-independent hypermutated, class-switched, neutralizing antibody responses 307 
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which could also be beneficial for antiviral vaccines [89]. Noteworthy, TLR4 effect on B-cell 308 

responses could also be indirect and cell-mediated as concluded by Chen et al. when finding 309 

that the recruitment of conventional type 2 DCs into secondary lymph organs initiated follicular 310 

helper T differentiation, thus promoting the proliferation of germinal center B cells and the 311 

production of RABV-specific IgGs and neutralizing antibodies [90].  312 

Concluding remarks 313 

TLR4 has yet to reveal all its functional secrets. Future work will need to i) characterize the 314 

impact of SNPs on virulence, ii) explore its involvement in detecting other viruses (either 315 

directly, indirectly or via bridging factors), iii) untangle the in vivo role DAMPs versus PAMPs 316 

plays in inducing an antiviral environment, iv) identify the mechanism by which viral proteins 317 

activate a MyD88-dependent or -independent response, and v) determine the most effective 318 

ways to stimulate TLR4 with adjuvants in vaccines to generate broad and long-term Th1 319 

responses against emerging viruses, thus helping to tackle future pandemics [91]. 320 
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Figure 1. toll and the Toll-like receptors milestones  546 

In the early 1980’s Nüsslein-Volhard and colleagues found that the toll is involved in the differentiation of the dorso-547 
ventral axis of the drosophila embryo. In 1989, Janeway posited the "pattern recognition hypothesis," suggesting 548 
that the immune system distinguishes between self and non-self through the recognition of conserved molecular 549 
patterns on pathogens through PRRs. In the mid-1990’s, Hoffmann and colleagues showed that toll mutant flies 550 
succumb rapidly to challenge with Aspergillus fumigatus, an opportunistic fungus. The first mammalian Toll-like 551 
gene was described in 1997. Shortly thereafter, Beutler and colleagues demonstrated that TLRs carry immune 552 
functions, linking them to the sensing of PAMPs. Beutler and colleagues showed that mice that harbor missense 553 
mutations in TLR4 are unable to sense LPS. A year later, further generation and characterization of knockout mutant 554 

mice for TLR4 by Akira and colleagues showed that mammalian TLRs induce NF-B-dependent responses to 555 
different PAMPs. In the decade that followed, the “innate immunity” field accelerated the pace of discovery, as the 556 
microbial ligands of several mammalian TLRs were identified. This decade included the seminal study by Kurt-557 
Jones and colleagues showing that TLR4 is involved in the detection of RSV. The Nobel prize in Physiology and 558 
Medicine in 2011 “for the discoveries concerning the activation of innate immunity" recognized not only fundamental 559 
research, but also its far-reaching implications concerning vaccine design against infectious agents and 560 
development of therapies against cancer and immune-related diseases. Parallel to functional data, the atomic 561 
structure led to a molecular understanding of the different modes of PAMP binding to the ectodomains of TLRs, 562 
their effect on the conformation of the cytoplasmic TIR domain, and subsequent signaling cascades. Over the last 563 
10 years, TLR4 interactions with viruses (including Dengue, Ebola, SARS-CoV-2 and adenovirus) have helped us 564 
understand virulence and pathogenicity.  565 
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Figure 2. TLR4/MD-2 interactions and their antagonists 566 

 567 

A) The archetypal role of TLR4: LPS detection is initiated by LBP and then LPS is transferred to membrane-bound 568 
CD14, prior to engaging the TLR4-MD2 complex and inducing TLR4 dimerization, which activates the TIRAP-569 
MyD88 signaling cascade. This cytoplasmic signaling pathway (from IRAK4-p65) eventually induces the 570 
translocation of NF-κB and the expression of proinflammatory cytokines and, in some cases, D) inflammasome 571 
components (e.g., NLRP3, caspase-1, ASC).  572 

B) While TLR4-virus (e.g., DENV) interactions also activate the TIRAP-MyD88 signaling cascade, the bivalent 573 
TRAM-TRIF pathway also leads to the upregulation of type-I IFNs upon IRF3 activation, which may be more relevant 574 
for antiviral responses. The formation of an inflammasome leads to caspase-1 autoactivation, cleavage of pro-575 
GSDMD to GSDMD to create oligomeric pores, and cleavage of pro-IL1β to release IL-1β via the pores. 576 
Pharmacological inhibitors (in red) can be used to identify and inhibit TLR4 interactions or the downstream signaling 577 
cascade. TAK-242 is a cyclohexane derivative that efficiently inhibits the TLR4 pathway. TAK-242 binds cysteine 578 
residue 747, located intracellularly, and prevents TIRAP and TRAM engagement. Other TLR4 antagonists include 579 
acetylated LPS and LPS-RS from 0111:B4, which bind to the hydrophobic pocket of MD-2. Similarly, eritoran 580 
tetrasodium is a lipid A analog that binds to MD-2, blocking the interaction of LPS with the TLR4–MD-2 complex 581 
and subsequent dimerization and activation. OxPAPC competes with LPS-binding protein (LBP), CD14, and MD-582 
2. Finally, pepinh-TRIF interferes with TLR4-TRIF binding. 583 

C) Single nucleotide polymorphisms (SNPs) in TLR4, located in the enhancer/promoter, coding, or noncoding 584 
regions, can influence TLR4 expression levels, its conformation, and binding partners. As examples, RS4986790 (blue) 585 
and RS4986791 (orange) are illustrated because their locations in the coding region have been linked to altered 586 
virulence of some microbes.  587 



 

18 
 

Box 1. Divergent versus conventional pathways 588 

TLR4-mediated signaling can transit through two distinct pathways involving TIRAP/MyD88 and TRIF/TRAM 589 
(TICAM1/2) adaptor proteins, which induce the production of proinflammatory cytokines and antiviral type-I 590 
interferon responses respectively. A simplistic interpretation suggests that the conventional TLR4-TIRAP-MyD88 591 
pathway leads to uncontrolled NF-κB-dependent inflammation, while the TLR4-TRIF-TRAM pathway initiated 592 

through endosomal trafficking leads to IRF3-dependent transcription of antiviral genes.  593 

The TLR4-TIRAP-MyD88 pathway 594 

Upon ligand binding to TLR4, MyD88 is recruited via the bridging factor TIRAP (Mal) to the TLR4 TIR domain which 595 
associates and transiently activates dynamic and concerted signalling through factors like interleukin-1 receptor-596 
associated kinase 4 (IRAK1) and IRAK1/2, nucleating the formation of a supramolecular organizing center (SMOC) 597 
coined “myddosome". The myddosomes then co-ordinate TLR-mediated inflammatory response upon association 598 
with TNF receptor-associated factor 6 (TRAF6). Then, polyubiquitination allows TRAF6 to activate the Iκκ complex 599 
and transforming growth factor-β-activated kinase 1 (TAK1) leading to the activation and nuclear translocation of 600 

NF-κB and AP-1 transcription factor subunits Jun/Fos and subsequent induction of expression of proinflammatory 601 

cytokines and other immune response-related genes. Conventional TLR4-mediated signaling pathway has been 602 
most often tagged for its implication in virus-associated severe pathogenesis whether due to genetic regulations or 603 
polymorphisms of myddosome-associated factors [92], or to a direct effect of viral proteins on this pathway [93].  604 

The TLR4-TRIF-TRAM pathway 605 

TLR4 can also drive a MyD88-independent TRAM/TRIF-mediated pathway upon endocytosis and alternative 606 
dimerization state of the receptor for which CD14 is essential. The involvement of the TRIF–related adaptor 607 
molecule (TRAM) is essential to recruit the adapter protein TRIF to the TLR4-TIR domain and form another SMOC 608 
called “Triffosome”. The particularity of the TRIF-dependent pathway relies on its connection to other signaling 609 

kinases like TANK-binding kinase 1 (TBK1) and inducible IκB kinases (Iκκ, Iκκ and Iκκ) leading to the 610 

phosphorylation and nuclear translocation of the activated interferon regulatory factor 3 (IRF3) required to induce 611 
type-I IFN thus establishing an antiviral state [94].  612 

Overlapping pathways 613 

These pathways are not mutually exclusive and some viruses impact both (e.g., Tat of HIV-1 [120]) or induce non-614 
canonical or alternative pathways: e.g., VSV glycoprotein-G induces a TRIF-independent IFN-I response in DCs 615 

and macrophages, and SARS-CoV M protein promotes IFN-β response in immortalized epithelial cells in a TRAF3-616 

independent manner. Interestingly, because TRAM and TRIF may regulate the NF-κB pathway and control pro-617 

inflammatory cytokines expression upon TLR4 stimulation, this pathway appears central in fine-tuning the amplitude 618 
of inflammatory and antiviral responses. As such, the TLR4-TRIF-TRAM pathway needs to be tightly regulated as 619 
reported for cellular factors like Sterile Alpha and TIR Motif Containing 1 (SARM1), or TRAM adaptor with GOLD 620 
domain (TAG). Given its critical role in establishing the antiviral response, this pathway is also impacted during viral 621 
infections as shown for hCMV, HCV [95] or the vaccinia virus [96]. 622 

The balance between TLR4-mediated proinflammatory and antiviral signaling is crucial to mount effective host 623 
defense, but also to limit virus-driven immunopathologies caused by excessive inflammation. It remains to better 624 
determine the mechanisms at play upon viral infections leading to selective modulation of TLR4-mediated signaling 625 
hubs as well as potential viral components able to modify one pathway over the other and therefore impacting innate 626 
and adaptive antiviral responses. In this context, Bonham et al. concluded that the promiscuity of lipid binding of 627 
the sorting adaptor TIRAP could explain the diversity in subcellular localization of TLR4 signaling hubs and virus 628 
detection via endosomal TLRs [97].  629 
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Table 1. Glossary of viruses 630 

Genus Family Genome* ~size (kb) Structure 

Adenovirus Adenoviridae ds DNA 28 to 42 non-enveloped 

Chikungunya virus  Togaviridae +ss RNA 11.7 enveloped 

Coxsackievirus B3 Picornaviridae +ss RNA 7.3 non-enveloped 

Dengue virus  Flaviviridae +ss RNA 11 enveloped 

Ebolavirus Filoviridae -ss RNA 19 enveloped 

Enterovirus A71 Picornaviridae +ss RNA 7.5 non-enveloped 

Foot & mouth disease virus  Picornaviridae +ss RNA 8.3 non-enveloped 

Human T-lymphotropic virus 1  Retroviridae +ss RNA 9 enveloped 

Hepatitis B virus Hepadnaviridae ds DNA 3.2 enveloped 

Hepatitis C virus Flaviviridae +ss RNA 9.6 enveloped 

Hepatitis E virus Hepeviridae +ss RNA 7.2 non-enveloped 

Human cytomegalovirus  Herpesviridae ds DNA 235 enveloped 

Human immunodeficiency virus 1 Retroviridae 2 copies  
+ss RNA 

9.7 enveloped 

Human papillomavirus  Papillomaviridae ds DNA 8 non-enveloped 

Influenza H1N1 Orthomyxoviridae segmented 
-ss RNA 

13.5 enveloped 

Marburg virus Filoviridae -ss RNA 19 enveloped 

Marek's disease virus  Orthoherpesviridae ds DNA 177 enveloped 

Mouse mammary tumor virus  Retroviridae +ss RNA 10 enveloped 

Murine norovirus Caliciviridae +ss RNA 7.5 non-enveloped 

Rabies virus Rhabdoviridae -ss RNA 12 enveloped 

Respiratory syncytial virus Pneumoviridae -ss RNA 15.2 enveloped 

SARS-CoV-2, NL63, 229E, OC43 & HKU1 Coronaviridae +ss RNA 26 to 32 enveloped 

Tembusu virus  Flaviviridae +ss RNA 10.9 enveloped 

Yellow fever virus  Flaviviridae +ss RNA 11 enveloped 

*ds = double stranded, ss = single stranded, “+” = positive sense, “-“ = negative sense  631 



 

20 
 

  632 

Table 2. Examples of TLR4 Single nucleotide polymorphisms (SNPs) in selected populations that impact 
virulence  

SNP Population Virulence Viruses References 

RS7873784 Chinese  HPV [25] 

RS10759932 Chinese  EV71 [98] 

 

RS4986790 

Indian  HPV; DENV; HIV [21,99–101] 

Egyptian SARS-CoV2 [18] 

Caucasian HIV [99] 

Saudi Arabian HCV [102] 

Tunisian HCV; HBV [103] 

Polish HCMV [23] 

 

RS4986791 

Indian  HEV; DENV [21,22] 

Saudi Arabian HCV [102] 

Egyptian SARS-CoV2 [18] 

Mexican DENV [20] 

Polish HCMV [19] 

RS1927911 Indian  HPV [26] 

RS11536865 Mexican  DENV [20] 

RS2737190 Mexican  DENV [20] 
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Figure 3. Indirect and direct TLR4 engagement  633 

A schema of the means by which TLR4 is engaged by viruses: the left panel depicts direct detection of 634 

intact SARCoV-2, the middle panel depicts the detection of an adenovirus capsid via an AMP bridge 635 

(lactoferrin in this case), and the in the right panel the detection of viral proteins.  636 

 637 


